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Abstract

Estimates of causal impacts can be needed to answer what-if questions about
shifts in policy, such as new treatments in pharmacology or new pricing
strategies for a business owner. In this paper we propose a non-parametric
approach to estimate heterogeneous treatment effect based on random forests:
HTERF. In the potential outcome framework with unconfoundedness we
show that HTERF is pointwise a.s.-consistent to the true treatment effect.
An interpretability result is also presented. A software implementation,
CausalForest for Julia is available on the general repository of Julia.

Keywords: causal forest, causal inference, heterogeneous treatment effect,
potential outcomes

1. Introduction

The automation of decision-making across a wide range of application
domains is one of machine learning’s goals. The estimation of heterogeneous
treatment effect or, more specifically, how to determine how an interven-
tion will affect a particular outcome in relation to a variety of observable
characteristics of the treated sample presents a fundamental challenge in the
majority of data-driven personalized decision scenarios. It occurs in clinical
studies when the aim is to evaluate how a pharmacological treatment affects
a patient’s clinical response in relation to patient variables. It also occurs
in empirical research in economics and related fields when the goal is to
determine the impact of realized or hypothetical interventions in order to
assess theories and improve policies.



Two classes of statistical methods can be identified for causal inference:
metalearners and tree based methods. The main contribution of this paper is
the introduction of a new algorithm for CATE (Conditional Average Treatment
Effect) estimation: HTERF (Heterogeneous Treatment Effect based Random
Forest). This new algorithm uses a random forest with a new splitting criterion
specifically designed for binary treatments and is improved by a preliminary
step in the metalearners spirit (see Section 5). Our aim is to put the emphasis
on interpretability of the algorithm. Indeed for regression random forests,
under certain assumptions it is proven that the most informative variables
appear more often in probability in the tree construction, see Scornet et al.
(2015). We obtain an almost sure result for HTERF.

Finally we compare our approach with previously developed ones on
simulated data inspired from ones presented in the causal treatment effect
litterature. We compare the performance of HTERF algorithm against
GRF (Generalized Random Forest) causal forest (Athey et al. (2019)) using
simulations, finding that HTERF dominates both in term of CATE RMSE
and interpretability in different settings.

The paper is organised as follows. Section 2 introduces the potential
outcomes framework and CATE estimations methods. Section 3 describes
our method HTERF and Section 4 presents consistency results. Section 5
evaluates performances of HTERF. Finally Section 6 present our conclusions.

2. Inference for treatment effect

In this section the potential outcome framework is presented as well as
state of the art methods for CATE estimation.

2.1. The causal framework

Following the potential outcomes framework as presented in Imbens and
Rubin (2015), we posit the potential outcomes respectively Y (1) and Y (0)
corresponding to the outcome we would have observed, had we assigned
respectively control or treatment to the quantity of interest Y . Assume that
we observe Y = Y (W ), where W is a binary treatment. We also consider a
set of covariates X ∈ Rd. The conditional average treatment effect (CATE)
at x is defined as:

τ(x) = E [Y (1)− Y (0)|X = x] . (2.1)
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A standard assumption for identifiability of CATE is unconfoundedness
(Rosenbaum and Rubin (1983)), meaning that conditionally on X the treat-
ment assignment W is independent of the potential outcomes for Y :

{Y (1), Y (0)} ⊥⊥ W |X. (2.2)

We consider n independent and identically distributed training individuals
labeled i = 1, . . . , n. Each of them is constituted of a feature vector Xi ∈ Rd,
an outcome Yi ∈ R and a treatment indicator Wi ∈ {0, 1}. We denote the
observed data as

Dn = (Yi,Xi,Wi)1≤i≤n.

The distribution of Dn is specified by distribution P.
In this work we are interested in consistent estimators τ̂(.) of τ . The

difficulty to evaluate the function τ(.) is that we only observe one of the two
potential outcomes for a given training example, so we cannot directly train
a classical machine learning method on the difference Yi(1)− Yi(0).

2.2. Methods for causal effect estimation

We can categorize the methods for evaluating CATE in two groups. On
one hand methods using classical machine learning methods (random forest,
boosting...), these estimators cannot evaluate CATE directly and are usually
called metalearners. On the other hand there exist machine learning methods
designed to estimate CATE directly, examples are causal forests or Bayesian
regression tree models for causal inference.

A review on metalearners can be found in Künzel et al. (2019). Metalearner
combine base learners in a specific fashion to estimate CATE. Base learners
are supervised learning or regression estimators, but they are not specified in
the metalearner.

Two basic examples of metalearners are T- and S-learners. The T-learner
estimates Y (1) and Y (0) separately, the estimated CATE is given by:

τ̂T (x) = µ̂1(x)− µ̂0(x), (2.3)

where µ̂1(x) (respectively µ̂0(x)) is an estimator of µ1(x) = E[Y (1)|X = x]
(resp. µ0(x) = E[Y (0)|X = x]) using the observations in {(Xi, Yi)}Wi=1 (resp.
{(Xi, Yi)}Wi=0).

The S-learner uses a single base learner µ̂. It estimates the quantity
µ(x, w) = E[Y |X = x,W = w] with any base learner on the whole dataset.
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The CATE estimator is then given by:

τ̂S(x) = µ̂(x, 1)− µ̂(x, 0). (2.4)

These methods allow a full control on which estimation method to use
at each stage. Moreover, they allow to perform cross-validation for more
data-adaptive estimation at each stage. Hence, they allow the user to do
model selection both for base learners and for the final CATE model. However
in order to get good CATE estimations the base learners need to reach a
matching of the features of the data and the underlying model.

In the literature the use of forest based algorithms to estimate hetero-
geneous treatment effect has been proposed. Some of these papers use the
Bayesian Additive Regression Tree (BART) method from Chipman et al.
(2010), such approaches can be seen in Hill (2011); Green and Kern (2012);
Hill and Su (2013). Other approaches relying on tree-based methods have
been developed, they modify the standard random forest algorithm to focus
on estimating CATE directly. These methods are often called causal trees and
causal forests. A first approach using random forest with custom splitting
criterion is given by Su et al. (2009). An alternative criterion for causal trees
is then proposed by Athey and Imbens (2016), this approach also allows the
construction of confidence intervals for causal effect. It inspired the causal
forest developed in Wager and Athey (2018) which introduced the idea of
double sampling: using one sample to build trees and another one for the
CATE estimation. Finally GRF causal forests introduced in Athey et al.
(2019) are a special case of the previous causal forest.

Generalized random forests, is a method for non parametric estimation
that applies to a wide variety of quantities of interest: quantile regression,
CATE estimation, instrumental variable regression. We will focus on CATE
estimation. We will compare our method with GRF since it improves previous
ones. We can decompose the GRF algorithm in two parts: the growing of the
trees and the quantity of interest estimation.

A random forest as presented in Breiman (2001), consists in trees T1, . . . , TB.
To obtain a prediction for a test point x, this point is pushed down in each of
the trees until it reaches a leaf, a prediction is associated to each leaf. Let
µ̂b be the prediction from tree b, then the random forest prediction for x is:
1
B

∑B
b=1 µ̂b(x).

In GRF the strategy is slightly different, the test x is still pushed down
in the trees, but instead of looking for a prediction at each tree, we consider

4



Lb(x) the set of elements in the training sample that fall into the same leaf
as x. For each i = 1, . . . , n define:

αb,i(x) =
1{Xi ∈ Lb(x)}
|Lb(x)|

, αi(x) =
1

B

B∑
b=1

αb,i(x). (2.5)

The αi(x) can be seen as a weighting function that indicates how important
each training sample is when trying to predict at x. Indeed we also notice
that

∑n
i=1 αi(x) = 1.

Once all the weights have been calculated, CATE is estimated as follows:

τ̂(x) =

∑n
i=1 αi(x)(Wi −Wα)(Yi − Yα)∑n

i=1 αi(x)(Wi −Wα)2
, (2.6)

where Wα =
∑n

i=1 αi(x)Wi and Yα =
∑n

i=1 αi(x)Yi. This estimation step is
described in Algorithm 2.

This expression is an empirical version of Cov(W,Y |X=x)
V ar(Y |X=x)

. A simple com-

putation shows that if W has a linear impact : Y = τ(X)W + γ(X) then

τ(X) = Cov(W,Y |X)
V ar(Y |X)

.
Before studying the splitting criterion used in GRF, two differences with

Breiman random forests can be mentioned, the trees are trained on subsamples
of the training data and a subsampling technique named honesty is also used.
These strategies are used to obtain a good theoretical statistical behavior.
The idea of honesty is to split the training subsample in two subsets before
building each tree, the first one is used to build the nodes of the tree and the
second one is used to fill the tree and will be used to estimate the quantity of
interest.

Let P be some parent node, J the elements of the sample belonging to P
and let C1 and C2 be the two child nodes for a given split. A criterion similar
to CART regression would be to minimize:

err(C1, C2) =
2∑

j=1

P(x ∈ Cj|x ∈ P )E
[
(τ̂Cj

(J )− τ(x))2|x ∈ Cj

]
, (2.7)

where τ̂Cj
(J ) is the estimation of τ over child nodes Cj.

Unfortunately the true CATE is unknown, a calculable criterion would
be to maximize the following quantity. It favores splits that increase the
heterogeneity of the CATE estimates betwen children. This idea has been
already proposed by Athey and Imbens (2016):
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∆(C1, C2) =
nC1nC2

n2
P

[τ̂C1(J )− τ̂C2(J )]
2 , (2.8)

where nC1 , nC1 and nP are the number of points that fall into node C1, C2

and P respectively.
We present GRF for the estimation of CATE but recall that GRF is

applicable to a wide range of quantities of interest. Optimizing Equation
(2.8) over all possible splits, would mean to estimate the quantity of interest
for both children for each candidate split, which is too expensive in terms
of complexity for most cases. Instead gradient-based approximations named
pseudo-outcomes are used. For CATE estimation, the following pseudo-
outcomes are computed:

ρi = A−1
P (Wi −W P )(Yi − Y P − (Wi −W P )β̂P ), (2.9)

where βP is the least-squares regression solution of Yi on Wi and:

AP =
1

|{i : Xi ∈ P}|
∑

i:Xi∈P

(Wi −W P ). (2.10)

Finally the chosen split is the one which maximizes, it is a classical CART
regression split over pseudo-outcomes:

∆̃(C1, C2) =
1

nC1

( ∑
i:Xi∈C1

ρi

)2

+
1

nC2

( ∑
i:Xi∈C2

ρi

)2

. (2.11)

This tree building step is applied in Algorithm 1.
In practice a prior centering is applied before running the algorithm: it

involves regressing out the effect of the features Xi on Wi and Yi separately.
It improves the performances on finite datasets.

Remark 2.1. The pseudo-outcomes have been introduced for easier calcula-
tions, however for CATE estimation we obtain the same algorithmic complexity
when computing ∆(C1, C2) or ∆̃(C1, C2).

2.3. Limitations of the GRF approach

Random forests are effective regression algorithms and are quite inter-
pretable, under the assumption that Y follows an additive regression model,
Scornet et al. (2015) proved that the algorithm selects splits mostly along
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Algorithm 1 Building random forest algorithm

Input: B > 0 number of trees, s subsampling rate, S set of examples
for b = 1 to B do

set of examples Ib ← Subsample(S, s)
▷ Draw a subsample from S without replacement of size s|S|
sets of examples Ib,1, Ib,2 ← SplitSample(Ib)
▷ Randomly divides a set into two evenly-sized, non-overlapping halves
node P0 ← CreateNode(Ib,1)
queue Q ← InitializeQueue(P0)
while NotNull(node P ← Pop(Q)) do

vector RP ← GetPseudoOutcomes(P ) ▷ Computes (2.9)
split Σ←MakeCartSplit(P,RP ) ▷ Optimizes (2.11)
if SplitSucceeded then ▷ If there is a legal split

SetChildren(P,GetLeftChild(Σ),GetRightChild(Σ))
AddToQueue(Q,GetLeftChild(Σ))
AddToQueue(Q,GetRightChild(Σ))

end if
end while
▷ Tree Tb has been built

end for
Output: A causal forest with trees T1, . . . , TB

Algorithm 2 Estimation algorithm

Input: A causal forest with trees T1, . . . , TB, a test point x, the size of
training set n.
weight vector α← Zeros(n) ▷ Create a vector of zeros of length n
for b = 1 to B do
N ← Neighbors(x, Tb, Ib,2)
▷ Elements of Ib,2 that fall into the same leaf as x in the tree Tb
for all example e ∈ N do

α[e] += 1
|N |

end for
end for
α = α/B

Output: τ̂(x) ▷ Uses (2.6)
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informative variables. On simple linear regression examples, in the first stages
of the regression forest only the significant variables are present. On the
contrary when we consider a simple linear causal example, the overrepre-
sentation of informative variables is not so striking (see Table 5.1), which
limits interpretability of GRF causal forests. This is one of our motivations
to propose a new splitting criterion for causal forests.

The GRF approach is a general framework not tailored for causal inference
and the GRF causal forest is adapted to linear treatment effects. Our HTERF
splitting criterion is specifically designed to assess CATE when the treatment
is binary and could be adapted for multiple discrete treatments.

3. Estimation of causal effect with HTERF

The splitting criterion used in HTERF is based on the idea to maximise
the difference on treatment effect between child nodes. In particular Equation
(2.1) is used to define this splitting criterion.

3.1. Algorithm

We assume that we are given a training sample Dn = (Yj,Xj,Wj)j=1,...,n

of independent random variables distributed as the prototype triple (Y,X,W )
which is a (d + 2)-dimensional random vector. The purpose is to use the
dataset Dn to construct an estimator τ̂B,n : X → R of τ .

The tree building process of HTERF is the following. First of all prior to
the construction of each tree, a subsampling and an honest splitting is done
as in GRF. The optimisation of the splitting citerion is done over a subset of
featuresMtry. The features are selected randomly, with positive probability
for each covariate to be selected, which includes the uniform selection. Then
the best split is the one maximizing the splitting criterion ∆(A, j, z), where
A =

∏d
i=1[ai, bi] is the current node, j is chosen inMtry and z ∈ Aj = [aj, bj ].

∆(A, j, z) =
|AL||AR|
|A|2

((
Y AL1

− Y AL0

)
−
(
Y AR1

− Y AR0

))2
, (3.1)

where AL1 = {Xi ∈ A|X(j)
i < z,Wi = 1}, AL0 = {Xi ∈ A|X(j)

i < z,Wi = 0},
AR1 = {Xi ∈ A|X(j)

i ≥ z,Wi = 1}, AR0 = {Xi ∈ A|X(j)
i ≥ z,Wi = 0}, AL =

AL1 ∪AL0 and AR = AR1 ∪AR0. For all sets B, we denote Y B = 1
|B|
∑

i∈B Yi.
This splitting criterion is partially inspired by the ones used in Athey and
Imbens (2016) and Athey et al. (2019).
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For the estimation of τ we reuse the procedure of GRF with Algorithm 2,
but the estimation is different, namely:

τ̂B,n(x) =
∑

i:Wi=1

αi(x)Yi −
∑

i:Wi=0

α′
i(x)Yi, (3.2)

where α (resp. α′) is the weight vector defined as in Algorithm 2 associated
to observations such as Wi = 1 (resp. Wi = 0), see below.

We have the following notations:

• Θℓ, ℓ = 1, . . . , B are independent random vectors, distributed as a
generic random vector Θ = (Θ1,Θ2,Θ3) and independent of Dn and
(Θ1,Θ2) is independent of Θ3. Θ1 contains indices of observations that
are used to build each tree, i.e. the subsample I1, Θ2 contains indices
of observations that are used for estimations in each tree, i.e. the
subsample I2 and Θ3 contains indices of splitting candidate variables
in each node, we assume that Θ3 gives a positive probability to each
co-variate, we need to consider both Θ1 and Θ2 because I2 is the
complementary of I1 in I which is random itself,

• D⋆
n,1 (Θℓ) and D⋆

n,2 (Θℓ) are the disjoint subsamples selected prior to the
tree construction, the first one is used to build the tree and the second
one allow to build weights used during estimation step,

• An (x; Θℓ,Dn) is the tree cell (subspace of X ) containing x,

• Nn,1 (x; Θℓ,Dn) (resp. Nn,0 (x; Θℓ,Dn)) is the number of elements of
D⋆

n,2 (Θℓ) that fall into An (x; Θℓ,Dn) and such asWi = 1 (resp. Wi = 0).

We define the weights:

αi(x) =
1

B

B∑
l=1

1Xi∈An(x;Θl,Dn)∩Wi=1∩i∈D⋆
n,2(Θℓ)

Nn,1 (x; Θℓ,Dn)
, (3.3)

α′
i(x) =

1

B

B∑
l=1

1Xi∈An(x;Θl,Dn)∩Wi=0∩i∈D⋆
n,2(Θℓ)

Nn,0 (x; Θℓ,Dn)
. (3.4)
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Remark 3.1. The output τ̂(x) can also be seen as an average of estimations
obtained by several causal trees (as in Breiman random forest). Indeed:

τ̂B,n(x) =
∑

i:Wi=1

1

B

B∑
l=1

1Xi∈An(x;Θl,Dn)∩i∈D⋆
n,2(Θℓ)

Nn,1 (x; Θℓ,Dn)
Yi

−
∑

i:Wi=0

1

B

B∑
l=1

1Xi∈An(x;Θl,Dn)∩i∈D⋆
n,2(Θℓ)

Nn,0 (x; Θℓ,Dn)
Yi

=
1

B

B∑
l=1

∑
i∈D⋆

n,2(Θℓ)

Wi=1
Xi∈An(x;Θl,Dn)

Yi

Nn,1 (x; Θℓ,Dn)

− 1

B

B∑
l=1

∑
i∈D⋆

n,2(Θℓ)

Wi=0
Xi∈An(x;Θl,Dn)

Yi

Nn,0 (x; Θℓ,Dn)
.

Following the R package grf which provides an implementation of Athey
et al. (2019) algorithm, we define a notion of importance of variables. Let
freq be the matrix of split depth by feature index: freqi,j is the number of
time (over the forest) the split has been done along Xi at depth j, divided
by the total number of splits at depth j. It is the frequency of splits on each
feature for a given depth. The importance of a feature can be defined as a
weighted sum of how many times the feature was split on at each depth in
the forest. It depends on two parameters: max depth, the maximum depth
considered to get the freq matrix and decay, the decay exponent that controls
the importance of split depth.

We now define the importance of the ith feature as:

Impi(max depth, decay) =

∑max depth
k=1 freqk,ik

−decay∑max depth
k=1 k−decay

. (3.5)

In the numerical applications that follow the values used for max depth
and decay are respectively 4 and 2.

3.2. Theoretical tree

Similarly to what is done in Scornet et al. (2015), a random theoretical
tree can be defined for HTERF. The theoretical equivalent of the empirical
HTERF splitting criterion on a node A is:
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∆⋆(A, j, z) =P[X(j) < z|X ∈ A]P[X(j) ≥ z|X ∈ A]

(E[Y (1)− Y (0)|X(j) < z,X ∈ A]

− E[Y (1)− Y (0)|X(j) ≥ z,X ∈ A])2.

(3.6)

A theoretical tree is obtained by optimizing the best consecutive cuts
(j⋆, z⋆) optimizing the previous criterion ∆⋆(A, ., .).

4. Consistency of HTERF

4.1. Existing results

By construction of the HTERF algorithm, the following assumptions are
made:

• Unconfoundedness as in Equation (2.2).

• Honesty: two different samples are used for constructing the splits and
predicting the labels.

• The resampling is done by subsampling and not by boostrap as in
Breiman forests.

With Remark 3.1 we can see that τ̂B,n is a U-statistic and under additional
assumptions below a normality result for τ̂B,n follows from Wager and Athey
(2018).

Assumption 4.1.

1. X is a uniform random vector with independent coordinates: X ∼
U([0, 1]d).

2. (X, Y (u)) with u ∈ {0, 1} verifies x 7→ E[Y (u)|X = x] and x 7→
E[Y (u)2|X = x] are Lipschitz-continuous, V ar[Y (u)|X = x] > 0 and
E[|Y (u)− E[Y (u)|X = x]|2+δ|X = x] ≤M for some constants δ,M > 0
uniformly over all x ∈ [0, 1]d.

3. At every step of the tree building procedure, the probability that the next
split is done along the j − th feature is bounded below by π/d for some
0 < π ≤ 1 for all j = 1, . . . , d.
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4. A causal tree is α− regular at x for some α > 0 if the sample I2 used
for estimation verifies: (1) each split leaves at least a fraction α of the
available training sample on each side of the split, (2) the leaf containing
x has at least k observations for each treatment group for some k ∈ N
and (3) the leaf containing x has either less than 2k − 1 observations
with Wi = 0 or 2k − 1 observations with Wi = 1.

5. The subsample size sn scales as: sn ≍ nβ for some βmin := 1 −(
1 + d

π
log(α−1)

log((1−α)−1)

)
< β < 1.

Theorem (Athey et al. (2019)). Under Assumptions 4.1 and that Y =
τ(X)W + γ(X), we have:

τ̂B,n(x)− τ(x)√
V ar(τ̂(x))

−→ N(0, 1)

,

where the variance of the causal forest can be consistently estimated using
the infinitesimal jackknife for random forests, see Wager and Athey (2018)
for more details.

4.2. New consistency results

We propose a consistency result under assumptions weaker than Assump-
tions 4.1, based on Elie-Dit-Cosaque and Maume-Deschamps (2022). In what
follows, X is a compact hyper-rectangle of Rd:

X =
d∏

i=1

[ui, vi], −∞ < ui ≤ vi < ∞ and we denote by A the set of hyper-

rectangles in X : A ∈ A writes A =
d∏

i=1

[ai, bi] with ui ≤ ai ≤ bi ≤ vi. Also,

we denote by A−j =
∏
k ̸=j

[ak, bk] and AJ =
∏
k∈J

[ak, bk] for any J ⊂ {1, . . . , d}.

Given x ∈ Rd, x−j is the vector of Rd−1 where the j-th coordinate has been
removed and xJ is the vector of RJ whose coordinates are x(j), j ∈ J .

Definition 4.1. Let f : X → R, it does NOT belong to the ♠-class if

there exists a rectangle A =
d∏

j=1

[aj, bj] ⊂ X , with aj ≤ bj such that for all

j = 1, . . . , d, z 7→ E
[
f (z,X−j)1{X−j∈A−j}

]
is constant on [aj, bj] and f is

not constant on A.
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Remark 4.1. The ♠-class contains many functions such as additive functions,
multiplicative functions. A more elaborated list can be found in Elie-Dit-
Cosaque and Maume-Deschamps (2022). A noteworthy example is the set of
linear combination of Gaussian radial basis functions on [0, 1]d, with positive
weights:

G =

{
p∑

i=1

ai exp[
d∑

j=1

(xj − µj)
2σ2

j ], ai ≥ 0, σj ≥ 0, µj ∈ R

}
.

It is known that the class G is dense in the set of non-negative continuous
functions on [0, 1]d (see Park and Sandberg (1991) and also Klusowski (2019)
where the class G is also considered to study CART).

Let τ1(x) = E [Y (1)|X = x] and τ0(x) = E [Y (0)|X = x] and similarly
τ̂1(x) =

∑
i:Wi=1 αi(x)Yi and τ̂0(x) =

∑
i:Wi=0 α

′
i(x)Yi . We shall make the

following assumptions.

Assumption 4.2.

• Y = τ(X)g(W) + γ(X) + ε.

• X = (X1, . . . , Xd) is a continuous random vector with independent
coordinates.

• ε and X are independent, ε is a continuous, centered random variable
with increasing distribution function and light tails i.e. there exists
0 < θ < 1 such that for any D > 0, P (|ε| > D) ≤ CθD.

• X takes its values in X which is assumed to be a compact hyper-rectangle

of Rd: X =
d∏

i=1

[ui, vi], −∞ < ui ≤ vi <∞.

• x 7→ γ(x), x 7→ τ1(x) and x 7→ τ0(x) are continuous. So in particular
x 7→ τ(x) is continuous.

Remark 4.2. g(W ) = W is the linear treatment effect considered in Athey
et al. (2019). As noticed in Hill (2011) non linear functions have practical
interest.

We denote:
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• CV (X) = σX/E [X]

• f (n) = Ω (g (n)) ⇐⇒ ∃k > 0,∃n0 > 0 | ∀n ⩾ n0 |f (n)| ⩾ k · |g (n)|

Assumption 4.3. The following assumptions are made on B (number of
trees), Nn,1 (x; Θ,Dn) resp. Nn,0 (x; Θ,Dn) (number of observations in a leaf
node such as W = 1, resp. W = 0):

1. B = O (nα) , with α > 0.

2. ∀x ∈ X , E [Nn,1 (x; Θ,Dn)] = Ω
(√

n (ln (n))β
)
, with β > 1, and

∀x ∈ X , CV (Nn,1 (x; Θ,Dn)) = O

(
1

n(α+1)/2 (ln (n))γ/2

)
, with γ >

1.

3. ∀x ∈ X , E [Nn,0 (x; Θ,Dn)] = Ω
(√

n (ln (n))β
)
, and

∀x ∈ X , CV (Nn,0 (x; Θ,Dn)) = O

(
1

n(α+1)/2 (ln (n))γ/2

)
.

Remark 4.3. Items 2 and 3 in Assumption 4.3 are easier to verify than the
Assumption 4.1, because the number of observations in leaves can be controlled
as a standard construction parameters of trees of the forest.

Theorem 4.1. Let Assumptions 4.2 and 4.3 be verified, with τ1 and τ0
belonging to the ♠-class, assume that for fixed β > 5

2
, C > 0, each constructed

tree is the highest such that C
√
n(lnn)β ≤ Nn,0 (x; Θℓ,Dn) , Nn,1 (x; Θℓ,Dn).

Also assume that E[max ε2i ] ≤ K(lnn)u with β − u > 1
2
and K is a positive

constant. Then
∀x ∈ X , |τ̂B,n(x)− τ(x)| a.s.−→

n→∞
0.

Remark 4.4. The property on E[max ε2i ] is verified for subgaussian distribu-
tions (Boucheron et al. (2013)).

The proof follows the lines of Elie-Dit-Cosaque and Maume-Deschamps
(2022) and the main steps are described in Appendix A.

4.3. Interpretability

Using Proposition A.4, we can state an almost surely version of Propo-
sition 1 in Scornet et al. (2015) (which gives an interpretability result
in probability). Indeed Proposition A.4 gives that for any h ∈ N and
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any empirical tree Te satisfying Assumption 4.2 and the upper bounds on
Nn,0 (x; Θℓ,Dn) , Nn,1 (x; Θℓ,Dn) in Theorem 4.1, there exists a theoretical
tree Th as close as wanted to Te until height h.

We can define the informative variables as the set of variables upon
which τ depends. Given that τ belongs to the ♠-class, we have that in the
theoretical tree the splits are only made along informative variables, indeed
the theoretical splitting criterion equals zero along non informative variables.
Noting inf ⊆ {1, . . . , d} the set of indices of informative variables, we have
τ(X) ⊥⊥ X−inf . Thus up to height h, the empirical cuts are performed along
the same coordinates as the theoretical tree Th. The following result is then
straightforward.

Theorem 4.2. Assume that Assumption 4.2 is verified and set Mtry = d,
let h ∈ N. Assume that τ belongs to the ♠-class and that τ is non constant
in every node up to height h. Then for n large enough, all the cuts in an
empirical tree up to height h are made along informative variables almost
surely.

5. Simulations results

Firstly we consider a simulation where γ(W ) = W , then we consider a non
linear case. We also study the same kind of examples studied in Athey et al.
(2019). In a fourth example a modified version of HTERF is considered when
the term γ is linear, finally to assess interpretabilty we study an example
close to the Ishigami function adapted to a causal perspective.

In practice, a preliminary step called centering is applied, we estimate
the quantity µ0(x) = E[Y (0)|X = x] with µ̂0 on observations such as Wi = 0.
Then we consider the quantity Y e

i = Yi−µ̂0(Xi). In the Julia implementation
of HTERF, we use a cross-validated regression random forest to get µ̂0. Cross-
validation is used to optimise hyperparameters such as minimum sample
size in nodes and leaves and the value ofMtry. In the same fashion as any
algorithm can be used in metalearners, we could use any algorithm for the
centering. The building and the estimating steps of HTERF are done with
the centered data Y e

i . Below is an example to motivate the prior centering.
Let Y = τ(X)W + γ(X) where τ(X) = X(1) and γ(X) = X(2). Assume that
γ is perfectly known when calculating Y e. Consider the following data set in
Table 5.
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X(1) X(2) W Y Y e

5 5 1 10 5
5 5 0 5 0
10 5 1 15 10
10 10 1 20 10
10 10 0 10 0

Table 1: Motivational example for centering

With no centering, the criterion along X(1) is:

2× 3

52

(
(10− 5)−

(
15 + 20

2
− 10

))2

= 1.5. (5.1)

The criterion along X(2) is:

2× 3

52

((
10 + 15

2
− 5

)
− (20− 10)

)2

= 1.5. (5.2)

The criterion is equal for both covariates so none of them seems more infor-
mative, which is unfortunate since only X(1) is informative.
But if we consider the criterion with the centered outcome Y e, we get the
following criterion along X(1):

2× 3

52

(
(5− 0)−

(
10 + 10

2
− 0

))2

= 6. (5.3)

The criterion along X(2) is:

2× 3

52

((
5 + 10

2
− 0

)
− (10− 0)

)2

= 1.5. (5.4)

With the centered outcome, the criterion is larger when splitting along X(1)

as intended.

Remark 5.1. If the observations are unbalanced regarding the treatment
distribution with a lot less untreated cases, then the estimator could not be
as good as expected. In practice when more than 55% of the observations are
treated, we estimate the quantity µ1(x) = E[Y (1)|X = x] with and estimator
µ̂1 trained on observations such as Wi = 1. Then we define the quantity
Y e
i = Yi− µ̂1(Xi) and proceed as previously. In this case the quantity −τ that

is estimated instead of τ .

16



5.1. A first example

We consider simulated data close to causal frameworks previously studied
(Athey et al. (2019)). LetXi ∼ U([0, 1]p),Wi ∼ Bern(0.5) and Yi = τ(Xi)Wi+
βγ(Xi). Where p = 10, τ(x) = sin(x(1)) and γ(x) = cos(2x(2) + 3x(3)). The
underlying model for Y follows the causal framework presented in Athey
et al. (2019), and the unconfoundedness hypothesis is respected. The scalar
β allows to consider the impact of the magnitude of τ relative to γ.

β GRF HTERF

5 0.276 0.117
1 0.122 0.012
0.2 0.079 0.004

Table 2: Mean squared errors of GRF and HTERF methods that estimate heterogeneous
treatment effect. All causal forests have 500 trees, both the centering forests for GRF and
the forest of the first step in HTERF have 500 trees, the same subsampling rate (0.7) is
used in both methods. The results are aggregated over 60 simulation replications with
1000 test points each. The mean square errors are multiplied by 1000.

We notice the influence of the order magnitude of βγ term relative to τ .
The bigger β is, the larger the RMSE is. It is true for both GRF and HTERF.
We also notice that for a small β, the gain of HTERF relatively to GRF is
more significant in term of RMSE.

GRF HTERF
β dep.3 dep.5 dep.10 imp. dep.3 dep.5 dep.10 imp.

5 0.870 0.378 0.150 0.852 1 0.498 0.175 0.985
1 0.874 0.526 0.174 0.866 1 0.995 0.282 1
0.2 0.875 0.627 0.2 0.866 1 1 0.603 1

Table 3: Frequencies of splitting on X(1) at depths 3, 5 and 10 and importance of X(1).

τ only depends on the variable X(1), so it is expected that for small depths,
the splits should be done only on this variable. Also the importance of X(1)

should be high. These expected results are clearer for HTERF than GRF.
These observations regarding the relative magnitude of τ highlights the

importance of the quality of fit of the model in the first step of HTERF. To
illustrate this we considered a similar simulation, where the γ term is much
simpler to estimate in Section 5.4.
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5.2. Non linear framework

The BART algorithm (Hill (2011)) allows to estimate CATE in a more
general context where Y = f(W,X) + ε with ε being normal iid. In Athey
et al. (2019) the relationship between Y and W needs to be affine, which is
not the case in HTERF. Indeed in GRF the algorithm hugely relies on the
relation τ(X) = Cov(Y,W |X)

V ar(W |X)
which is only true in the affine case.

LetX ∼ U([0, 1]p), W ∼ Bern(0.5) and Y = sin(X(1))(W+2)3+cos(X(2)),
where p = 3. Hence we have CATE that satisfies: τ(x) = 19 sin(x(1)).

Method RMSE importance

GRF 0.321 0.777
HTERF 0.209 1

Table 4: Root mean squared errors of GRF and HTERF methods that estimate hetero-
geneous treatment effect. All causal forests have 500 trees, both the centering forests for
GRF and the forest of the first step in HTERF have 500 trees, the same subsampling rate
(0.7) is used in both methods. The results are aggregated over 60 simulation replications
with 1000 test points each. We also consider the importance of X(1).

Better performances are observed for HTERF in term of estimation (lower
RMSE for HTERF) and interpretability (see Table 4). Indeed X(1) is the
only informative variable, so its importance is expected to be 1.

5.3. GRF example

To illustrate the performance of HTERF, we reuse a simulation from Athey
et al. (2019). Let Xi ∼ U([0, 1]p), Wi|Xi ∼ Bern(e(Xi)) and Yi|Xi,Wi ∼
N(m(Xi) + (Wi − 0.5)τ(Xi), 1), where p = 10 or p = 20 depending on the
simulation considered. The authors considered three settings:

• No confounding, m(x) = 0 and e(x) = 0.5 but treatment heterogeneity
τ(x) = ς(x(1))ς(x(2)), ς(u) = 1 + 1/(1 + e−20(u−1/3)).

• Confounding, e(x) = 1
4
(1 + β2,4(x

(3))) and m(x) = 2x(3) − 1, where βa,b

is beta distribution with shape parameters a and b, but no treatment
heterogeneity, τ(x) = 0.

• Both confounding e(x) = 1
4
(1 + β2,4(x

(3))) and m(x) = 2x(3) − 1, and
treatment heterogeneity, τ(x) = ς(x(1))ς(x(2)).
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conf. heterog. p n GRF HTERF

no yes 10 800 1.01 0.84
no yes 10 1600 0.58 0.50
no yes 20 800 1.07 0.92
no yes 20 1600 0.65 0.55
yes no 10 800 0.14 0.15
yes no 10 1600 0.09 0.09
yes no 20 800 0.10 0.11
yes no 20 1600 0.08 0.08
yes yes 10 800 1.16 1.12
yes yes 10 1600 0.69 0.63
yes yes 20 800 1.29 1.23
yes yes 20 1600 0.74 0.63

Table 5: Mean squared errors of GRF and HTERF methods that estimate heterogeneous
treatment effect. All causal forests have 500 trees, both the centering forests for GRF and
the forest of the first step in HTERF have 500 trees, the same subsampling rate (0.7) is
used in both methods. The results are aggregated over 60 simulation replications with
1000 test points each. The mean square errors are multiplied by 10.

GRF HTERF
p n X(1) X(2) ∑

X(1) X(2) ∑
10 800 0.416 0.410 0.826 0.446 0.416 0.862
10 1600 0.413 0.431 0.844 0.440 0.447 0.887
20 800 0.398 0.413 0.811 0.410 0.427 0.837
20 1600 0.416 0.420 0.836 0.434 0.433 0.867

Table 6: Importances of X(1), X(2) and their sum (
∑
) for the previous setting with

treatment heterogeneity and unconfoundedness.

Results in Table 5 show that under the three configurations HTERF has
similar or better performances than GRF. When there is no confounding
HTERF is more performant.

In term of interpretability in the first setting with treatment heterogeneity
and no confounding, we expect high and similar importances for X(1) and X(2),
indeed these are the only informative covariates and their contributions are
quite symetrical. In Table 5.3 we can see good results for both methods with
an improvement for HTERF method. In the third setting with confounding
we expect the same kind of results and no significant importance for the
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GRF HTERF
p n X(1) X(2) ∑

X(3) X(1) X(2) ∑
X(3)

10 800 0.401 0.411 0.812 0.023 0.375 0.486 0.861 0.018
10 1600 0.403 0.435 0.838 0.021 0.381 0.510 0.891 0.014
20 800 0.404 0.395 0.799 0.012 0.359 0.478 0.837 0.010
20 1600 0.385 0.443 0.828 0.010 0.334 0.537 0.871 0.007

Table 7: Importances of X(1), X(2), their sum (
∑
) and X(3) for the previous setting with

treatment heterogeneity and confounding.

confounding variable X(3). In Table 5.3, for both methods we have no
significant importance for X(3) (for example for the first line of GRF, the
remaining importances for non informative variables is 0.188 so we could
expect an importance of 0.024 for each non informative variable which is very
close to the observed importance of 0.023). We have an improvement in term
of sum of importances on informative variables with HTERF.

5.4. Linear γ function

We perform a simulation study in order to show the importance of an
accurate estimation of µ0 in the pre-processing step.

Let Xi ∼ U([0, 1]p), Wi ∼ Bern(0.5) and Yi = τ(Xi)Wi + γ(Xi). Where
p = 10, τ(x) = sin(x(1)) and γ(x) = 2x(2)+3x(3). We consider a new estimator
HTERF-OLS where µ0 is a linear regression instead of a random forest. Since
γ is a simple linear function, µ0 will fit γ better and we can expect better
results on CATE estimation.

Method RMSE depth 3 depth 5 depth 10 importance

GRF 11.56 0.875 0.514 0.171 0.867
HTERF 4,35 1 0.954 0.239 1

HTERF-OLS 1,50 1 1 0.944 1

Table 8: Root mean squared errors of GRF, HTERF and HTERF-OLS methods that
estimate heterogeneous treatment effect. All causal forests have 500 trees, both the
centering forests for GRF and the forest of the first step in HTERF have 500 trees, the
same subsampling rate (0.7) is used in both methods. The results are aggregated over 60
simulation replications with 1000 test points each. We also consider the frequency of split
on X(1) at depth 3, 5 and 10 and the importance of this variable.

HTERF-OLS has the best results in term of quality of fit and in term of
interpretability especially at deeper splits such as depth 10. A low quality of

20



the µ0 estimator is a flaw for the overall HTERF algorithm. We propose the
use of cross validated random forests in general but with external knowledge
about the nature of γ better choices can be made.

5.5. Ishigami-like model

A last example is proposed, based on Ishigami functions, often used in
sensitivity analysis (Ishigami and Homma (1990)). Let Xi ∼ U([−π, π]3),
Wi ∼ Bern(0.5) and Yi = τ(Xi)Wi+ γ(Xi). Where τ(x) = 0.3(x(3))4 sin(x(1))
and γ(x) = sin(x(1)) + 7 sin(x(2))2.

Method RMSE importance X(1) importance X(2) importance X(3)

GRF 0.982 0.655 0.075 0.269
HTERF 0.766 0.763 0 0.237

Table 9: Root mean squared errors of GRF and HTERF methods that estimate heteroge-
neous treatment effect. All causal forests have 500 trees, both the centering forests for GRF
and the forest of the first step in HTERF have 500 trees, the same subsampling rate (0.7)
is used in both methods. The results are aggregated over 60 simulation replications with
1000 test points each. We also consider the importances of the three variables X(1), X(2)

and X(3).

Once again HTERF is a better estimator for CATE in term of RMSE. Also
since X(2) does not appear in the expression of τ we expect a null importance
for this variable. In regard of this remark, HTERF has more consistent results
in term of interpretability.

6. Discussion

In this paper we proposed a novel causal forest based algorithm, namely
HTERF to estimate CATE with a binary treatment. We have shown empiri-
cally that HTERF is more efficient in term of quality of estimation of CATE
and in term of interpretability compared to GRF. We also proved an almost
surely consistency result on HTERF under realistic assumptions.
Additional work could be done on the choice of the µ0 estimator used in the
centering process. Indeed when there are clues on the nature of γ, a well
chosen estimator can improve drastically the performances of HTERF.

21



A. Proof of consistency

We follow a similar approach than in Elie-Dit-Cosaque and Maume-
Deschamps (2022).
In what follows, C denotes any positive constant, allowing to write: C+C = C
or uC = C where u > 0.

We consider an intermediate result before proving Theorem 4.1.

Assumption A.1. For all ℓ ∈ [1, B], we assume that the variation of CATE
function within any cell goes to 0:

∀x ∈ X , sup
z∈An(x;Θℓ,Dn)

|τ (z)− τ (x)| a.s.−→
n→∞

0 .

Assumption A.1 is verified if there is a bounded probability to split on
each variable even non informative ones as in Athey. In what follows, we
prove that Assumption A.1 is satisfied under hypothesis closer to the random
forest practice.

Theorem A.1. Let Y satisfy Assumption 4.2, with τ belonging to the ♠-
class, let β > 5

2
, C > 0, let the constructed trees be the highest such that

C
√
n(lnn)β ≤ Nn,0 (Θℓ,Dn) , Nn,1 (Θℓ,Dn), then Assumption A.1 is verified.

Lemma A.2. Assume that Assumption 4.2 is satisfied with the function τ
in the ♠-class, let S∞ = (sj, j = 1, . . .) with sj ∈ {L,R}, it describes an
infinite path in a binary tree, let Sh = (sj, j = 1, . . . , h), it describes a path
in a binary tree of height h. Let Ah(S

h,Θ) be the corresponding leaf in a
theoretical tree. Then the variation of τ(·) on Ah(S

h,Θ) goes to 0 a.s. as h
goes to infinity.

Proof.
The proof is quite similar to the proof of Lemma 5.3 in Elie-Dit-Cosaque

and Maume-Deschamps (2022). One have to notice that:

∆⋆(A, j, z) = 0⇔
E
[
Y (1)− Y (0)|Xj∞ < z,XJ ∈ AJ

]
− E

[
Y (1)− Y (0)|Xj∞ ⩾ z,XJ ∈ AJ

]
= 0

⇔ P(X ∈ A∞)E
[
(Y (1)− Y (0))1{Xi≤z, X∈A∞}

]
= P(Xi ≤ z,X ∈ A∞)E

[
(Y (1)− Y (0))1{X∈A∞}

]
.
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By derivating with respect to z, we may see that it is equivalent to z 7→
E
[
τ (z,X−i)1{X−i∈A−i

∞}
]
is constant for all i = 1, . . . , d. Since we assumed

that τ belongs to the ♠-class, either τ is constant on A∞(S∞) or the diameter
of A∞(S∞) is zero. In both cases, we conclude that the variation of τ(·)
on Ah(S

h,Θ) goes to 0 as h goes to infinity, as in Elie-Dit-Cosaque and
Maume-Deschamps (2022).

Proposition A.3. Let Assumption 4.2 be satisfied. Let β > 5
2
, let A be a

rectangle in X , we shall say that (A, j, z) ∈ An if |AL0|,|AL1|,|AR0| and |AR1|
are greater than C

√
n(lnn)β (so this bound is also true for |AL| and |AR|).

We have

sup
(A,j,z)∈An

|∆⋆(A, j, z)−∆(A, j, z)| a.s.−→ 0 as n→∞.

Proof.
The proof follows closely Proposition 5.3. in Elie-Dit-Cosaque and Maume-

Deschamps (2022). It makes use of the decomposition:

|∆⋆(A, j, z)−∆(A, j, z)| = |T1 + T2|

=:
|AL||AR|
|A|2

[(
Y AL1

− Y AL0
− Y AR1

+ Y AR0

)2
−
(
E[Y (1)− Y (0)|X(j) < z,X ∈ A]− E[Y (1)− Y (0)|X(j) ≥ z,X ∈ A]

)2]
+ (E[Y (1)− Y (0)|X(j) < z,X ∈ A]− E[Y (1)− Y (0)|X(j) ≥ z,X ∈ A])2( |AL||AR|
|A|2

− P(X(j) < z|X ∈ A)P(X(j) ≥ z|X ∈ A)
)
.

In order to prove the proposition, we shall prove that supA,j,z T1 and supA,j,z T2

go to 0 a.s. The two main ingredient of the proof are Vapnik-Chervonenkis
theory on rectangles in A which gives:

P

(
sup
B∈A

∣∣∣∣ |B|n − P(X ∈ B)

∣∣∣∣ > κ

)
≤ 8(n+ 1)2de−nκ2/32, (A.1)

and Theorem 9.6 in Györfi et al. (2002) and Lemma A.2 in Elie-Dit-Cosaque
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and Maume-Deschamps (2022), that lead for any L > 0 and 1
p
+ 1

q
= 1:

P

(∣∣∣∣∣ 1n
n∑

i=1

Yi1Xi∈AL,W=1 − E[Y 1X∈AL1
]

∣∣∣∣∣ > κ

)

≤24
(
32eL

κ
log

(
48eL

κ

))2d

exp

(
−nκ2

512L2

)
+ C

E[Y p]
1
p P(Y > L)

1
q

κ
.

Proposition A.4. Let Assumption 4.2 be satisfied. Assume that for β > 5
2
,

Nn,0 (Θℓ,Dn) , Nn,1 (Θℓ,Dn) ≥ C
√
n(lnn)β. For h ∈ N, let S ∈ {L,R}h de-

scribe a path of length h in a binary tree, let An(S) and A(S) be corresponding
nodes in empirical and theoretical trees. Denote

A(S) =
d∏

j=1

[aj, bj] and An(S) =
d∏

j=1

[anj , b
n
j ].

Denote Th the set of theoretical trees of height h, then

inf
Th

max
j=1,...,d

max
(
|aj − anj |, |bj − bnj |

)
−→ 0 a.s. as n→∞. (A.2)

Proof.
The proof is the same that in Proposition 5.4 from Elie-Dit-Cosaque and

Maume-Deschamps (2022).

Proof of Theorem A.1.
It can be proved as Theorem 5.1 in Elie-Dit-Cosaque and Maume-Deschamps

(2022).

Following the lines of the proof of Theorem A.1, the same result for τ1
and τ0 can be obtained.

Assumption A.2. For all ℓ ∈ [1, B], we assume that the variation of τ1 and
τ0 within any cell goes to 0:

∀x ∈ X , sup
z∈An(x;Θℓ,Dn)

|τ1 (z)− τ1 (x)|
a.s.−→

n→∞
0 .

∀x ∈ X , sup
z∈An(x;Θℓ,Dn)

|τ0 (z)− τ0 (x)|
a.s.−→

n→∞
0 .
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Theorem A.5. Let Y satisfy Assumption 4.2, with τ0 and τ1 belonging to
the ♠-class, let β > 5

2
, C > 0, let the constructed trees be the highest such

that C
√
n(lnn)β ≤ Nn,0 (Θℓ,Dn) , Nn,1 (Θℓ,Dn), then A.2 is verified.

Theorem 4.1 is a direct consequence of Theorem A.6 that we now state.

Theorem A.6. Consider a random forest which satisfies Assumptions A.2,
4.3 and hypotheses of Theorem 4.1. Then,

∀x ∈ X , |τ̂B,n(x)− τ(x)| a.s.−→
n→∞

0 .

Proof of Theorem A.6.
The proof follows ideas in Elie-Dit-Cosaque and Maume-Deschamps (2022)

but some differences arise due to the honest subsampling rather than bootstrap.
We give it in detail for completeness.

The main ingredient of the proof is to use a second sample D⋄
n in order to

deal with the data-dependent aspect. Thus, we first define a dummy estimator
based on two samples Dn and D⋄

n which will be used below. The trees are
grown using Dn, but we consider another sample D⋄

n (independent of Dn and
Θ) which is used to define a dummy estimator

τ ⋄B,n (y|X = x; Θ1, . . . ,Θk,D⋄
n,Dn)

=
n∑

j=1

α⋄
n,j

(
x; Θ1, . . . ,Θk,X

⋄1, . . . ,X⋄n,W ⋄1, . . . ,W ⋄n,Dn

)
Y e⋄j

−
n∑

j=1

α
′⋄
n,j

(
x; Θ1, . . . ,Θk,X

⋄1, . . . ,X⋄n,W ⋄1, . . . ,W ⋄n,Dn

)
Y e⋄j,

where the weights are

α⋄
n,j

(
x; Θ1, . . . ,Θk,X

⋄1, . . . ,X⋄n,W ⋄1, . . . ,W ⋄n,Dn

)
=

1

B

B∑
ℓ=1

1{X⋄j∈An(x;Θℓ,Dn)}∩W ⋄j=1

N⋄
n,1 (x; Θℓ,X⋄1, . . . ,X⋄n,W ⋄1, . . . ,W ⋄n,Dn)

, j = 1, . . . , n.

with N⋄
n,1 (x; Θℓ,X

⋄1, . . . ,X⋄n,W ⋄1, . . . ,W ⋄n,Dn), the number of elements of
D⋄

n that fall into An (x; Θℓ,Dn) such as W ⋄ = 1. Throughout this section, we
shall use the convention 0

0
= 0 in caseN⋄

n,1 (x; Θℓ,X
⋄1, . . . ,X⋄n,W ⋄1, . . . ,W ⋄n,Dn) =
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0 and thus 1{X⋄j∈An(x;Θℓ,Dn)}∩W ⋄j=1 = 0 for j = 1, . . . n.
Similarly we have:

α
′⋄
n,j

(
x; Θ1, . . . ,Θk,X

⋄1, . . . ,X⋄n,W ⋄1, . . . ,W ⋄n,Dn

)
=

1

B

B∑
ℓ=1

1{X⋄j∈An(x;Θℓ,Dn)}∩W ⋄j=0

N⋄
n,0 (x; Θℓ,X⋄1, . . . ,X⋄n,W ⋄1, . . . ,W ⋄n,Dn)

, j = 1, . . . , n.

To lighten the notation in the sequel, we will simply write τ ⋄B,n (y|X = x) =
n∑

j=1

α⋄
j (x)Y

⋄j −
n∑

j=1

α
′⋄
j (x)Y ⋄j.

Let x ∈ X and y ∈ R, we have:

|τ̂ (x)− τ (x)| ≤ |τ̂ (x)− τ ⋄ (x)|
+ |τ ⋄ (x)− τ (x)| .

Let x in X : |τ ⋄(x)− τ(x)| ≤ |τ ⋄1 (x)− τ1(x)|+ |τ ⋄0 (x)− τ0(x)| Each of the
two terms will be treated the same way.

|τ ⋄1 (x)− τ1(x)| ≤

∣∣∣∣∣∣∣
n∑

i=1
W ⋄

i =1

α⋄
i (x) [(Y

⋄
i )− E [Y (1)|X⋄

i ]]

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
n∑

i=1
W ⋄

i =1

α⋄
i (x) [E [Y (1)|X⋄

i ]− E [Y (1)X = x]]

∣∣∣∣∣∣∣
≤Un + Vn.
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The last term tends to 0 with Theorem A.5:

Vn =

∣∣∣∣∣∣∣
n∑

i=1
W ⋄

i =1

αi(x) [E [Y (1)|X⋄
i ]− E [Y (1)|X = x]]

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
n∑

i=1
W ⋄

i =1
∃l|X⋄

i∈An(x,Θl)

α⋄
i (x) [E [Y (1)|X⋄

i ]− E [Y (1)|X = x]]

∣∣∣∣∣∣∣∣∣∣
≤

n∑
i=1

W ⋄
i =1

∃l|X⋄
i∈An(x,Θl)

|αi(x) [E [Y (1)|X⋄
i ]− E [Y (1)|X = x]]|

≤ sup
z∈An(x)

|τ1(z)− τ1(x)| −−−−→
n→+∞

0.

For the first term we have:

Un =

∣∣∣∣∣∣∣
n∑

i=1
W ⋄

i =1

α⋄
i ε

⋄
i

∣∣∣∣∣∣∣ .
The following Lemma is useful:

Lemma A.7. Let u ∈ {0, 1}, as before, Nn,u (An (Θ)) = Nn,u (x; Θ,Dn) is
the number of observations of Dn such as W = u that fall into in An (Θ) =
An (x; Θ,Dn) and N⋄

n,u (An (Θ)) = N⋄
n,u (x; Θ,X⋄1, . . . ,X⋄n,Dn), the number

of observations of D⋄
n such as W = u that fall into in An (Θ). Then,

∀ε > 0, P
(∣∣N b

n,u (An (Θ))−N⋄
n,u (An (Θ))

∣∣ > ε
)
⩽ 16(n+ 1)2de−ε2/128n .

Proof.
The proof is similar to Lemma 6.3 in Elie-Dit-Cosaque and Maume-

Deschamps (2022) without the bootstrap considerations.
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So:

E
[
(Un)

2] = E

( n∑
j=1

α⋄
jε

⋄
j

)2


=
n∑

j=1

n∑
m=1

E
[
α⋄
jα

⋄
mε

⋄
jε

⋄
m

]
=

n∑
j=1

E
[
α⋄2
j ε⋄2j

]
+

∑
1⩽j,m⩽n

j ̸=m

E
[
α⋄
jα

⋄
mε

⋄
jε

⋄
m

]
def
= In + Jn.

For In:

In =E

[
n∑

j=1

α⋄2
j ε⋄2j

]

≤E

[
maxα⋄

j

n∑
j=1

α⋄
jε

⋄2
j

]
≤E
[
maxα⋄

j max ε⋄2j
]

≤E
[
maxα⋄

j

]
E
[
max ε⋄2j

]
.
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Let λ = E[Nn,1(An(θ))]

4
:

E
[
maxα⋄

j

]
= E

[
max

1

B

B∑
l=1

1X⋄
i∈An(x;Θl,Dn)∩W ⋄

i =1

N⋄
n,1 (x; Θℓ,Dn)

]

≤ E

[
1

minN⋄
n,1 (x; Θℓ,Dn)

]
≤ E

[
1{∀ℓ,N⋄

n,1(x;Θℓ,Dn)>λ}

minN⋄
n,1 (x; Θℓ,Dn)

]
+ E

[
1{∃ℓ,N⋄

n,1(x;Θℓ,Dn)≤λ}

minN⋄
n,1 (x; Θℓ,Dn)

]
≤ 1

λ
+ P(∃ℓ|N⋄

n,1 (Θℓ) ≤ λ)

≤ 1

λ
+BP(N⋄

n,1 (Θ) ≤ λ)

≤ 1

λ
+BP(N⋄

n,1 (Θ) ≤ λ,
∣∣Nn,1 (An(θ))−N⋄

n,1 (An(θ))
∣∣ ≤ λ)

+BP(N⋄
n,1 (Θ) ≤ λ,

∣∣Nn,1 (An(θ))−N⋄
n,1 (An(θ))

∣∣ > λ)

≤ 1

λ
+BP(Nn,1 (Θ) ≤ 2λ) +BP(

∣∣Nn,1 (An(θ))−N⋄
n,1 (An(θ))

∣∣ > λ).

Using Bienaimé-Tchebychev’s inequality, Assumption 4.3 and Lemma A.7,
there exists C,K and M positive constants such that:

E
[
maxα⋄

j

]
≤ 4

E [Nn,1 (An(θ))]
+ 4B (CV (Nn,1 (An(θ))))

2 +BP(
∣∣Nn,1 (An(θ))−N⋄

n,1 (An(θ))
∣∣ > λ)

≤ 4

K
√
n(lnn)β

+
4CM2

n(lnn)γ
+ 16Cnα(n+ 1)2de−K2(lnn)2β/2048.

Finally:

In ≤
4

K
√
n(lnn)β−u

+
4CM2

n(lnn)γ−u
+ 16Cnα(n+ 1)2d(lnn)ue−K2(lnn)2β/2048.

(A.3)
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For Jn:

Jn =
∑

1⩽j,m⩽n
j ̸=m

E
[
α⋄
jα

⋄
mε

⋄
jε

⋄
m

]
=

∑
1⩽j,m⩽n

j ̸=m

E
[
E
[
α⋄
jα

⋄
mε

⋄
jε

⋄
m|Dn,X

⋄
1, . . . ,X

⋄
n, ε

⋄
j

]]
=

∑
1⩽j,m⩽n

j ̸=m

E
[
α⋄
jα

⋄
mE
[
ε⋄jε

⋄
m|Dn,X

⋄
1, . . . ,X

⋄
n, ε

⋄
j

]]
because α⋄

j , α
⋄
m are Dn,X

⋄
1, . . . ,X

⋄
n measurable.

=
∑

1⩽j,m⩽n
j ̸=m

E
[
α⋄
jα

⋄
mε

⋄
jE
[
ε⋄m|Dn,X

⋄
1, . . . ,X

⋄
n, ε

⋄
j

]]
=

∑
1⩽j,m⩽n

j ̸=m

E
[
α⋄
jα

⋄
mε

⋄
jE [ε⋄m]

]
=0.

Using Bienaimé-Tchebychev’s inequality, we have:

∀ε > 0,P (|Un| ≥ ε) ≤ In
ε2
. (A.4)

Since
∑

n≥1 In2 <∞, with Borel-Cantelli lemma:

∀ε > 0,P

(
lim

n→+∞
{|Un2| ≥ ε}

)
= 0. (A.5)

So Un2 → 0.
We now show that (Un)n≥1 converges almost surely to 0.
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P

(
lim

n→+∞

{∣∣Un − U⌊
√
n⌋2
∣∣ ≥ ε

})
= P

 lim
n→+∞


n∑

i=⌊
√
n⌋2+1

|α⋄
i ε

⋄
i | ≥ ε




= P

∀n,∃N0 > n,


N0∑

i=⌊
√
N0⌋2+1

|α⋄
i ε

⋄
i | ≥ ε




= lim
n→+∞

P

∃N0 > n,


N0∑

i=⌊
√
N0⌋2+1

|α⋄
i ε

⋄
i | ≥ ε




= lim
n→+∞

∑
N0>n

P

 N0∑
i=⌊

√
N0⌋2+1

|α⋄
i ε

⋄
i | ≥ ε

 .

For a given N0, let D(N0) = (lnN0)
γ:

P

 N0∑
i=⌊

√
N0⌋2+1

|α⋄
i ε

⋄
i | ≥ ε

 ≤ P
(
∃i ∈ J⌊

√
N0⌋2 + 1, N0K, |ε⋄i | > D(N0)

)

+ P

D(N0)

N0∑
i=⌊

√
N0⌋2+1

|α⋄
i | ≥ ε


≤ P

(
∃i ∈ J⌊

√
N0⌋2 + 1, N0K, |ε⋄i | > D(N0)

)
+ P

(
D(N0)

2
√
N0

minN⋄
n,1(x; Θl,Dn)

≥ ε

)
.

Let’s treat the second term:

P

(
D(N0)

2
√
N0

minN⋄
n,1(x; Θl,Dn)

≥ ε

)
≤ P

(
D(N0)

2
√
N0

minN⋄
n,1(x; Θl,Dn)

≥ ε,∀ℓ|N⋄(An(Θℓ)) > λ

)
+ P

(
D(N0)

2
√
N0

minN⋄
n,1(x; Θl,Dn)

≥ ε,∃ℓ|N⋄(An(Θℓ)) ≤ λ

)
.

The first term is zero since E [Nn,1 (An(θ))] ≥ 8
√
N0D(N0)

ϵ
for N0 large

enough according to Assumption 4.3.
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P

(
D(N0)

2
√
N0

minN⋄
n,1(x; Θl,Dn)

≥ ε

)
≤ P (∃ℓ|N⋄(An(Θℓ)) ≤ λ)

≤ BP(Nn,1 (Θ) ≤ 2λ)

+BP(
∣∣Nn,1 (An(θ))−N⋄

n,1 (An(θ))
∣∣ > λ)

≤ 4B (CV (Nn,1 (An(θ))))
2

+BP(
∣∣Nn,1 (An(θ))−N⋄

n,1 (An(θ))
∣∣ > λ)

≤ 4CM2

n(lnn)γ
+ 16Cnα(n+ 1)2de−K2(lnn)2β/2048.

Finally we have:

P

 N0∑
i=⌊

√
N0⌋2+1

|α⋄
i ε

⋄
i | ≥ ε

 ≤ C(N0 − ⌊
√

N0⌋2)θD(N0) +
4CM2

n(lnn)γ
+ 16Cnα(n+ 1)2de−K2(lnn)2β/2048.

Using Borel-Cantelli lemma:

∀ε > 0,P

(
lim

n→+∞

{∣∣Un − U⌊
√
n⌋2
∣∣ ≥ ε

})
= 0. (A.6)

Finally we have that (Un)n≥1 goes to 0 almost surely. Finally it gives that
|τ ⋄ (x)− τ (x)| goes to 0.

The quantity |τ̂ (x)− τ ⋄ (x)| is now treated. We use the same decom-
position and consider separately but in similar fashion |τ̂1(x)− τ ⋄1 (x)| and
|τ̂0(x)− τ ⋄0 (x)|:

|τ̂1(x)− τ ⋄1 (x)| =

∣∣∣∣∣ 1B
B∑
l=1

n∑
j=1

1Xj∈An(l)1Wj=1

Nn,1(x; Θl,Dn)
Yj −

1X⋄
j∈An(l)1W ⋄

j =1

N⋄
n,1(x; Θl,Dn)

Y ⋄
j

∣∣∣∣∣ .
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We decompose the following way:∣∣∣∣∣
n∑

j=1

1Xj∈An(l)1Wj=1

Nn,1(x; Θl,Dn)
Yj −

1X⋄
j∈An(l)1W ⋄

j =1

N⋄
n,1(x; Θl,Dn)

Y ⋄
j

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

j=1

1Xj∈An(l)1Wj=1

Nn,1(x; Θl,Dn)
Yj − E [Y |X ∈ An(Θ),W = 1]

∣∣∣∣∣
+

∣∣∣∣∣
n∑

j=1

1X⋄
j∈An(l)1W ⋄

j =1

N⋄
n,1(x; Θl,Dn)

Y ⋄
j − E [Y |X ∈ An(Θ),W = 1]

∣∣∣∣∣ .
Let Λ be the statement “

∣∣∣ |B|
n
− P(X ∈ B)

∣∣∣ ≤ C
2
(lnn)β√

n
verified for B =

{Xi ∈ An(Θ)|Wi = 1}”, for any ε > 0 we have:

P

(∣∣∣∣∣
n∑

j=1

1Xj∈An(l)1Wj=1

Nn,1(x; Θl,Dn)
Yj −

1X⋄
j∈An(l)1W ⋄

j =1

N⋄
n,1(x; Θl,Dn)

Y ⋄
j

∣∣∣∣∣ > ε

)

≤P

(∣∣∣∣∣
n∑

j=1

1Xj∈An(l)1Wj=1

Nn,1(x; Θl,Dn)
Yj − E [Y |X ∈ An(Θ),W = 1]

∣∣∣∣∣ > ε

2
,Λ

)

+ P

(∣∣∣∣∣
n∑

j=1

1X⋄
j∈An(l)1W ⋄

j =1

N⋄
n,1(x; Θl,Dn)

Y ⋄
j − E [Y |X ∈ An(Θ),W = 1]

∣∣∣∣∣ > ε

2
,Λ

)

+ 8(n+ 1)2de
−C(lnn)2β

128

(
id est P

(
ΛC
))

.

Noticing that:

P

(∣∣∣∣∣
n∑

j=1

1Xj∈An(l)1Wj=1

Nn,1(x; Θl,Dn)
Yj − E [Y |X ∈ An(Θ),W = 1]

∣∣∣∣∣ > ε

2
,Λ

)

≤P

(
n

Nn,1(x; Θl,Dn)

∣∣∣∣∣ 1n
n∑

j=1

Yj1Xj∈An(l)1Wj=1 − E[Y 1X∈An(Θ)1W=1]

∣∣∣∣∣ > ε

4
,Λ

)

+ P

(∣∣E[Y 1X∈An(Θ)1W=1]
∣∣ ∣∣∣∣ n

Nn,1(x; Θl,Dn)
− 1

P(X ∈ A′)

∣∣∣∣ > ε

4
,Λ

)
.
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We can treat this term the same way as T1,1,1.

P

(∣∣∣∣∣
n∑

j=1

1Xj∈An(l)1Wj=1

Nn,1(x; Θl,Dn)
Yj − E [Y |X ∈ An(Θ),W = 1]

∣∣∣∣∣ > ε

2
,Λ

)

≤24
(
Ce(lnn)δ

√
n

ε(lnn)β
log

(
Ce(lnn)δ

√
n

ε(lnn)β

))2d

exp

(
−Cε2(lnn)2β

(lnn)2δ

)
+ C

√
ne(lnn)δ ln θ

q

ε(lnn)β

+ 8(n+ 1)2de−
ε2C(lnn)2β−2δ

2048 .

Second term is treated with the same idea but needs a bit more work:

P

(∣∣∣∣∣
n∑

j=1

1X⋄
j∈An(l)1W ⋄

j =1

N⋄
n,1(x; Θl,Dn)

Y ⋄
j − E [Y |X ∈ An(Θ),W = 1]

∣∣∣∣∣ > ε

2
,Λ

)

≤P

(∣∣∣∣∣
n∑

j=1

1X⋄
j∈An(l)1W ⋄

j =1

N⋄
n,1(x; Θl,Dn)

Y ⋄
j − E [Y |X ∈ An(Θ),W = 1]

∣∣∣∣∣ > ε

2
, N⋄

n,1(x; Θl,Dn) > λ,Λ

)
+ P

(
N⋄

n,1(x; Θl,Dn) ≤ λ
)
.

The term:

P

(∣∣∣∣∣
n∑

j=1

1X⋄
j∈An(l)1W ⋄

j =1

N⋄
n,1(x; Θl,Dn)

Yj − E [Y |X ∈ An(Θ),W = 1]

∣∣∣∣∣ > ε

2
, N⋄

n,1(x; Θl,Dn) > λ,Λ

)
(A.7)

is treated as previously. The last term is close to an expression already
bounded:

P
(
N⋄

n,1(x; Θl,Dn) ≤ λ
)

≤P(Nn,1 (Θ) ≤ 2λ)

+ P(
∣∣Nn,1 (An(θ))−N⋄

n,1 (An(θ))
∣∣ > λ)

≤4 (CV (Nn,1 (An(θ))))
2

+ P(
∣∣Nn,1 (An(θ))−N⋄

n,1 (An(θ))
∣∣ > λ)

≤ 4CM2

n1+α(lnn)γ
+ 16C(n+ 1)2de−K2(lnn)2β/2048.

Thanks to Borel-Cantelli, provided that 2β − 2δ > 1, we conclude that
|τ̂1(x)− τ ⋄1 (x)| goes to 0.

Finally we have |τ̂(x)− τ(x)| goes to 0.
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