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Introduction

The urban heat island (UHI) phenomenon, i.e. the local increase of the urban air temperature compared to the rural surrounding areas, is a major issue for global climate disruption [START_REF] Palme | Urban Microclimate Modelling for Comfort and Energy Studies[END_REF]. In addition to the global temperature rise of about 1.5°C and the ever more frequent climate anomalies such as heatwaves (IEA, 2021;IPCC, 2022;[START_REF] Pielke | Plausible 2005-2050 emissions scenarios project between 2 °c and 3 °c of warming by 2100[END_REF][START_REF] Pyrgou | On the effect of summer heatwaves and urban overheating on building thermal-energy performance in central Italy[END_REF], urbanization is responsible for an air temperature increase that may reach up to 12°C at peak in cities [START_REF] Oke | The energetic basis of the urban heat island[END_REF]. This condition strongly increases the vulnerability of modern cities [START_REF] Grimmond | Climate and more sustainable cities: Climate information for improved planning and management of cities (Producers/Capabilities Perspective)[END_REF][START_REF] Rajagopal | A review of recent developments in the impact of environmental measures on urban heat island[END_REF] especially in Europe, which is particularly affected by global warming. Urban overheating negatively impact building energy consumption (He, 2019;[START_REF] Hwang | Evaluation and mapping of building overheating risk and air conditioning use due to the urban heat island effect[END_REF], public health [START_REF] Tong | Urban heat: An increasing threat to global health[END_REF], air pollution (Y. [START_REF] Wang | The relationship between urban heat island and air pollutants and them with influencing factors in the Yangtze River Delta, China[END_REF], thermal comfort [START_REF] Alvarez | Urban heat islands and thermal comfort: A case study of zorrotzaurre island in Bilbao[END_REF], ecosystems [START_REF] Dissanayake | Ecological Evaluation of Urban Heat Island Effect in Colombo City, Sri Lanka Based on Landsat 8 Satellite Data[END_REF], economics and productivity [START_REF] Memme | Maximum energy yield of PV surfaces in France and Italy from climate based equations for optimum tilt at different azimuth angles[END_REF][START_REF] Raalte | Economic Assessment of the Urban Heat Island Effect[END_REF]. In the literature, numerous field studies have been presented for more than 450 worldwide major cities including London, U.K. [START_REF] Kolokotroni | on current and future energy consumption in office buildings[END_REF], Barcelona, Spain [START_REF] Salvati | Assessing the urban heat island and its energy impact on residential buildings in Mediterranean climate: Barcelona case study[END_REF], Basel, Switzerland [START_REF] Parlow | The urban heat island of Basel -Seen from different perspectives[END_REF], Sydney, Australia [START_REF] Santamouris | On the energy impact of urban heat island in Sydney: Climate and energy potential of mitigation technologies[END_REF], Singapore (Bueno et al., 2015a), Wuhan, China [START_REF] Huang | Quantifying the seasonal contribution of coupling urban land use types on Urban Heat Island using Land Contribution Index: A case study in Wuhan, China[END_REF], Los Angeles, United States [START_REF] Vahmani | Impact of remotely sensed albedo and vegetation fraction on simulation of urban climate in WRF-urban canopy model: A case study of the urban heat island in Los Angeles[END_REF], Toronto, Canada (Y. [START_REF] Wang | Comparing the effects of Urban Heat Island Mitigation Strategies for Toronto, Canada[END_REF].

Despite the evidence of this phenomenon, most research related to building energy performance evaluation still fails to integrate UHI into energy demand and thermal comfort analyses [START_REF] Lauzet | How building energy models take the local climate into account in an urban context A review[END_REF][START_REF] Mirzaei | Approaches to study Urban Heat Island -Abilities and limitations[END_REF][START_REF] Santamouris | On the energy impact of urban heat island and global warming on buildings[END_REF]. The majority of building energy-related studies exploit non-local weather data from reference weather station measurements located outside the cities (e.g. airports). As demonstrated in previous research by the Authors [START_REF] Boccalatte | Microclimate and urban morphology effects on building energy demand in different European cities[END_REF] and other studies (X. [START_REF] Li | Urban heat island impacts on building energy consumption: A review of approaches and findings[END_REF][START_REF] Lima | Estimating the impact of urban densification on high-rise office building cooling loads in a hot and humid climate[END_REF][START_REF] Palme | From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect[END_REF]Salvati, Coch, et al., 2017), this affects to a great extent the building energy-use predictions. The UHI strongly modifies the energy demand related to building HVAC systems and buildings, in turn, negatively impact urban air temperature and thermal comfort through heat losses. In this sense, microclimate models are becoming essential for both building design and urban planning to adequately consider local climate conditions and plan mitigation strategies.

comprehensive understanding of the UHI effect, it is thus essential to combine sensors with modeling approaches, such as street scale, local scale, and city scale microclimate models.

1.2 Modelling the Urban Heat Island (UHI) at different spatial scales

In recent decades, several modeling approaches have been proposed to investigate the Urban Heat Island (UHI) phenomenon at different spatial scales, ranging from the street scale to the city scale. However, a primary research gap still exists, which relates to the differences between microscale (street and local scale) and macroscale (city scale) models [START_REF] Lauzet | How building energy models take the local climate into account in an urban context A review[END_REF]Masson et al., 2020). Microscale models, while providing higher resolution and accuracy, are more computationally expensive and often limited to small areas (a street or a district), while macroscale models, although more computationally efficient, lack the necessary spatial resolution to capture the fine-grained features of urban environments. To overcome this gap, the main objective of this study is to implement a data-driven approach based on local scale parametric models that can bridge the gap between spatial resolution and computational efficiency. Reviews related to urban climate simulation and modeling tools illustrate the main differences across the urban scales and can be used as a reference to identify the most appropriate modeling approach for a given research question [START_REF] Johari | Urban building energy modeling: State of the art and future prospects[END_REF][START_REF] Lauzet | How building energy models take the local climate into account in an urban context A review[END_REF][START_REF] Lobaccaro | Applications of models and tools for mesoscale and microscale thermal analysis in mid-latitude climate regions A review[END_REF][START_REF] Lun | Progress in Numerical Modelling for Urban Thermal Environment Studies[END_REF][START_REF] Mutani | Building energy modeling at neighborhood scale[END_REF][START_REF] Sola | Multi-domain urban-scale energy modelling tools: A review[END_REF][START_REF] Tyagi | Monitoring , Forecast and Impacts[END_REF].

City scale models

Regarding city scale models, several limitations have been identified and discussed in the literature [START_REF] Mirzaei | Recent challenges in modeling of urban heat island[END_REF]. The simulation domain is often up to several kilometers, encompassing an entire city and its surroundings. Urban morphological features can be estimated through approximated values of roughness length or parametrized using Urban Canopy Models (UCM), such as the popular Town Energy Balance (TEB) model [START_REF] Afshari | Improving the accuracy of simplified urban canopy models for arid regions using site-specific prior information[END_REF][START_REF] Lemonsu | Inclusion of vegetation in the Town Energy Balance model for modelling urban green areas[END_REF][START_REF] Masson | A physically-based scheme for the urban energy budget in atmospheric models[END_REF].

However, mesoscale models, such as MESO-NH (Lac et al., 2018) and the Weather Research and Forecast model (WRF) [START_REF] Grimmond | and applications to urban environmental problems The integrated WRF / urban modelling[END_REF], have inherent limitations in terms of resolution making it challenging to observe local phenomena and capture differences among various urban morphologies.

Street and local scale models

Street scale models only cover the volume of air within the urban canyon, including local phenomena and detailed modeling of 3D geometry, heat transfers, and airflow regimes (Jänicke et al., 2021). Local scale models can be categorized into two types: detailed models and parametric models. Detailed models, such as Envi-met (ENVI-met, 2021), SOLENE-microclimat [START_REF] Morille | SOLENE-microclimate: A tool to evaluate envelopes efficiency on energy consumption at district scale[END_REF], take into consideration both fluid mechanics equations and 3D radiation equations, while SOLWEIG/UMEP [START_REF] Lindberg | Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services[END_REF] solves the detailed 3D radiations equations in real geometries. These models provide the most accurate representation of the urban environment, as they rely on a detailed representation of the area. However, due to the complex calculations involved, particularly those related to fluid mechanics (as in the case of ENVI-met or SOLENE-microclimat), performing year-long simulations over large spatial areas can be challenging.

In contrast, parametric models, including the Canyon Air Temperature (CAT) model [START_REF] Erell | Simulating air temperature in an urban street canyon in all weather conditions using measured data at a reference meteorological station[END_REF] and the Urban Weather Generator (UWG) [START_REF] Bueno | Development and evaluation of a building energy model integrated in the TEB scheme[END_REF][START_REF] Bueno | Computationally efficient prediction of canopy level urban air temperature at the neighbourhood scale[END_REF](Bueno et al., , 2015a;;[START_REF] Bueno | The urban weather generator[END_REF][START_REF] Bueno | The urban weather generator[END_REF] define urban morphological features through a set of urban parameters that characterize the thermal properties of the district, making them computationally efficient even for year-long simulations. Despite their computational efficiency, they are typically limited to simulating a single district and cannot be directly applied at the city scale comprising multiple districts. This can be overcome if the whole studied area can be represented by a limited set of representative districts on which these parametric models can be applied.

Definition of representative districts for microclimate studies

The identification of representative urban morphologies within a city can be achieved through different approaches. Some studies rely on expert knowledge or on the administrative boundaries to identify homogeneous district morphologies within a city and calculate the related urban parameters for simulation purposes (Litardo et al., 2020;[START_REF] Salvati | Built form, urban climate and building energy modelling: case-studies in Rome and Antofagasta[END_REF] [START_REF] Oke | The energetic basis of the urban heat island[END_REF][START_REF] Stewart | Local climate zones for urban temperature studies[END_REF]. The LCZ is used to categorize the landscape into 17 representative local climate zone typologies that are assumed to have a unique air temperature regime under similar atmospheric conditions [START_REF] Stewart | Local climate zones for urban temperature studies[END_REF]. A typical range of urban parameter values that describe the urban shape, the characteristics of the vegetation, the human activity levels, the land cover is associated with each LCZ. If some data are lacking, the scheme also allows deriving the values of unknown parameters from look-up tables for the parameters of the other categories (e.g., for mean building height and density, aspect ratio, sky view factor, anthropogenic heat emissions, etc.). LCZs have been extensively applied to city-scale UHI studies based on both numerical simulations and field measurements [START_REF] Brousse | Evidence of horizontal urban heat advection in London using six years of data from a citizen 083[END_REF][START_REF] Dimitrov | An application of the LCZ approach in surface urban heat island mapping in Sofia, Bulgaria[END_REF][START_REF] Fenner | Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001-2010[END_REF]Hashemi, 2020;[START_REF] Houet | Mapping urban climate zones and quantifying climate behaviors -An application on Toulouse urban area (France)[END_REF][START_REF] Huang | Quantifying the seasonal contribution of coupling urban land use types on Urban Heat Island using Land Contribution Index: A case study in Wuhan, China[END_REF] . Despite the advantages of this qualitative approach, as recently highlighted by [START_REF] Lipson | A transformation in citydescriptive input data for urban climate models[END_REF], the growing availability of high resolution urban datasets [START_REF] Biljecki | Open government geospatial data on buildings for planning sustainable and resilient cities[END_REF][START_REF] Milojevic-Dupont | EUBUCCO v0.1: European building stock characteristics in a common and open database for 200+ million individual buildings[END_REF] and unsupervised machine learning classification techniques enables a transition to quantitative approaches [START_REF] Boccalatte | Evaluating the impact of urban morphology on rooftop solar radiation: A new city-scale approach based on Geneva GIS data[END_REF].

This research aims to develop a data-driven approach that utilizes clustering techniques to quantitatively identify representative urban morphologies based on microclimate-related parameters. The proposed approach aims to bypass the subjectivity of expert knowledge as well as the abstraction of LCZs.

Unsupervised learning methods have been applied to a few urban studies Wang & Biljecki, 2022), for example to identify representative building groups and predict the energy use at the city scale (Tardioli et al., 2018), to derive a detailed morphological classification of the urban form (Fleischmann et al., 2021[START_REF] Fleischmann | Methodological foundation of a numerical taxonomy of urban form[END_REF], to identify typo-morphologies and perform thermal comfort simulations with Envi-met [START_REF] Maiullari | A quantitative morphological method for mapping local climate types[END_REF].

However, the use of unsupervised learning for investigating Urban Heat Island (UHI) at the city scale remains relatively unexplored. While previous studies have utilized clustering techniques to investigate the Surface Urban Heat Island (SUHI) at the city scale [START_REF] Kwak | Discerning the success of sustainable planning: A comparative analysis of urban heat island dynamics in Korean new towns[END_REF], the coupling of such approaches with parametric models for large scale UHI mapping is still unexplored, making it the original contribution of this study. Specifically, this research aims at identifying representative microclimate zones within the Canton of Geneva (whose area is approximately 300 km 2 ) through GIS data and clustering. Subsequently, the microclimate-related parameters of each zone are fed into the Urban Weather Generator (UWG) tool [START_REF] Bueno | Computationally efficient prediction of canopy level urban air temperature at the neighbourhood scale[END_REF](Bueno et al., , 2015a;;[START_REF] Bueno | The urban weather generator[END_REF][START_REF] Bueno | The urban weather generator[END_REF], a parametric microclimate model that allows predicting the urban air temperatures at the district level based on urban parameters. The resulting workflow enables the simulation of the spatiotemporal variation of the UHI at the city scale with comparable accuracy to a local scale model but with much lower computational time. The simulated results have been partially validated against experimental measurements from two urban weather stations located in the city of Geneva yielding a satisfactory agreement.

Data sources, models and methods

As briefly introduced in Section 1, this study aims to evaluate and map the Urban Heat Island intensity (UHII) at the city scale. Given the vast extent, using a parametric model is the most effective way to achieve the objective due to computational limitations that hinder the use of detailed 3D modeling. The starting point of the presented methodology is the determination of the urban parameters required for numerical simulations. These parameters, primarily related to urban shape, vegetation, human activity levels, and building characteristics, serve as inputs for the simulations. In this study, the Urban Weather Generator tool is selected because of its validated accuracy and fast computational time (Section 2.1 and Section 2.2). Once the model is chosen, the following step is GIS data collection and pre-processing. At this stage, the urban parameters required for the selected model (in this case, the UWG tool) are extracted from GIS urban datasets (Section 2.3). Since GIS data can be either at the level of individual buildings or at a bigger scale (e.g. district), a certain number of pre-processing operations are performed to uniform data and obtain the averaged values of the urban parameters within a spatial area that is coherent with the selected simulation tool. This step is fundamental since a single building do not determine the urban microclimate, but a group of them does. To this end, the morphological tessellation technique is applied (Section 2.4) avoiding rough data averaging by means of a fixed grid. Then, starting from the averaged parameter values, an advanced clustering algorithm based on Gaussian Mixture Models (GMM) is employed to classify urban areas with similar characteristics, under the assumption of a similar impact on the microclimate (Section 2.5). Finally, the UWG tool is used to numerically simulate the intensity of the UHI phenomenon in each urban zone, resulting in a map of the entire city that accounts for the local urban characteristics.

The developed workflow is schematically represented in Figure 1. The total area under consideration in this study corresponds to the administrative boundaries of the Canton of Geneva, which are depicted in the figure (boxes 4 and 5) by the black line. The UHI intensity (UHII) is calculated through the Urban Weather Generator (UWG) model [START_REF] Bueno | Development and evaluation of a building energy model integrated in the TEB scheme[END_REF][START_REF] Bueno | Computationally efficient prediction of canopy level urban air temperature at the neighbourhood scale[END_REF][START_REF] Bueno | Urban weather generator: a method to predict neighborhood-specific urban temperatures for use in building energy simulations[END_REF][START_REF] Bueno | The urban weather generator[END_REF]. The UWG is a parametric microclimate model that uses the principles of energy transfer and heat balance equations within the urban canopy to account for various physical processes such as solar radiation, thermal radiation, conduction, and convection. It is built upon the well-established Town Energy Balance (TEB) scheme [START_REF] Masson | A physically-based scheme for the urban energy budget in atmospheric models[END_REF], which is a two-dimensional representation of an urban canyon consisting of three surfaces: a wall, a road, and a roof. The TEB scheme calculates the climate conditions, drag force, and heat fluxes of a district composed of identical urban canyons. To improve the representation of the interactions between buildings and the urban climate, the UWG integrates the original TEB scheme with a detailed Building Energy Model (BEM) derived from EnergyPlus algorithms (EnergyPlus, 2023). The UWG comprises four calculation components, including the Rural Station Model (RSM), Vertical Diffusion Model (VDM), Urban Boundary-layer Model (UBL), and Urban Canopy and Building Energy Model (UC-BEM), which are fully described in [START_REF] Bueno | Urban weather generator: a method to predict neighborhood-specific urban temperatures for use in building energy simulations[END_REF]. The UWG structure allows to predict urban canopy air temperature based on rural weather data and a parametric description of the urban area.

The UWG tool is freely available to download at (GitHub -Ladybug Tools/Uwg, 2022). Originally written in MATLAB in 2013 (GitHub-Jiachen-Mao/UWG_Matlab, 2021), the tool has been continuously updated and is now available into a Python library and as a grasshopper plugin. This study utilizes the latest Python version of the tool (V5).

To run the simulations the UWG takes two inputs: a meteorological file in a .epw format from the nearest rural weather station and an .xml format file (Extensible Markup Language) describing the urban parameters. The output is a modified .epw format weather file in which air temperatures have been adjusted based on the local urban characteristics. The main input urban parameters can be subdivided into four main categories: urban geometry, vegetation, human activity levels, and building characteristics (including thermal properties of construction elements and building loads). Table 1 summarizes the most relevant parameters required for this study. These parameters have a significant impact on local microclimate changes and can vary widely across different areas of the city.

noting that a certain number of other parameters related to general simulation settings (such as latitude and longitude of the city, day and night boundary layer height, road materials albedo and conductivity, etc.), or to specific building-related variables (such as wall and roof albedo, glazing ratio, solar heat gains from windows, etc.), are also needed, as fully described in [START_REF] Bueno | Computationally efficient prediction of canopy level urban air temperature at the neighbourhood scale[END_REF], but for sake of brevity they are reported in Appendix A. Vertical to horizontal ratio: ratio between façade area and plan area of the site Vegetation 1

[-] Grass coverage: fraction of the urban ground covered in grass/shrubs 1. Since in the reference vegetation map the vegetation coverage is not differentiated between grass and trees, the vegetation coverage value is split in half between and resulting in = 2. Building characteristics are derived from the building construction period

Several studies have conducted sensitivity analyses on the input parameters of the UWG model to determine their significance [START_REF] Alchapar | Thermal Performance of the Urban Weather Generator Model as a Tool for Planning Sustainable Urban Development[END_REF]Litardo et al., 2020;[START_REF] Mao | Global sensitivity analysis of an urban microclimate system under uncertainty: Design and case study[END_REF][START_REF] Salvati | Key Parameters for Urban Heat Island Assessment in A Mediterranean Context: A Sensitivity Analysis Using the Urban Weather Generator Model[END_REF]. The results indicated that the most influential parameters are those related to urban geometry and sensible heat from traffic. In contrast, the impact of vegetation parameters in some cases is lower due to the simplified modeling of vegetation in the UWG model [START_REF] Salvati | Key Parameters for Urban Heat Island Assessment in A Mediterranean Context: A Sensitivity Analysis Using the Urban Weather Generator Model[END_REF].

The model assumes that a fraction of absorbed solar radiation is transformed into latent heat and does not contribute to the temperature increase in the urban canyon and it neglects the impact of tree shading on building walls and roofs, considering only its effect on the road. Regarding building characteristics, the sensitivity analysis performed by showed that the thermal resistance of walls and infiltration rate are among the most influential building characteristics. However, the model shows a low sensitivity to building albedo values. Overall the parameters considered for this study (Table 1)

are deemed relevant for conducting the simulations.

Validation and Limitations of the Urban Weather Generator Model for Urban Microclimate Analysis

The accuracy of the UWG has been extensively validated using both field measurements and simulations in different urban environments including Basel (Switzerland), Toulouse (France) [START_REF] Bueno | The urban weather generator[END_REF], Singapore (Bueno et al., 2015a), Boston (USA) [START_REF] Street | buildings and building groups in urban datasets using a novel pre-processing, classification, clustering and predictive modelling approach[END_REF], Abu Dhabi (UAE) [START_REF] Mao | Global sensitivity analysis of an urban microclimate system under uncertainty: Design and case study[END_REF], Rome (Italy), Barcelona (Spain) [START_REF] Salvati | Urban heat island prediction in the mediterranean context: An evaluation of the urban weather generator model[END_REF]. The validation results show an average RMSE error of about 1-2K with respect to hourly temperature predictions.

However, it is crucial to recognize that the UWG model is based on a simplified computational model that may not fully capture site-specific microclimate effects beyond spatially averaged results.

Nonetheless, these simplifications are necessary for computational efficiency, enabling large-scale simulations over extended periods which is the main objective of this study. The limitations of the model in simulating vegetation and advection from rural to urban boundary layers are considered acceptable due to the computational efficiency required for such simulations. Additionally, the UWG model does not account for the effects of large water bodies, which have been excluded from the study to date, leading to the assumption that the air above Lake Geneva has similar characteristics to rural air.

Despite these limitations, the UWG model has been extensively validated and shown to be suitable for a variety of urban environments. The UWG limitations are considered acceptable for this case study bearing in consideration that the UWG model performs best for urban sites characterized by low wind conditions, where the UHI intensity is primarily due to urban features and anthropogenic heat release. Here, a set of SITG vector data in shapefile format are used to derive the urban parameters required for simulations. The shapefile format is used to store the geometric location and one or multiple attributes of a geographic feature, which can be a point, a line, or a polygon (area). The reference geographic feature can be represented by individual buildings (e.g. building height data) or a portion of space delimited by predefined boundaries that fit the stored information (e.g. vegetation data). In this study, three shapefiles are used to derive the urban parameters. Cad.batiment.hors.sol stores several data about each of the 60,000 buildings. Among them, the building height data are used to calculate the urban parameters related to building geometry and the building construction year data are used to derive the building element thermal characteristics, as explained in more detail in Section 2.5. Ecopot.za includes data related to biodiversity and vegetation for each district of the city, and it is used to derive the vegetation parameters. Finally, Immissions.no2.moyenne is a map of the yearly average NO2 concentration within the city and it is used to derive the anthropogenic heat emissions, as explained in more detail in Section 2.5. Indeed, NO2 emissions is related to vehicle exhausts, which account for the largest part of the anthropogenic heat emissions.

It is important to note that the reliability and accuracy of data obtained from large open source urban datasets are critical, particularly with respect to data frequency and updates. While sources like OpenStreetMap provides a comprehensive and accessible source of urban data, the accuracy and reliability of the data may not always be sufficient. In the present study, building height data were obtained from a high-precision LIDAR survey conducted by swisstopo in 2019, while the other data (building construction period, vegetation, and NO2 emissions) were updated less than one year ago.

2.4 Data pre-processing: calculating the average urban parameters with tessellation and spatial weights

The key point for the calculation of the urban parameters is to define the reference area that fits the microclimate model used for numerical simulation. The Urban Weather Generator is a district scale model able to simulate the urban temperatures within a 200/300 m radius reference area. This value aligns with the definition of a district in the Local Climate Zone (LCZ) framework. This framework considers a district to be a 300 m radius urban area with similar land use, ground cover, and building density. The most straightforward approach to quantify the average urban parameters within a coherent reference area is through a squared grid defining a certain number of cells measuring about 500 m each.

Although the use of a fixed regular grid is a fast technique for data averaging, it represents an arbitrary segmentation that is not consistent with the complexity of the urban texture. Furthermore, since the UWG has to be fed with urban parameters of the site, using a square grid may lead to a loss of complexity and local specificities. In what follows an alternative approach is proposed to partition the city into homogeneous areas with respect to the input parameters needed for simulations. To this aim, a polygon-based adaptation of Voronoi tessellation is applied to this study. In particular, a recently developed Python toolkit named momepy [START_REF] Fleischmann | A Systematisation of Attributes for Quantitative Urban Morphology Measuring[END_REF][START_REF] Fleischmann | Morphological tessellation as a way of partitioning space: Improving consistency in urban morphology at the plot scale[END_REF]Fleischmann et al., , 2021) is employed to define morphological cells based on building footprints. The morphological tessellation delineates the portion of space around each building (tessellation cell). In a first phase, the tessellation cell is used to calculate the building area plan density ( ) and the vertical to horizontal ratio ( ) of each building through Eq. 1 and 2:

(1)

(2) where , , and are respectively the footprint area, the perimeter, and the height of each building and is the area of the related tessellation cell.

As briefly introduced in Section 2.3, urban datasets collect GIS data that can be related to different geometrical entities based on the type of information described. In particular, building height (as well as the derived and ) and construction period data are related to individual buildings, whereas vegetation and NO2 data relate to coherent portions of land. In the first case, where data are related to each building, the value assigned to each tessellation cell is the one of the building itself, whereas in the second case, the value assigned is obtained by superimposing the vegetation and NO2 maps.

At this stage, the raw GIS data has undergone processing to compute the required urban parameters pertaining to each building/tessellation cell. As a result, a series of values relating to urban geometry, vegetation, human activity levels, and building characteristics are associated to each individual element (building/tessellation cell). However, measuring individual characters is insufficient to capture the impact on microclimate, as it is necessary to calculate the average values of these parameters within a defined area that corresponds to the extent of the UWG simulations (200/300 m radius). This is because the urban microclimate is altered by a group of buildings rather than by a single isolated building. To this aim spatial weights are used to calculate the contextual tendency of each urban parameter. Spatial weights are mathematical structures that identify the neighbouring buildings of a given building, i.e. the buildings whose tessellation cells are adjacent to the building in question. As depicted in Figure 2, it is possible to define n orders of spatial weights depending the number of times adjacency has been verified.

For instance, if a generic reference building (shown in red in Figure 2) is considered, the 1 st order spatial weights are the buildings (shown in yellow) whose tessellation cells touch the reference. This can be seen nd order spatial weights refer to the buildings (shown in green), whose tessellation cells are adjacent to the first order cells. This process is repeated for all the buildings and till an n th order level corresponding to the radius (from reference building) required by the UWG model. In the present study, 3 rd order spatial weights are chosen to calculate the averaged urban parameters so that a group of approximately 50 adjacent buildings are included, coherently with the extent of the UWG simulation (200-300 m radius). The averaged urban parameters, noted , replace the individual urban parameters for the j th building, , and they are representative of the district immediately surrounding the considered building. In more detail, are calculated as in Eq 3:

(3)

where is the number of 3 rd order neighbouring buildings (i) around the reference j th building, and are the parameter values associated with each of them. In this way, for each building it is possible to calculate averaged urban parameters, that are representative of the district composed of this building and the surroundings 3 rd order neighbours. This approach allows for the input to the UWG model to be representative of a district rather than just a single building. Therefore, it results in values that are not significantly different for neighbouring buildings, which are likely to be part of the same microclimate. This approach also allows for the consideration of morphological transition zones between the high-density city centre and the sparsely built rural areas.

Inference of human activity levels and building characteristics

Unlike urban geometry and vegetation parameters, which can be directly derived from GIS pre-processing operations on shapefiles (respectively Cad.batiment.hors.sol and Ecopot.za), the non-building sensible heat at street level ( ) and building characteristics ( , ,

need to be inferred from other data.

In order to determine the value of non-building sensible heat ( ) at ground level, a maximum value of 20 W/m 2 is assumed based on literature studies [START_REF] Mao | Global sensitivity analysis of an urban microclimate system under uncertainty: Design and case study[END_REF]. This value represents the highest heat emissions in the densest and busiest areas of the Canton according to similar studies. To determine the values for the other areas, a linear relationship is established between and the yearly average NO2 3 for the Canton of Geneva), according to the Immissions.no2.moyenne shapefile. The reasoning behind this is that NO2 emissions are related to vehicle exhausts, which can be considered proportional to the anthropogenic heat emissions. By scaling the maximum value with the maximum NO2 concentration, a range of values is obtained, representing the non-building sensible heat for the different areas of the Canton. However, it should be noted that in future scenarios where a significant increase in electric vehicle usage is expected, this assumption may need to be re-evaluated, taking into account the heat emission rates associated with electric vehicles [START_REF] Mussetti | Do Electric Vehicles Mitigate Urban Heat? The Case of a Tropical City[END_REF].

The building characteristics are inferred based on their construction period contained in 2. It should be noted that it would have been technically feasible to include building refurbishment in the analysis but this aspect is not considered due to the lack of available data and the relatively low refurbishment rate in the Canton of Geneva [START_REF] Flourentzou | Possible strategies and obstacles in the pathway towards energy transition of residential building stocks in Switzerland[END_REF]. The other building-related parameters which are assumed to be equal across the three construction periods, are detailed in Appendix A. Clustering is a common unsupervised learning method that groups data based on their similarities. In this study, clustering is used to group portions of land that are expected to have similar microclimatic conditions. This is achieved by normalizing and using as inputs for the clustering algorithm the average urban parameters that are considered representative of the thermal response of a group of buildings.

The choice of the clustering method depends on the type of data, the purpose of the study, and the assumptions made about the data distribution. The selected clustering algorithm is the Gaussian Mixture Model (GMM) clustering due to its suitability to handle complex and varied data distributions such as similar urban applications [START_REF] Fleischmann | Methodological foundation of a numerical taxonomy of urban form[END_REF][START_REF] Ma | An elastic urban morpho-blocks (EUM) modeling method for urban building morphological analysis and feature clustering[END_REF][START_REF] Quan | Identifying Urban Form Typologies in Seoul with Mixture Model Based Identifying Urban Form Typologies in Seoul with Mixture Model Based Clustering[END_REF]J. Wang & Biljecki, 2022). Other popular methods for clustering include k-means, hierarchical clustering, and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), but they may not always be optimal for urban studies with similar purposes, as they have certain limitations. For example, k-means assumes that clusters are spherical and equally sized, which may not hold for this type of urban data.

DBSCAN is a density-based algorithm and could not achieve satisfactory results with multi-density data distributions [START_REF] Cesario | Discovering Multi-density Urban Hotspots in a Smart City[END_REF]. Hierarchical clustering is computationally expensive for large datasets as in this case. GMM, unlike other unsupervised algorithms, assumes that each cluster corresponds to a multi-dimensional Gaussian probability distribution, that is often used in statistical modeling as it provides a suitable way to represent complex data distributions. GMM uses the Expectation-Maximization (EM) approach [START_REF] Reynolds | Gaussian Mixture Models[END_REF] to fit data points to a mixture of K multi-dimensional Gaussian distributions (one for each cluster) which are randomly generated starting from a set of means and a covariance matrices. The EM algorithm iterates over the Expectation (E-step)

and the Maximization (M-step) until it converges. Once the total number of clusters (K) is determined, each k th k k. The mixing coefficients for the k th k, with the constraint that , so that the total probability distribution is 1. The probability density function of point x is calculated as in Eq. 4:

(4)

Where x is the data point being evaluated, is the Gaussian distribution with mean and covariance k, and is the mixing coefficient for the k th cluster. Then, the M-step is used to determine the maximum value of the log-likelihood function. In this study, the GMM clustering algorithm is implemented through a Python script by means of the scikit-learn library [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF]. To identify the optimal number of clusters, the Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC) scores [START_REF] Schwarz | Estimating the Dimension of a Model[END_REF] are calculated and plotted for a range of potential cluster numbers, from 2 to 15, as shown in Figure 3. The selection of 15 clusters as the maximum limit is made to ensure that each cluster represented a sufficient number of buildings. Choosing more clusters would have added unnecessary complexity without significantly identifying representative clusters.

Lower BIC and AIC scores indicate a higher quality of clustering performance. In this study, two distinct plateaux are identified in the results, at 8 and 10 clusters. Both options are carefully evaluated and it is determined that 10 clusters provide a more fine-grained classification of the urban textures in the Geneva Canton, effectively capturing the required diversity. On the other hand, 8 clusters offered a simpler, more generalized representation, but failed to distinguish between the old medieval area and the high-density city center. Once the cluster are formed, the average urban parameters of each cluster (Ucluster) are calculated and used as inputs to the UWG simulations.

UHII calculation and mapping through the Urban Weather Generator and validation towards real data

The systematic approach developed in this study allow the classification of urban textures in the Geneva Canton. In brief, the first step involves the determination of the building urban parameters (Ubld) for each of the 60,000 buildings in the study area using GIS data (Section 2.3). Next, the district urban parameters (Udistr) associated with each building are calculated through tessellation and spatial weights (Section 2.4). Finally, a Gaussian Mixture Model (GMM) is applied to classify the buildings into representative microclimatic clusters, reducing the number of alternatives from 60,000 to 10 (Section 2.6). From these clusters, the average cluster urban parameters (Ucluster) are calculated. This three-step approach is critical in gaining a comprehensive understanding of the representative microclimate zones within the Canton and classifying them effectively.

The Ucluster parameters are then used as inputs to perform hourly microclimate simulations (10 simulations, one for each cluster) over the course of a typical meteorological year. The Urban Weather Generator (UWG) modifies the rural weather station data file (.epw format) to create a new urban weather file with adjusted air temperatures based on the predetermined urban parameters. The source rural weather station data is obtained from the reference EnergyPlus weather file for the Canton of Geneva (Geneva 067000 IWEC) available at (EnergyPlus, 2023). The latter arises from the TMY (Typical Meteorological Year) weather file which was built based on more than ten years of real measurements recorded at the Geneva International Airport weather station (MeteoSwiss). The station is located on the city boundaries and it is officially recognised by the World Meteorological Organization (WMO). As a result of the UWG simulations, the spatiotemporal variation of the Urban Heat Island Intensity (UHII) is analysed and a UHII map of the whole Canton is created. The UHII is here defined as the positive difference between the urban and the rural air temperature as in Eq. 4:

(4)

In order to verify the accuracy of the spatiotemporal variation of the Urban Heat Island intensity (UHII), a partial validation is carried out. Since the Typical Meteorological Year (TMY) file used in the simulation is a standard weather file and does not represent actual measurements, real data was necessary for validation. As a result, measurements from a rural weather station located in Brenex (used as the input rural weather file for UWG simulations) and two urban weather stations in the Canton of Geneva (situated in the Battelle and Prairie areas) were used for validation. The urban weather stations were monitored by the University of Geneva throughout 2019, and the measured data were compared with simulated data obtained from the UWG. It is important to note that this validation using real data is only partial, as only two out of the ten total clusters (i.e., Battelle and Prairie areas) could be compared to actual data due to the lack of supplementary reliable urban weather stations. The Results section presents the outcomes of this partial validation.

Results

The following sections present the results of the previously outlined methodology. Section 3.1 presents the classification of the Canton of Geneva into representative microclimate zones using the Gaussian Mixture Model (GMM) clustering. In Section 3.2 the temperature distribution of the rural and urban areas is analysed as a result of the UWG simulations. Section 3.3 focuses on the spatiotemporal variation of the Urban Heat Island Intensity (UHII) among the identified urban clusters. This section evaluates the microclimatic impact of the different urban clusters in terms of average and maximum monthly values (UHIIave,month and UHIImax,month respectively). Section 3.4, explores the temporal variation of the UHII through the analysis of average hourly intensity values (UHIIave,hour), highlighting the differences between nighttime and daytime. Finally, Section 3.5 is dedicated to the comparison between the UWG simulated values and on-site measurements.

Clustering results

As a result of the GMM clustering algorithm the 10 different homogeneous microclimatic zones have been identified and a map of them is shown in Figure 4. Each cluster Cj (with j ranging from 1 to 10) is represented by a different colour and the map shows that the clusters are well-defined and compact, effectively showcasing the morphological variations within the urban environment. White areas in the map represent unbuilt areas where the local conditions are thus expected to pertain the rural ones. Each cluster is represented by a different colour and white parts represent the surrounding rural areas.

Table 3 lists the number of buildings and the average urban parameters for each cluster (Ucluster), which served as inputs for the Urban Weather Generator. From a morphological perspective, clusters C2, C4, C6, and C7 can be categorized as low-density urban areas, with the highest number of buildings and low impact of sensible anthropogenic heat. These areas generally feature well-spaced, low-rise buildings.

On the other side, C1, C3, C8, and C9 are high-density and poorly vegetated urban areas. Here the impact of sensible anthropogenic heat is higher and the building construction period is typically before the year 1980. Clusters C5 and C10 can be considered intermediate urban typologies. Cluster C5 consists of medium/high-rise buildings in a compact urban texture, with a significant share of vegetation, low impact of human activities, and more recent building constructions. On the other hand, cluster C10

represents recent low-rise building areas that are significantly impacted by nearby human activities. 1. The building construction period is expressed as percentage with respect to the total number of buildings within each cluster

Comparison of rural and urban temperatures using Probability Density Functions

In order to compare the simulated urban temperatures from the UWG with rural conditions, the probability density functions (PDFs) are calculated for each month of the year. The PDFs provide a smoothed representation of data that is useful to estimate and visualize the distribution of temperatures evidencing their density (probability of observing a specific temperature value) and distribution among rural areas and the ten identified urban clusters. To provide a more concise representation of the results, two representative months are selected to show the temperature distribution in the coldest and hottest periods of the year. February is chosen to represent the coldest months (September to April) while August represents the hottest months (April to September). Figure 5 shows the PDFs for February (left)

and August (right). The black line represents the rural conditions, whereas the different colored lines (coherent with the map shown in Figure 4) are related to the ten urban clusters. In February, the distribution of urban temperatures has the typical bell shape, with values uniformly distributed around the maximum value which is between 0°C and 5°C. The distribution of the urban temperatures is similar in the shape but the curves are shifted upward and slightly to the right, indicating a higher frequency of higher temperatures. It can be also noticed that cluster C8 shows an inflection point between 5°C and 10°C, indicating higher temperatures compared to the other urban clusters. In August, the temperature distribution has a different and asymmetrical shape, with both rural and urban distributions having two peaks (of which one has an intensity equal to about half of the highest value). The rural temperature has its maximum peak reached between 15°C and 20°C and the lower one between 25°C and 30°C. The pattern for all urban temperature distributions is exactly the same, with the two peaks of the rural temperatures being inverted in comparison to the urban temperatures. In this section, the Urban Heat Island Intensity (UHII) for each urban cluster is investigated. As a yearly average the UHII ranges from a maximum value of 2.2°C for cluster C8 and a minimum value of 1.7°C

for the low-density areas, namely clusters C2, C4 and C6, evidencing the impact of urban morphological features on overheating. To investigate the annual variability of the UHI the average monthly intensity (UHIIave,month) is calculated for each cluster and shown in Figure 6. In general, it can be observed that the thermal behaviour of the identified urban clusters is clearly distinguishable. The ten clusters may be separated into four distinct groups according to their impact on microclimate. The groups, starting from the most impactful to the least, are clusters C3 and C8 (group 1), cluster C1 (group 2), clusters C5, C9, C10 (group 3), and clusters C2, C4, C6, C7 (group 4). The results align with the expectations based on the average urban characteristics of each group: group 1 represents the high-density historical city center, group 2 is a transition area near the city center, group 3 includes both medium-rise suburban areas (C5 and C9) and low-rise suburban areas with high anthropogenic impact (C10), and group 4

encompasses the peripheral open low-rise suburbs. The UHIIave,month difference between group 1 and 4 is considerable, ranging from about 0.4°C between April and September to 0.6°C between October and

March. Considering all clusters, the minimum UHIIave,month value is of 0.73°C (cluster C6 in December), whereas the maximum value is of 3.13°C (cluster C8 in May). The months with the highest UHIIave,month are May, July, and August, with an overall overheating of 2.8°C, compared to the 0.9°C observed during November, December, and January. The results indicate that the UHII is not necessarily highest in the hottest months and that the combination of solar radiation and morphological features such as vertical-to-horizontal ratios plays a role. In high-density urban areas (such as C8 and C3), the sun's lower angle during shoulder months leads to more heat accumulation on urban vertical surfaces (façades) and longer periods of elevated temperatures.

Finally, it is also important to note that although the UWG has been validated effectively for urban districts, its ability to predict the UHII in low-density suburban areas seems here limited. This is evident in cluster C6. This cluster is representative of very sparse building, with a very low density, and sometimes isolated building. Therefore, it would be expected, for this cluster to have temperatures closer to the rural ones. However, the UWG predicts a relatively significant UHII in these areas (Figure 5).

Confrontation with experimental measurements would be necessary to fix this issue. But in case it would be likely linked to the assumption of the UWG model that the district being analyzed is surrounded by other urban districts rather than rural areas, potentially leading to an overestimation of overheating in boundary and suburban areas. The spatial variability of the UHIIave,month can be further elaborated through GIS tools to create a UHI map of the whole area visualizing the most impacted clusters. As an example, Figure 7 shows the UHIIave,month in August within the Geneva Canton. Consistent with previous numerical findings, the high-density urban areas (C8 and C3) closest to the lake experience the greatest UHII. While it is acknowledged that the absence of lake modeling represents a limitation of the UWG tool, it should be noted that the UHI phenomenon is most relevant in conditions of high irradiance and low wind speed.

To address this, GEO-NET, a bureau specializing in climatic analyses, conducted a detailed analysis of the current climate in the Canton of Geneva, identifying areas most affected by urban overheating [START_REF] Gmbh | Situation climatod ´ un modèle Décembre[END_REF]. GEO-NET employed a mesoscale model, FITNAH 3D (Gross, 1992), to simulate the impact of wind and temperature on the entire Canton, generating UHII estimates for a single representative summer day under conditions of high irradiance and low wind speed. Although it is not possible to compare results directly due to the different temporal scales of the two studies (a single day compared to one year), detailed modeling results including are comparable to those obtained in the present study. In particular, they found that, despite the presence of the lake, the same high-density urban areas are the most impacted by overheating and that the air exchange is very limited due to the obstruction effect of buildings. The peak hourly values of urban heat island intensity (UHIImax,month) for each month among the urban clusters are shown in Figure 8. During the colder months (October to February), the hourly peaks range from 5.1°C in clusters C2 and C6 to 8.6°C in cluster C8. However, during the warmer months (March to September), the calculated values are much higher, with a minimum of 7.9°C in cluster C6 and a maximum of 11.5°C in cluster C8. In general, the differences among the clusters are less evident compared to the average values, except for the two high density clusters C3 and C8, whose maximum values in some months are considerably higher. This is an effect of the non-simultaneous between nocturnal and diurnal conditions in rural and urban areas. At sunrise, when incoming solar radiation starts warming the urban surfaces, high-density clusters experience a faster warming process due to their significantly higher thermal mass, resulting in a larger UHIImax,month compared to low-density areas. This phenomenon is explained in more detail in Section 3.4. This section is dedicated to the analysis of the diurnal cycle of the UHII. As shown in Figure 9 the average hourly urban heat island intensity (UHIIave,hour) among the urban clusters is higher during nighttime, reaching a minimum between 11:00 h and 14:00 h, with values lower than 0.5°C. During the late afternoon, both the UHIIave,hour and the differences among the urban clusters increase, reaching values ranging from 2.5°C to 3.5°C, depending on the urban morphology. As observed in the previous Section 3.3, the high-density urban clusters (C3 and C8) exhibit the highest UHII peak values which are generally observed at sunrise (around 6:00 h). As previously anticipated, at this time, the atmosphere is transitioning between nocturnal and diurnal conditions, and the incoming solar radiation is beginning to warm the urban surfaces [START_REF] Oke | The energetic basis of the urban heat island[END_REF]. Observing the UWG simulation process (which is based on an hourly timestep) it can be noticed that generally when sun rises the rural temperature is still at its minimum value (nighttime conditions), whereas the high-density urban clusters have already started the warming process. For the urban clusters with lower density this warming process is generally delayed by 1 hour, when the rural temperatures have also started to rise, resulting in a considerably lower UHIImax,month compared to high density clusters. These results evidence that the UWG predictions are strongly influenced by the input geometric parameters (in particular the vertical-to-horizontal ratio), which has been also highlighted in previous literature studies where the same behaviour has been observed [START_REF] Alchapar | Thermal Performance of the Urban Weather Generator Model as a Tool for Planning Sustainable Urban Development[END_REF][START_REF] Salvati | Assessing the urban heat island and its energy impact on residential buildings in Mediterranean climate: Barcelona case study[END_REF]Salvati, Coch, et al., 2017). for all the clusters, whereas the nighttime values range between 1.5°C and 2.2°C depending on urban morphology. It can be also observed that during nighttime the UHII experience a higher variability and that the differences between the clusters are more evident compared to daytime. Peak values reaching up to 10°C are also more likely to be observed during the night than during the day.

Comparison between predicted and measured average UHII monthly values

This section includes the results of two additional simulations using the Urban Weather Generator The simulated urban heat island intensity (UHII) has a considerable variability over the year and among the urban clusters, with a range of values from 0.7°C to 3.1°C and differences up to 0.6°C depending on the urban morphology. The results also show that the UHII monthly peak values range from 5.1°C up to 11.5°C. The daily variation of the UHII is also found to be much higher during nighttime (about 2.5°C) than during daytime (about 0.5°C), consistent with similar literature studies. Finally, the accuracy of the simulated values is compared towards real measured data of two urban weather stations during 2019. In general, the accuracy of the simulated values is effective in capturing the average monthly UHI intensity and the differences between the two reference urban weather stations. However, for two months (February and June), the simulated values are significantly higher (about 0.6°C) than the measured ones, compared to an average difference of only 0.15°C for the other months. The model also slightly overestimates nighttime values while underestimating them during daytime.

Limitations and future perspectives

The proposed approach has some limitations that should be noted. Firstly, the approach is data-driven, and reproducing it in other cities is possible provided that a detailed urban dataset like the one used in this study is available. Secondly, as discussed in Section 2.2, the UWG model presents some simplifications mainly related to the modelling of advection, vegetation, and the presence of large water bodies. These simplifications may prevent from capturing site-specific phenomena and seems to overestimate the UHII in peri-urban areas. Nevertheless, the proposed workflow enables the simulation of one year on a large scale, making it suitable for city-wide analyses. Precise temperature time series in specific areas of the city would require more accurate simulations, not a parametric model.

However, despite these limitations, the proposed approach has several strengths. It offers a computationally efficient way to perform city-scale UHI analyses, providing valuable insights for urban planners to accurately plan UHI mitigation strategies, identify areas at the greatest risk of overheating, and plan energy-related interventions.

Future improvements to the Urban Weather Generator (UWG) model offer promising prospects for achieving even higher accuracy in simulating urban microclimates. Recent studies, such as the Vertical Urban Weather Generator (VUWG) [START_REF] Moradi | The vertical city weather generator (vcwg v1.3.2)[END_REF] and the improvements introduced by Xu et al. [START_REF] Xu | Improvements, extensions, and validation of the Urban Weather Generator (UWG) for performance-oriented neighborhood planning[END_REF], are refining the capabilities of the UWG. The VUWG resolves vertical profiles of climate variables, including temperature, wind, specific humidity, and turbulence kinetic energy, in relation to urban design parameters. The improvements by Xu et al. enhance the radiation, vegetation, and convective heat transfer calculation processes, better matching the physical representation of urban districts.

In the future, the integration of Internet of Things (IoT) sensors for weather data, crowdsourcing, satellite data, and other data sources could potentially enhance the accuracy of the proposed approach. These future prospects hold the potential for more reliable data and more precise modeling of urban microclimates.
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 1 Figure 1: Schematic representation of the developed methodological steps applied to the Canton of Geneva.
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 3 Urban data sources for urban parameter derivation in the Geneva Canton case study 300 km 2 and comprising about 60,000 buildings. The reference urban dataset is the Geneva Territory Information System (SITG) (SITG | Le Territoire Genevois à LaCarte, 2023) which is an open-source repository of hundred geodata sets related to town planning, mobility, energy, nature, and even climatic analyses. Data are stored into geospatial vector data or into raster data.
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 2 Figure 2: 1 st and 2 nd order cells (yellow and green respectively) determined through spatial weights with respect to a reference building (red). The operation is repeated for all the buildings.

  Cad.batiment.hors.sol shapefile. The reference values are obtained from a study byTardioli et al. (Tardioli et al., 2020), which derived the main building characteristics based on building energy modelling standards in Switzerland (SIA 380/4, SIA 382/1, SIA 385/2) and on the expertise of the Department of Planning, Housing and Energy (DALE). The UWG tool allows for consideration of three different constructionperiods, i.e. before 1980, between 1980 and 2000, and after 2000. In this study, the building characteristics from Tardioli at al. is averaged to align with the required construction periods, as reported in Table
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 3 Figure 3: BIC and AIC scores per number of clusters
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 4 Figure 4: Ten homogeneous microclimatic clusters of the Geneva Canton identified through GMM clustering.
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 5 Figure 5: Probability density functions of rural and urban temperatures. The representative months are February (left) and August (right)
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 6 Figure 6: Average monthly urban heat island intensity among the urban clusters
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 7 Figure 7: Spatial variability of the monthly average UHII in August within the Canton of Geneva
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 8 Figure 8: Maximum monthly urban heat island intensity among the urban clusters
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 9 Figure 9: Average hourly urban heat island intensity among the urban clusters
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  UWG) to validate the developed workflow and the simulated urban heat island intensity (UHII) values with metered data. Real temperature measurements from a rural site (Bernex, used as input weather file for UWG simulations) and two urban weather stations (Battelle and Prairie, used for comparison). The meteorological data from Bernex were recorded and provided by AgroMétéo (Confederation suisse, 2022), while the data from Battelle and Prairie were monitored by the University of Geneva during the same year (University of Geneva, 2022). The recorded UHII of 2019 (UHIIreal) is calculated for both Battelle and Prairie sites as the positive temperature difference with the rural site of Brenex. UHIIreal is then compared with the UWG simulated values (UHIIUWG) from two additional UWG simulations performed using Bernex data as the source rural weather file and the urban parameters of Battelle and Prairie areas derived from clustering. Based on the clustering results (Section 3.1), the Prairie weather station is located within the high-density cluster C3, whereas Battelle falls into the suburban cluster C4. Thus, the urban parameters used as an input to the UWG simulations are the ones of the related clusters (C3 and C4). The results are shown in Figure 11 in terms of average monthly values (markers) and related standard deviation (bars). Two different colors are used for Prairie and Battelle, and the different
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 10 Figure 10: Boxplots of UHII during daytime (left) and nighttime (right)
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 11 Figure 11: Average monthly UHII (markers) and standard deviation (bars) arising from UWG simulations (UHII_UWG) and from real measurements (UHII_real) for two selected urban weather stations
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 12 Figure 12: Average hourly UHII (markers) and standard deviation (bars) arising from UWG simulations (UHII_UWG) and from real measurements (UHII_real) for two selected urban weather stations
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Table 1 :

 1 UWG main input parameters for UHI simulation

			Urban geometry
		[m]	Average height of buildings
		[-]	Urban area building plan density: ratio between built and un-built area
	VH	[-]

Table 2 :

 2 Reference values of building characteristics based on different construction periods

	Name	Units	Before 1980	Between 1980-2000	After 2000
		[m 2 K/W]	1.28	0.47	0.21
		[m 2 K/W]	1.01	0.38	0.21
		[W/m 2 K]	3.22	1.95	1.40
	i	[ach]	1.10	0.60	0.45
	2.6 Gaussian Mixture Model (GMM) Clustering		

Table 3 :

 3 Ucluster related to the ten clusters identified through GMM algorithm

								Construction period [%] 1
	Cluster	N° of			VH					
									1980-	
	ID	buildings [m]	[-]	[-]	[-]	[W/m 2 ]	Pre1980		Post2000
									2000	
	C1	2856	17.8	0.31	1.5	0.13	8.3	70	15	15
	C2	21676	7.5	0.11	0.4	0.33	<1.5	47	32	21
	C3	3916	21.6	0.39	2.1	0.06	16.5	77	13	10
	C4	6826	11.3	0.15	0.5	0.27	<1.5	51	23	27
	C5	4195	16.81 0.22	1.0	0.21	<1.5	60	23	17
	C6	3135	7.7	0.08	0.3	0.47	<1.5	58	27	16
	C7	10402	9.5	0.18	0.7	0.29	<1.5	52	29	19
	C8	1827	20.6	0.55	3.2	0.03	20.0	75	10	15
	C9	2767	16.3	0.17	0.8	0.22	4.0	64	20	16
	C10	1234	9.5	0.14	0.5	0.28	11.7	46	30	24
	Notes:									

  Fleischmann, M., Feliciotti, A., & Kerr, W. (2021). Evolution of Urban Patterns: Urban Morphology as

	an Road pavement albedo Open Reproducible Road pavement volumetric heat capacity Roof albedo	[J/m 3 K] [-] [-]	1600000 0.05 0.2
	Wall albedo	[-]	0.2
	Glazing ratio of buildings	[-]	0.25
	Solar Heat Gain Coefficient from windows	[-]	0.5
	Building HVAC system and internal loads
	Occupancy 4	[m 2 /pers] 30
	Sensible heat per occupant 1,2	[W]	100
	Latent heat fraction from occupant 1,2	[-]	0.3
	Radiant heat fraction from occupant 1,2	[-]	0.2
	Lighting intensity 4	[W/m 2 ]	3.5
	Radiant heat fraction from light 1,2	[-]	0.7
	Electric equipment intensity 4	[W/m 2 ]	15

Table 2 :

 2 Reference values of building characteristics based on different construction periods

	Name	Units	Before 1980	Between 1980-2000	After 2000
		[m 2 K/W]	1.28	0.47	0.21
		[m 2 K/W]	1.01	0.38	0.21
		[W/m 2 K]	3.22	1.95	1.40
	i	[ach]	1.10	0.60	0.45

Table 3 :

 3 Ucluster related to the ten clusters identified through GMM algorithm

								Construction period [%] 1
	Cluster	N° of		VH					
									1980-	
	ID	buildings [m]	[-]	[-]	[-]	[W/m 2 ]	Pre1980		Post2000
									2000	
	C1	2856	17.8	0.31	1.5	0.13	8.3	70	15	15
	C2	21676	7.5	0.11	0.4	0.33	<1.5	47	32	21
	C3	3916	21.6	0.39	2.1	0.06	16.5	77	13	10
	C4	6826	11.3	0.15	0.5	0.27	<1.5	51	23	27
	C5	4195	16.81 0.22	1.0	0.21	<1.5	60	23	17
	C6	3135	7.7	0.08	0.3	0.47	<1.5	58	27	16
	C7	10402	9.5	0.18	0.7	0.29	<1.5	52	29	19
	C8	1827	20.6	0.55	3.2	0.03	20.0	75	10	15
	C9	2767	16.3	0.17	0.8	0.22	4.0	64	20	16
	C10	1234	9.5	0.14	0.5	0.28	11.7	46	30	24
	Notes:									
	1. The building construction period is expressed as percentage with respect to the total number
		of buildings within each cluster						
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