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I. INTRODUCTION

II. THE IRREGULAR AND UNALIGNED PIXEL TIME SERIES

This section describes how irregular and unaligned pixel
time series can be projected onto a fixed temporal grid in
order to be used by the classifier. First, some notations and
definitions which will be used throughout this paper are
introduced. Then, some conventional methods used to project
these irregular and unaligned pixel time series are described.
Finally, a specific method used in the following of the paper
is presented: the mTAN which combines attention mecanisms
with multiple continuous time embeddings.

A. Notations and definitions

In this paper, the ith pixel time series xi(tk)
at time tk is defined by its spectral measurements
{xi1(tk), ..., xij(tk), ..., xiD(tk)} with i ∈ {1, ..., N}, N
the number of pixels and D the number of spectral features.
Besides, two spatial coordinates ψi1 and ψi2 are associated to
the pixel xi. Moreover, yi ∈ {1, ..., C} is the target value
(i.e. the class membership) associated to the pixel xi, with C
the number of classes.

For a pixel i, a spectral feature j is observed at T ij times-
tamps: Ti

j = {tij1, ..., tijk, ..., tijT i
j
}, where T ij is the number of

valid observations (e.g., no clouds or shadows). As discussed
in the introduction, because of satellite swaths and weather
we usually have unaligned time series, i.e., Ti

j 6= Ti′

j . In this
work, we assume that all spectral features are available for
each timestamp, i.e., Ti

j = Ti
j′ = Ti. This is commonly the

case when working with only one sensor. As an illustration,
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Fig. 1: xij and xi
′

j are two irregular and unaligned time series
for respectively the pixel i and i′ for the spectral feature j.

the Fig. 1 presents two real irregular and unaligned pixel time
series acquired with Sentinel-2.

We defined the set of all timestamps T such as:

T =

N⋃
i=1

Ti

= {t1, ..., tk, ..., tT }

with T the total number of observations. For each pixel, we
define a mask time series mi ∈ {0, 1}T such as

mi(tk) =

{
1 if tk ∈ Ti

0 otherwise ∀tk ∈ T, (1)

which indicates if the feature j of pixel i at time tk is observed
or not. We further define an augmented pixel time series xi∗j
as the pixel

xi∗j (tk) =

{
xij(tk) if mi(tk) = 1
0 otherwise ∀tk ∈ T, (2)

Using (1) and (2) will simplify the presentation of the inter-
polation layer in the following section.
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B. Projection onto a regular-temporal grid

As described previously, most of the classifiers are not able
to deal with irregular and unaligned time series. Thus, the core
idea is to learn a projection of these irregular and unaligned
time series onto a regular temporal grid of R latent dates: R =
{r1, ..., rl, ..., rR}. As explained in Section I, a large variety
of methods were proposed in the remote sensing literature.
In this work, we focused on conventional Nadaraya-Watson
kernel smoother [1, Chapter 6], because it leads to an efficient
interpolation as discussed in the next section.

For a given pixel time series x∗j , the interpolated x̂j at latent
timestamp rl using a kernel smoother is given by1:

x̂j(rl) =

∑tT
tk=t1

K(rl, tk)m(tk)x∗j (tk)∑tT
t′k=t1

K(rl, t′k)m(t′k)
(3)

with K some similarity kernel [1, Chapter 6]. Usually, the RBF
kernel is used K(rl, tk) = exp {−d(rl, tk)} with d(rl, tk) =
σ−2(rl − tk)2. From (3), x̂j(rl) is a convex combination of
original pixel values, whose weights are computed using a
similarity kernel applied on the temporal domain. With an RBF
kernel, the isotropic distance between pixels is computed in the
temporal domain thus the similarity is a decreasing function
of the temporal distance. Moreover, the parameter σ, learned
from the training data, weights the temporal distance.

The performances of such method are strongly limited by
the hand-crafted similarity kernel. A powerful extension is
obtained using attention and embedding mechanisms, which
are able to build more complex similarity kernel [2, Chapter
11]. In the following, the Multi Time Attention Networks
(mTAN) [3] is discussed as an extension of the kernel
smoother to build the interpolation layer for the classification
model in our end-to-end training.

C. Multi Time Attention Networks (mTAN)

To construct the similarity kernel, [3] proposed to use at-
tention mechanisms and more precisely the scaled-dot product
attention. As defined in [2], by using attention mechanisms,
”the neural network can select elements from a set and
construct an associated weighted sum over representations”.
To compute the scaled dot-product attention, firstly a dot
product between a query q and a key k both of size dk is
applied [4]. Then, this dot product is scaled down by dk.
Finally, the result is passed through a softmax operation and
is multiplied by the value v of size dv such as:

Attention(q, k, v) = softmax(
qk>√
dk

)× v (4)

Different representations can be used for the query q and the
key k. The mTAN uses a learnable time embedding function

1For clarity, we consider only one pixel and we drop the index i in the
remaining of the paper.

(namely positional encoding) φ to map a given t onto a higher
dimensional space of size E:

φ : R→RE

t 7→φ(t) =


ω1t+ α1

sin(ω2t+ α2)
...

sin(ωEt+ αE)

 (5)

with ωp and αp, p ∈ {1, ..., E}, the learnable parameters.

Therefore, the similarity kernel can be written such as:

d(rl, tk) =
φ(rl)

>W>
q Wkφ(tk)
√
E

with Wq and Wk two learnable matrices of size E ×E, the
indices q and k refer to query and key in (4).
Denoting Φ(T) =

[
φ(t1), . . . , φ(tT )

]
, the matrix of embed-

dings of T, (3) can be re-written using a masked softmax
operator [2, Chapter 11.3.2] such as:

x̂j(rl) = softmax

{(
Φ(T)>W>

k Wqφ(rl)
)
�m

√
E

}>
x∗j

= γ>rlx
∗
j .

(6)

with � being the Hadamard product, x∗j refers to value
in (4). Authors of [3] further propose to use multi-head
attention, i.e., H matrices of embeddings with ΦH(T) =
{Φh(T)}Hh=1, and also H time embedding functions with
φH(rl) = [φ1(rl), ..., φH(rl)]. A learnable layer βH of size
1×H is used to produce the interpolated value

x̂j(rl) = βH(γHrl )
>x∗j . (7)

This equation can be computed for every spectral feature j
and every latent date rl.

The mTAN, as defined in (7), has extended interpolation
flexibility w.r.t. the conventional kernel smoother. Also, it
is worth noting that (7) benefits from the computational
efficiency of attention mechanism (parallel computation) and
all parameters are learnable during the training step.

III. ADAPTATION OF THE MTAN FOR THE CLASSIFICATION
MODEL IN OUR END-TO-END LEARNING

In this paper, we propose to use end-to-end learning by
combining the mTAN hθ1

described in Section II-C with a
classifier fθ2

as defined in Fig. ??. The classifier proposed
is the Sparse Variational Gaussian Processes (SVGP) defined
in [5]. This classifier uses kernel functions, i.e. RBF covariance
functions, and no changes were made from [5] (i.e. same loss).
This section presents how the mTAN is modified in order to
improve the representation obtained for the classification task.

A. Spectro-temporal feature reduction

The mTAN interpolation allows to perform feature reduc-
tion, in the temporal domain, in the spectral domain or in both
of them. Indeed, the interpolated feature j is of size R and
taking R < T we can perform a temporal feature reduction.
Futhermore, adding a linear layer after the interpolation,
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spectral feature reduction can done. Noting x̂(r) ∈ RD the
vector of all interpolated spectral features at timestamp r, B a
matrix of size D′×D with D′ < D, the final latent interpolated
pixel z(r) can be written as

z(r) = Bx̂(r) (8)

The overall spectro-temporal feature reduction can be writ-
ten as:

Z = BX∗Γ (9)

where Z = [z(r1), . . . , z(rR)] ∈ RD′×R, X∗ =
[x∗(t1), . . . ,x∗(tT )] ∈ RD×T and Γ = [γr1 , . . . ,γrR ] ∈
RT×R.

From (9), it is clear how the spectro-temporal structure of
the pixels time-series are used to construct the latent variable
Z. Yet, the spatial information is not taken into account. In
the following section, we discuss how the spatial coordinates
are integrated in the processing by means of spatial positional
encoding, which is different from the temporal positional
encoding of Eq. (5).

B. Spatial positional encoding

In previous works we have shown that using the spatial
coordinates, either for spatial stratification [6] or for learning
a spatial-informed classifier [5] leads to better classification
accuracy. Indeed, the spatial coordinates help to take into
account the non-stationarity in the spectro-temporal domain
of the time series.

In this paper, we thus proposed to extend (9) with spatial
positional encoding. As in [7], the spatial coordinates are
mapped onto a higher dimensional space of dimension F using
ϕ:

ϕ : R2 →RF

(ψ1, ψ2) 7→ϕ(ψ1, ψ2)

=
[

sin(ψ1ν1), cos(ψ1ν1), . . . , cos(ψ2νF/4)
]>

with νq = 10000−(2l)/F and q ∈ {1, ..., F/4}. ϕ(ψ1, ψ2) is
then given to a two layers perceptron to obtain a vector of
size D which is finally duplicated for each timestamp to get a
spatial positional encoding matrix P of same shape than X∗

(i.e. D × T ). This matrix is added to the raw input data X∗

before the spectro-temporal interpolation:

X̃∗ = X∗ + P.

The parameters of the perceptron are optimized jointly during
the learning step.

As a reminder, in the SVGP classifier, the similarity between
two pixels xi and xi

′
is computed using a RBF covariance

function k(xi,xi
′
). By using end-to-end learning, the SVGP

classifier fθ2
computed the similarity over the latent spectro-

temporal representations of these two pixels respectively noted
Zi and Zi

′
such as:

k(Zi,Zi
′
) = α exp

(
−‖Z

i − Zi
′‖22

2σ2

)
= α(kλt(xi,xi

′
)× kψ({ψi1, ψi2}, {ψi

′

1 , ψ
i′

2 })
× kλtψ(xi{ψi1, ψi2},xi

′
{ψi

′

1 , ψ
i′

2 }))

Therefore, the obtained covariance function is similar to the
product of a spectro-temporal covariance function kλt, a
spatial covariance function kψ and a spatio-spectro-temporal
function kλtψ . Details of the calculation can be found in
Appendix A. By using the spatial positional encoding, the
covariance function k(Zi,Zi

′
) is composed of an additional

element compared to the covariance function defined in [5]
which was the product between a spectro-temporal covariance
function kλt and a spatial covariance function kλtψ . The
spatio-spectro-temporal function kλtψ is thus a supplementary
source of information.

By using spectro-temporal feature reduction and spatial
positional encoding, the mTAN is now designed to produce
a suitable representation for the classification task. We will
now discuss on the different learnable parameters.

C. Description of the parameters

The parameters θ1 of the mTAN hθ1
and the parameters

θ2 of SVGP classifier fθ2 are optimized using a loss function
for classification.
The parameters θ1 of the mTAN and their corresponding sizes
are summarized in the Table I:

TABLE I: Description of the mTAN’s parameters θ1 and their
corresponding sizes.

Parameters {ωp, αp}Ep=1 Wq ,Wk B βH MLP

Size 2(HE) 2(HE2) D′D H L2(L1 +D)

The MLP corresponds to the parameters of two layers
perceptron used to obtain the spatial positional encoding
matrix P described in the previous section.

As a reminder, the parameters θ2 of the SVGP, defined
in ??, were highly dependent on the number of spectro-
temporal features d = T × D. By using an end-to-end
training with the mTAN, this number is significantly reduced
to R × D′ with R < T and D′ < D and therefore the total
number of parameters is reduced as well.

IV. EXPERIMENTAL SET-UP

The study area covers a zone of approximately 200 000 km2

in the south of metropolitan France. It is composed of 27
Sentinel-2 tiles, as displayed in Fig. 2.

A. Irregular and unaligned data sets

All available acquisitions of level 2A between January and
December 2018 for the 27 Sentinel-2 tiles were used, as the
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Fig. 2: Location of the 27 studied tiles where a blue square
corresponds to one tile as provided by the Theia Data Center??.
Each tile is displayed with its name in the Sentinel-2 nomen-
clature.(background map © OpenStreetMap contributors)

TABLE II: Number of pixels for each data set

Training Validation Test

92 000 23 000 230 000

ones described in [5]. Indeed, surface reflectance time-series
and cloud/shadow masks were produced using the MAJA pre-
processing chain [8]. All the bands at 20m/pixel were spatially
up-sampled to 10m/pixel using the Orfeo Toolbox [9]. A total
of 10 spectral bands with three spectral indices (NDVI, NDWI,
Brightness) were used. However, in this paper, no temporal
sampling pre-processing was used (i.e. no linear interpolation
such as in [6] or other types of temporal synthesis). Therefore,
as described in Section I, the data obtained is irregular and
unaligned. Following the notations defined in Section II-C, the
union of the acquisition dates between the 27 tiles results in
T = 303 dates. Besides, the spectral dimension D corresponds
to the 10 spectral bands added the three spectral indices
(NDVI, NDWI, brightness) i.e. D = 13.

The reference data used in this work is composed of C = 23
land cover classes ranging from artificial areas to vegetation
and water bodies. The nomenclature of the 23 land cover
classes can be found in Table III. A detailed description of the
data set can be found in [5]. Pixels were randomly sampled
from these polygons over the full study area (i.e. 27 tiles) to
create three spatially disjoint data subsets: training, validation
and test. The three data sets are class-balanced: 4 000 pixels
per class in the training data set, 1 000 pixels per class in the
validation data set and 10 000 pixels per class in the test data
set. The total number of pixels for each data set is provided in
the Table II. To correctly estimate the classification accuracy,
9 runs with different random pixel samplings were done.

Standardization was performed for the valid acquisitions
dates. Mean and standard deviation were estimated for each
spectral band and for each spectral indice on the training data
set and then used to standardize the others data sets (training,
validation, test) [10].

TABLE III: Land cover classes used for the experiments with
their corresponding color code.

Color Code Name
CUF Continuous urban fabric
DUF Discontinuous urban fabric
ICU Industrial and commercial units
RSF Road surfaces
RAP Rapeseed
STC Straw cereals
PRO Protein crops
SOY Soy
SUN Sunflower
COR Corn
RIC Rice
TUB Tubers / roots
GRA Grasslands
ORC Orchards and fruit growing
VIN Vineyards
BLF Broad-leaved forest
COF Coniferous forest
NGL Natural grasslands
WOM Woody moorlands
NMS Natural mineral surfaces
BDS Beaches, dunes and sand plains
GPS Glaciers and perpetual snows
WAT Water bodies

B. Competitive methods

As described in [5], the SVGP model had great classification
performance results but feature extraction on the spectro-
temporal features is required in order to better take into
account the spectro-temporal structure and also to reduce the
number of features. By using end-to-end training, as described
in Section III, with the SVGP model defined as the classifier
fθ2 , spectro-temporal reduction and spatial positional encod-
ing are considered. In order to evaluate the classification’s
performances, in addition to the SVGP model, two other
classifiers fθ2

are studied:

• Multi-layer Perceptron (MLP) with the same setup as
in [5]

• Lightweight Temporal Self-Attention (LTAE) described
in [11].

The mTAN hθ1
was described in the previous sections II-C

and III. The end-to-end training models are respectively called
mTAN-SVGP, mTAN-MLP and mTAN-LTAE.

Unlike SVGP or MLP classifiers, the LTAE classifier uses
attention mecanisms. It may appear redundant to use attention
mecanisms both in the mTAN and in the LTAE. However, the
LTAE classifier is not able to directly deal with the irregular
and unaligned time serie pixels. In order to help this classifier,
the mask was used as an additionnal feature. Therefore, the
LTAE classifier was also studied without the mTAN and this
method is called raw-LTAE.

The optimizer parameters for each model were found by
trial and error and are described in Table VIII in Appendix B.

V. STUDY OF MTAN-SVGP

This section presents the different results obtained from the
mTAN-SVGP model. Firstly, the performances of the mTAN-
SVGP are evaluated. Then, the representation obtained from
the mTAN is studied as well as the versability of its similarity
kernel.
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A. Performance results

In the following, the classification metrics were computed
using the test data set (27 tiles) over the 9 runs of each model
trained on the training data set.

1) Comparison with linear interpolation: Firstly, the
mTAN-SVGP was implemented with a vector of latent dates
R defined with a regular sampling of τ = 10 days and a
total number of R = 37 dates. Moreover, the number of latent
spectral features was equal to the number of spectral features
such as D′ = D = 13. The representation Z(R) obtained
using the mTAN is described by d = R ×D′ = 481 spectro-
temporal features.

The mTAN-SVGP model can be easily compared with the
Gapfilled-GP model: a simple SVGP classifier that take as in-
put linearly interpolated data. The data are linearly resampled
onto a common set of latent dates with the same interval (10
days) and the same total number of dates (37 dates). Therefore,
with the Gapfilled-GP model, the same number of spectro-
temporal features are defined.

The representation obtained with the mTAN seems to give
more advantages to the SVGP classifier than the linearly
interpolated data. Indeed, as shown in Table IV, the mTAN-
SVGP model is 10 points above the Gapfilled-GP model. To
have a comparison, the linearly interpolated data was also feed
into a simple Random Forest (RF) classifier with 100 trees
called Gapfilled-RF. As found in [5], the overall accuracy
with the Gapfilled-GP model is two points above than with
the Gapfilled-RF.

TABLE IV: Averaged overall accuracy (OA) for the mTAN-
SVGP, Gapfilled-GP and Gapfilled-RF models (mean % ±
standard deviation computed with 9 runs)

mTAN-SVGP Gapfilled-GP Gapfilled-RF

77.44 ± 0.15 67.25 ± 0.37 65.37 ± 0.43

2) Spectral and temporal reduction: As described in Sec-
tion III-C, the estimation of parameters θ2 of the SVGP is
highly dependent on the number of spectro-temporal features
d = R×D′ with the following term: M × d. A high number
of parameters is time-consuming and reducing the number
of features d could be beneficial for the convergence of the
algorithm. As shown in Fig. 3, reducing the number of latent
dates from R = 37 to R = 13 and the number of latent spectral
features from D′ = 13 to D′ = 9 in the mTAN has a negligible
effect on the overall accuracy (i.e. from 77.44 to 77.23).
However, the number of parameters θ2 is almost reduced by a
factor of 4 (i.e. from 584 200 to 155 250 parameters) and the
training times are divided by two, as described in Fig. 4.

4 6 9 10 11 12 13
D'

37

25

19

15

13

7

5

R

75.59 76.88 77.51 77.28 77.54 77.42 77.44

75.49 76.76 77.42 77.25 77.52 77.38 77.31

75.40 76.65 77.31 77.16 77.35 77.22 77.19

75.26 76.57 77.30 77.06 77.32 77.19 77.15

75.08 76.47 77.23 77.03 77.33 77.08 77.10

74.31 75.82 76.63 76.51 76.74 76.59 76.59

73.45 75.06 76.17 76.00 76.15 76.08 76.05

75.0

75.5

76.0

76.5

77.0

77.5

78.0

Fig. 3: Averaged overall accuracy (OA) for H = 1 (mean in %
computed over 9 different runs) with R the number of latent
dates and D′ the number of latent spectral features.

4 6 9 10 11 12 13
D'

37

25

19

15

13

7

5

R

1225 1248 1255 1283 1295 1278 1317

1069 1096 1116 1104 1130 1105 1106

995 989 1006 989 989 1007 1018

923 916 935 927 926 928 925

886 844 871 848 901 870 916

788 773 790 790 787 769 793

735 783 736 742 746 755 763 750

1000

1250

1500

1750

2000

2250

2500

Fig. 4: Averaged training times for H = 1 (mean in sec
computed over 9 different runs) with R the number of latent
dates and D′ the number of latent spectral features.

By changing R the number of latent dates in the temporal
grid, the positions of these latent dates are modified because
the temporal grid is defined with a regular interval. Thus,
modifying the positions of the latent dates do not have any
influence on the overall accuracy on the condition that there
are enough latent dates R.

In addition, the number of time embedding functions H
has little impact on the classification performances as shown
in Appendix C in Fig. 10. Besides, from H = 1 to H = 3,
the training time can be increased by a factor of 2 as shown
in Appendix C in Fig. 11.

Next, we will focus on the mTAN-SVGP model with R = 13
latent dates, D′ = 9 latent spectral features and H = 1 time
embedding function.
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3) Spatial positional encoding: The spatial information
used to compute the positional encoded matrix Pψ1,ψ2 is
composed of the longitude ψ1 and the latitude ψ2 in meters in
the Lambert 93 projection. Two different activation functions
are used in the two layers perceptron, the first one is a ReLU
and the second one is a Sigmoid in order to bound the weights
between zero and one. The number of neurons in the first and
second layer are respectively L1 and L2 and were found by
trial and error: L1 = 16 and L2 = 14.

As shown in Table V, the use of the spatial positional
encoding in the mTAN for the mTAN-SVGP model increased
by nearly 1.5 points the overall accuracy.

TABLE V: Averaged overall accuracy (OA) without (standard)
and with the spatial positional encoded matrix (with Pψ1,ψ2 )
in the mTAN for the model mTAN-SVGP (mean % ± standard
deviation computed with 9 runs)

Standard With Pψ1,ψ2

R = 13 D′ = 9 77.23 ± 0.17 78.63 ± 0.16

Next, we will focus on the mTAN-SVGP model with R = 13
latent dates, D′ = 9 latent spectral features, H = 1 time
embedding function and the spatial positional encoded matrix
Pψ1,ψ2

.

B. Representation obtained from the mTAN

The representation x̂j obtained from the mTAN from (7)
with the mTAN-SVGP model is totally used for the clas-
sification. It is not a signal reconstruction i.e. there is no
specific term in the loss. However, as it is a projection onto
a regular grid, it can be easily compared to the raw data and
to the gapfilled data i.e. linearly interpolated data. Indeed, the
spectral feature j is not modified because linear mixing has
not yet been applied.

Fig. 5 represents the comparison of these three spectral
profils (raw, gapfilled and mTAN) for one pixel labeled as
”CORN”. The spectral feature corresponds to the NDVI and
the all year 2018 is considerated. The mTAN representation
was obtained from the mTAN-SVGP model trained with a total
of R = 13 latent dates with an interval time of 30 days,
D′ = 9 latent spectral features, H = 1 time embedding
function and the spatial positional encoded matrix Pψ1,ψ2 .
The mTAN representation obtained in Fig. 5 is similar to the
raw data or to the gapfilled data even if it is not a signal
reconstruction.

50 100 150 200 250 300 350
0

200

400
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800

1,000

day of year (2018)

N
D

V
I

gapfilled
raw

50 100 150 200 250 300 350
0
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1,000

latent dates

la
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nt
fe

at
ur

e

mTAN

Fig. 5: Spectral profils for a pixel labeled ”CORN”. The spec-
tral feature corresponds to the NDVI, its value is converting
in integer using a factor of 1000.
− raw corresponds to the raw data, the outlier values have
been removed in order to have a comprehensive plot.
− gapfilled corresponds to the value obtained with a linear
interpolation with an interval of 10 days for a total of 37
dates.
− mTAN corresponds to the mTAN representation x̂j with
j = NDVI obtained from the mTAN-SVGP model, before the
spectral reduction (D′ = 9).

C. Versability of the similarity kernel
As defined in Section II-C, by using attention and

embedding mechanisms, the similarity kernel is adaptative to
our problem: the classification task. The versability of the
similarity kernel can be shown by computing the attention
value γr defined in (6) for different latent dates rl and for
different set of observed dates T. Fig. (6) represents the
normalized attention values γnr computed for three different
latent dates: rl ∈ {1, 181, 361} and with three different set
of observed dates T. The first one, in red in both figures, is
equal to T = {1, .., 365} with a regular interval of τ = 1
day. The last two, respectively in blue and green in Fig. (6a)
and (6b), are T = Ti and T = Ti′ with i and i′ two random
pixels.

The kernel can be described as heteroscedastic: for different
rl latent dates, the bandwidth of our kernel varies. As shown
in Fig. (6), for the set of observed dates T = {1, .., 365} (i.e.
in red), the bandwidth is larger for the latent date rl = 1 than
for the latent date rl = 181. In this case, the kernel takes the
information further. Moreover, the kernel can be qualified as
asymmetric for both the ith and i′th random pixels as shown
in Fig. (6a) and (6b). To conclude, the kernel adapts itself
according to the latent date rl and to the set of observed dates
T.
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Fig. 6: Normalized attention values γnr for three different latent
dates: rl ∈ {1, 181, 361}. − corresponds to γnr computed with
T = {1, .., 365} with a regular interval of τ = 1 day. − and
− correspond to γnr respectively computed with T = Ti for
the ith random pixel and T = Ti′ for the i′th random pixel.

VI. COMPARISON WITH COMPETITIVE METHODS

This section presents a comparison of the mTAN-SVGP
model described in the previous section with different models:
mTAN-MLP, mTAN-LTAE and raw-LTAE. Firstly, the perfor-
mance results are studied: both quantitative and qualitative.
Then, a further comparative study is made between the mTAN-
SVGP and the raw-LTAE.

A. Performance results

The mTAN-SVGP model is compared with 3 different
models: mTAN-MLP, mTAN-LTAE and raw-LTAE. In the
following sections, as described in the previous section, the
mTAN is defined with R = 13 latent dates, D′ = 9 latent
spectral features, H = 1 time embedding function and the
use of the spatial positional encoding matrix Pψ1,ψ2 . The
raw-LTAE model is the only one not using the mTAN.
Thus, no spectral or temporal reduction was implemented in
this model. However, the spatial positional encoding matrix
Pψ1,ψ2

was implemented in this model.

1) Quantitative results: As in Section V-A, the classifica-
tion metrics were computed using the test data set (27 tiles)
over the 9 runs of each model trained on the training data set.

As shown in Fig. 7, the SVGP model took more advantage
of the mTAN than the MLP or the LTAE models. Indeed, the
overall accuracy of the mTAN-SVGP model is seven points
above the mTAN-MLP model and around four points above the
mTAN-LTAE model. On the other hand, mTAN-SVGP model
is in average three points below the raw-LTAE model.
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Fig. 7: Boxplots of the overall accuracy for each model
(mTAN-SVGP, mTAN-MLP, mTAN-LTAE and raw-LTAE)
computed over 9 runs.

However, the training time of the mTAN-SVGP model is 1.5
times shorter than the raw-LTAE as shown in Table VI. The
averaged training times were computed over 9 runs with one
NVIDIA Tesla V100 GPU.

TABLE VI: Averaged training times (in sec) for each
model (mTAN-SVGP, mTAN-MLP, mTAN-LTAE and raw-
LTAE) computed over 9 runs.

mTAN-SVGP mTAN-MLP mTAN-LTAE raw-LTAE

834 1207 840 1279

The number of trainable parameters for each method is sum-
marized in Table VII. By using a spectro-temporal reduction
with the mTAN, the number of parameters is considerably
reduced. For example, for the LTAE, this number is reduced
by four. However, as shown in Fig. 7, the overall accuracy of
the mTAN-LTAE model is seven points below the raw-LTAE
model. On the other hand, the number of trainable parameters
for mTAN-SVGP is almost four times smaller than raw-LTAE
but its OA only three points below.

TABLE VII: Number of trainable parameters for the models:
mTAN-SVGP, mTAN-MLP, mTAN-LTAE and raw-LTAE

mTAN-SVGP mTAN-MLP mTAN-LTAE raw-LTAE

202 646 33 113 184 376 761 380

2) Qualitative results: Land cover maps have been pro-
duced for each model (mTAN-SVGP, mTAN-MLP, mTAN-
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LTAE, raw-LTAE) using the iota2 processing chain [12] on
two different tiles: T31TCJ and T31TDJ . Inference was
performed using the model trained on the 27 tiles with the
best overall accuracy over the 9 runs. The results obtained
for respectively the mTAN-SVGP and raw-LTAE are shown in
Fig. (8a) and (8b). The results obtained on this agricultural
area on the T31TCJ tile show that the pixels are more ho-
mogeneous (with less salt and pepper classification noise [13])
with the mTAN-SVGP compared to the raw-LTAE. All the land
cover maps generated are available for download.

B. Robustness to the temporal sampling

The raw-LTAE showed great classification performances
both in qualitative and quantitative results. However, to com-
pute the inference on a specific area (e.g. on a specific
tile), the raw-LTAE required the whole set of observed dates
T = {t1, ..., tT } used for training. It is not the case of
the classifier using the mTAN. Thus, the mTAN-SVGP can
be described as frugal in constrast to the raw-LTAE (i.e. it
achieves the same results for less energy).

An other interesting feature is the robustness to the temporal
sampling. Indeed, he acquisition dates between pixels on
two adjacent tiles are shifted by δ′ days. For a pixel on a
specific tile, a shift δ with δ ≤ δ′ in the acquisition dates T,
should not impact the classification performance. To check the
robustness to this temporal sampling, we used two different
models: mTAN-SVGP and raw-LTAE both trained on the 27
tiles. The overall accuracy was computed with the test data
set only on T31TCJ tile. The acquisition dates T for the
test data set were artificially shifted with different values:
δ = {0, 1, 2, 3, 5} days. As shown in Fig. 9, the overall
accuracy of the mTAN-SVGP model is not affected by this
temporal shift δ. However, the overall accuracy of the raw-
LTAE model is greatly impacted by the temporal shift δ and
is almost divided by 1.5 with δ = 5 days. By using a linear
smoothing, the mTAN-SVGP model is more robust to the
temporal sampling than the raw-LTAE model which only use
temporal attention mecanisms.
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Fig. 9: Boxplots of the overall accuracy for the mTAN-SVGP
and raw-LTAE models computed with the test data set only
on the T31TCJ tile over 9 runs. The models were trained
and validated on the all 27 tiles. The acquisition dates T for
the test data set were artificially shifted with different values:
δ = {0, 1, 2, 3, 5} days.

VII. CONCLUSIONS AND PERSPECTIVES
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Fig. 8: Land cover maps obtained on an agricultural area on the tile T31TCJ
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APPENDIX A
SPATIAL POSITIONAL ENCODING

k(Zi,Zi
′
) = α exp

(
−‖Z

i − Zi
′‖22

2σ2

)
= α

(
kλt(xi,xi

′
)× kψ({ψi1, ψi2}, {ψi

′

1 , ψ
i′

2 })× kλtψ(xi{ψi1, ψi2},xi
′
{ψi

′

1 , ψ
i′

2 })
)

with

‖Zi − Zi
′
‖22 = ‖vec(Zi − Zi

′
)‖22

= ‖vec(Zi)− vec(Zi
′
)‖22

= ‖vec(BX̃i∗Γi)− vec(BX̃i′∗Γi
′
)‖22

= ‖vec(B(Xi∗ + Pi)Γi)− vec(B(Xi′∗ + Pi′)Γi
′
)‖22

= ‖((Γi)> ⊗B)vec(Xi∗ + Pi)− ((Γi
′
)> ⊗B)vec(Xi′∗ + Pi′)‖22 from [14, Chapter 10]

= ‖(Ωivec(Xi∗ + Pi)− Ωi
′
vec(Xi′∗ + Pi′)‖22

= ‖(Ωivec(Xi∗)− Ωi
′
vec(Xi′∗))− (Ωivec(Pi)− Ωi

′
vec(Pi′))‖22

= ‖Ωivec(Xi∗)− Ωi
′
vec(Xi′∗)‖22 + ‖Ωivec(Pi)− Ωi

′
vec(Pi′)‖22

− 2[Ωivec(Xi∗)− Ωi
′
vec(Xi′∗)]>[Ωivec(Pi)− Ωi

′
vec(Pi′)]

‖Zi − Zi
′
‖22 = ‖Zi‖22 + ‖Zi

′
‖22 − 2〈Zi,Zi

′
〉2

= ‖B(Xi∗ + Pi)Γi‖22 + ‖B(Xi′∗ + Pi′)Γi
′
‖22 − 2〈Zi,Zi

′
〉2

= ‖BXi∗Γi‖22 + ‖BPiΓi‖22 + 2〈BXi∗Γi,BPiΓi〉2
+ ‖BXi′∗Γi

′
‖22 + ‖BPi′Γi

′
‖22 + 2〈BXi′∗Γi

′
,BPi′Γi

′
〉2

− 2
(
〈BXi∗Γi,BXi′∗Γi

′
〉2 + 〈BXi∗Γi,BPi′Γi

′
〉2 + 〈BPiΓi,BXi′∗Γi

′
〉2 + 〈BPiΓi,BPi′Γi

′
〉2
)

= ‖BXi∗Γi −BXi′∗Γi
′
‖22 + ‖BPiΓi −BPi′Γi

′
‖22

+ 2
(
〈BXi∗Γi,BPiΓi〉2 + 〈BXi′∗Γi

′
,BPi′Γi

′
〉2−〈BXi∗Γi,BPi′Γi

′
〉2−〈BPiΓi,BXi′∗Γi

′
〉2
)

= ‖BXi∗Γi −BXi′∗Γi
′
‖22 + ‖BPiΓi −BPi′Γi

′
‖22 + 2

(
〈BXi∗Γi,B(PiΓi −Pi′Γi

′
)〉2 − 〈BXi′∗Γi

′
,B(PiΓi −Pi′Γi

′
)〉2
)

= ‖BXi∗Γi −BXi′∗Γi
′
‖22 + ‖BPiΓi −BPi′Γi

′
‖22 + 2〈B(Xi∗Γi −Xi′∗Γi

′
),B(PiΓi −Pi′Γi

′
)〉2

and with

kλt(xi,xi
′
) = exp

(
−‖Ω

ivec(Xi∗)− Ωi
′
vec(Xi′∗)‖22

2σ2

)

kψ({ψi1, ψi2}, {ψi
′

1 , ψ
i′

2 }) = exp

(
−‖Ω

ivec(MLP(ϕ(ψi1, ψ
i
2))− Ωi

′
vec(MLP(ϕ(ψi

′

1 , ψ
i′

2 ))‖22
2σ2

)

kλtψ(xi{ψi1, ψi2},xi
′
{ψi

′

1 , ψ
i′

2 }) = −2× exp

(
− ???

2σ2

)
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TABLE VIII: Parameter values for the Adam optimizer for the models: mTAN-SVGP, mTAN-MLP, mTAN-LTAE and raw-LTAE.

mTAN-SVGP mTAN-MLP mTAN-LTAE raw-LTAE
Number of epochs 100 300 100 100
Batch size 1024 1000 1000 1000
Learning rate 1× 10−3 1× 10−4 5× 10−5 1× 10−4

APPENDIX B
SOLVER PARAMETERS FOR EACH MODEL

APPENDIX C
INFLUENCE OF THE SPECTRAL AND TEMPORAL REDUCTION FOR DIFFERENT H TIME EMBEDDINGS
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Fig. 10: Averaged overall accuracy (OA) (mean in % computed over 9 different runs) with R the number of latent dates, D′

the number of latent spectral features and H the number of time embeddings.
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Fig. 11: Averaged training times (mean in sec computed over 9 different runs) with R the number of latent dates, D′ the
number of latent spectral features and H the number of time embeddings.
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