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Mapping the Urban Heat Island at the territory scale: an 

unsupervised learning approach for urban planning applied to 

the Canton of Geneva 

Abstract. This study presents a fully reproducible clustering-based methodology for the 

assessment of the urban heat island intensity (UHII) at the territory scale, using parametric 

microclimate models and limited computational resources. In large-scale climate modelling, a 

common preliminary operation is to utilize the well-established Local Climate Zone 

classification to characterize the thermal response of urban areas based on morphology. With the 

increasing availability of urban datasets, data-driven approaches can be implemented to 

quantitatively derive meaningful urban features without relying on a standardized classification. 

The proposed methodology employs a Gaussian Mixture Model clustering algorithm to partition 

the urban territory into a suitable number of homogeneous microclimate zones, enabling the 

calculation and mapping of the UHII for each zone through the Urban Weather Generator 

(UWG) tool. The developed approach is applied to the Canton of Geneva, Switzerland, 

identifying ten microclimatic areas and analyzing the spatiotemporal variation of UHII. Results 

show yearly average values of UHII ranging from 1.7°C to 2.2°C, depending on urban 

morphology. The simulated values are partially validated by comparison with on-site 

measurements from two urban weather stations, yielding a satisfactory agreement. The 

methodology can support urban planning with the goal of avoid overheating through a large-scale 

mapping. 

Keywords: Urban Heat Island; Local Climate Zones; Urban Clustering; GIS-data; Urban Microclimate 

1. Introduction 

The urban heat island (UHI) phenomenon, i.e. the local increase of the urban air temperature compared 

to the rural surrounding areas, is a major issue for global climate disruption (Palme & Salvati, 2021). In 
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addition to the global temperature rise of about 1.5°C and the ever more frequent climate anomalies 

such as heatwaves (IEA, 2021; IPCC, 2022; Pielke et al., 2022; Pyrgou et al., 2017), urbanization is 

responsible for an air temperature increase that may reach up to 12°C at peak in cities (Oke, 1982). This 

condition strongly increases the vulnerability of modern cities (Grimmond et al., 2010; Rajagopal et al., 

2023) especially in Europe, which is particularly affected by global warming. Urban overheating 

negatively impact building energy consumption (He, 2019; Hwang et al., 2020), public health (Tong et 

al., 2021), air pollution (Y. Wang et al., 2021), thermal comfort (Alvarez et al., 2021), ecosystems 

(Dissanayake et al., 2020), economics and productivity (Memme & Fossa, 2022; Raalte et al., 2012). In 

the literature, numerous field studies have been presented for more than 450 worldwide major cities 

including London, U.K. (Kolokotroni et al., 2012), Barcelona, Spain (Salvati, Coch Roura, et al., 2017), 

Basel, Switzerland (Parlow et al., 2014), Sydney, Australia (Santamouris et al., 2018), Singapore (Bueno 

et al., 2015a), Wuhan, China (Huang et al., 2018), Los Angeles, United States (Vahmani & Ban-Weiss, 

2016), Toronto, Canada (Y. Wang et al., 2015). 

Despite the evidence of this phenomenon, most research related to building energy performance 

evaluation still fails to integrate UHI into energy demand and thermal comfort analyses (Lauzet et al., 

2019; Mirzaei & Haghighat, 2010; Santamouris, 2014). The majority of building energy-related studies 

exploit non-local weather data from reference weather station measurements located outside the cities 

(e.g. airports). As demonstrated in previous research by the Authors (Boccalatte et al., 2020) and other 

studies (X. Li et al., 2019; Lima et al., 2019; Palme et al., 2017; Salvati, Coch, et al., 2017), this affects 

to a great extent the building energy-use predictions. The UHI strongly modifies the energy demand 

related to building HVAC systems and buildings, in turn, negatively impact urban air temperature and 

thermal comfort through heat losses. In this sense, microclimate models are becoming essential for both 

building design and urban planning to adequately consider local climate conditions and plan mitigation 

strategies.  
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1.1 Experimental Measurements of Urban Heat Island (UHI) 

Given the relevance of the Urban Heat Island (UHI) phenomenon, substantial research has been 

conducted to investigate its magnitude and the characteristics through experimental observations. 

Remote Sensing (RS) data acquired through satellites (e.g. Landsat, MODIS, ASTER), drones, aircrafts 

have been extensively used to map the urban heat at the city scale (Venter et al., 2020). By utilizing 

thermal images from RS, land use and land surface temperature (LST) data can be derived to investigate 

the spatiotemporal variation of urban heat (AlDousari et al., 2022; Chen et al., 2023; Unal Cilek & Cilek, 

2021). Most of the large-scale Urban Heat Island (UHI) estimates derived from Land Surface 

Temperature (LST) data refers to the Surface Urban Heat Island (SUHI), which measures the 

temperature of the surface of the built environment. Nevertheless, for thermal comfort studies and 

Building Energy Modeling (BEM), it is crucial to consider the air temperature instead of the surface 

temperature.  

In recent years, the use of sensors to measure air temperature in urban areas has become increasingly 

popular (de Almeida et al., 2021). Besides the traditional urban meteorological networks, various 

techniques exist for crowdsourcing, citizen science weather stations (CWS), and mobile data (Chàfer et 

al., 2022; Muller et al., 2015; Romero Rodríguez et al., 2020). For instance, Netatmo urban weather 

stations provide small, flexible, and affordable sensors that can be autonomously installed by citizens at 

multiple locations throughout a city, offering a good level of spatial coverage for experimental data 

measurements (Benjamin et al., 2021; Brousse et al., 2022; Meier et al., 2015). Despite their value in 

UHI studies, sensors are subject to limitations related to device accuracy, placement, and maintenance, 

which may hinder capturing all the relevant information for comprehending the UHI effect. The data 

generated by these sensors provide uncertified observations, which may be misrepresentative. Several 

studies have reported significant daytime biases mainly resulting from improper shading of outdoor 

sensors (Varentsov et al., 2020). Additionally, while sensors may provide valuable insights, their usage 

is limited to providing point data, limiting the ability to evaluate the impact of mitigation strategies, 

changes in urban texture, or even projections with future weather scenarios. In this context, numerical 

simulation and modeling is still indispensable for decision-making procedures. To obtain a 
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comprehensive understanding of the UHI effect, it is thus essential to combine sensors with modeling 

approaches, such as street scale, local scale, and city scale microclimate models.  

1.2 Modelling the Urban Heat Island (UHI) at different spatial scales 

In recent decades, several modeling approaches have been proposed to investigate the Urban Heat Island 

(UHI) phenomenon at different spatial scales, ranging from the street scale to the city scale. However, 

a primary research gap still exists, which relates to the differences between microscale (street and local 

scale) and macroscale (city scale) models (Lauzet et al., 2019; Masson et al., 2020). Microscale models, 

while providing higher resolution and accuracy, are more computationally expensive and often limited 

to small areas (a street or a district), while macroscale models, although more computationally efficient, 

lack the necessary spatial resolution to capture the fine-grained features of urban environments. To 

overcome this gap, the main objective of this study is to implement a data-driven approach based on 

local scale parametric models that can bridge the gap between spatial resolution and computational 

efficiency. Reviews related to urban climate simulation and modeling tools illustrate the main 

differences across the urban scales and can be used as a reference to identify the most appropriate 

modeling approach for a given research question (Johari et al., 2020; Lauzet et al., 2019; Lobaccaro et 

al., 2021; Lun et al., 2009; Mutani & Todeschi, 2020; Sola et al., 2020; Tyagi et al., 2021).  

1.2.1 City scale models 

Regarding city scale models, several limitations have been identified and discussed in the literature 

(Mirzaei, 2015). The simulation domain is often up to several kilometers, encompassing an entire city 

and its surroundings. Urban morphological features can be estimated through approximated values of 

roughness length or parametrized using Urban Canopy Models (UCM), such as the popular Town 

Energy Balance (TEB) model (Afshari & Ramirez, 2021; Lemonsu et al., 2012; Masson, 2000). 

However, mesoscale models, such as MESO-NH (Lac et al., 2018) and the Weather Research and 

Forecast model (WRF) (Grimmond, 2017), have inherent limitations in terms of resolution making it 

challenging to observe local phenomena and capture differences among various urban morphologies.   
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1.2.2 Street and local scale models 

Street scale models only cover the volume of air within the urban canyon, including local phenomena 

and detailed modeling of 3D geometry, heat transfers, and airflow regimes (Jänicke et al., 2021). Local 

scale models can be categorized into two types: detailed models and parametric models. Detailed 

models, such as Envi-met (ENVI-met, 2021), SOLENE-microclimat (Morille et al., 2015), take into 

consideration both fluid mechanics equations and 3D radiation equations, while SOLWEIG/UMEP 

(Lindberg et al., 2018) solves the detailed 3D radiations equations in real geometries. These models 

provide the most accurate representation of the urban environment, as they rely on a detailed 

representation of the area. However, due to the complex calculations involved, particularly those related 

to fluid mechanics (as in the case of ENVI-met or SOLENE-microclimat), performing year-long 

simulations over large spatial areas can be challenging. 

In contrast, parametric models, including the Canyon Air Temperature (CAT) model (Erell & 

Williamson, 2006) and the Urban Weather Generator (UWG) (Bueno et al., 2012, 2014, 2015a; Bueno, 

Hidalgo, et al., 2013; Bueno, Norford, et al., 2013) define urban morphological features through a set of 

urban parameters that characterize the thermal properties of the district, making them computationally 

efficient even for year-long simulations. Despite their computational efficiency, they are typically 

limited to simulating a single district and cannot be directly applied at the city scale comprising multiple 

districts. This can be overcome if the whole studied area can be represented by a limited set of 

representative districts on which these parametric models can be applied.  

1.3 Definition of representative districts for microclimate studies 

The identification of representative urban morphologies within a city can be achieved through different 

approaches. Some studies rely on expert knowledge or on the administrative boundaries to identify 

homogeneous district morphologies within a city and calculate the related urban parameters for 

simulation purposes (Litardo et al., 2020; Salvati et al., 2020). Another -  is the 

Local Climate Zone (LCZ) classification, originally introduced by Stewart and Oke (Oke, 1982; Stewart 

& Oke, 2012). The LCZ is used to categorize the landscape into 17 representative local climate zone 
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typologies that are assumed to have a unique air temperature regime under similar atmospheric 

conditions (Stewart & Oke, 2012). A typical range of urban parameter values that describe the urban 

shape, the characteristics of the vegetation, the human activity levels, the land cover is associated with 

each LCZ. If some data are lacking, the scheme also allows deriving the values of unknown parameters 

from look-up tables for the parameters of the other categories (e.g., for mean building height and density, 

aspect ratio, sky view factor, anthropogenic heat emissions, etc.). LCZs have been extensively applied 

to city-scale UHI studies based on both numerical simulations and field measurements (Brousse et al., 

2022; Dimitrov et al., 2021; Fenner et al., 2014; Hashemi, 2020; Houet & Pigeon, 2011; Huang et al., 

. Despite the advantages 

of this qualitative approach, as recently highlighted by Lipson et al. (Lipson et al., 2022), the growing 

availability of high resolution urban datasets (Biljecki et al., 2021; Milojevic-Dupont et al., 2023) and 

unsupervised machine learning classification techniques enables a transition to quantitative -

approaches (Boccalatte et al., 2022). 

This research aims to develop a data-driven approach that utilizes clustering techniques to quantitatively 

identify representative urban morphologies based on microclimate-related parameters. The proposed 

approach aims to bypass the subjectivity of expert knowledge as well as the abstraction of LCZs.  

Unsupervised learning methods have been applied to a few urban studies 

Wang & Biljecki, 2022), for example to identify representative building groups and predict the energy 

use at the city scale (Tardioli et al., 2018), to derive a detailed morphological classification of the urban 

form (Fleischmann et al., 2021, 2022), to identify typo-morphologies and perform thermal comfort 

simulations with Envi-met (Maiullari et al., 2021).  

However, the use of unsupervised learning for investigating Urban Heat Island (UHI) at the city scale 

remains relatively unexplored. While previous studies have utilized clustering techniques to investigate 

the Surface Urban Heat Island (SUHI) at the city scale (Kwak et al., 2020), the coupling of such 

approaches with parametric models for large scale UHI mapping is still unexplored, making it the 

original contribution of this study. Specifically, this research aims at identifying representative 

microclimate zones within the Canton of Geneva (whose area is approximately 300 km2) through GIS 
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data and clustering. Subsequently, the microclimate-related parameters of each zone are fed into the 

Urban Weather Generator (UWG) tool (Bueno et al., 2014, 2015a; Bueno, Hidalgo, et al., 2013; Bueno, 

Norford, et al., 2013), a parametric microclimate model that allows predicting the urban air temperatures 

at the district level based on urban parameters. The resulting workflow enables the simulation of the 

spatiotemporal variation of the UHI at the city scale with comparable accuracy to a local scale model 

but with much lower computational time. The simulated results have been partially validated against 

experimental measurements from two urban weather stations located in the city of Geneva yielding a 

satisfactory agreement. 

2. Data sources, models and methods 

As briefly introduced in Section 1, this study aims to evaluate and map the Urban Heat Island intensity 

(UHII) at the city scale. Given the vast extent, using a parametric model is the most effective way to 

achieve the objective due to computational limitations that hinder the use of detailed 3D modeling. The 

starting point of the presented methodology is the determination of the urban parameters required for 

numerical simulations. These parameters, primarily related to urban shape, vegetation, human activity 

levels, and building characteristics, serve as inputs for the simulations. In this study, the Urban Weather 

Generator tool is selected because of its validated accuracy and fast computational time (Section 2.1 and 

Section 2.2). Once the model is chosen, the following step is GIS data collection and pre-processing. At 

this stage, the urban parameters required for the selected model (in this case, the UWG tool) are extracted 

from GIS urban datasets (Section 2.3). Since GIS data can be either at the level of individual buildings 

or at a bigger scale (e.g. district), a certain number of pre-processing operations are performed to uniform 

data and obtain the averaged values of the urban parameters within a spatial area that is coherent with 

the selected simulation tool. This step is fundamental since a single building do not determine the urban 

microclimate, but a group of them does. To this end, the morphological tessellation technique is applied 

(Section 2.4) avoiding rough data averaging by means of a fixed grid. Then, starting from the averaged 

parameter values, an advanced clustering algorithm based on Gaussian Mixture Models (GMM) is 

employed to classify urban areas with similar characteristics, under the assumption of a similar impact 
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on the microclimate (Section 2.5). Finally, the UWG tool is used to numerically simulate the intensity 

of the UHI phenomenon in each urban zone, resulting in a map of the entire city that accounts for the 

local urban characteristics.  

The developed workflow is schematically represented in Figure 1. The total area under consideration in 

this study corresponds to the administrative boundaries of the Canton of Geneva, which are depicted in 

the figure (boxes 4 and 5) by the black line.  

  

Figure 1: Schematic representation of the developed methodological steps applied to the Canton of Geneva.  

2.1 The choice of the urban microclimate model: The Urban Weather Generator  

The UHI intensity (UHII) is calculated through the Urban Weather Generator (UWG) model (Bueno et 

al., 2012, 2014, 2015b; Bueno, Norford, et al., 2013). The UWG is a parametric microclimate model 

that uses the principles of energy transfer and heat balance equations within the urban canopy to account 

for various physical processes such as solar radiation, thermal radiation, conduction, and convection. It 

is built upon the well-established Town Energy Balance (TEB) scheme (Masson, 2000), which is a 

two-dimensional representation of an urban canyon consisting of three surfaces: a wall, a road, and a 
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roof. The TEB scheme calculates the climate conditions, drag force, and heat fluxes of a district 

composed of identical urban canyons. To improve the representation of the interactions between 

buildings and the urban climate, the UWG integrates the original TEB scheme with a detailed Building 

Energy Model (BEM) derived from EnergyPlus algorithms (EnergyPlus, 2023). The UWG comprises 

four calculation components, including the Rural Station Model (RSM), Vertical Diffusion Model 

(VDM), Urban Boundary-layer Model (UBL), and Urban Canopy and Building Energy Model 

(UC-BEM), which are fully described in (Bueno et al., 2015b). The UWG structure allows to predict 

urban canopy air temperature based on rural weather data and a parametric description of the urban area.   

The UWG tool is freely available to download at (GitHub - Ladybug Tools/Uwg, 2022). Originally 

written in MATLAB in 2013 (GitHub-Jiachen-Mao/UWG_Matlab, 2021), the tool has been 

continuously updated and is now available into a Python library and as a grasshopper plugin. This study 

utilizes the latest Python version of the tool (V5). 

To run the simulations the UWG takes two inputs: a meteorological file in a .epw format from the nearest 

rural weather station and an .xml format file (Extensible Markup Language) describing the urban 

parameters. The output is a modified .epw format weather file in which air temperatures have been 

adjusted based on the local urban characteristics. The main input urban parameters can be subdivided 

into four main categories: urban geometry, vegetation, human activity levels, and building 

characteristics (including thermal properties of construction elements and building loads). Table 1 

summarizes the most relevant parameters required for this study. These parameters have a significant 

impact on local microclimate changes and can vary widely across different areas of the city. 

noting that a certain number of other parameters related to general simulation settings (such as latitude 

and longitude of the city, day and night boundary layer height, road materials albedo and conductivity, 

etc.), or to specific building-related variables (such as wall and roof albedo, glazing ratio, solar heat 

gains from windows, etc.), are also needed, as fully described in (Bueno et al., 2014), but for sake of 

brevity they are reported in Appendix A.  
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Table 1: UWG main input parameters for UHI simulation 

Urban geometry 

 [m] Average height of buildings 

 [-] Urban area building plan density: ratio between built and un-built area 

VH [-] Vertical to horizontal ratio: ratio between façade area and plan area of the site 

Vegetation1 

 [-] Grass coverage: fraction of the urban ground covered in grass/shrubs 

 [-] Tree coverage: fraction of the urban ground covered in trees 

Human activity levels 

 [W/m2] Non-building sensible heat at street level: heat from cars, pedestrians, street 

cooking, etc. 

Building characteristics2 

 [m2K/W] Thermal resistance of walls 

 [m2K/W] Thermal resistance of roof 

 [W/m2K] Thermal transmittance of windows 

i [ach] Building infiltration rate 

Notes: 

1. Since in the reference vegetation map the vegetation coverage is not differentiated between grass 

and trees, the vegetation coverage value is split in half between  and  resulting in 

=  

2. Building characteristics are derived from the building construction period 

Several studies have conducted sensitivity analyses on the input parameters of the UWG model to 

determine their significance (Alchapar et al., 2019; Litardo et al., 2020; Mao et al., 2017; Salvati, Palme, 

et al., 2017). The results indicated that the most influential parameters are those related to urban 

geometry and sensible heat from traffic. In contrast, the impact of vegetation parameters in some cases 
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is lower due to the simplified modeling of vegetation in the UWG model (Salvati, Palme, et al., 2017). 

The model assumes that a fraction of absorbed solar radiation is transformed into latent heat and does 

not contribute to the temperature increase in the urban canyon and it neglects the impact of tree shading 

on building walls and roofs, considering only its effect on the road. Regarding building characteristics, 

the sensitivity analysis performed by  showed that the thermal resistance of walls 

and infiltration rate are among the most influential building characteristics. However, the model shows 

a low sensitivity to building albedo values. Overall the parameters considered for this study (Table 1) 

are deemed relevant for conducting the simulations. 

2.2 Validation and Limitations of the Urban Weather Generator Model for Urban Microclimate Analysis 

The accuracy of the UWG has been extensively validated using both field measurements and simulations 

in different urban environments including Basel (Switzerland), Toulouse (France) (Bueno, Norford, et 

al., 2013), Singapore (Bueno et al., 2015a), Boston (USA) (Street et al., 2013), Abu Dhabi (UAE) (Mao 

et al., 2017), Rome (Italy), Barcelona (Spain) (Salvati et al., 2016). The validation results show an 

average RMSE error of about 1-2K with respect to hourly temperature predictions.  

However, it is crucial to recognize that the UWG model is based on a simplified computational model 

that may not fully capture site-specific microclimate effects beyond spatially averaged results. 

Nonetheless, these simplifications are necessary for computational efficiency, enabling large-scale 

simulations over extended periods which is the main objective of this study. The limitations of the model 

in simulating vegetation and advection from rural to urban boundary layers are considered acceptable 

due to the computational efficiency required for such simulations. Additionally, the UWG model does 

not account for the effects of large water bodies, which have been excluded from the study to date, 

leading to the assumption that the air above Lake Geneva has similar characteristics to rural air. 

Despite these limitations, the UWG model has been extensively validated and shown to be suitable for 

a variety of urban environments. The UWG limitations are considered acceptable for this case study 

bearing in consideration that the UWG model performs best for urban sites characterized by low wind 

conditions, where the UHI intensity is primarily due to urban features and anthropogenic heat release. 
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2.3 Urban data sources for urban parameter derivation in the Geneva Canton case study 

300 km2 and comprising about 60,000 buildings. The reference urban dataset is the Geneva Territory 

Information System (SITG) (SITG | Le Territoire Genevois à La Carte, 2023) which is an open-source 

repository of hundred geodata sets related to town planning, mobility, energy, nature, and even climatic 

analyses. Data are stored into geospatial vector data or into raster data.  

Here, a set of SITG vector data in shapefile format are used to derive the urban parameters required for 

simulations. The shapefile format is used to store the geometric location and one or multiple attributes 

of a geographic feature, which can be a point, a line, or a polygon (area). The reference geographic 

feature can be represented by individual buildings (e.g. building height data) or a portion of space 

delimited by predefined boundaries that fit the stored information (e.g. vegetation data). In this study, 

three shapefiles are used to derive the urban parameters. Cad.batiment.hors.sol stores several data about 

each of the 60,000 buildings. Among them, the building height data are used to calculate the urban 

parameters related to building geometry and the building construction year data are used to derive the 

building element thermal characteristics, as explained in more detail in Section 2.5. Ecopot.za includes 

data related to biodiversity and vegetation for each district of the city, and it is used to derive the 

vegetation parameters. Finally, Immissions.no2.moyenne is a map of the yearly average NO2 

concentration within the city and it is used to derive the anthropogenic heat emissions, as explained in 

more detail in Section 2.5. Indeed, NO2 emissions is related to vehicle exhausts, which account for the 

largest part of the anthropogenic heat emissions.  

It is important to note that the reliability and accuracy of data obtained from large open source urban 

datasets are critical, particularly with respect to data frequency and updates. While sources like 

OpenStreetMap provides a comprehensive and accessible source of urban data, the accuracy and 

reliability of the data may not always be sufficient. In the present study, building height data were 

obtained from a high-precision LIDAR survey conducted by swisstopo in 2019, while the other data 

(building construction period, vegetation, and NO2 emissions) were updated less than one year ago. 
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2.4 Data pre-processing: calculating the average urban parameters with tessellation and spatial weights 

The key point for the calculation of the urban parameters is to define the reference area that fits the 

microclimate model used for numerical simulation. The Urban Weather Generator is a district scale 

model able to simulate the urban temperatures within a 200/300 m radius reference area. This value 

aligns with the definition of a district in the Local Climate Zone (LCZ) framework. This framework 

considers a district to be a 300 m radius urban area with similar land use, ground cover, and building 

density. The most straightforward approach to quantify the average urban parameters within a coherent 

reference area is through a squared grid defining a certain number of cells measuring about 500 m each. 

Although the use of a fixed regular grid is a fast technique for data averaging, it represents an arbitrary 

segmentation that is not consistent with the complexity of the urban texture. Furthermore, since the 

UWG has to be fed with  urban parameters of the site, using a square grid may lead to a loss 

of complexity and local specificities. In what follows an alternative approach is proposed to partition 

the city into homogeneous areas with respect to the input parameters needed for simulations. To this 

aim, a polygon-based adaptation of Voronoi tessellation is applied to this study. In particular, a recently 

developed Python toolkit named momepy (Fleischmann, 2017; Fleischmann et al., 2020, 2021) is 

employed to define morphological cells based on building footprints. The morphological tessellation 

delineates the portion of space around each building (tessellation cell). In a first phase, the tessellation 

cell is used to calculate the building area plan density ( ) and the vertical to horizontal ratio ( ) 

of each building through Eq. 1 and 2: 

 

 
 

 

(1) 
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 (2) 

where , , and  are respectively the footprint area, the perimeter, and the height of each 

building and  is the area of the related tessellation cell.  

As briefly introduced in Section 2.3, urban datasets collect GIS data that can be related to different 

geometrical entities based on the type of information described. In particular, building height (as well 

as the derived  and ) and construction period data are related to individual buildings, whereas 

vegetation and NO2 data relate to coherent portions of land. In the first case, where data are related to 

each building, the value assigned to each tessellation cell is the one of the building itself, whereas in the 

second case, the value assigned is obtained by superimposing the vegetation and NO2 maps.  

At this stage, the raw GIS data has undergone processing to compute the required urban parameters 

pertaining to each building/tessellation cell. As a result, a series of values relating to urban geometry, 

vegetation, human activity levels, and building characteristics are associated to each individual element 

(building/tessellation cell). However, measuring individual characters is insufficient to capture the 

impact on microclimate, as it is necessary to calculate the average values of these parameters within a 

defined area that corresponds to the extent of the UWG simulations (200/300 m radius). This is because 

the urban microclimate is altered by a group of buildings rather than by a single isolated building. To 

this aim spatial weights are used to calculate the contextual tendency of each urban parameter. Spatial 

weights are mathematical structures that identify the neighbouring buildings of a given building, i.e. the 

buildings whose tessellation cells are adjacent to the building in question. As depicted in Figure 2, it is 

possible to define n orders of spatial weights depending the number of times adjacency has been verified. 

For instance, if a generic reference building (shown in red in Figure 2) is considered, the 1st order spatial 

weights are the buildings (shown in yellow) whose tessellation cells touch the reference. This can be 

seen nd order spatial weights 

refer to the buildings (shown in green), whose tessellation cells are adjacent to the first order cells. This 

process is repeated for all the buildings and till an nth order level corresponding to the radius (from 

reference building) required by the UWG model.  
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Figure 2: 1st and 2nd order cells (yellow and green respectively) determined through spatial weights with respect 

to a reference building (red). The operation is repeated for all the buildings. 

 

In the present study, 3rd order spatial weights are chosen to calculate the averaged urban parameters so 

that a group of approximately 50 adjacent buildings are included, coherently with the extent of the UWG 

simulation (200-300 m radius). The averaged urban parameters, noted , replace the individual 

urban parameters for the jth building, , and they are representative of the district immediately 

surrounding the considered building. In more detail,  are calculated as in Eq 3: 

 

 
 

(3) 

 

where  is the number of 3rd order neighbouring buildings (i) around the reference jth building, 

and  are the parameter values associated with each of them. In this way, for each building it is 

possible to calculate averaged urban parameters, that are representative of the district composed of this 

building and the surroundings 3rd order neighbours. This approach allows for the input to the UWG 

model to be representative of a district rather than just a single building. Therefore, it results in values 

that are not significantly different for neighbouring buildings, which are likely to be part of the same 
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microclimate. This approach also allows for the consideration of morphological transition zones 

between the high-density city centre and the sparsely built rural areas. 

 

2.5 Inference of human activity levels and building characteristics 

Unlike urban geometry and vegetation parameters, which can be directly derived from GIS 

pre-processing operations on shapefiles (respectively Cad.batiment.hors.sol and Ecopot.za), the 

non-building sensible heat at street level ( ) and building characteristics ( , , , i) 

need to be inferred from other data.  

In order to determine the value of non-building sensible heat ( ) at ground level, a maximum value 

of 20 W/m2 is assumed based on literature studies (Mao et al., 2017). This value represents the highest 

heat emissions in the densest and busiest areas of the Canton according to similar studies. To determine 

the values for the other areas, a linear relationship is established between  and the yearly average 

NO2 3 for the Canton of Geneva), according to the 

Immissions.no2.moyenne shapefile. The reasoning behind this is that NO2 emissions are related to 

vehicle exhausts, which can be considered proportional to the anthropogenic heat emissions. By scaling 

the maximum value with the maximum NO2 concentration, a range of  values is obtained, 

representing the non-building sensible heat for the different areas of the Canton. However, it should be 

noted that in future scenarios where a significant increase in electric vehicle usage is expected, this 

assumption may need to be re-evaluated, taking into account the heat emission rates associated with 

electric vehicles (Mussetti et al., 2022).  

The building characteristics are inferred based on their construction period contained in 

Cad.batiment.hors.sol shapefile. The reference values are obtained from a study by Tardioli et al. 

(Tardioli et al., 2020), which derived the main building characteristics based on building energy 

modelling standards in Switzerland (SIA 380/4, SIA 382/1, SIA 385/2) and on the expertise of the 

Department of Planning, Housing and Energy (DALE). The UWG tool allows for consideration of three 

different construction periods, i.e. before 1980, between 1980 and 2000, and after 2000. In this study, 

the building characteristics from Tardioli at al. is averaged to align with the required construction 
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periods, as reported in Table 2. It should be noted that it would have been technically feasible to include 

building refurbishment in the analysis but this aspect is not considered due to the lack of available data 

and the relatively low refurbishment rate in the Canton of Geneva (Flourentzou, 2019). The other 

building-related parameters which are assumed to be equal across the three construction periods, are 

detailed in Appendix A. 

 

Table 2: Reference values of building characteristics based on different construction periods  

Name Units Before 1980 Between 1980-2000 After 2000 

 [m2K/W] 1.28 0.47 0.21 

 [m2K/W] 1.01 0.38 0.21 

 [W/m2K] 3.22 1.95 1.40 

i [ach] 1.10 0.60 0.45 

 

2.6 Gaussian Mixture Model (GMM) Clustering 

Clustering is a common unsupervised learning method that groups data based on their similarities. In 

this study, clustering is used to group portions of land that are expected to have similar microclimatic 

conditions. This is achieved by normalizing and using as inputs for the clustering algorithm the average 

urban parameters that are considered representative of the thermal response of a group of buildings.  

The choice of the clustering method depends on the type of data, the purpose of the study, and the 

assumptions made about the data distribution. The selected clustering algorithm is the Gaussian Mixture 

Model (GMM) clustering due to its suitability to handle complex and varied data distributions such as 

similar urban applications (Fleischmann et al., 2022; Ma et al., 2021; Quan, 2020; J. Wang & Biljecki, 

2022). Other popular methods for clustering include k-means, hierarchical clustering, and 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN), but they may not always be 

optimal for urban studies with similar purposes, as they have certain limitations. For example, k-means 

assumes that clusters are spherical and equally sized, which may not hold for this type of urban data. 

DBSCAN is a density-based algorithm and could not achieve satisfactory results with multi-density data 
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distributions (Cesario et al., 2020). Hierarchical clustering is computationally expensive for large 

datasets as in this case. GMM, unlike other unsupervised algorithms, assumes that each cluster 

corresponds to a multi-dimensional Gaussian probability distribution, that is often used in statistical 

modeling as it provides a suitable way to represent complex data distributions. GMM uses the 

Expectation-Maximization (EM) approach (Reynolds, 2015) to fit data points to a mixture of K 

multi-dimensional Gaussian distributions (one for each cluster) which are randomly generated starting 

from a set of means and a covariance matrices. The EM algorithm iterates over the Expectation (E-step) 

and the Maximization (M-step) until it converges. Once the total number of clusters (K) is determined, 

each kth k k. The mixing 

coefficients for the kth k, with the constraint that , so that the total 

probability distribution is 1. The probability density function of point x is calculated as in Eq. 4: 

 

 
 

(4) 

 

Where x is the data point being evaluated,  is the Gaussian distribution with mean  and 

covariance k, and  is the mixing coefficient for the kth cluster. Then, the M-step is used to determine 

the maximum value of the log-likelihood function. In this study, the GMM clustering algorithm is 

implemented through a Python script by means of the scikit-learn library (Pedregosa et al., 2011). To 

identify the optimal number of clusters, the Bayesian Information Criterion (BIC) and the Akaike 

Information Criterion (AIC) scores (Schwarz, 2007) are calculated and plotted for a range of potential 

cluster numbers, from 2 to 15, as shown in Figure 3. The selection of 15 clusters as the maximum limit 

is made to ensure that each cluster represented a sufficient number of buildings. Choosing more clusters 

would have added unnecessary complexity without significantly identifying representative clusters. 

Lower BIC and AIC scores indicate a higher quality of clustering performance. In this study, two distinct 

plateaux are identified in the results, at 8 and 10 clusters. Both options are carefully evaluated and it is 
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determined that 10 clusters provide a more fine-grained classification of the urban textures in the Geneva 

Canton, effectively capturing the required diversity. On the other hand, 8 clusters offered a simpler, 

more generalized representation, but failed to distinguish between the old medieval area and the 

high-density city center. 

 

Figure 3: BIC and AIC scores per number of clusters 

 

Once the cluster are formed, the average urban parameters of each cluster (Ucluster) are calculated and 

used as inputs to the UWG simulations. 

2.7 UHII calculation and mapping through the Urban Weather Generator and validation towards real data 

The systematic approach developed in this study allow the classification of urban textures in the Geneva 

Canton. In brief, the first step involves the determination of the building urban parameters (Ubld) for 

each of the 60,000 buildings in the study area using GIS data (Section 2.3). Next, the district urban 

parameters (Udistr) associated with each building are calculated through tessellation and spatial weights 

(Section 2.4). Finally, a Gaussian Mixture Model (GMM) is applied to classify the buildings into 

representative microclimatic clusters, reducing the number of alternatives from 60,000 to 10 (Section 
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2.6). From these clusters, the average cluster urban parameters (Ucluster) are calculated. This three-step 

approach is critical in gaining a comprehensive understanding of the representative microclimate zones 

within the Canton and classifying them effectively.  

The Ucluster parameters are then used as inputs to perform hourly microclimate simulations (10 

simulations, one for each cluster) over the course of a typical meteorological year. The Urban Weather 

Generator (UWG) modifies the rural weather station data file (.epw format) to create a new urban 

weather file with adjusted air temperatures based on the predetermined urban parameters. The source 

rural weather station data is obtained from the reference EnergyPlus weather file for the Canton of 

Geneva (Geneva 067000 IWEC) available at (EnergyPlus, 2023). The latter arises from the TMY 

(Typical Meteorological Year) weather file which was built based on more than ten years of real 

measurements recorded at the Geneva International Airport weather station (MeteoSwiss). The station 

is located on the city boundaries and it is officially recognised by the World Meteorological 

Organization (WMO).  As a result of the UWG simulations, the spatiotemporal variation of the Urban 

Heat Island Intensity (UHII) is analysed and a UHII map of the whole Canton is created. The UHII is 

here defined as the positive difference between the urban and the rural air temperature as in Eq. 4: 

 

  (4) 

In order to verify the accuracy of the spatiotemporal variation of the Urban Heat Island intensity 

(UHII), a partial validation is carried out. Since the Typical Meteorological Year (TMY) file used in 

the simulation is a standard weather file and does not represent actual measurements, real data was 

necessary for validation. As a result, measurements from a rural weather station located in Brenex 

(used as the input rural weather file for UWG simulations) and two urban weather stations in the 

Canton of Geneva (situated in the Battelle and Prairie areas) were used for validation. The urban 

weather stations were monitored by the University of Geneva throughout 2019, and the measured data 

were compared with simulated data obtained from the UWG. It is important to note that this validation 

using real data is only partial, as only two out of the ten total clusters (i.e., Battelle and Prairie areas) 
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could be compared to actual data due to the lack of supplementary reliable urban weather stations. The 

Results section presents the outcomes of this partial validation. 

3. Results 

The following sections present the results of the previously outlined methodology. Section 3.1 presents 

the classification of the Canton of Geneva into representative microclimate zones using the Gaussian 

Mixture Model (GMM) clustering. In Section 3.2 the temperature distribution of the rural and urban 

areas is analysed as a result of the UWG simulations. Section 3.3 focuses on the spatiotemporal variation 

of the Urban Heat Island Intensity (UHII) among the identified urban clusters. This section evaluates 

the microclimatic impact of the different urban clusters in terms of average and maximum monthly 

values (UHIIave,month and UHIImax,month respectively). Section 3.4, explores the temporal variation of the 

UHII through the analysis of average hourly intensity values (UHIIave,hour), highlighting the differences 

between nighttime and daytime. Finally, Section 3.5 is dedicated to the comparison between the UWG 

simulated values and on-site measurements.  

3.1 Clustering results 

As a result of the GMM clustering algorithm the 10 different homogeneous microclimatic zones have 

been identified and a map of them is shown in Figure 4. Each cluster Cj (with j ranging from 1 to 10) is 

represented by a different colour and the map shows that the clusters are well-defined and compact, 

effectively showcasing the morphological variations within the urban environment. White areas in the 

map represent unbuilt areas where the local conditions are thus expected to pertain the rural ones. 
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Figure 4: Ten homogeneous microclimatic clusters of the Geneva Canton identified through GMM clustering. 

Each cluster is represented by a different colour and white parts represent the surrounding rural areas.

Table 3 lists the number of buildings and the average urban parameters for each cluster (Ucluster), which 

served as inputs for the Urban Weather Generator. From a morphological perspective, clusters C2, C4, 

C6, and C7 can be categorized as low-density urban areas, with the highest number of buildings and low 

impact of sensible anthropogenic heat. These areas generally feature well-spaced, low-rise buildings. 

On the other side, C1, C3, C8, and C9 are high-density and poorly vegetated urban areas. Here the 

impact of sensible anthropogenic heat is higher and the building construction period is typically before

the year 1980. Clusters C5 and C10 can be considered intermediate urban typologies. Cluster C5 consists 

of medium/high-rise buildings in a compact urban texture, with a significant share of vegetation, low 
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impact of human activities, and more recent building constructions. On the other hand, cluster C10 

represents recent low-rise building areas that are significantly impacted by nearby human activities.   

 

Table 3: Ucluster related to the ten clusters identified through GMM algorithm 

Cluster 

ID 

N° of 

buildings 

 

[m] 

 

[-] 

VH  

[-] 

 

[-] 

 

[W/m2] 

Construction period [%]1 

Pre1980 
1980-

2000 
Post2000 

C1 2856 17.8 0.31 1.5 0.13 8.3 70 15 15 

C2 21676 7.5 0.11 0.4 0.33 <1.5 47 32 21 

C3 3916 21.6 0.39 2.1 0.06 16.5 77 13 10 

C4 6826 11.3 0.15 0.5 0.27 <1.5 51 23 27 

C5 4195 16.81 0.22 1.0 0.21 <1.5 60 23 17 

C6 3135 7.7 0.08 0.3 0.47 <1.5 58 27 16 

C7 10402 9.5 0.18 0.7 0.29 <1.5 52 29 19 

C8 1827 20.6 0.55 3.2 0.03 20.0 75 10 15 

C9 2767 16.3 0.17 0.8 0.22 4.0 64 20 16 

C10 1234 9.5 0.14 0.5 0.28 11.7 46 30 24 

Notes:  

1. The building construction period is expressed as percentage with respect to the total number 

of buildings within each cluster 

3.2 Comparison of rural and urban temperatures using Probability Density Functions 

In order to compare the simulated urban temperatures from the UWG with rural conditions, the 

probability density functions (PDFs) are calculated for each month of the year. The PDFs provide a 

smoothed representation of data that is useful to estimate and visualize the distribution of temperatures 

evidencing their density (probability of observing a specific temperature value) and distribution among 

rural areas and the ten identified urban clusters. To provide a more concise representation of the results, 
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two representative months are selected to show the temperature distribution in the coldest and hottest 

periods of the year. February is chosen to represent the coldest months (September to April) while 

August represents the hottest months (April to September). Figure 5 shows the PDFs for February (left) 

and August (right). The black line represents the rural conditions, whereas the different colored lines 

(coherent with the map shown in Figure 4) are related to the ten urban clusters. In February, the 

distribution of urban temperatures has the typical bell shape, with values uniformly distributed around 

the maximum value which is between 0°C and 5°C. The distribution of the urban temperatures is similar 

in the shape but the curves are shifted upward and slightly to the right, indicating a higher frequency of 

higher temperatures. It can be also noticed that cluster C8 shows an inflection point between 5°C and 

10°C, indicating higher temperatures compared to the other urban clusters. In August, the temperature 

distribution has a different and asymmetrical shape, with both rural and urban distributions having two 

peaks (of which one has an intensity equal to about half of the highest value). The rural temperature has 

its maximum peak reached between 15°C and 20°C and the lower one between 25°C and 30°C. The 

pattern for all urban temperature distributions is exactly the same, with the two peaks of the rural 

temperatures being inverted in comparison to the urban temperatures. 

 

 

 

Figure 5: Probability density functions of rural and urban temperatures.  
The representative months are February (left) and August (right) 
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3.3 Average and maximum monthly UHI intensity comparison among the identified clusters 

In this section, the Urban Heat Island Intensity (UHII) for each urban cluster is investigated. As a yearly 

average the UHII ranges from a maximum value of 2.2°C for cluster C8 and a minimum value of 1.7°C 

for the low-density areas, namely clusters C2, C4 and C6, evidencing the impact of urban morphological 

features on overheating. To investigate the annual variability of the UHI the average monthly intensity 

(UHIIave,month) is calculated for each cluster and shown in Figure 6. In general, it can be observed that 

the thermal behaviour of the identified urban clusters is clearly distinguishable. The ten clusters may be 

separated into four distinct groups according to their impact on microclimate. The groups, starting from 

the most impactful to the least, are clusters C3 and C8 (group 1), cluster C1 (group 2), clusters C5, C9, 

C10 (group 3), and clusters C2, C4, C6, C7 (group 4). The results align with the expectations based on 

the average urban characteristics of each group: group 1 represents the high-density historical city 

center, group 2 is a transition area near the city center, group 3 includes both medium-rise suburban 

areas (C5 and C9) and low-rise suburban areas with high anthropogenic impact (C10), and group 4 

encompasses the peripheral open low-rise suburbs. The UHIIave,month difference between group 1 and 4 

is considerable, ranging from about 0.4°C between April and September to 0.6°C between October and 

March. Considering all clusters, the minimum UHIIave,month value is of 0.73°C (cluster C6 in December), 

whereas the maximum value is of 3.13°C (cluster C8 in May). The months with the highest UHIIave,month 

are May, July, and August, with an overall overheating of 2.8°C, compared to the 0.9°C observed during 

November, December, and January. The results indicate that the UHII is not necessarily highest in the 

hottest months and that the combination of solar radiation and morphological features such as 

vertical-to-horizontal ratios plays a role. In high-density urban areas (such as C8 and C3), the sun's lower 

angle during shoulder months leads to more heat accumulation on urban vertical surfaces (façades) and 

longer periods of elevated temperatures.  

Finally, it is also important to note that although the UWG has been validated effectively for urban 

districts, its ability to predict the UHII in low-density suburban areas seems here limited. This is evident 

in cluster C6. This cluster is representative of very sparse building, with a very low density, and 

sometimes isolated building. Therefore, it would be expected, for this cluster to have temperatures closer 
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to the rural ones. However, the UWG predicts a relatively significant UHII in these areas (Figure 5).

Confrontation with experimental measurements would be necessary to fix this issue. But in case it would 

be likely linked to the assumption of the UWG model that the district being analyzed is surrounded by 

other urban districts rather than rural areas, potentially leading to an overestimation of overheating in 

boundary and suburban areas.

Figure 6: Average monthly urban heat island intensity among the urban clusters

The spatial variability of the UHIIave,month can be further elaborated through GIS tools to create a UHI 

map of the whole area visualizing the most impacted clusters. As an example, Figure 7 shows the 

UHIIave,month in August within the Geneva Canton. Consistent with previous numerical findings, the 

high-density urban areas (C8 and C3) closest to the lake experience the greatest UHII. While it is 

acknowledged that the absence of lake modeling represents a limitation of the UWG tool, it should be 

noted that the UHI phenomenon is most relevant in conditions of high irradiance and low wind speed. 
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To address this, GEO-NET, a bureau specializing in climatic analyses, conducted a detailed analysis of 

the current climate in the Canton of Geneva, identifying areas most affected by urban overheating 

(Gmbh, 2020). GEO-NET employed a mesoscale model, FITNAH 3D (Gross, 1992), to simulate the 

impact of wind and temperature on the entire Canton, generating UHII estimates for a single 

representative summer day under conditions of high irradiance and low wind speed. Although it is not 

possible to compare results directly due to the different temporal scales of the two studies (a single day 

compared to one year), detailed modeling results including are comparable to those obtained in the 

present study. In particular, they found that, despite the presence of the lake, the same high-density urban 

areas are the most impacted by overheating and that the air exchange is very limited due to the 

obstruction effect of buildings.  

  

Figure 7: Spatial variability of the monthly average UHII in August within the Canton of Geneva 

 

The peak hourly values of urban heat island intensity (UHIImax,month) for each month among the urban 

clusters are shown in Figure 8. During the colder months (October to February), the hourly peaks range 
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from 5.1°C in clusters C2 and C6 to 8.6°C in cluster C8. However, during the warmer months (March 

to September), the calculated values are much higher, with a minimum of 7.9°C in cluster C6 and a 

maximum of 11.5°C in cluster C8. In general, the differences among the clusters are less evident 

compared to the average values, except for the two high density clusters C3 and C8, whose maximum 

values in some months are considerably higher. This is an effect of the non-simultaneous between 

nocturnal and diurnal conditions in rural and urban areas. At sunrise, when incoming solar radiation 

starts warming the urban surfaces, high-density clusters experience a faster warming process due to their 

significantly higher thermal mass, resulting in a larger UHIImax,month compared to low-density areas. This 

phenomenon is explained in more detail in Section 3.4.

Figure 8: Maximum monthly urban heat island intensity among the urban clusters

3.4 Average daily variation of the UHI intensity among the identified urban clusters

This section is dedicated to the analysis of the diurnal cycle of the UHII. As shown in Figure 9 the 

average hourly urban heat island intensity (UHIIave,hour) among the urban clusters is higher during 
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nighttime, reaching a minimum between 11:00 h and 14:00 h, with values lower than 0.5°C. During the 

late afternoon, both the UHIIave,hour and the differences among the urban clusters increase, reaching 

values ranging from 2.5°C to 3.5°C, depending on the urban morphology. As observed in the previous 

Section 3.3, the high-density urban clusters (C3 and C8) exhibit the highest UHII peak values which are 

generally observed at sunrise (around 6:00 h). As previously anticipated, at this time, the atmosphere is 

transitioning between nocturnal and diurnal conditions, and the incoming solar radiation is beginning to 

warm the urban surfaces (Oke, 1982). Observing the UWG simulation process (which is based on an 

hourly timestep) it can be noticed that generally when sun rises the rural temperature is still at its 

minimum value (nighttime conditions), whereas the high-density urban clusters have already started the 

warming process. For the urban clusters with lower density this warming process is generally delayed 

by 1 hour, when the rural temperatures have also started to rise, resulting in a considerably lower 

UHIImax,month compared to high density clusters. These results evidence that the UWG predictions are 

strongly influenced by the input geometric parameters (in particular the vertical-to-horizontal ratio), 

which has been also highlighted in previous literature studies where the same behaviour has been 

observed (Alchapar et al., 2019; Salvati, Coch Roura, et al., 2017; Salvati, Coch, et al., 2017).  
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Figure 9: Average hourly urban heat island intensity among the urban clusters

The boxplots of the UHII during daytime and nighttime are plotted for each cluster and shown in Figure 

10, left for daytime and right for nighttime. Each whisker represents the interquartile range (the 25th

percentile for the lower quarter of the values, and the 75th for the upper quarter) of the yearly UHII data, 

with the median value represented by the line inside the box. Outliers are represented as individual 

points outside the whiskers. Daytime and nighttime periods have been determined based on solar 

radiation. It can be observed, as expected, that the median values of UHII during daytime is about 0.5°C

for all the clusters, whereas the nighttime values range between 1.5°C and 2.2°C depending on urban 

morphology. It can be also observed that during nighttime the UHII experience a higher variability and 

that the differences between the clusters are more evident compared to daytime. Peak values reaching 

up to 10°C are also more likely to be observed during the night than during the day.
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3.5 Comparison between predicted and measured average UHII monthly values  

This section includes the results of two additional simulations using the Urban Weather Generator 

(UWG) to validate the developed workflow and the simulated urban heat island intensity (UHII) values 

with metered data. Real temperature measurements from a rural site (Bernex, used as input weather file 

for UWG simulations) and two urban weather stations (Battelle and Prairie, used for comparison). The 

meteorological data from Bernex were recorded and provided by AgroMétéo (Confederation suisse, 

2022), while the data from Battelle and Prairie were monitored by the University of Geneva during the 

same year (University of Geneva, 2022). The recorded UHII of 2019 (UHIIreal) is calculated for both 

Battelle and Prairie sites as the positive temperature difference with the rural site of Brenex. UHIIreal is 

then compared with the UWG simulated values (UHIIUWG) from two additional UWG simulations 

performed using Bernex data as the source rural weather file and the urban parameters of Battelle and 

Prairie areas derived from clustering. Based on the clustering results (Section 3.1), the Prairie weather 

station is located within the high-density cluster C3, whereas Battelle falls into the suburban cluster C4. 

Thus, the urban parameters used as an input to the UWG simulations are the ones of the related clusters 

(C3 and C4). The results are shown in Figure 11 in terms of average monthly values (markers) and 

related standard deviation (bars). Two different colors are used for Prairie and Battelle, and the different 

Figure 10: Boxplots of UHII during daytime (left) and nighttime (right) 
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markers identify the simulated and the metered data. It can be observed that, overall, the simulated 

values follow the same yearly trend as the measured values while overestimating them in some cases. It 

should be noted that the standard deviation of the simulated data is generally larger than that of the 

measured data. With the exception of the months of February and June, where the simulated values are 

about 0.6°C higher than the measured ones, the average absolute difference in all other cases is around 

0.15°C. The substantial discrepancy in the results of February and June could be due to the presence of 

various sources of error and uncertainty which may have occurred in real-world conditions, in contrast 

to simulated values which are based on model assumptions and parameterizations. 

 

Figure 11: Average monthly UHII (markers) and standard deviation (bars) arising from UWG simulations 

(UHII_UWG) and from real measurements (UHII_real) for two selected urban weather stations 

 

A comparison of the average hourly values and their related standard deviations is also conducted and 

shown in Figure 12. The results indicate that the UWG tool tends to overestimate the UHII during 

nighttime and underestimate it during daytime, which may be attributed to various factors such as model 

assumptions and input parameter quality. While improving the model is not within the scope of this 
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article, these findings provide valuable insight for future improvements and refinement of the model 

accuracy, and highlight its potential limitations. 

 

Figure 12: Average hourly UHII (markers) and standard deviation (bars) arising from UWG simulations 

(UHII_UWG) and from real measurements (UHII_real) for two selected urban weather stations 

4. Discussion 

This study proposes a data-driven and machine learning-based approach to perform computationally 

efficient year-long Urban Heat Island (UHI) analyses at the city scale. The developed workflow aims to 

derive meaningful urban parameters and to identify representative microclimatic clusters within a city. 

The urban parameters are quantitatively obtained from detailed urban datasets, GIS pre-processing 

operations, and Gaussian Mixture Models (GMM) for clustering. The results are then used as inputs to 

the Urban Weather Generator (UWG), a well-established microclimate parametric model, to simulate 

urban weather conditions from rural weather station data. The methodology is applied to the Canton of 

Geneva and results in the identification of ten representative microclimatic clusters.  
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The simulated urban heat island intensity (UHII) has a considerable variability over the year and among 

the urban clusters, with a range of values from 0.7°C to 3.1°C and differences up to 0.6°C depending on 

the urban morphology. The results also show that the UHII monthly peak values range from 5.1°C up 

to 11.5°C. The daily variation of the UHII is also found to be much higher during nighttime (about 

2.5°C) than during daytime (about 0.5°C), consistent with similar literature studies. Finally, the accuracy 

of the simulated values is compared towards real measured data of two urban weather stations during 

2019. In general, the accuracy of the simulated values is effective in capturing the average monthly UHI 

intensity and the differences between the two reference urban weather stations. However, for two months 

(February and June), the simulated values are significantly higher (about 0.6°C) than the measured ones, 

compared to an average difference of only 0.15°C for the other months. The model also slightly 

overestimates nighttime values while underestimating them during daytime. 

5. Limitations and future perspectives 

The proposed approach has some limitations that should be noted. Firstly, the approach is data-driven, 

and reproducing it in other cities is possible provided that a detailed urban dataset like the one used in 

this study is available. Secondly, as discussed in Section 2.2, the UWG model presents some 

simplifications mainly related to the modelling of advection, vegetation, and the presence of large water 

bodies. These simplifications may prevent from capturing site-specific phenomena and seems to 

overestimate the UHII in peri-urban areas. Nevertheless, the proposed workflow enables the simulation 

of one year on a large scale, making it suitable for city-wide analyses. Precise temperature time series 

in specific areas of the city would require more accurate simulations, not a parametric model.  

However, despite these limitations, the proposed approach has several strengths. It offers a 

computationally efficient way to perform city-scale UHI analyses, providing valuable insights for urban 

planners to accurately plan UHI mitigation strategies, identify areas at the greatest risk of overheating, 

and plan energy-related interventions.

Future improvements to the Urban Weather Generator (UWG) model offer promising prospects for 

achieving even higher accuracy in simulating urban microclimates. Recent studies, such as the Vertical 
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Urban Weather Generator (VUWG) (Moradi et al., 2021) and the improvements introduced by Xu et al. 

(Xu et al., 2022), are refining the capabilities of the UWG. The VUWG resolves vertical profiles of 

climate variables, including temperature, wind, specific humidity, and turbulence kinetic energy, in 

relation to urban design parameters. The improvements by Xu et al. enhance the radiation, vegetation, 

and convective heat transfer calculation processes, better matching the physical representation of urban 

districts.  

In the future, the integration of Internet of Things (IoT) sensors for weather data, crowdsourcing, satellite 

data, and other data sources could potentially enhance the accuracy of the proposed approach. These 

future prospects hold the potential for more reliable data and more precise modeling of urban 

microclimates. 
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Appendix A 

In this Appendix the general simulation settings for the Urban Weather Generator tool simulations are 

reported. 

 

Meteorological and site parameters 

Location [-] Geneva (Switzerland) 

Latitude [°] 46.20 

Longitude [°] 6.14 

Daytime boundary layer height1 [m] 1000 

Nighttime boundary layer height1 [m] 50 

Inversion height1 [m] 150 

Temperature measurement at reference site1 [m] 2 

Air velocity measurements height1 [m] 10 

Circulation velocity coefficient1 [-] 1.2 

Exchange velocity coefficient1 [-] 1.0 

Heat flux threshold for daytime conditions2 [W/m2] 150 

Heat flux threshold for nighttime conditions2 [W/m2] 20 

Latent fraction of trees2 [-] 0.6 

Latent fraction of grass2 [-] 0.4 

Albedo of vegetation [-] 0.25 

Begin month for vegetation participation [-] April 

End month for vegetation participation [-] October 

Urban parameters 

City diameter3 [m] 7500 

Fraction of HVAC waste heat released to urban canyon [-] 1 

Road pavement conductivity  [W/mK] 0.75 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



 
 

50 
 

Road pavement volumetric heat capacity [J/m3K] 1600000 

Road pavement albedo [-] 0.05 

Roof albedo [-] 0.2 

Wall albedo  [-] 0.2 

Glazing ratio of buildings [-] 0.25 

Solar Heat Gain Coefficient from windows [-] 0.5 

Building HVAC system and internal loads 

Occupancy4 [m2/pers] 30 

Sensible heat per occupant1,2 [W] 100 

Latent heat fraction from occupant1,2 [-] 0.3 

Radiant heat fraction from occupant1,2 [-] 0.2 

Lighting intensity4 [W/m2] 3.5 

Radiant heat fraction from light1,2 [-] 0.7 

Electric equipment intensity4 [W/m2] 15 

Radiant heat fraction from equipment1,2 [-] 0.5 

Heating set point4 [°C] 20 

Notes: 

1. (Bueno et al., 2012) 

2. (Bueno et al., 2014) 

3. Measured with GIS tools 

4. (Tardioli et al., 2020) 
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Figure 1: Schematic representation of the developed methodological steps applied to the 
Canton of Geneva.  

 

 
Figure 2: 1st and 2nd order cells (yellow and green respectively) determined through spatial 

weights with respect to a reference building (red). The operation is repeated for all the 
buildings. 



 
 

 
Figure 3: BIC and AIC scores per number of clusters 

 
 
 
 
 



Figure 4: Ten homogeneous microclimatic clusters of the Geneva Canton identified through 
GMM clustering. Each cluster is represented by a different colour and white parts represent 

the surrounding rural areas.



Figure 6: Average monthly urban heat island intensity among the urban clusters

Figure 5: Probability density functions of rural and urban temperatures. 

The representative months are February (left) and August (right)



Figure 7: Spatial variability of the monthly average UHII in August within the Canton of 
Geneva

Figure 8: Maximum monthly urban heat island intensity among the urban clusters



Figure 9: Average hourly urban heat island intensity among the urban clusters

Figure 10: Boxplots of UHII during daytime (left) and nighttime (right)



 
 

 

 

Figure 11: Average monthly UHII (markers) and standard deviation (bars) arising from 
UWG simulations (UHII_UWG) and from real measurements (UHII_real) for two selected 

urban weather stations 
 



 
 

 
Figure 12: Average hourly UHII (markers) and standard deviation (bars) arising from UWG 
simulations (UHII_UWG) and from real measurements (UHII_real) for two selected urban 

weather stations 
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Table 1: UWG main input parameters for UHI simulation 

Urban geometry 

 [m] Average height of buildings 

 [-] Urban area building plan density: ratio between built and un-built area 

VH [-] Vertical to horizontal ratio: ratio between façade area and plan area of the site 

Vegetation1 

 [-] Grass coverage: fraction of the urban ground covered in grass/shrubs 

 [-] Tree coverage: fraction of the urban ground covered in trees 

Human activity levels 

 [W/m2] Non-building sensible heat at street level: heat from cars, pedestrians, street 

cooking, etc. 

Building characteristics2 

 [m2K/W] Thermal resistance of walls 

 [m2K/W] Thermal resistance of roof 

 [W/m2K] Thermal transmittance of windows 

i [ach] Building infiltration rate 

Notes: 

1. Since in the reference vegetation map the vegetation coverage is not differentiated between grass 

and trees, the vegetation coverage value is split in half between  and  resulting in 

=  

2. Building characteristics are derived from the building construction period 
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Table 2: Reference values of building characteristics based on different construction periods  

Name Units Before 1980 Between 1980-2000 After 2000 

 [m2K/W] 1.28 0.47 0.21 

 [m2K/W] 1.01 0.38 0.21 

 [W/m2K] 3.22 1.95 1.40 

i [ach] 1.10 0.60 0.45 

 

Table 3: Ucluster related to the ten clusters identified through GMM algorithm 

Cluster 

ID 

N° of 

buildings 

 

[m] 

 

[-] 

VH  

[-] 

 

[-] 

 

[W/m2] 

Construction period [%]1 

Pre1980 
1980-

2000 
Post2000 

C1 2856 17.8 0.31 1.5 0.13 8.3 70 15 15 

C2 21676 7.5 0.11 0.4 0.33 <1.5 47 32 21 

C3 3916 21.6 0.39 2.1 0.06 16.5 77 13 10 

C4 6826 11.3 0.15 0.5 0.27 <1.5 51 23 27 

C5 4195 16.81 0.22 1.0 0.21 <1.5 60 23 17 

C6 3135 7.7 0.08 0.3 0.47 <1.5 58 27 16 

C7 10402 9.5 0.18 0.7 0.29 <1.5 52 29 19 

C8 1827 20.6 0.55 3.2 0.03 20.0 75 10 15 

C9 2767 16.3 0.17 0.8 0.22 4.0 64 20 16 

C10 1234 9.5 0.14 0.5 0.28 11.7 46 30 24 

Notes:  

1. The building construction period is expressed as percentage with respect to the total number 

of buildings within each cluster 
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Appendix A 

 

Meteorological and site parameters 

Location [-] Geneva (Switzerland) 

Latitude [°] 46.20 

Longitude [°] 6.14 

Daytime boundary layer height1 [m] 1000 

Nighttime boundary layer height1 [m] 50 

Inversion height1 [m] 150 

Temperature measurement at reference site1 [m] 2 

Air velocity measurements height1 [m] 10 

Circulation velocity coefficient1 [-] 1.2 

Exchange velocity coefficient1 [-] 1.0 

Heat flux threshold for daytime conditions2 [W/m2] 150 

Heat flux threshold for nighttime conditions2 [W/m2] 20 

Latent fraction of trees2 [-] 0.6 

Latent fraction of grass2 [-] 0.4 

Albedo of vegetation [-] 0.25 

Begin month for vegetation participation [-] April 

End month for vegetation participation [-] October 

Urban parameters 

City diameter3 [m] 7500 

Fraction of HVAC waste heat released to urban canyon [-] 1 

Road pavement conductivity  [W/mK] 0.75 

Road pavement volumetric heat capacity [J/m3K] 1600000 

Road pavement albedo [-] 0.05 
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Roof albedo [-] 0.2 

Wall albedo  [-] 0.2 

Glazing ratio of buildings [-] 0.25 

Solar Heat Gain Coefficient from windows [-] 0.5 

Building HVAC system and internal loads 

Occupancy4 [m2/pers] 30 

Sensible heat per occupant1,2 [W] 100 

Latent heat fraction from occupant1,2 [-] 0.3 

Radiant heat fraction from occupant1,2 [-] 0.2 

Lighting intensity4 [W/m2] 3.5 

Radiant heat fraction from light1,2 [-] 0.7 

Electric equipment intensity4 [W/m2] 15 

Radiant heat fraction from equipment1,2 [-] 0.5 

Heating set point4 [°C] 20 

Notes: 

1. (Bueno et al., 2012) 

2. (Bueno et al., 2014) 

3. Measured with GIS tools 

4. (Tardioli et al., 2020) 

 

 

 


