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Abstract—In this article, we propose an approach using irreg-
ular and unaligned Sentinel-2 satellite image time series (SITS)
for large-scale land cover pixel-based classification. We used end-
to-end learning by combining an attention-based interpolator:
the Multi-Time Attention Networks (mTAN), with a Sparse
Variational Gaussian Processes (SVGP) classifier. The mTAN is
used to project the irregular and unaligned SITS onto a fixed
and reduced size representation. By using structured feature
extraction, this representation is able to take into account the
spectro-temporal structure of the SITS. Moreover, the spatial
information is added to this representation by using the spatial
positional encoding. This representation is given to the SVGP
classifier and all the parameters are optimized using a loss
function for classification. We ran experiments with irregular
and unaligned Sentinel-2 SITS of the full year 2018 over an area
of 200 000 km2 (about 2 billion pixels) in the south of France.
Using the representation from the mTAN instead of linearly
interpolated SITS significantly improved the results in terms of
classification accuracy of about 10 points for the overall accuracy.
Moreover, the mTAN combined with the SVGP classifier is above
the mTAN combined with Deep Learning classifiers (respectively
seven and four points for the MLP and LTAE classifiers).

Index Terms—Satellite Image Time-Series (SITS), Sentinel-2,
Land Cover Map, Pixel-Based, Classification, Large Scale, Sparse
Variational Gaussian Processes, Earth Observation (EO), Remote
Sensing.

I. INTRODUCTION

IN March 2023, the final synthesis report of the Sixth
Assessment Report (AR6) was released by the Intergovern-

mental Panel on Climate Change (IPCC). It is a comprehensive
review of our knowledge of the climate change. Among the
various findings, it reports that climate impacts on ecosystems
are more intense and widespread than expected [1]. Among
other things, they proposed to expand the use of digital techn-
logy for land use monitoring or sustainable land management
which can help to reduce emissions from deforestation and
land use change.
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Earth observation satellites provide a huge amount of raw
data of different types (e.g. optical, radar). Extracting mean-
ingful information from these raw EO data can help to monitor
the Earth’s surface changes and therefore can help to solve the
challenges of climate change [2], [3]. For instance, the twin
satellites Sentinel-2 provide free and open-access data with
relevant features: high revisit time (every 5 days) and high
spectral and spatial resolutions (four spectral bands at 10m,
six at 20m and three at 60m per pixel) [4].

These optical Sentinel-2 satellite image time-series (SITS)
that cover large continental surfaces with a short revisit cycle,
bring the opportunity of large scale mapping. For example,
land use or land cover (LULC) maps provide information
about the physical and functional characteristics of the Earth’s
surface for a particular period of time. More precisely, land
cover map usually refers to the physical land type (i.e. corn
field or grassland) whereas land use map indicates how people
are using the land (i.e. agriculture). To produce these LULC
maps from the large quantity of SITS, automatic methods
are required. In the last years, Machine Learning (ML) and
then Deep Learning (DL) methods have shown very promising
results in terms of performance accuracy [5]–[11]. Different
methods were proposed for land cover classification using
Sentinel-2 SITS at large scale. Recently, Bellet et al. [12]
proposed a method based on Sparse Variational Gaussian Pro-
cesses (SVGP). It provides similar classification performance
to state-of-the-art methods such as conventional ML methods
or DL methods. This method, like the others, requires data
with a fixed-size.

Yet, Sentinel-2 SITS are irregularly sampled: observations
are not equally spaced in time due to the presence of clouds
or shadows. These time series are also unaligned: observations
from two different satellite swaths have different temporal
sampling grids. Even though some deep learning models such
as Long short-term memory (LTSM) [13] can take into account
irregular time series, they do not support unaligned time series.
Usually, preprocessing techniques are used to transform these
irregular and unaligned time series into time series that can
be used by the classifier. In this context, Inglada et al. [7]
proposed to linearly resample the observations onto a common
set of latent dates. The obtained resampled observations from
a full year were successfully used to produce land cover
classification maps at country scale using SVGP [12].
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However, information essential to the classification predic-
tion can be lost when producing these resampled observations.
Indeed, Li et al. [14] showed that an independent interpolation
method directly followed by classification method performed
worse than methods trained end-to-end. In this sense, Con-
stantin et al. [15] did not use preprocessing techniques and
proposed to jointly classify and reconstruct irregular pixel time
series. Even if the reconstruction was good, the model did not
compete with state of the art classifiers such as RF or Support
Vector Machine (SVM). Using kernel-based interpolation, Lu
et al. [16] produced a similarity function from two irregular
time series. Few years later, Shukla et al. [17] also used a
kernel smoother to form representation from irregular time
series.

Authors of [18] proposed a method called Multi-Time
Attention Networks (mTAN) which produces a fixed repre-
sentation of an irregular and unaligned time series. It uses
multiple continuous time embeddings coupled with attention
mechanisms. The mTAN shows great performances for both
interpolation and classification problems [18]. By using end-
to-end training (mTAN coupled with a classifier), the perfor-
mance results were similar to or better than state-of-the-art
models.

In this paper, we propose to use end-to-end learning by
combining the mTAN with the SVGP classifier. The mTAN is
used to project onto a latent space of fixed and reduced size
the irregular and unaligned time series. This representation is
then given to the SVGP classifier and all the parameters are
optimized using a loss function for classification. The SVGP
classifier is described by a large number of parameters to be
estimated highly depend on the spectro-temporal dimension of
the data. Thus, the complexity of the model is proportional to
this number of variables but also to the correlation between
these variables. Using structured feature extraction in the
mTAN module can be beneficial for the SVGP classifier.

Moreover, in large scale classification, due to different
climatic and topographic conditions, there is a variation of
the spectro-temporal signature over the spatial domain (i.e.
non stationarity). By using spatial coordinates, with spatial
stratification [7] or by learning a spatial-informed classi-
fier [12], this non-stationarity can be taken into account and
performances are improved. In this work, we propose to add
the spatial information before the classification: in the latent
representation obtained by the mTAN. The method used is
based on spatial positional encoding defined in [19].

To sum up, Fig. 1 represents the end-to-end learning for
the classification of one irregular and unaligned pixel time
series X. Z is its representation onto the fixed and reduced
temporal grid with dim(Z) < dim(X). hθ1 and fθ2 represent
respectively the mTAN and the SVGP classifier with their
respective learnable parameters θ1 and θ2. SVGP can be easily
used in end-to-end learning as the gradient of the loss can be
back-propagated. The loss L is used to optimized θ1 and θ2

and to minimize the error between the predicted class ŷ and
the true class y. The loss is not modified from [12] and is
based on Variational Inference.

The remainder of this paper is organized as follows. Sec-
tion II describes how the mTAN is used to project irregular

X hθ1

∇θ1L

Z fθ2

∇θ2L

ŷ

L(ŷ,y;θ1, θ2)

Loss

Fig. 1: End-to-end learning for the classification of one irreg-
ular and unaligned pixel time series X.

and unaligned pixel time series. Section III defines how the
mTAN is adapted in order to fit to the classification task
especially by using spectro-temporal reduction and spatial
positional encoding. The experimental setup is detailed in
Section IV. The associated results concerning the end-to-end
training model (mTAN coupled with SVGP) are provided in
Section V. Different competitive methods are studied and
their associated results are presented in Section VI. Finally,
Section VII concludes this paper and opens discussions on
future works.

II. THE IRREGULAR AND UNALIGNED PIXEL TIME SERIES

This section describes how irregular and unaligned pixel
time series is projected onto a fixed temporal grid in order to
be used by the classifier. First, some notations and definitions
which will be used throughout this paper are introduced. Then,
the method at the basis of the proposed method (i.e. the
mTAN) is presented and its modification is described in the
last part.

A. Notations and definitions

In this paper, the ith pixel time series xi(tk)
at time tk is defined by its spectral measurements
{xi1(tk), ..., xij(tk), ..., xiD(tk)} with i ∈ {1, ..., N}, N
the number of pixels and D the number of spectral features.
Besides, two spatial coordinates ψi1 and ψi2 are associated to
the pixel xi. Moreover, yi ∈ {1, ..., C} is the target value
(i.e. the class membership) associated to the pixel xi, with C
the number of classes.

For a pixel i, a spectral feature j is observed at T ij
timestamps: Ti

j = {tij1, ..., tijk, ..., tijT i
j
}, where T ij is the

number of valid observations (e.g., no clouds or shadows). As
discussed in Section I, because of satellite swaths and weather
we usually have unaligned time series, i.e., Ti

j 6= Ti′

j . In this
work, we assume that all spectral features are available for
each timestamp, i.e., Ti

j = Ti
j′ = Ti. This is commonly the

case when working with only one sensor. As an illustration,
Fig. 2 represents two real irregular and unaligned pixel time
series acquired with Sentinel-2.

We defined the set of all timestamps T such as:

T =

N⋃
i=1

Ti

= {t1, ..., tk, ..., tT }

with T the total number of observations. For each pixel, we
define a mask time series mi ∈ {0, 1}T such as
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Fig. 2: xij and xi
′

j are two irregular and unaligned time series
for respectively the pixel i and i′ for the spectral feature j.

mi(tk) =

{
1 if tk ∈ Ti

0 otherwise ∀tk ∈ T, (1)

which indicates if the feature j of pixel i at time tk is observed
or not. We further define an augmented pixel time series xi∗j
as the pixel

xi∗j (tk) =

{
xij(tk) if mi(tk) = 1
0 otherwise ∀tk ∈ T, (2)

Using (1) and (2) will simplify the presentation of the inter-
polator in the following section.

B. Projection onto a regular-temporal grid

As described previously, most of the classifiers are not able
to deal with irregular and unaligned time series. Thus, the core
idea is to learn a projection of these irregular and unaligned
time series onto a regular temporal grid of R latent dates: R =
{r1, ..., rl, ..., rR}. As explained in Section I, a large variety
of methods were proposed in the remote sensing literature.
In this work, we focused on conventional Nadaraya-Watson
kernel smoother [20, Chapter 6], because it leads to an efficient
interpolation as discussed in the next section.

For a given pixel time series x∗j , the interpolated x̂j at latent
timestamp rl using a kernel smoother is given by1:

x̂j(rl) =

∑tT
tk=t1

K(rl, tk)m(tk)x∗j (tk)∑tT
t′k=t1

K(rl, t′k)m(t′k)
(3)

with K some similarity kernel [20, Chapter 6]. Usually,
the RBF kernel is used K(rl, tk) = exp (d(rl, tk)) with
d(rl, tk) = −σ−2(rl − tk)2. From (3), x̂j(rl) is a con-
vex combination of original pixel values, whose weights are
computed using a similarity kernel applied on the temporal
domain. With a RBF kernel, the isotropic distance between
pixels is computed in the temporal domain thus the similarity
is a decreasing function of the temporal distance. Moreover,

1For clarity, we consider only one pixel and we drop the index i in the
remaining of the paper.

the parameter σ, learned from the training data, weights the
temporal distance.

The performances of such method are strongly limited by
the hand-crafted similarity kernel. A powerful extension is
obtained using attention and embedding mechanisms, which
are able to build more complex similarity kernel [21, Chapter
11]. In the following, the Multi Time Attention Networks
(mTAN) [18] is discussed as an extension of the kernel
smoother to build the interpolator for the classification model
in our end-to-end training.

C. Multi Time Attention Networks (mTAN)

To construct the similarity kernel, Shukla et al. [18] pro-
posed to use attention mechanisms and more precisely the
scaled-dot product attention. As defined in [21], by using
attention mechanisms, ”the neural network can select elements
from a set and construct an associated weighted sum over
representations”. To compute the scaled dot-product attention,
firstly a dot product between a query q and a key k both of
size dk is applied [22]. Then, this dot product is scaled down
by dk. Finally, the result is passed through a softmax operation
and is multiplied by the value v of size dv such as:

Attention(q, k, v) = softmax(
qk>√
dk

)× v (4)

Different representations can be used for the query q and the
key k. The mTAN uses a learnable time embedding function
(namely positional encoding) φ to map a given t onto a higher
dimensional space of size E:

φ : R→RE

t 7→φ(t) =


ω1t+ α1

sin(ω2t+ α2)
...

sin(ωEt+ αE)

 (5)

with ωp and αp, p ∈ {1, ..., E}, the learnable parameters.

Therefore, to construct the similarity kernel K in (3),
we define:

d(rl, tk) =
φ(rl)

>W>
q Wkφ(tk)
√
E

with Wq and Wk two learnable matrices of size E ×E, the
indices q and k refer to query and key in (4).
Denoting Φ(T) =

[
φ(t1), . . . , φ(tT )

]
, the matrix of embed-

dings of T, (3) can be re-written using a masked softmax
operator [21, Chapter 11.3.2] such as:

x̂j(rl) = softmax

{(
Φ(T)>W>

k Wqφ(rl)
)
�m

√
E

}>
x∗j

= γ>rlx
∗
j .

(6)

with � being the Hadamard product, x∗j refers to value
in (4). Authors of [18] further propose to use multi-head
attention, i.e., H matrices of embeddings with ΦH(T) =
{Φh(T)}Hh=1, and also H time embedding functions with
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φH(rl) = [φ1(rl), ..., φH(rl)]. A learnable layer βH of size
1×H is used to produce the interpolated value

x̂j(rl) = βH(γHrl )
>x∗j . (7)

This equation can be computed for every spectral feature j
and every latent date rl.

The mTAN, as defined in (7), has extended interpolation
flexibility w.r.t. the conventional kernel smoother. Also, it
is worth noting that (7) benefits from the computational
efficiency of attention mechanism (parallel computation) and
all parameters are learnable during the training step.

III. ADAPTATION OF THE MTAN FOR THE CLASSIFICATION
MODEL IN OUR END-TO-END LEARNING

In this paper, we propose to use end-to-end learning by
combining the mTAN hθ1 described in Section II-C with a
classifier fθ2 as defined in Fig. 1. The classifier proposed is the
Sparse Variational Gaussian Processes (SVGP) defined in [12].
This classifier uses kernel functions, i.e. RBF covariance
functions, and no changes were made from [12] (i.e. same
loss). This section presents how the mTAN is modified in order
to improve the representation obtained for the classification
task.

A. Spectro-temporal feature reduction

The mTAN interpolation allows to perform feature reduc-
tion, in the temporal domain, in the spectral domain or in both
of them. Indeed, the interpolated feature j is of size R and by
taking R < T we can perform a temporal feature reduction.
Futhermore, adding a linear layer after the interpolation,
spectral feature reduction can done. Noting x̂(r) ∈ RD the
vector of all interpolated spectral features at timestamp rl,
B a matrix of size D′ × D with D′ < D, the final latent
interpolated pixel z(rl) can be written as

z(rl) = Bx̂(rl) (8)

The overall spectro-temporal feature reduction can be written
as:

Z = BX∗Γ (9)

where Z = [z(r1), . . . , z(rR)] ∈ RD′×R, X∗ =
[x∗(t1), . . . ,x∗(tT )] ∈ RD×T and Γ = [γr1 , . . . ,γrR ] ∈
RT×R.

As defined in (9), Γ does not depend on spectral band and
B does not depend on time i.e. a matrice B per date is not
required. Thus, as Constantin et al. [15], we have defined
an independence hypothesis. Therefore, the spectro-temporal
structure of the pixels time-series are used to construct the
latent variable Z.

Yet, the spatial information is not taken into account. In the
following section, we discuss how the spatial coordinates are
integrated in the processing by means of spatial positional
encoding, which is different from the temporal positional
encoding defined in (5).

B. Spatial positional encoding

The latent variable Z defined in (9) take into account the
spectro-temporal structure of the data. In this paper, we thus
proposed to also add the spatial information in Z by using the
spatial positional encoding. As in [19], the spatial coordinates
(ψ1, ψ2) are mapped onto a higher dimensional space of
dimension F using ϕ:

ϕ : R2 →RF

(ψ1, ψ2) 7→ϕ(ψ1, ψ2)

=
[

sin(ψ1ν1), cos(ψ1ν1), . . . , cos(ψ2νF/4)
]>

with νq = 10000−(2l)/F and q ∈ {1, ..., F/4}. ϕ(ψ1, ψ2) is
then given to a two layers perceptron with ReLu non-linearities
to obtain a vector of size D which is finally duplicated for
each timestamp to get a spatial positional encoding matrix P
of same shape than X∗ (i.e. D×T ). This matrix is added to the
raw input data X∗ before the spectro-temporal interpolation:

X̃∗ = X∗ + P.

The parameters of the perceptron are optimized jointly during
the learning step.

By using end-to-end learning, the SVGP classifier fθ2

computed the similarity over the latent spectro-temporal rep-
resentations of two pixels respectively noted Zi and Zi

′
such

as:

k(Zi,Zi
′
) = α exp

(
−‖Z

i − Zi
′‖2F

2σ2

)
= α(kλt(xi,xi

′
)× kψ({ψi1, ψi2}, {ψi

′

1 , ψ
i′

2 })
× kλtψ(xi{ψi1, ψi2},xi

′
{ψi

′

1 , ψ
i′

2 }))

Details of the calculation can be found in Appendix A.
By comparison to our previous works [12], the covariance
function k(Zi,Zi

′
) is composed of an additional element: a

spatio-spectro-temporal function kλtψ . Indeed, in [12], the
covariance function was only the product between a spectro-
temporal covariance function kλt and a spatial covariance
function kψ . By using spatial positional encoding, we have a
supplementary source of information.

By using spectro-temporal feature reduction and spatial
positional encoding, the mTAN is now designed to produce
a suitable latent representation Z for the classification task.
We will now discuss on the different learnable parameters.

C. Description of the parameters

The parameters θ1 of the mTAN hθ1
and their correspond-

ing sizes are summarized in the Table I. Thus, the total number
of learnable parameters θ1 is described by the following
equation:

2HE(1 + E) +DD′ +H + L1(L2 +D)

As a reminder, the parameters θ2 of the SVGP classifier fθ2

were highly dependent on the number of spectro-temporal
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TABLE I: Description of the mTAN’s parameters θ1 and their
corresponding sizes. The MLP corresponds to the parameters
of two layers perceptron used to obtain the spatial positional
encoding matrix P described in the previous section.

Parameters Size

{ωp, αp}Ep=1 2(HE)

Wq ,Wk 2(HE2)
B D′D
βH H
MLP L2(L1 +D)

Fig. 3: Location of the 27 studied tiles where a blue square
corresponds to one tile as provided by the Theia Data Center2.
Each tile is displayed with its name in the Sentinel-2 nomen-
clature.(background map © OpenStreetMap contributors)

features T × D. By using an end-to-end training with the
mTAN, this number is significantly reduced to R × D′ with
R < T and D′ < D and therefore the total number of
parameters θ2 is reduced as well. All the parameters are
optimized using a loss function for classification.

IV. EXPERIMENTAL SET-UP

The study area covers a zone of approximately 200 000 km2

in the south of metropolitan France. It is composed of 27
Sentinel-2 tiles, as displayed in Fig. 3.

A. Irregular and unaligned data sets

All available acquisitions of level 2A between January and
December 2018 for the 27 Sentinel-2 tiles were used, as the
ones described in [12]2. Indeed, surface reflectance time-series
and cloud/shadow masks were produced using the MAJA
preprocessing chain [23]. All the bands at 20m/pixel were
spatially up-sampled to 10m/pixel using bicubic interpola-
tion [24]. A total of 10 spectral bands with three spectral
indices (NDVI, NDWI, Brightness) were used. However, in
this paper, no temporal sampling pre-processing was used
(i.e. no linear interpolation such as in [7] or other types
of temporal synthesis). Therefore, as described in Section I,

2https://www.theia-land.fr/en/products/

TABLE II: Number of pixels for each data set

Training Validation Test
92 000 23 000 230 000

TABLE III: Land cover classes used for the experiments with
their corresponding color code.

Color Code Name
CUF Continuous urban fabric
DUF Discontinuous urban fabric
ICU Industrial and commercial units
RSF Road surfaces
RAP Rapeseed
STC Straw cereals
PRO Protein crops
SOY Soy
SUN Sunflower
COR Corn
RIC Rice
TUB Tubers / roots
GRA Grasslands
ORC Orchards and fruit growing
VIN Vineyards
BLF Broad-leaved forest
COF Coniferous forest
NGL Natural grasslands
WOM Woody moorlands
NMS Natural mineral surfaces
BDS Beaches, dunes and sand plains
GPS Glaciers and perpetual snows
WAT Water bodies

the data obtained is irregular and unaligned. Following the
notations defined in Section II-C, the union of the acquisition
dates of the 27 tiles results in T = 303 dates. Besides, the
spectral dimension is equal to D = 13.

The reference data used in this work is composed of C = 23
land cover classes ranging from artificial areas to vegetation
and water bodies constructed with different data sources as
described in [12]. The nomenclature of the 23 land cover
classes can be found in Table III.

Pixels were randomly sampled from these polygons over the
full study area (i.e. 27 tiles) to create three spatially disjoint
data subsets: training, validation and test. The three data sets
are class-balanced: 4 000 pixels per class in the training data
set, 1 000 pixels per class in the validation data set and 10 000
pixels per class in the test data set. The total number of pixels
for each data set is provided in Table II. Classification metrics
such as overall accuracy (OA) or F-score were computed for
each model using the test data set with 9 runs with different
random pixel samplings. Standardization was performed for
the valid acquisitions dates. Mean and standard deviation were
estimated for each spectral band and for each spectral index
on the training data set and then used to standardize the others
data sets (training, validation, test) [25].

B. Competitive methods

As described in [12], the SVGP model had satisfactory
classification performance results but feature extraction on the
spectro-temporal features is required in order to better take
into account the spectro-temporal structure and also to reduce
the number of spectro-temporal features. By using end-to-end
training, with the mTAN hθ1

described in Section III and with
the SVGP model defined as the classifier fθ2

, spectro-temporal

https://www.theia-land.fr/en/products/
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reduction and spatial positional encoding are considered. In
order to evaluate the classification’s performances, in addition
to the SVGP model, two other classifiers fθ2 are studied:
• Multi-layer Perceptron (MLP) with the same setup as

in [12],
• Lightweight Temporal Self-Attention (LTAE) described

in [11].
The end-to-end training models are respectively called mTAN-
SVGP, mTAN-MLP and mTAN-LTAE.

Unlike SVGP or MLP classifiers, the LTAE classifier uses
attention mecanisms. It may appear redundant to use attention
mecanisms both in the mTAN and in the LTAE. Therefore,
the LTAE classifier was also studied without the mTAN and
this method is called raw-LTAE. However, the LTAE classifier
is not able to directly deal with the irregular and unaligned
time serie pixels. In order to help this classifier, the mask was
used as an additionnal feature. Besides, the spatial positional
encoding matrix P was also used in this classifier.

To have a comparison with the mTAN-SVGP model, linearly
interpolated data was feed into a simple SVGP classifier called
Gapfilled-SVGP model.

The optimizer parameters for each model were found by
trial and error and are described in Table VIII in Appendix B.
To process the RF model, 20 CPU with a total of RAM of
100 GB were used and one NVIDIA Tesla V100 GPU, for all
other models.

V. STUDY OF MTAN-SVGP

This section presents the different results obtained from the
mTAN-SVGP model. Firstly, the performances of the mTAN-
SVGP are evaluated with different configurations. Then, the
latent representation obtained from the mTAN is studied as
well as the versatility of its similarity kernel.

A. Performance results

1) Comparison with linear interpolation: Firstly, the
mTAN-SVGP was implemented with a vector of latent dates
R defined with a regular sampling of τ = 10 days and a
total number of R = 37 dates3. Moreover, the number of
latent spectral features was equal to the number of spectral
features such as D′ = D = 13. The latent representation
Z obtained using the mTAN is described by R × D′ = 481
spectro-temporal features. The Gapfilled-SVGP model was im-
plemented with the same number of spectro-temporal features.
A detailed evaluation of performance of the Gapfilled-SVGP
model was done in [12] including a comparison with the
Random Forest (RF).

As shown in Table IV, the mTAN-SVGP model is 10 points
above the Gapfilled-SVGP model. The latent representation
Z obtained with the mTAN extracts more meaningful in-
formation for the SVGP classifier compared to the linearly
interpolated data.

3Experiments were also made with random irregular sampling and with
selected samples from cumulative histograms. As modifying the positions of
the latent dates do not have any influence on the performances, the simpliest
method was selected: regular sampling.

TABLE IV: Averaged overall accuracy (OA) for the mTAN-
SVGP and Gapfilled-SVGP models (mean % ± standard
deviation computed with 9 runs)

mTAN-SVGP Gapfilled-SVGP
77.44 ± 0.15 67.25 ± 0.37

4 6 9 10 11 12 13
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R

75.59 76.88 77.51 77.28 77.54 77.42 77.44

75.49 76.76 77.42 77.25 77.52 77.38 77.31

75.40 76.65 77.31 77.16 77.35 77.22 77.19

75.26 76.57 77.30 77.06 77.32 77.19 77.15

75.08 76.47 77.23 77.03 77.33 77.08 77.10

74.31 75.82 76.63 76.51 76.74 76.59 76.59

73.45 75.06 76.17 76.00 76.15 76.08 76.05

75.0

75.5

76.0

76.5

77.0

77.5

78.0

Fig. 4: Averaged overall accuracy (OA) for H = 1 (mean in %
computed over 9 different runs) with R the number of latent
dates and D′ the number of latent spectral features.

2) Spectral and temporal reduction: Fig. 4 and Fig. 5
represent respectively the averaged overall accuracy (OA) and
the averaged training times computed with different number of
latent dates R = {5, 7, 13, 15, 19, 25, 37} and different number
of latent spectral features D′ = {4, 6, 9, 10, 11, 12, 13} in the
mTAN. As shown in Fig. 4, reducing R from 37 to 13 and
D′ from 13 to 9 has a negligible effect on the OA (i.e. from
77.44 to 77.23). Moreover, the variance of the OA is small,
around 0.15. The number of parameters θ2 is almost reduced
by a factor 4 (i.e. from 584 200 to 165 600 parameters) and
the training times are divided by two, as described in Fig. 5.

In addition, the number of heads H has little impact
on the classification performances as shown in Fig. 13 in
Appendix C. Besides, from H = 1 to H = 3, the training
time can be increased by a factor of 2 as shown in Fig. 14 in
Appendix C.

3) Spatial positional encoding: The spatial information
used to compute the positional encoded matrix P is composed
of the spatial coordinates (northing ψ1 and easting ψ2) in
meters in the Lambert 93 projection. The number of neurons
in the first and second layer are respectively L1 and L2 and
were found by trial and error: L1 = 16 and L2 = 14.

As shown in Table V, the use of the spatial positional
encoding in the mTAN for the mTAN-SVGP model increased
by nearly 1.5 points the overall accuracy.
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Fig. 5: Averaged training times for H = 1 (mean in sec
computed over 9 different runs) with R the number of latent
dates and D′ the number of latent spectral features.

TABLE V: Averaged overall accuracy (OA) without (standard)
and with the spatial positional encoded matrix (with P) in
the mTAN for the model mTAN-SVGP (mean % ± standard
deviation computed with 9 runs)

Standard With P

77.23 ± 0.17 78.63 ± 0.16

Fig. 6 represents the value P respectively for the features 4
and 12. This value was computed using 3234 different spatial
coordinates on a regularly spaced grid over the 27 tiles. As
shown in both Fig. 6a and 6b, the spatial transitions are quite
smooth. Each feature takes into account differently the spatial
information.

4) Influence on the number of inducing points: Fig. 7
represents the number of learnable parameters θ2 based on
the number of spectro-temporal features R × D′ and the
number of inducing points M . By using spectro-temporal
reduction as described in Section V-A2, the number of spectro-
temporal features has been considerably reduced from 481
(R = 37, D′ = 13) to 117 (R = 13, D′ = 9). It results in
a significant reduction for θ2 as shown in Fig. 7. Moreover,
by doubling the number of inducing points from 50 to 100,
the number of parameters θ2 with R = 13, D′ = 9 is still
lower than with 50 inducing points and R = 37, D′ = 13.
Experiments were done by increasing the number of inducing
points M = {100, 150, 200}. Table VI represents the averaged
overall accuracy and training times computed with different
number of inducing points. With M = 200, the overall accu-
racy is almost increased by one point compared to M = 50.
Training time is only slightly affected by this increase in the
number of inducing points, i.e. 834 to 967. Thus, spectro-
temporal reduction had made possible the reduction of the
number of parameters. Above all, it reduced the complexity,
which is highly proportional to the correlations between the

TABLE VI: Averaged overall accuracy (OA) (mean %±
standard deviation) and averaged training times (in sec) for the
mTAN-SVGP with R = 13 latent dates, D′ = 9 latent spectral
features, H = 1 head and the spatial positional encoded matrix
P for different number of inducing points M (computed over
9 runs).

Number of inducing points M
50 100 150 200

Averaged OA 78.63 ± 0.16 79.20 ± 0.21 79.43 ± 0.29 79.48 ± 0.17
Training time 834 910 921 967

variables.

B. Latent representation obtained from the mTAN

The latent representation x̂j obtained from the mTAN
from (7) with the mTAN-SVGP model minimises the classi-
fication error. In order to get an idea of this representation
obtained, illustrations are provided in Fig. 8. The latent rep-
resentation x̂j is projected onto a regular grid thus it can be
easily visualized with the raw data and with the gapfilled data
i.e. linearly interpolated data. Fig. 8 represents the comparison
of these three time series profiles (raw, gapfilled and mTAN)
for one pixel labeled as ”CORN”. The spectral feature j is
not modified (i.e. linear mixing has not yet been applied) and
corresponds to the NDVI.

The latent mTAN representation obtained in Fig. 8 is similar
to the raw data or to the gapfilled data even if it do not
minimize the reconstruction error. It retains only essential
information hence the small number of latent dates R in the
previous section.

C. Versatility of the similarity kernel

As defined in Section II-C, by using attention
and embedding mechanisms, the similarity kernel
can be written such as: K(rl) = exp (d(rl)) with

d(rl) =
(Φ(T)>W>

k Wqφ(rl))�m√
E

. This kernel is able to
adapt to the pixel sampling for the classification task. The
versatility of the similarity kernel can be shown by computing
the attention value γrl defined in (6) for different latent
dates rl and for different sets of observed dates T. Fig. 9
represents the normalized attention values γnrl computed for
three different latent dates: rl ∈ {1, 181, 361} and with three
different sets of observed dates T. The first one, in red in
both figures, is computed with T = {1, .., 365} with a regular
interval of τ = 1 day. The last two, respectively in blue and
green in Fig. 9a and 9b, are computed with two different
temporal grids (Ti 6= Ti′ ) corresponding to two random
pixels i and i′.

As shown in Fig. 9a and 9b, the kernel is not centered on
the query date rl. It adapts itself according to the latent date
rl. Moreover, as shown in Fig. 9, for the set of observed dates
T = {1, .., 365} (i.e. in red), the bandwidth is larger for the
latent date rl = 1 than for the latent date rl = 181. The kernel
can be described as heteroscedastic: for different latent dates
rl, the bandwidth of our kernel varies.
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(a) feature 4 (b) feature 12

Fig. 6: Spatial positial encoding P computed using 3234 different spatial coordinates on a regularly spaced grid over the 27
tiles
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Fig. 7: Number of learnable parameters θ2 based on the
number of inducing points M and the number of spectro-
temporal features R×D′.

VI. COMPARISON WITH COMPETITIVE METHODS

This section presents a comparison of the mTAN-SVGP
model described in the previous section with different models:
mTAN-MLP, mTAN-LTAE and raw-LTAE. Firstly, the per-
formance results are studied quantitatively and qualitatively.
Then, a further comparative study is made between the mTAN-
SVGP and the raw-LTAE concerning the temporal sampling.

A. Performance results

The mTAN-SVGP model is compared with 3 different
models: mTAN-MLP, mTAN-LTAE and raw-LTAE. In the
following sections, from the results obtained in the previous
section V and with the best compromise between time and
performance, the mTAN is defined with R = 13 latent dates,
D′ = 9 latent spectral features, H = 1 head, the use of
the spatial positional encoding matrix P and M = 200
inducing points. The raw-LTAE model is the only one not
using the mTAN. Thus, no spectral or temporal reduction
was implemented in this model.
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N
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latent dates
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mTAN

Fig. 8: NDVI time series profiles for a pixel labeled ”CORN”.
− raw corresponds to the raw data, the outlier values have
been removed in order to have a comprehensive plot. −
gapfilled corresponds to the value obtained with a linear
interpolation with an interval of 10 days for a total of 37
dates. − mTAN corresponds to the mTAN representation x̂j
with j = NDVI obtained from the mTAN-SVGP model, before
the spectral reduction (D′ = 9).

1) Quantitative results: As shown in Fig. 10, the SVGP
model took more advantage of the mTAN than the MLP or
the LTAE models. Indeed, the overall accuracy of the mTAN-
SVGP model is seven points above the mTAN-MLP model and
around four points above the mTAN-LTAE model. On the other
hand, mTAN-SVGP model is in average two points below the
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Fig. 9: Normalized attention values γnr for three different latent
dates: rl ∈ {1, 181, 361}. − corresponds to γnr computed with
T = {1, .., 365} with a regular interval of τ = 1 day. • and
• correspond to γnr respectively computed with two different
temporal grids (Ti 6= Ti′ ) corresponding to two random pixels
i and i′.

TABLE VII: Averaged training times (in sec) computed over
9 runs and number of trainable parameters for each model
(mTAN-SVGP, mTAN-MLP, mTAN-LTAE and raw-LTAE).

mTAN-SVGP mTAN-MLP mTAN-LTAE raw-LTAE
Training time 967 1207 840 1279
# parameters 1 005 675 33 113 184 376 761 380

raw-LTAE model.
The number of trainable parameters and the training times

for each method are summarized in Table VII. The mTAN-
SVGP model has more trainable parameters that the raw-LTAE
model. However, the training time of the mTAN-SVGP model
is about 1.3 times shorter than the raw-LTAE as shown in
Table VII. By using a spectro-temporal reduction with the
mTAN, the number of trainable parameters for the mTAN-
SVGP is just over 2.5 times lower than the simple SVGP
(i.e. 1 005 675 versus 2 680 075), as described in Fig. 7. The
number of parameters of the raw-LTAE is also very large
because it is not able to deal with unaligned time series
and therefore obliged to combine all the dates. By using the
mTAN, for the LTAE, the number of trainable parameters is
reduced by four. However, as shown in Fig. 10, the overall
accuracy of the mTAN-LTAE model is seven points below the
raw-LTAE model.

mTAN-SVGP mTAN-MLP mTAN-LTAE raw-LTAE
0.7

0.75

0.8

O
ve

ra
ll

ac
cu

ra
cy

Fig. 10: Boxplots of the overall accuracy for each model
(mTAN-SVGP, mTAN-MLP, mTAN-LTAE and raw-LTAE)
computed over 9 runs.

2) Qualitative results: Land cover maps have been pro-
duced for each model (mTAN-SVGP, mTAN-MLP, mTAN-
LTAE, raw-LTAE) using the iota2 processing chain [26]
on two different tiles: 31TCJ and 31TDJ. Inference was
performed using the model trained on the 27 tiles with the
best overall accuracy over the 9 runs. The results obtained
for respectively the mTAN-SVGP and raw-LTAE are shown in
Fig. 11a and 11b. The results obtained on this agricultural area
on the 31TCJ tile show that the pixels are more homogeneous
(with less salt and pepper classification noise [27]) with the
mTAN-SVGP compared to the raw-LTAE. All the land cover
maps generated are available for download. 4

B. Versatility to the temporal sampling

The raw-LTAE showed better classification performances.
However, to compute the inference on a specific area (e.g.
on a specific tile), the raw-LTAE required the whole set of
observed dates T = {t1, ..., tT } available for training. It is
not the case of the classifier using the mTAN. Thus, once
trained, it is able to classify any irregular and unaligned pixel
time series.

An other interesting feature is its capacity for generalization.
Indeed, we computed the overall accuracy only on 31TCJ tile
for two models mTAN-SVGP and raw-LTAE both trained on
the 27 tiles. The acquisition dates T for the test data set were
artificially shifted with different values: δ = {0, 1, 2, 3, 5}
days. This shift was chosen because the acquisition dates
between pixels on two close orbits are shifted by a maximum
of five days. As shown in Fig. 12, the overall accuracy of
the mTAN-SVGP model is not affected by this temporal shift
δ. However, the overall accuracy of the raw-LTAE model
is greatly impacted by the temporal shift δ and is almost
divided by 1.5 with δ = 5 days. By using a linear smoother
with temporal attention mecanisms, the mTAN-SVGP model is
more robust to this shift than the raw-LTAE model which use
spectro-temporal attention mecanisms.

VII. CONCLUSIONS AND PERSPECTIVES

This work introduces an approach using irregular and un-
aligned Sentinel-2 SITS for large-scale land cover pixel-based

4DOI: https://doi.org/10.5281/zenodo.8033902

https://doi.org/10.5281/zenodo.8033902


10

(a) mTAN-SVGP

test

CUF
DUF
ICU
RSF
RAP
STC
PRO
SOY
SUN
COR
RIC
TUB
GRA
ORC
VIN
BLF
COF
NGL
WOM
NMS
BDS
GPS
WAT

(b) raw-LTAE

Fig. 11: Land cover maps obtained on an agricultural area on the tile 31TCJ
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Fig. 12: Boxplots of the overall accuracy for the mTAN-SVGP
and raw-LTAE models computed with the test data set only
on the 31TCJ tile over 9 runs. The models were trained and
validated on the all 27 tiles. The acquisition dates T for the
test data set were artificially shifted with different values: δ =
{0, 1, 2, 3, 5} days.

classification. To deal with irregular and unaligned pixel times
series end-to-end learning is used. A first module, the Multi-
Attention Time Networks (mTAN), enables to project the
irregular and unaligned SITS onto a fixed and reduced size
representation. This representation is then given to the SVGP
classifier and all the parameters are optimized using a loss
function for classification. The spatial information is taken into
account in the representation through the spatial positional
encoding. Experiments were conducted on Sentinel-2 SITS of
the full year 2018 in an area of 200 000 km2 in the south of
France. In terms of accuracy, the end-to-end learning mTAN-
SVGP model outperformed the simple SVGP classifier with

linearly interpolated data (Gapfilled-SVGP). The significant
reduction for the spectro-temporal features has allowed to
use more inducing points while keeping the same complexity,
resulting in improved classification performance. Moreover,
the mTAN-SVGP model is above the mTAN-MLP and mTAN-
LTAE models in terms of accuracy.

In this paper, the potential of the multi-head attention has
not been fully taken into account. Indeed, only one head was
used H = 1 and the performances with an increasing number
of heads were not satisfying. A perspective of this work is
for each head to specialize using the spatial information. The
spatial positional encoding could be set up to help the heads
to specialize and differentiate themselves.

Recently, the litterature [28]–[30] has shown an improve-
ment in classification performance by combining radar and
optical time series (i.e. Sentinel 1 and 2). Thus, a perspective
of this work is to add Sentinel-1 time series to the actual
time series. In addition, other types of data such as weather
data can be added in the mTAN module in order to create a
representation for the SVGP classifier. Moreover, in addition
to spatial data (i.e. longitude and latitude), topographic data
can be used to construct the spatial positional encoding in
order to take better account of climatic, geographical and other
differences.

In the interest of reproducible research, the implemen-
tation of all the models (mTAN-GP, mTAN-MLP, mTAN-
LTAE and raw-LTAE) is made available in the follow-
ing repository:https://gitlab.cesbio.omp.eu/belletv/land cover
southfrance mtan gp irregular sits.

ACKNOWLEDGMENT

The authors would like to thank Benjamin Tardy for his
support and help during the generation of the different data sets
and the production of land cover classification maps with the
iota2 software. Finally, the authors would also like to thank
CNES for the provision of its high performance computing
(HPC) infrastructure to run the experiments presented in this
paper and the associated help.

https://gitlab.cesbio.omp.eu/belletv/land_cover_southfrance_mtan_gp_irregular_sits
https://gitlab.cesbio.omp.eu/belletv/land_cover_southfrance_mtan_gp_irregular_sits


11

REFERENCES

[1] IPCC, “SYNTHESIS REPORT OF THE IPCC SIXTH ASSESSMENT
REPORT (AR6) longer report.” https://report.ipcc.ch/ar6syr/pdf/IPCC
AR6 SYR LongerReport.pdf, 2023.

[2] C. Persello, J. D. Wegner, R. Hansch, D. Tuia, P. Ghamisi, M. Koeva,
and G. Camps-Valls, “Deep Learning and Earth Observation to Support
the Sustainable Development Goals: Current Approaches, Open Chal-
lenges, and Future Opportunities,” IEEE Geoscience and Remote Sensing
Magazine, pp. 2–30, 2022.

[3] D. Tuia, K. Schindler, B. Demir, G. Camps-Valls, X. X. Zhu,
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APPENDIX A
SPATIAL POSITIONAL ENCODING

The RBF covariance function over the latent spectro-temporal representations of two pixels respectively noted Zi and Zi
′

can be written such as:

k(Zi,Zi
′
) = α exp

(
−‖Z

i − Zi
′‖2F

2σ2

)
= α

(
kλt(xi,xi

′
)× kψ({ψi1, ψi2}, {ψi

′

1 , ψ
i′

2 })× kλtψ(xi{ψi1, ψi2},xi
′
{ψi

′

1 , ψ
i′

2 })
)

with

‖Zi − Zi
′
‖2F = ‖Zi‖2F + ‖Zi

′
‖2F − 2〈Zi,Zi

′
〉F

= ‖B(Xi∗ + Pi)Γi‖2F + ‖B(Xi′∗ + Pi′)Γi
′
‖2F − 2〈Zi,Zi

′
〉F

= ‖BXi∗Γi‖2F + ‖BPiΓi‖2F + 2〈BXi∗Γi,BPiΓi〉F
+ ‖BXi′∗Γi

′
‖2F + ‖BPi′Γi

′
‖2F + 2〈BXi′∗Γi

′
,BPi′Γi

′
〉F

− 2
(
〈BXi∗Γi,BXi′∗Γi

′
〉F + 〈BXi∗Γi,BPi′Γi

′
〉F + 〈BPiΓi,BXi′∗Γi

′
〉F + 〈BPiΓi,BPi′Γi

′
〉F
)

= ‖BXi∗Γi −BXi′∗Γi
′
‖2F + ‖BPiΓi −BPi′Γi

′
‖2F

+ 2
(
〈BXi∗Γi,BPiΓi〉F + 〈BXi′∗Γi

′
,BPi′Γi

′
〉F−〈BXi∗Γi,BPi′Γi

′
〉F−〈BPiΓi,BXi′∗Γi

′
〉F
)

= ‖BXi∗Γi −BXi′∗Γi
′
‖2F + ‖BPiΓi −BPi′Γi

′
‖2F

+ 2
(
〈BXi∗Γi,B(PiΓi −Pi′Γi

′
)〉F − 〈BXi′∗Γi

′
,B(PiΓi −Pi′Γi

′
)〉F
)

= ‖BXi∗Γi −BXi′∗Γi
′
‖2F + ‖BPiΓi −BPi′Γi

′
‖2F + 2〈B(Xi∗Γi −Xi′∗Γi

′
),B(PiΓi −Pi′Γi

′
)〉F

APPENDIX B
SOLVER PARAMETERS FOR EACH MODEL

TABLE VIII: Parameter values for the Adam optimizer for the models: Gapfilled-SVGP, mTAN-SVGP, mTAN-MLP, mTAN-
LTAE and raw-LTAE.

Gapfilled-SVGP mTAN-SVGP mTAN-MLP mTAN-LTAE raw-LTAE
Number of epochs 100 100 300 100 100
Batch size 1024 1024 1000 1000 1000
Learning rate 1× 10−3 1× 10−3 1× 10−4 5× 10−5 1× 10−4
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APPENDIX C
INFLUENCE OF THE SPECTRAL AND TEMPORAL REDUCTION FOR DIFFERENT H HEADS
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Fig. 13: Averaged overall accuracy (OA) (mean in % computed over 9 different runs) with R the number of latent dates, D′

the number of latent spectral features and H the number of heads.
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Fig. 14: Averaged training times (mean in sec computed over 9 different runs) with R the number of latent dates, D′ the
number of latent spectral features and H the number of heads.
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