
HAL Id: hal-04112024
https://hal.science/hal-04112024v2

Preprint submitted on 16 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The anisotropy of 2D or 3D Gaussian random fields
through their Lipschitz-Killing curvature densities

Hermine Biermé, Agnès Desolneux

To cite this version:
Hermine Biermé, Agnès Desolneux. The anisotropy of 2D or 3D Gaussian random fields through their
Lipschitz-Killing curvature densities. 2024. �hal-04112024v2�

https://hal.science/hal-04112024v2
https://hal.archives-ouvertes.fr


The anisotropy of 2D or 3D Gaussian random

fields

through their Lipschitz-Killing curvature

densities
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Abstract: We are interested here in modeling and estimating the anisotropy of Gaussian
random fields through the geometry of their excursion sets. In order to do this, we use
Lipschitz-Killing curvatures of the level sets as functions of the levels and see them as gen-
eralized processes for which we are able to obtain a joint functional Central Limit Theorem.
For 2D and 3D stationary Gaussian fields we provide explicit formulas for the Lipschitz-
Killing curvature densities. Then, we can deduce geometrical equivalent of second spectral
moments and anisotropy ratios that allow the estimation of the anisotropy of the underlying
Gaussian field.
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1. Introduction

Since the seminal works of Robert Adler on the geometry of random fields [1] and of Keith
Worsley on topological inference in neuroimaging [44], the study of the geometry of excursion sets
of random fields has known a growing interest, with important developments especially for the
Euler characteristic, used as a good approximation of the tail distribution of the supremum of
stationary smooth Gaussian fields [45]. In particular the so-called Gaussian kinematic formula [2]
nicely links mean geometries of an excursion set with observation window’s ones with respect to
the underlying statistical properties of the Gaussian field. However, this formula strongly depends
on the metric induced by the stationary Gaussian field that is required for computing Lipschitz-
Killing curvatures. The isotropy assumption is then crucial for this metric being the Euclidean
one multiplied by the so-called second spectral moment. In this isotropic Gaussian setting lots
of theoretical results have been obtained these last years, especially for the study of nodal lines,
corresponding to the boundary of excursion set at threshold 0 (see [43] for a review). Numerical
investigations, motivated by a wide range of applications (not only on the plane but also on the
sphere, as in [21] with spherical eigenfunctions), are also fastly developing, leading for instance to
new unbiased estimators as in [15].

In sharp contrast, in this paper we consider anisotropic Gaussian random fields and Lipschitz-
Killing curvatures of excursion sets computed with the usual Euclidean metric in dimension d for
both d = 2 and d = 3, corresponding to the usual dimensions of medical images. This allows us to
rely on numerous results and algorithms developed in stochastic geometry for intrinsic volumes or
Minkowski measures closely related to Lipschitz-Killing curvatures [35].

Moreover, as in our previous paper [9], we will have here a ”weak” point of view. Instead
of fixing a threshold level and considering the Lipschitz-Killing curvatures of the excursion set
above this level, we will consider simultaneously all the levels and thanks to a change of variable
formula (the coarea formula), we will be able to have a representation of these Lipschitz-Killing
curvatures as integrals over the function domain. This point of view also allows us to work on
the fine functional framework of generalized random processes [23]. In this setting, we are able
to propose consistent and asymptotic (as the size of the observation window grows) Gaussian
estimators of the Lipschitz-Killing curvature densities. Note that in sharp contrast with previous
results, we do not assume isotropy of the Gaussian field.

Actually, a main point of interest is: how to ”read” and ”estimate” the anisotropy of a random
field from the geometry of (some of) its excursion sets? We provide explicit parametric expressions
for Lipschitz-Killing densities in both dimension d = 2 and d = 3, as well as numerical evalua-
tions. It allows us to define new geometrical equivalent of spectral moments, related through
elegant isoperimetric inequalities, as well as robust anisotropy ratios in the sense that they do not
depend on the mean, nor on the standard deviation of the field, a point that is crucial for image
comparisons. As illustrated on Figure 1 we will summarize the geometry of an excursion set as a
(2D here) point and this will allow us to visualize and estimate the anisotropy of the underlying
Gaussian field.

The paper is organized as follows. In Section 2 we recall the main definitions of Lipschitz-Killing
curvatures following [41], and introduce the Integral Lipschitz-Killing curvatures of a smooth
function that allow us to consider Lipschitz-Killing curvatures of its excursion sets as a tempered
distribution (with respect to the levels). Considering a smooth stationary random field we are
therefore able to define Lipschitz-Killing curvatures for which a functional joint Central Limit
Theorem is established in dimension d = 2 or d = 3 under the additional assumption that the
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A = 0.1651

Per = 0.0182


TC = 8.25 e-04

A = 0.1652

Per = 0.0187


TC = 7.36 e-04

Fig 1. Two excursion sets of Gaussian random fields. The left one is isotropic and the right one is not. They have
the same area, the same perimeter but different total curvature. Their geometry can be summarized as a point that
is on the almond curve in the isotropic case and that is inside the almond domain in the anisotropic case.

underlying field is Gaussian. In contrast with previous Gaussian results [19, 30] based on Itô-Wiener
chaos expansion, our proof relies on preliminary general results stated under a quasi-association
assumption closer to [13], and which are postponed to the Appendix A. In Section 3, we focus on
dimension d = 2 and extend the Gaussian isotropic results of [10] to the anisotropic framework in
order to get a general result. We define two important ordered geometrical equivalents of second
spectral moments to state explicit formulas for the Lipschitz-Killing curvature densities. This
allows us to define an almond curve of anisotropy and a first ratio of anisotropy R with values
in (0, 1]. We proceed in a simililar way in Section 4 for the dimension d = 3. Lipschitz-Killing
curvature densities are also expressed with respect to now three important geometrical equivalent
of second spectral moments. The ordering of these quantities is much more difficult to obtain than
in the 2D case and strongly relies on some isoperimetric inequalities. In addition to the almond
curve of anisotropy we define the heart curve of anisotropy involving the third index and get two
respective ratios of anisotropy R and RG ≤ R, both with values in (0, 1]. We illustrate all this
in both dimensions d = 2 and d = 3 through numerical experiments, checking the formulas for
the Lipschitz-Killing curvatures, the Central Limit behavior, and the statistical estimation of the
anisotropy from the geometry of one excursion set at a single level.

2. Lipschitz-Killing curvatures

2.1. Lipschitz-Killing curvatures : the general framework

Let us introduce some notations. In the following we will denote by Ld or simply by L (when there
is no ambiguity) the Lebesgue measure on Rd and by Hs the s-dimensional Hausdorff measure on
Rd. We have in particular Hd = Ld on Rd.

We now recall the definition of Lipschitz-Killing curvatures measures in the framework of smooth
manifolds of Rd, as they are presented in the paper of Thäle [41]. LetM be a compact d-dimensional
submanifold in Rd with a C2 smooth boundary ∂M (that is then (d−1)-dimensional). For x ∈ ∂M ,
let κi(x), i = 1, . . . , d− 1, denote the d− 1 principal curvatures of ∂M at x. Then the Lipschitz-
Killing curvatures measures of M are defined by, for all Borel set B ⊂ Rd

∀j = 0, . . . , d− 1, Cj(M,B) =
1

αd−1−j

∫
∂M∩B

σd−1−j(κ1(x), . . . , κd−1(x))Hd−1(dx), (1)

and Cd(M,B) = Ld(M ∩B),

where σk is the symmetric elementary function of order k, that is given for 1 ≤ k ≤ d− 1 by

σk(κ1(x), . . . , κd−1(x)) =
∑

1≤i1≤...≤ik≤d−1

κi1(x) . . . κik(x),



/Anisotropy through Lipschitz-Killing curvatures 4

with the convention that σ0 = 1, and where αk, k ≥ 0 is the k-dimensional surface area of the
unit ball of Rk+1, that is :

α0 = 2, α1 = 2π, α2 = 4π, etc.

The Lipschitz-Killing curvatures measures have therefore the following interpretations:

• C0(M,B) = 1
αd−1

∫
∂M∩B

κ1(x) . . . κd−1(x)Hd−1(dx) is the integral of the Gaussian curvature

on ∂M ∩B divided by αd−1.
• Cd−2(M,B) = 1

α1

∫
∂M∩B

(κ1(x) + . . . + κd−1(x))Hd−1(dx) is the integral of the mean cur-
vature on ∂M ∩B divided by α1.

• Cd−1(M,B) = 1
α0

∫
∂M∩B

Hd−1(dx) = 1
2H

d−1(∂M ∩ B) is half the surface area (perimeter
when d = 2) of ∂M in B.

• Cd(M,B) = Ld(M ∩B) is the volume of M in B.

As soon asM ⊂ B (called the ”global case”), these quantities do not depend on B. In particular,
one has

C0(M,B) =
1

αd−1

∫
∂M

κ1(x) . . . κd−1(x)Hd−1(dx) =χ(M),

where χ(M) is the Euler Characteristic of M , by the Gauss-Bonnet Theorem. Note also that in
this ”global case”, for d ≥ 3, and M a convex body,

Cd−2(M,B) =
1

α1

∫
∂M

(κ1(x) + . . .+ κd−1(x))Hd−1(dx) =
d− 1

2π
b(M),

where b(M) is the so-called mean breadth of M .
These curvature measures may be generalized for setsM with positive reach as done in Theorem

3 in [46] and satisfy the local property: if M ′ is another positive reach set such that M ∩M ′ has

positive reach, then for all bounded Borel set B ⊂
o

M ′, one has

Cj(M ∩M ′, B) = Cj(M,B).

In view of the local property of curvature measures, when U is an open bounded set such that
M ∩ U is a positive reach set (let say U = (0, T )d for instance), one has for all 0 ≤ j ≤ d,

Cj(M ∩ U,U) = Cj(M,U).

Moreover, in view of the measure property one has

Cj(M ∩ U,U) = Cj(M ∩ U,U) + Cj(M ∩ U, ∂U)

= Cj(M,U) + Cj(M ∩ U, ∂U).

In particular, for all Borel set B such that U ⊂ B, one has Cd(M ∩ U,B) = Cd(M ∩ U,U) =
Cd(M,U) but Cd−1(M ∩U,B) = Cd−1(M ∩U,U) = Cd−1(M,U)+Hd−1(M ∩ ∂U) and the Euler
Characteristic of M ∩ U is given by

χ
(
M ∩ U

)
= C0(M,U) + C0(M ∩ U, ∂U). (2)

The Lipschitz-Killing curvatures measures are also related to the volume of the r-parallel set
to M through the Weyl’s tube formula. This point will be discussed in the further remarks of
Section 5.2.

2.2. The framework of smooth functions

Let f : Rd → R be a Cd function defined on Rd, with here d ≥ 2. For t ∈ R, the excursion set of
f above the level t is given by

Ef (t) := {x ∈ Rd ; f(x) ≥ t}.
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By continuity of f , the boundary of Ef (t) is the level line

∂Ef (t) := {x ∈ Rd ; f(x) = t}.

The level t is called a regular value of f on Rd if

∀x ∈ Rd, f(x) = t =⇒ ∥∇f(x)∥ ≠ 0.

For t a regular value, the unit inner normal vector of Ef (t) at x ∈ ∂Ef (t) is given by

νf (x) :=
∇f(x)
∥∇f(x)∥

∈ Sd−1,

and one can find a local C2 parametrization of ∂Ef (t) by the implicit function Theorem. The
Gauss map is defined by νf : ∂Ef (t) 7→ Sd−1. At a point x ∈ Rd such that ∇f(x) ̸= 0, we can
compute Dνf (x) using D

2f(x), the Hessian matrix of f at x, and have

Dνf (x) =
1

∥∇f(x)∥
D2f(x)− 1

∥∇f(x)∥3
∇f(x)(D2f(x)∇f(x))t.

As the principal curvatures are the eigenvalues of the second fundamental form, it follows that the
d symmetric functions of the curvatures σd−1−j(κ1(x), . . . , κd−1(x)) may be written as measurable
functions (explicitly in some cases) of

f(x) :=
(
f(x),∇f(x), D2f(x)

)
.

Then we propose the following definition of Lipschitz-Killing curvatures on a bounded open set
U of Rd (for instance U = (0, T )d with T > 0) for the excursion set Ef (t).

Definition 2.1. Let f : Rd → R be a Cd function and let t ∈ R be a regular value of f on Rd.
Let U be an open bounded set of Rd. The Lipschitz-Killing curvatures of Ef (t) on U are defined
by Cd(Ef (t), U) = Ld(Ef (t) ∩ U) and, for all 0 ≤ j ≤ d− 1, by

Cj(Ef (t), U) =
1

αd−1−j

∫
∂Ef (t)∩U

σd−1−j(κ1(x), . . . , κd−1(x))Hd−1(dx), (3)

where κ1(x), . . . , κd−1(x) are the eigenvalues of the second fundamental form given by the restric-
tion of Dνf (x) on the tangent space to ∂Ef (t) at x.

We can therefore define the Lipschitz-Killing curvatures of the excursion sets of f for levels t
that are not critical values, in the sense that ∇f(x) ̸= 0 when f(x) = t. Now, what happens with
critical values ? By Morse-Sard’s Theorem (see [27] p.69 for instance), since f is Cd, the set of
critical values of f has Lebesgue measure 0 in R.

Moreover, let us recall the coarea formula for Lipschitz mappings (see [20] p.117 for instance),
that we will use several times in this paper: for any non-negative Ld-measurable function g : Rd →
R, the function t 7→

∫
∂Ef (t)∩U

g(x)Hd−1(dx) is L1-measurable and∫
U

g(x)∥∇f(x)∥ dx =

∫
R

∫
∂Ef (t)∩U

g(x)Hd−1(dx) dt. (4)

Then we introduce the following auxiliary functions.

Definition 2.2. For x ∈ Rd, we denote f(x) :=
(
f(x),∇f(x), D2f(x)

)
and define the weighted

symmetric elementary function of curvatures for j = 0, . . . , d− 1 as the functions

Fd−1−j(f(x)) := ∥∇f(x)∥σd−1−j(κ1(x), . . . , κd−1(x)), when ∇f(x) ̸= 0, (5)

and by convention we set Fd−1−j(f(x)) := 0 when ∇f(x) = 0.
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Some of these weighted symmetric elementary functions of curvatures are explicit. In particular,
we have that (see [38] or [24] for instance)

F0(f(x)) = ∥∇f(x)∥, (6)

F1(f(x)) =

[
−Tr(D2f(x)) +

∇f(x)tD2f(x)∇f(x)
∥∇f(x)∥2

]
1I∥∇f(x)∥>0, (7)

and for d ≥ 3

Fd−1(f(x)) =

[
(−1)d−1∇f(x)tadj(D2f(x))∇f(x)

∥∇f(x)∥d

]
1I∥∇f(x)∥>0, (8)

where adj(D2f(x)) is the adjugate matrix of D2f(x) (that is the transpose of its cofactor matrix).
Let us remark that for d = 2, one can also express F1 as

F1(f(x)) =

[
− (∇f(x)⊥)tD2f(x)∇f(x)⊥

∥∇f(x)∥2

]
1I∥∇f(x)∥>0, (9)

with ∇f(x)⊥ = (−∂2f(x), ∂1f(x)).

Now, by convention, for j ≤ d − 1, we set Cj(Ef (t), U) = 0 if t is a critical value and will be
able to consider the function t 7→ Cj(Ef (t), U) as an integrable function, by neglecting critical
values. This is a huge difference with the framework of Adler [1] that focuses on critical points
(points where ∇f(x) = 0). However, since t 7→ Cd(Ef (t), U) is not an integrable function, it will
be more convenient to consider all of them as tempered distributions. More precisely, let us recall
that the Schwartz space S = S(R) consists of infinitely differentiable functions h : R → R that are
rapidly decreasing, that is, for all q ∈ N and k ∈ N,

∥h∥q,k = sup
t∈R

(1 + |t|)q|h(k)(t)| <∞,

where h(k) denotes the derivative of order k of h. It is a real vector space and it is equipped with
the topology given by the family of semi-norms ∥·∥q,k, q ∈ N and k ∈ N. It is well known that S is a
Fréchet space (i.e. a locally convex metrizable complete space). The space of tempered distributions
S ′ = S ′(R) is the topological dual of S, that is the space of continuous linear functionals on S.

We give in the following proposition conditions to ensure the validity of this functional point
of view.

Proposition 2.1. Let f : Rd → R be a Cd function. Let U be a bounded open set of Rd and
assume that, for j ≤ d− 1, ∫

U

|Fd−1−j(f(x))| dx < +∞, (10)

with Fd−1−j(f(x)) given by (5). Then for j ≤ d−1, one has t 7→ Cj(Ef (t), U) ∈ L1(R). Therefore,
for j ∈ {0, . . . , d}, one has t 7→ Cj(Ef (t), U) ∈ S ′ with for all h ∈ S, the Integral Lipschitz-Killing
Curvatures of f defined by

LCf
j (h, U) :=

∫
R
h(t)Cj(Ef (t), U) dt =

∫
U

Lj(h, f(x))dx, (11)

where h ∈ S 7→ Lj(h, f(x)) ∈ R is linear continuous for all x ∈ U , and given by

Lj(h, f(x)) =
1

αd−1−j
h(f(x))Fd−1−j(f(x)) for j ̸= d,

and

Ld(h, f(x)) =

∫
R
h(t)1If(x)≥tdt.
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Proof. For j ≤ d − 1, and h a continuous bounded function we can define measurable functions
on Rd by

gd−1−j(x) = h(f(x))
Fd−1−j(f(x))

∥∇f(x)∥
1I∥∇f(x)∥>0

= h(f(x))σd−1−j(κ1(x), . . . , κd−1(x))1I∥∇f(x)∥>0 for x ∈ Rd.

Under the assumption (10) we obtain by the coarea formula (Eq. (4)) that∫
R

∫
∂Ef (t)∩U

|gd−1−j(x)|Hd−1(dx) dt ≤ ∥h∥0,0
∫
U

|Fd−1−j(f(x))| dx < +∞.

Taking h = 1, it follows that for a.e. t ∈ R∫
∂Ef (t)∩U

|σd−1−j(κ1(x), . . . , κd−1(x))| 1I∥∇f(x)∥>0Hd−1(dx) < +∞

and t 7→ Cj(Ef (t), U) is L1-integrable. We can define for a general continuous bounded function h

LCf
j (h, U) :=

∫
R
h(t)Cj(Ef (t), U) dt.

Moreover, using again the coarea formula with max(gd−1−j , 0) and −min(gd−1−j , 0) and subtract-
ing we get ∫

R

∫
∂Ef (t)∩U

gd−1−j(x)Hd−1(dx) dt =

∫
U

h(f(x))Fd−1−j(f(x)) dx,

with for all regular values t ∈ R (and therefore a.e. t ∈ R),∫
∂Ef (t)∩U

gd−1−j(x)Hd−1(dx) = h(t)

∫
∂Ef (t)∩U

σd−1−j(κ1(x), . . . , κd−1(x))1I∥∇f(x)∥>0Hd−1(dx)

= h(t)αd−1−jCj(Ef (t), U) .

Then, we get

LCf
j (h, U) =

∫
U

Lj(h, f(x))dx,

with Lj(h, f(x)) =
1

αd−1−j
h(f(x))Fd−1−j(f(x)). Moreover, for h ∈ S and x ∈ U ,

|Lj(h, f(x))| ≤
1

αd−1−j
∥h∥0,0|Fd−1−j(f(x))|,

and h 7→ Lj(h, f(x)) ∈ S ′. Under Assumption (10), it allows us to conclude that h 7→ LCf
j (h, U) ∈

S ′ with

|LCf
j (h, U)| ≤

(∫
U

1

αd−1−j
|Fd−1−j(f(x))| dx

)
∥h∥0,0.

Finally, for j = d we can also define

Ld(h, f(x)) =

∫
R
h(t)1If(x)≥t dt,

satisfying |Ld(h, f(x))| ≤ 2∥h∥2,0, using the fact that
∫
R(1 + |t|)−2dt = 2. Since U is bounded we

also have h 7→ LCf
d(h, U) =

∫
U
Ld(h, f(x)) dx ∈ S ′, with, by Fubini’s Theorem,

LCf
d(h, U) =

∫
R
h(t)Cd(Ef (t), U) dt and |LCf

d(h, U)| ≤ 2∥h∥2,0Ld(U).
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Let us remark that, in view of (11), several papers start their study by considering at some
fixed level t ∈ R

Cj(Ef (t), U) :=

∫
U

Lj(δt, f(x))dx
(
= LCf

d(δt, U)
)
,

where δt has to be understood as the limit of a shifted approximation of identity. This can of
course be justified as soon as s 7→ Cj(Ef (s), U) is continuous in a neighborhood of t for example.
We refer to [7] for detailed further assumptions needed to go from results for a.e. level to results
for one level, and to Section 2.5 for a discussion on this point.

Illustrating example. Let us give here a simple example to illustrate the quantities we com-
pute in this paper. We consider the smooth function f defined on R2 by f(x) = exp(−∥x∥2), and we
compute the Lipschitz-Killing curvatures of its excursion sets in the square domain U = (−1, 1)2.
The level lines of f are circles and some of them are shown on Figure 2. More precisely for t ∈ R,
we have

Ef (t) = {x ∈ R2; f(x) ≥ t} = {x ∈ R2; ∥x∥ ≤
√
− log t} for 0 < t ≤ 1,

while Ef (t) = R2 for t ≤ 0 and Ef (t) = ∅ for t > 1. Therefore considering the intersection with
U we obtain C2(Ef (t), U) = L2(U ∩ Ef (t)) for all t ∈ R, and this is the orange curve on the
right-hand side plot of Figure 2. For the perimeter and the total curvature, we have to take into
account the circles that are not entirely contained in U . Simple computations give that
• for exp(−2) < t ≤ exp(−1), then C1(Ef (t), U) = (π−4 arccos 1√

− log t
)
√
− log t and C0(Ef (t), U) =

1− 1
4π arccos 1√

− log t
,

• for exp(−1) ≤ t < 1, then C1(Ef (t), U) = π
√
− log t and C0(Ef (t), U) = 1,

• for t ≤ exp(−2) or t ≥ 1 then C1(Ef (t), U) = C0(Ef (t), U) = 0.
The curves for C1 and C0 are also shown on the right-hand side plot of Figure 2, respectively in
red and blue. We also plot (dotted blue curve) the Euler characteristic of Ef (t)∩U given by (2) for
comparison. The Euler characteristic has value 1 for t ≤ 1 and 0 for t > 1, whereas the quantity
C0(Ef (t), U) is the integral of the curvature along the boundary of Ef (t) in U , and therefore it
coincides with the Euler characteristic only when the circles (level lines) are non-degenerate and
entirely contained in U , which is the case for exp(−1) < t < 1, or also when t > 1 (since then
Ef (t) = ∅).
This example also illustrates the question of critical points. Indeed here there is only one critical
point, at x = 0 for the level t = 1. At t = 1 the function t → C0(Ef (t), U) is not continuous,
whereas the functions C1 and C2 are. The approach we have in this paper allows us to have results
for almost every level t. Obtaining results for all levels t would require difficult additional results
that are beyond the scope of this paper.

2.3. Smooth stationary random fields and Lipschitz-Killing curvature densities

We extend now the Lipschitz-Killing curvatures integrals to the case of smooth stationary random
fields.

Proposition 2.2. Let (Ω,A,P) be a complete probability space and (X(x))x∈Rd be a stationary
real-valued random field that is almost surely (a.s.) a Cd function on Rd for d ≥ 2. Assume
moreover that

∀j ≤ d− 1, E (|Fd−1−j(X(x))|) < +∞, (12)

for Fd−1−j given by (6), (7) and (8), and X(x) = (X(x),∇X(x), D2X(x)), x ∈ Rd. Let U be
a bounded open set of Rd. Then, for j ∈ {0, d − 2, d − 1, d}, we can define Cj(EX(·), U) as a
generalized integrable process, in the sense that

Cj(EX(·), U) : (Ω,A) → (S ′,B(S ′))

is measurable, where B(S ′) is the Borel σ-field of the strong topology on S ′ and, for all h ∈ S,

E
(
|LCX

j (h, U)|
)
≤
∫
R
|h(t)|E (|Cj(EX(t), U)|) dt < +∞.
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Fig 2. Simple example to illustrate what we compute here. On the left, some of the level sets of the function
x → exp(−∥x∥2) in U = (−1, 1)2. On the right, the Lipschitz-Killing curvatures Cj(Ef (t), U) for j = 0, 1, 2, as a
function of the level t. We notice in particular that C0 (blue curve) is not continuous at t = 1 and that it coincides
with the Euler characteristic (dotted blue curve) only when exp(−1) < t < 1, which correspond to cases where the
level set is included in U (or when t > 1).

Proof. First note that since (Ω,A,P) is a complete probability space, in view of the a.s. continuity,
up to setting the values ofX at 0 on a negligible set, the fieldX : Ω×Rd → R is a P⊗Ld-measurable
function, as well as its first and second order partial derivatives. By stationarity, we deduce from
(12) that for j ∈ {0, d− 2, d− 1}∫

U

|Fd−1−j(X(x))| dx < +∞ a.s.,

so that (10) is satisfied. Hence, there exists a negligible set N of A such that for j ∈ {0, d−2, d−1},
Cj(EX(ω)(·), U) ∈ L1(R) ⊂ S ′ for ω /∈ N and we can set Cj(EX(ω)(·), U) = 0 for ω ∈ N . We

can therefore define LC
X(ω)
j (h, U), for h ∈ S, satisfying (11) for ω /∈ N and LC

X(ω)
j (h, U) = 0

for ω ∈ N . Using the fact that (ω, x) 7→ Lj(h,X(ω, x)) is P ⊗ Ld-measurable, it follows by

Fubini’s theorem that LCX
j (h, U) : ω ∈ Ω 7→ LC

X(ω)
j (h, U) ∈ R is a well-defined real-valued

random variable. Therefore, (LCX
j (h1, U), . . . ,LCX

j (hm, U)) is a random vector for all m ≥ 1 and
h1, . . . , hm ∈ S. Since the cylinder σ-field coincides with the Borel σ-field of the weak topology
but also of the strong topology on S ′ denoted by B(S ′) (see Corollary 3.9 of [11]) we can deduce
that Cj(EX(·), U) : (Ω,A) → (S ′,B(S ′)) is measurable and therefore defines a generalized random
process. To conclude for integrability, it is enough to remark that by Fubini’s theorem and the
coarea formula

E
(
|LCX

j (h, U)|
)

≤
∫
R
|h(t)|E (|Cj(EX(t), U)|) dt

≤ ∥h∥0,0
αd−1−j

∫
U

E (|Fd−1−j(X(x))|) dx < +∞,

by (12), using the stationarity of X and the boundedness of U . The result for j = d follows the
same lines as (ω, x) 7→ Ld(h,X(ω, x)) is P⊗ Ld-measurable and bounded by 2∥h∥2,0.

Thanks to the stationarity we will focus on Lipschitz-Killing curvature densities defined for
j ∈ {0, . . . , d} by

⟨CX

j , h⟩ =
E
(
LCX

j (h, U)
)

Ld(U)
.

Note that we can define for all t ∈ R, CX

d (t) := E(Cd(EX(t),U))
Ld(U)

= P(X(0) ≥ t) that does not depend
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on U and is such that C
X

d ∈ S ′ (but not in L1(R)) with

⟨CX

d , h⟩ =
∫
R
h(t)C

X

d (t)dt =
E
(
LCX

d (h, U)
)

Ld(U)
.

For j ≤ d− 1, in view of Fubini’s Theorem, we can define for a.e. t ∈ R

C
X

j (t) =
E (Cj(EX(t), U))

Ld(U)
,

such that C
X

j ∈ L1(R) ⊂ S ′ and

⟨CX

j , h⟩ =
∫
R
h(t)C

X

j (t)dt =
1

αd−1−j
E (h(X(0))Fd−1−j(X(0))) . (13)

It follows that also C
X

j does not depend on U .

2.4. Smooth stationary Gaussian random fields and Central Limit Theorem

To ensure sample paths smoothness, a simple assumption for stationary Gaussian random fields
may be given in term of covariance functions. More precisely, when X is a stationary Gaussian
field with mean m ∈ R and variance σ2 > 0, we denote by ρ its covariance function, given by

ρ(x) = Cov(X(x), X(0)) = Cov(X(x+ y), X(y)),

for all x, y ∈ Rd by stationarity. Then it is sufficient to make the following hypothesis, denoted by
H :

ρ : Rd → R is a C2d positive definite function, with det(D2ρ(0)) ̸= 0

and there exist C > 0 and δ > 0 with
∣∣∂kρ(x)− ∂kρ(0)

∣∣ ≤ C∥x∥δ,

for all k = (k1, . . . , kd) ∈ Nd with |k| =
d∑

l=1

kl = 2d. (H)

Corollary 2.1. Let d ∈ {2, 3}. Let (Ω,A,P) be a complete probability space and (X(x))x∈Rd

be a stationary Gaussian random field whose covariance function satisfies H. Then, there exists
a modification of X such that the assumptions of Proposition 2.2 are satisfied. Moreover, for
0 ≤ j ≤ d and h ∈ S, the random variable LCX

j (h, U) is square integrable and

E
(
LCX

j (h, U)
)

Ld(U)
=

∫
R
h(t)C

X

j (t) dt with, for j ≤ d− 1,

C
X

j (t) =
1

αd−1−j
E (Fd−1−j(X(0))|X(0) = t) pX(0)(t) for a.e. t ∈ R. (14)

Proof. By Proposition 2.1 of [14], under H, there exists a modification of X such that X is C2d a.s.
Note that in this case ∇X(x) is an Rd-valued Gaussian vector of covariance given by Γ = −D2ρ(0)
and therefore ∥∇X(x)∥ > 0 a.s. with E(∥∇X(x)∥p(2−d)) < +∞ for all p ≥ 1 such that p(d−2) < d.
Since d ∈ {2, 3}, in view of (6), (7), or (8) we have therefore for all j ≤ d− 1,

E (|Fd−1−j(X(x))|) < +∞,

and (12) is satisfied. Moreover, we also have E
(
Fd−1−j(X(x))2

)
< +∞, and LCX

j (h, U) is a

square integrable random variable. The result for LCX
d (h, U) simply comes from the fact that

Cd(EX(t), U) ≤ Ld(U) for all t ∈ R. Finally in view of (13) we simply compute the conditional

expectation with respect to X(0) to identify C
X

j (t) for a.e. t ∈ R.
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In this Gaussian setting, we obtain the following result, whose technical proof is postponed to
Appendix A.

Theorem 2.1. Let d ∈ {2, 3}. Let X be a stationary Gaussian field defined on Rd whose covariance
function satisfies H and assume moreover that there exists β > 19d such that

max
|k|≤4

∣∣∂kρ(x)∣∣ ≤ C(1 + |x|)−β . (15)

Then for Un = (0, n)d one has(√
Ld(Un)

(
Cj(EX(·), Un)

Ld(Un)
− C

X

j

))
0≤j≤d

distrib.−→
n→+∞

(Bj)0≤j≤d ,

where (Bj)0≤j≤d are centered Gaussian generalized random processes whose covariance functions

are given for all h, h̃ ∈ S and 0 ≤ j, k ≤ d, by

Cov
(
⟨Bj , h⟩, ⟨Bk, h̃⟩

)
=

∫
Rd

Cov
(
Lj(h,X(z)), Lk(h̃,X(0))

)
dz.

Here the convergence holds in distribution with respect to the strong topology of S ′(R).

Let us mention that the decay assumption (15) could be relaxed into max|k|≤4

∣∣∂kρ∣∣ ∈ L1(Rd)
as assumed in [19], but here the proof of our theorem does not rely on chaos decomposition. Instead
we prove an intermediate result given under a more general assumption of quasi-associated field
(not necessarily Gaussian), see Appendix A.

2.5. From almost every level to one level

When we consider a single level t ∈ R, under the assumption that X is a stationary Gaussian field
defined on Rd for d ∈ {2, 3}, whose covariance function satisfies H, Proposition 6.12 of [5] allows
us to get that

P
(
∃x ∈ Rd;X(x) = t, ∥∇X(x)∥ = 0

)
= lim

n→+∞
P (∃x ∈ Un;X(x) = t, ∥∇X(x)∥ = 0) = 0,

which is a generalization of Bulinskaya’s Lemma. It follows that a.s. the level t is a regular level
for which there is no critical points. In particular a.s., for all n ≥ 1 one has Cj(EX(t), Un) given
by (3) at this level t.

Assuming that there exists an open interval V with t ∈ V and such that s ∈ V 7→ E (Cj(EX(s), Un))
is continuous ensures that (14) holds at level t. We refer to Theorem 7.1 of [4] for similar concerns
and weak Bulinskaya condition.

Now, let us be more explicit about the covariances involved in Theorem 2.1. Note first that for
all h, h̃ ∈ S,

Cov
(
Ld(h,X(z)), Ld(h̃,X(0))

)
=

∫
R

∫
R
h(s)h̃(t)Cov(1IX(z)≥s, 1IX(0)≥t) ds dt.

Then, introducing for z ∈ Rd,

Σst
dd(z) := Cov(1IX(z)≥s, 1IX(0)≥t), (16)

we obtain

Cov
(
Ld(h,X(z)), Ld(h̃,X(0))

)
=

∫
R

∫
R
h(s)h̃(t)Σst

dd(z)ds dt.

Furthermore, for the other covariances, we will also be able to write them as

Cov
(
Lj(h,X(z)), Lk(h̃,X(0))

)
=

∫
R

∫
R
h(s)h̃(t)Σst

jk(z)ds dt.
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Actually, as already noticed, by stationarity, for j < d,

E (Lj(h,X(z))) = E (Lj(h,X(0)) =
1

αd−1−j

∫
R
h(t)E (Fj(X(0))|X(0) = t) pX(0)(t)dt,

where pX(0) denotes the density of the Gaussian variable X(0), and

E
(
Lj(h,X(z))Ld(h̃,X(0)))

)
=

∫
R
h̃(t)E

(
h(X(z))E

(
Fd−1−j(X(z))

αd−1−j
1IX(0)≥t|X(z)

))
dt

=

∫
R2

h̃(t)h(s)

[
E
(
Fd−1−j(X(z))

αd−1−j
1IX(0)≥t|X(z) = s

)
pX(z)(s)

]
ds dt.

Then we can set

Σst
jd(z) :=

[
E
(
Fd−1−j(X(z))1IX(0)≥t|X(z) = s

)
−E (Fd−1−j(X(0))|X(0) = s)P(X(0) ≥ t)

]pX(0)(s)

αd−1−j
.

(17)
And similarly, for k < d and z ̸= 0, we set

Σst
jk(z) := E

(
Fd−1−j(X(z))

αd−1−j

Fd−1−k(X(0))

αd−1−k
|X(0) = t,X(z) = s

)
p(X(0),X(z))(t, s)

−E
(
Fd−1−j(X(0))

αd−1−j
|X(0) = s

)
E
(
Fd−1−k(X(0))

αd−1−k
|X(0) = t

)
pX(0)(t)pX(0)(s), (18)

denoting by p(X(0),X(z)) the joint density of (X(0), X(z)). Note that (15) implies that ρ is an
integrable function and therefore X admits a spectral density, thus implying |ρ(z)| < ρ(0) = σ2

for all z ̸= 0. This ensures the existence of p(X(0),X(z)) as soon as z ̸= 0. Now, if we could justify
the interchange of integrals we should also obtain

Cov
(
⟨Bj , h⟩, ⟨Bk, h̃⟩

)
=

∫
R

∫
R
h̃(t)h(s)Σjk(s, t) ds dt,

with

Σjk(s, t) =

∫
Rd

Σst
jk(z)dz, (19)

where Σst
jk(z) are given by (16), (17) or (18) depending on the values of j, k. This allows us to

give a pointwise representation of the Gaussian generalized processes obtained at the limit. This
is precisely the purpose of the following corollary, whose proof is given in Appendix A.3.

Corollary 2.2. Under the assumptions of Theorem 2.1, assuming moreover that for J ⊂ {0, . . . , d}
and V an open interval of R, we have:

(A1) The map t ∈ V 7→ Cj(EX(t), Un) ∈ L2(Ω,A,P) is continuous for all n ≥ 1 and j ∈ J ;
(A2) For all ε > 0, there exists delta > 0 such that for all t, s ∈ V with |t− s| ≤ δ, for all n ≥ 1

and j ∈ J ,
Var (Cj(EX(t), Un)− Cj(EX(s), Un)) ≤ εLd(Un);

(A3) For all j, k ∈ J , for all (s, t) ∈ V × V we have
∫
Rd |Σst

jk(z)|dz < +∞, where Σst
jk is given

by (16), (17) or (18), depending on the values of j, k, and the function (s, t) ∈ V × V 7→
Σjk(s, t) =

∫
Rd Σ

st
jk(z)dz given by (19) is continuous.

Then (√
Ld(Un)

(
Cj(EX(t, Un))

Ld(Un)
− C

X

j (t)

))
j∈J,t∈V

fdd−→
n→+∞

(
B̃j(t)

)
j∈J,t∈V

,

where
(
B̃j(t)

)
j∈J,t∈V

is a centered Gaussian process with covariance given by

Cov(B̃j(s), B̃k(t)) = Σjk(s, t).
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Note that for J = {d}, under the assumptions of Theorem 2.1, the random field X satisfies also
the assumptions of Corollary 2.2 on V = R and we recover results of Theorem 2 of [13]. Actually,
z 7→ Σst

dd(z) is continuous on Rd and for all z ∈ Rd, by Lemma 2 of [13], we also have∣∣Σst
dd(z)

∣∣ ≤ 1

4σ2
|ρ(z)|,

such that Σdd(s, t) =
∫
Rd Σ

st
dd(z) dz is well-defined and Lebesgue’s theorem allows to check (A3)

on R.
For J = {d − 1} and d = 2, our result corresponds to the one obtained in Theorem 1 of [28],

under a general mixing condition, in Theorem 3 of [31] or in Theorem 4.7 of [6].
For a general j ∈ {0, . . . , d}, we also refer to [30] who proved marginal Central limit theorems

for each Cj(EX(t) ∩ Un, Un), by means of Crofton formula, under an assumption of isotropy that
we have relaxed here. Note also that we obtain a stronger result with a joint Central limit theorem.
Actually, since

Cj(EX(t) ∩ Un, Un) = Cj(EX(t), Un) + Cj(EX(t) ∩ Un, ∂Un),

the results of [30] are closely related to ours (see [10] for details in dimension d = 2). In particular
we have

E(Cj(EX(t) ∩ Un, Un))

Ld(Un)
=

E(Cj(EX(t), Un))

Ld(Un)
+ on→+∞(1) = C

X

j (t) + on→+∞(1), (20)

since Hd−1(∂Un) = on→+∞
(
Ld(Un)

)
.

In the sequel we will compute explicitly Lipschitz-Killing densities C
X

j (t) at some level t ∈ R
and will estimate them using

Cj(EX(t,U))
Ld(U)

for an observation window U large enough in view of

Corollary 2.2. This is a very sparse setting, since we only rely on one observation of the set
EX(t) ∩ U . In particular we do not need a sample of the whole field in contrast with [39], nor
several level values of excursion sets as in [40] who both focus on the estimation of the Euler
characteristic of EX(t)∩U as given by (2). This enables us to introduce geometrical equivalent to
second spectral moments that are strongly related through some kind of isoperimetric inequalities,
in sharp contrast with second spectral moments.

3. Smooth stationary 2D Gaussian fields

3.1. Lipschitz-Killing curvature densities

When the dimension is d = 2, the quantities of interest are the Lipschitz-Killing curvatures C0,
C1 and C2 that are here, up to multiplicative constants, the Total Curvature (related to the Euler
Characteristic, but not equal because of the boundary terms that we don’t take into account in
our framework in view of (2)), the Perimeter, and the Area of the excursion sets of X in an open
bounded domain U . More precisely we define for a smooth stationary field X defined on R2 and
h ∈ S

LAX(h, U) := LCX
2 (h, U), LPX(h, U) := 2LCX

1 (h, U)

and LTCX(h, U) := 2π LCX
0 (h, U).

Now we give explicit formulas for the Lipschitz-Killing curvature densities of a stationary C2

Gaussian field. To the best of our knowledge, our result for C
X

0 in this non-isotropic setting is
completely new, even if it is not surprising in view of the Gaussian kinematic formula for the mean
value of Euler characteristics. The main interesting fact is the introduction of ordered geometrical
spectral moments.
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Theorem 3.1. Let X be a stationary Gaussian field of mean m ∈ R, variance σ2 > 0 and
whose covariance function ρ satisfies Hypothesis H. We write γ1, γ2 > 0 the eigenvalues of Γ =
−D2ρ(0) and denote by Φ the standard Gaussian cumulative distribution. Then the Lipschitz-
Killing curvature densities of X are given for a.e. t ∈ R by

AX(t) := C
X

2 (t) = 1− Φ
( t−m

σ

)
,

PerX(t) := 2C
X

1 (t) =

√
γPer
σ2

1

2
e−(t−m)2/2σ2

TCX(t) := 2πC
X

0 (t) =
γTC

σ2

1√
2π

t−m

σ
e−(t−m)2/2σ2

where

γPer =

(
1

2π

∫ 2π

0

√
γ1 cos2 θ + γ2 sin

2 θ dθ

)2

, (21)

and
γTC =

√
γ1γ2. (22)

Therefore, the Gaussian random field X has same Perimeter density as a (weakly) isotropic1

Gaussian field with second spectral moment γPer and same Total Curvature density as a (weakly)
isotropic Gaussian field with second spectral moment γTC. Moreover, we have

min(γ1, γ2) ≤ γTC ≤ γPer ≤ max(γ1, γ2),

where inequalities are strict if and only if γ1 ̸= γ2.

Proof. Let h ∈ S. For j = 2, the result simply comes from the fact that C
X

2 (t) = P(X(0) ≥ t) with
X(0) ∼ N (m,σ2). For j ∈ {0, 1}, by (13), since ∥∇X(0)∥ > 0 a.s. by H and since the random

variable X(0) admits a probability density given by the function pX(0)(t) =
1

σ
√
2π
e−(t−m)2/2σ2

, we

have

α1−j⟨C
X

j , h⟩ = E (h(X(0))F1−j(X(0))) =

∫
R
h(t)E (F1−j(X(0))|X(0) = t) pX(0)(t)dt.

Hence, for a.e. t ∈ R, using (6) and (9),

C
X

1 (t) =
1

2
E(∥∇X(0)∥

∣∣X(0) = t)pX(0)(t)

C
X

0 (t) = − 1

2π
E
(
(∇X(0)⊥)tD2X(0)∇X(0)⊥

∥∇X(0)∥2
|X(0) = t

)
pX(0)(t).

For sake of completeness we postponed to Appendix B.1 the detailed computations for conditional
expectations in order to obtain the announced formulas.

The remark on the ”equivalent” isotropic fields that have same Perimeter density or same Total
curvature density as X comes from the fact that when γ1 = γ2 = γ, then (21) and (22) yield
γPer = γTC = γ.

To prove the inequality between γTC and γPer, let us first notice that

√
γPer =

1

2π

∫ 2π

0

1

2

(√
γ1 cos2 θ + γ2 sin

2 θ +

√
γ1 sin

2 θ + γ2 cos2 θ

)
dθ.

1Usually, as in [6] for instance, isotropy means that the covariance function ρ is invariant by rotation. It is a
strong isotropy notion, and it implies in particular that the Hessian D2ρ(0) is proportional to the Identity matrix,
which is what we call (weak) isotropy. Of course the converse is false in general.
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Then, for any s ∈ [0, 1], we have

1

2

(√
γ1s+ γ2(1− s) +

√
γ1(1− s) + γ2s

)
≥ ((γ1s+ γ2(1− s))(γ1(1− s) + γ2s))

1/4

=
(
γ21s(1− s) + γ22s(1− s) + γ1γ2(s

2 + (1− s)2)
)1/4

=
(
γ1γ2 + s(1− s)(γ1 − γ2)

2
)1/4 ≥ (γ1γ2)

1/4
,

and this proves the inequality, by simply setting s = cos2 θ and then integrating over θ. We also
remark that this inequality is strict if and only if γ1 ̸= γ2.

Note that we recover our previous results of [9] in the (weakly) isotropic case. Moreover, in the
anisotropic case, assuming that γ2 > γ1 and considering k =

√
1− γ1/γ2, one can write√

γPer =
√
γ2

2

π

∫ π/2

0

√
(1− k2) cos2 θ + sin2 θ dθ =

√
γ2

2

π
E(k),

where E(k) is the elliptic integral of the first kind, such that PerX(t) corresponds to the formula
of Theorem 11.3. of [5]. We also refer to Proposition 3.4 of [18] for planar Gaussian waves.

3.2. Visualization and estimation of the anisotropy

In this section, we are interested in visualizing and estimating the anisotropy of a Gaussian field
from the Lipschitz-Killing curvatures of its excursion sets. Here the anisotropy is summarized
through the anisotropy ratio R defined by

R :=
γTC

γPer
.

Thanks to Theorem 3.1, we have R ∈ [0, 1], and R = 1 if and only if the spectral moments γ1
and γ2 are equal, meaning that the field X is (weakly) isotropic. More precisely, we can see R as

a function of α := min(γ1,γ2)
max(γ1,γ2)

∈ [0, 1] since

R =
γTC

γPer
=

√
γ1γ2(

1
2π

∫ 2π

0

√
γ1 cos2 θ + γ2 sin

2 θ dθ
)2 =

√
α(

1
2π

∫ 2π

0

√
α cos2 θ + sin2 θ dθ

)2 .
This is illustrated on the left of Figure 3 where we show the graph of the function α 7→ R. It is

an increasing function that maps [0, 1] to [0, 1].

3.2.1. The Almond curve of anisotropy

Inspired by the paper of Klatt et al. [29] for the visualization of anisotropy, from the formulas for
the Perimeter density and the Total Curvature density (Theorem 3.1), we see that if we set

x̃(t) =
PerX(t)

PerX(m)
= e−(t−m)2/2σ2

and ỹ(t) =
TCX(t)

PerX(m)2
=
γTC

γPer

4√
2π

t−m

σ
e−(t−m)2/2σ2

then the point (x̃(t), ỹ(t)) is on the curve

CR = {(x, y) ∈ (0, 1]× R ; y2 +
16

π
R2x2 log x = 0}. (23)

Notice that, thanks to the fact that R ≤ 1, this curve is inside the domain defined by the closed
curve

C1 = {(x, y) ∈ (0, 1]× R ; y2 +
16

π
x2 log x = 0}.

This curve is ”canonical” in the sense that it is independent of the mean m and of the variance
σ2 of the field. We call this curve the almond curve of anisotropy because of its shape, see Figure
3 right. Points on this curve correspond to R = 1, that is γTC = γPer and thus γ1 = γ2, meaning
the field X is (weakly) isotropic.
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Fig 3. On the left, plot of the anisotropy ratio R =
γTC
γPer

∈ [0, 1] as a function of α =
min(γ1,γ2)
max(γ1,γ2)

∈ [0, 1]. The ratio

R is an increasing function of α and R = 1 if and only if γ1 = γ2. On the right, the almond curves of anisotropy,
given by Eq. (23): the blue plain curve is the curve C1 corresponding to isotropy, and the black dotted curve is a
curve CR, with here R ≃ 0.92.

3.2.2. Estimating the anisotropy from one excursion set

Assume we observe an excursion set Ê of a sample of a Gaussian stationary random field X, in a
window U . The question is then: how to estimate the anisotropy ratio R from this set Ê only, that
is without having access to the whole field (nor its increments for instance). We ignore also at which
level t the field X was thresholded, and also what was its mean m or its variance σ2. Now from the
three observed Lipschitz-Killing curvatures densities (that are Â(E) = A(Ê)/L2(U) the density

Area of Ê, P̂er(E) = Per(Ê)/L2(U) the density Perimeter of Ê, and T̂C(E) = TC(Ê)/L2(U) the
density Total Curvature of E), we can proceed the following way:
- Compute an ”effective” threshold t̂eff , that is an empirical estimate of the effective level teff :=
t−m
σ , using the density area of Ê:

t̂eff = Φ−1(1− Â(E)).

- Then, for t̂eff ̸= 0 (or equivalently Â(E) ̸= 1
2 ), estimate the ”effective” spectral moments:

γ̂Per
σ2

= 4P̂er(E)2et̂
2
eff ,

γ̂TC

σ2
= T̂C(E)

√
2π

t̂eff
et̂

2
eff/2.

- Finally, for t̂eff ̸= 0, estimate the anisotropy ratio with

R̂ =
γ̂TC

γ̂Per
=

T̂C(E)

P̂er(E)2

√
2π

4t̂eff
e−t̂2eff/2.

This estimation procedure is inspired from the one developed by Elena Di Bernardino and Céline
Duval in [16], where they introduce the notion of ”effective” threshold, but where the framework
is quite different since they assume the Gaussian field is isotropic.

Note that only ”effective” spectral moments γPer

σ2 and γTC

σ2 are empirically accessible in practice
when X is not assumed standard (i.e. so that σ = 1) but our anisotropic ratio R itself is empirically
accessible. Moreover we can also compute a point on the almond curve (see Figure 4) by setting

x̂ = e−t̂2eff/2 and ŷ = R̂
4√
2π
t̂effe

−t̂2eff/2.

Let us remark that, assuming Ê is the realization of EX(t)∩Un for some t ∈ R and n large, under

the assumptions of Corollary 2.2 on an open neigborhood V of t and J = {0, 1, 2}, Â(E), P̂er(E)

and T̂C(E) are consistent and asymptotically Gaussian. When moreover t ̸= m, by the delta
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Fig 4. First line: left, a sample of a centered isotropic Gaussian field X, size 1000 × 1000 pixels, with variance
σ2 = 1 and covariance of the form ρ(x1, x2) = exp(−γ1x2

1+γ2x2
2) with γ1 = γ2 = 0.005. Middle: the almond curve

and some points from the isotropic field (100 samples). Right: corresponding estimations of the anisotropy ratio R
(= 1 here) as a function of the quantiles. Second line: same experiments but with now γ1 = 0.005 and γ2 = 0.002,
that corresponds to an anisotropic field with R ≃ 0.92.

method, it should imply the same properties for the effective spectral moments and anisotropy ratio
(see Figure 9 in the additional experiments section C in the Appendix, where we also numerically
check the central limit behavior of the anisotropy ratio). This restriction on t means that we shall
not have Â(E) close to 1/2 = Φ(0).

On Figures 4 and 5 (and also on Figure 10 in the additional experiments section C in the Ap-
pendix), we illustrate all the theoretical results of this section. The numerical computations of the
Lipschitz-Killing curvatures of the excursion sets are done thanks to the Matlab ”imMinkowski”
library2 developed by David Legland and described in [32]. As far as binary images are concerned,
it will be more convenient to work with ”quantiles” q ∈ [0, 1] so that the corresponding threshold
levels are given by t = m+ σΦ−1(q).

4. Smooth stationary 3D Gaussian fields

4.1. Lipschitz-Killing curvature densities

We are here interested in the 3D framework, and we consider a real-valued random field X defined
on R3. The quantities of interest are the Lipschitz-Killing curvatures C0, C1, C2 and C3 that
are now related to the Total Gaussian Curvature (also related to the Euler Characteristic by
the Gauss-Bonnet Theorem, but different because we don’t take into account what happens on
the boundary of the domain U in view of (2)), the Total Mean Curvature (related to the mean
breadth), the Surface Area and the Volume of an excursion set. More precisely, for a smooth
stationary field X defined on R3 and h ∈ S we denote

LVX(h, U) := LCX
3 (h, U), LSAX(h, U) := 2LCX

2 (h, U),

2available at https://www.mathworks.com/matlabcentral/fileexchange/33690-imminkowski
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Fig 5. Densities C
X
0 (first line), C

X
1 (second line) and C

X
2 (third line), as a function of the level (left column)

or the quantile (right column) in the anisotropic case. The plots would be the same in the isotropic case, up to a
scaling factor of the axis. The anisotropic Gaussian field considered here is the same as the one of the bottom of
Figure 4, with one sample of size 1000× 1000 (that is on Un with n = 1000).

LTMCX(h, U) := πLCX
1 (h, U) and LTGCX(h, U) := 4πLCX

0 (h, U).

To the best of our knowledge, the explicit formulas of the related Lipschitz-Killing densities linked
with the introduced geometrical spectral moments, stated in the following theorem are completely
new.

Theorem 4.1. Let X be a stationary Gaussian field of mean m ∈ R, variance σ2 > 0 and
whose covariance function ρ satisfies Hypothesis H. We write γ1, γ2, γ3 > 0 the eigenvalues of
Γ = −D2ρ(0) and denote by Φ the standard Gaussian cumulative distribution. Then the Lipschitz-
Killing curvature densities of X are given for a.e. t ∈ R by

VX(t) := C
X

3 (t) = 1− Φ
( t−m

σ

)
,

SAX(t) := 2C
X

2 (t) =

√
γSA
σ2

2

π
e−(t−m)2/2σ2

,

TMCX(t) := πC
X

1 (t) =
γTMC

σ2

1√
2π

t−m

σ
e−(t−m)2/2σ2

,

TGCX(t) := 4πC
X

0 (t) =

(
γTGC

σ2

)3/2
1

π

(
(t−m)2

σ2
− 1

)
e−(t−m)2/2σ2

,

where

γSA =

(
1

4π

∫
S2

√
γ1u21 + γ2u22 + γ3u23 H2(du)

)2

, (24)
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γTMC =
1

2
(γ1 + γ2 + γ3)−

1

8π

∫
S2

γ21u
2
1 + γ22u

2
2 + γ23u

2
3

γ1u21 + γ2u22 + γ3u23
H2(du), (25)

and γTGC = (γ1γ2γ3)
1/3. (26)

Therefore, the Gaussian random field X has same Surface Area density as a (weakly) isotropic
Gaussian field with second spectral moment γSA, same Total Mean Curvature density as a (weakly)
isotropic Gaussian field with second spectral moment γTMC and same Total Gaussian Curvature
density as a (weakly) isotropic Gaussian field with second spectral moment γTGC. Moreover, we
have

min(γ1, γ2, γ3) ≤ (γ1γ2γ3)
1/3 = γTGC ≤ γTMC ≤ γSA ≤ γ1 + γ2 + γ3

3
≤ max(γ1, γ2, γ3).

where the inequalities are strict if and only if min(γ1, γ2, γ3) < max(γ1, γ2, γ3).

Proof. As in the 2D case, we postpone the computations of the C
X

j (t) with the conditional expec-
tations E (F2−j(X(0))|X(0) = t) to Appendix B.2.
To prove the inequalities, let us first rewrite things using the random variable U = (U1, U2, U3) ∈
R3 that is assumed to be uniformly distributed on the unit sphere S2. Then

γSA = E
(√

γ1U2
1 + γ2U2

2 + γ3U2
3

)2

,

γTMC =
1

2
E
(
γ1(γ2 + γ3)U

2
1 + γ2(γ1 + γ3)U

2
2 + γ3(γ1 + γ2)U

2
3

γ1U2
1 + γ2U2

2 + γ3U2
3

)
.

By concavity of the square root function, we first have that

γSA ≤ E(γ1U2
1 + γ2U

2
2 + γ3U

2
3 ) =

1

3
(γ1 + γ2 + γ3),

because E(U2
i ) = 1/3 (this comes from the symmetry of the Ui’s and the fact that U2

1 +U
2
2 +U

2
3 = 1

a.s.). Note also that the inequality is strict for min(γ1, γ2, γ3) < max(γ1, γ2, γ3) by strict concavity
of the square root function.

The inequality between γSA and γTGC = (γ1γ2γ3)
1/3 can also be obtained in a straightforward

way. Indeed, using again the concavity of the square root function, and the fact that
∑

i U
2
i = 1,

we have √
γ1U2

1 + γ2U2
2 + γ3U2

3 ≥ √
γ1U

2
1 +

√
γ2U

2
2 +

√
γ3U

2
3 .

And then taking the expectation on both sides we have

E
(√

γ1U2
1 + γ2U2

2 + γ3U2
3

)
≥ 1

3
(
√
γ1 +

√
γ2 +

√
γ3) ≥ (γ1γ2γ3)

1/6,

thanks to the arithmetic-geometric inequality. Therefore

γSA ≥ γTGC.

The inequalities for γTMC are more difficult to obtain. We first introduce the function

gγ : x ∈ R3 7→
√
γ1x21 + γ2x22 + γ3x23

and note that it is a twice continuously differentiable positive function on R3 ∖ {0} with gradient
given by ∇gγ(x) = 1

gγ(x)
(γ1x1, γ2x2, γ3x3). It follows that its directional gradient on the sphere at

a point x ∈ S2 is given by the orthogonal projection of ∇gγ(x) onto the tangent space at x that
is precisely ⟨x⟩⊥, namely

∇S2gγ(x) = ∇gγ(x)− ⟨∇gγ(x), x⟩x = ∇gγ(x)− gγ(x)x.
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According to Poincaré-Wirtinger Inequality (Theorem 5.4.1 of [25]) we have

Var (gγ(U)) ≤ 1

2
E
(
∥∇S2gγ(U)∥2

)
.

But we remark that γSA = E (gγ(U))
2
and that E

(
gγ(U)2

)
= 1

3 (γ1 + γ2 + γ3), while

E
(
∥∇S2gγ(U)∥2

)
= E

(
∥∇gγ(U)∥2

)
− E

(
gγ(U)2

)
.

Then Poincaré-Wirtinger Inequality rewrites as

3

2
E
(
gγ(U)2

)
− γSA ≤ 1

2
E
(
∥∇gγ(U)∥2

)
.

But

3

2
E
(
gγ(U)2

)
− 1

2
E
(
∥∇gγ(U)∥2

)
=

1

2
E
(
γ1 + γ2 + γ3 −

γ21U
2
1 + γ22U

2
2 + γ23U

2
3

γ1U2
1 + γ2U2

2 + γ3U2
3

)
= γTMC.

Hence we have obtained γTMC ≤ γSA. Note also that the case of equality in Poincaré-Wirtinger
Inequality may only be achieved when gγ is constant on S2. Actually by Theorem 5.4.1 of [25], the
equality holds if and only if gγ − E(gγ(U)) is a spherical harmonic of degree 1. This implies that
g̃γ : R3 7→ gγ(x)−E(gγ(U))∥x∥ is an homogeneous polynomial of degree 1 with constant gradient.
But since, for (ei)1≤i≤3 the canonical basis, we have ∇g̃γ(ei) = (

√
γi − E(gγ(U)))ei, this implies

that
√
γi = E(gγ(U)) and therefore min(γ1, γ2, γ3) = max(γ1, γ2, γ3) with gγ(x) = E(gγ(U))∥x∥.

For the other inequality involving γTMC, we will use the isoperimetric inequality for 3D convex
bodies (see [33] for instance), that states that

SA3 ≥ 36πV 2,

where SA is the surface area and V is the volume. Now, taking a 3D ellipsoid of semi-axes
√
γ1,√

γ2,
√
γ3, we have that its volume is

V =
4

3
π
√
γ1
√
γ2
√
γ3 =

4

3
πγTGC

3/2,

and that its surface area is (see [26])

SA = 2π(γ1 + γ2 + γ3)− 2πE
(
γ21U

2
1 + γ22U

2
2 + γ23U

2
3

γ1U2
1 + γ2U2

2 + γ3U2
3

)
= 4πγTMC.

Therefore the isoperimetric inequality implies that

43π3γ3TMC ≥ 36π
42

32
π2γ3TGC,

which exactly means γTMC ≥ γTGC. Note also that equality in the isoperimetric inequality may
only be achieved when the body is a sphere (see [33] p.1190, result (2.7) for instance), that is when
min(γ1, γ2, γ3) = max(γ1, γ2, γ3).

4.2. Visualization and estimation of the anisotropy

We are here interested in the visualization and in the estimation of the anisotropy from an excursion
set of a sample of a 3D Gaussian field, in a way similar to what was done in the 2D framework.

We define now two anisotropy ratios:

R :=
γTMC

γSA
and RG :=

γTGC

γSA
.

We have 0 ≤ RG ≤ R ≤ 1 because of Theorem 4.1, and since they are symmetric functions of the
γi’s, we can assume γ3 = max({γi}), and see R and RG as functions of α1 := γ1

γ3
and α2 := γ2

γ3
.

This is illustrated on Figure 6.
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Fig 6. The anisotropy ratios R (on the left) and RG (on the right) as functions of α1 := γ1
γ3

and α2 := γ2
γ3

.

4.2.1. The Almond and Heart curves of anisotropy

Again, as in the 2D case, we can see the Lipschitz-Killing curvature densities as points on a curve,
that is now in R3. More precisely, considering

x̃(t) =
SAX(t)

SAX(m)
= e−(t−m)2/2σ2

,

ỹ(t) =
TMCX(t)

SAX(m)2
=

γTMC

γSA

π
√
π

4
√
2

t−m

σ
e−(t−m)2/2σ2

= R
π
√
π

4
√
2

t−m

σ
e−(t−m)2/2σ2

,

and z̃(t) =
TGCX(t)

SAX(m)3
=

(
γTGC

γSA

)3/2
π2

8

(
(t−m)2

σ2
− 1

)
e−(t−m)2/2σ2

= R
3/2
G

π2

8

(
(t−m)2

σ2
− 1

)
e−(t−m)2/2σ2

,

then this defines a parametric curve in R3, that has as a projection on the first two coordinates
an almond curve of cartesian equation

C(3d)
R = {(x, y) ∈ (0, 1]× R ; y2 +

π3

16
R2x2 log x = 0},

and on the last two coordinates, the projection is a parametric curve of the form

C̃(3d)
R,RG

= {(y(s), z(s)) ∈ R2 ; y(s) = R
π
√
π

4
√
2
se−s2/2, z(s) = R

3/2
G

π2

8
(s2 − 1)e−s2/2, s ∈ R}.

These two curves are shown on the first line of Figure 8, where the blue curves correspond to
the isotropic case (R = RG = 1) and the black ones correspond on the figures to R ≃ 0.91 and
RG ≃ 0.84. These black curves are inside the domains defined by the isotropic (blue) curves.

4.2.2. Estimating the anisotropy from one excursion set

Again, as in the 2D case, assume we observe an excursion set Ê of a sample of a Gaussian
stationary random field X, in a window U . The question is then: how to estimate the anisotropy
of X from this set Ê only, that is without having access to the whole field (nor its increments
for instance). We ignore also at which level t the field X was thresholded, and also what was its
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mean m or its variance σ2. Now, from the four observed Lipschitz-Killing curvatures densities
(that are V̂(E) = V(Ê)/L3(U) the density Volume of Ê, ŜA(E) = SA(Ê)/L3(U) the density

Surface Area of Ê, T̂MC(E) = TMC(Ê)/L3(U) the density Total Mean Curvature of Ê and

T̂GC(E) = TGC(Ê)/L3(U) the density Total Gaussian Curvature of Ê), we can proceed the
following way:
- Compute an ”effective” threshold t̂eff , that is an empirical estimate of t−m

σ , using the volume

of Ê:
t̂eff = Φ−1(1− V̂(E)).

- Then, for t̂eff /∈ {0,±1}, estimate the ”effective” spectral moments:

γ̂SA
σ2

=
π2

4
ŜA(E)2et̂

2
eff ,

γ̂TMC

σ2
= T̂MC(E)

√
2π

t̂eff
et̂

2
eff/2,

and
γ̂TGC

σ2
=

(
T̂GC(E)

π

t̂2eff − 1
et̂

2
eff/2

)2/3

.

- Finally, for t̂eff /∈ {0,±1}, estimate the anisotropy ratios via

R̂ =
T̂MC(E)

ŜA(E)2

4
√
2

π
√
π

1

t̂eff
e−t̂2eff/2 and R̂G

3/2
=

T̂GC(E)

ŜA(E)3

8

π2

1

(t̂2eff − 1)
e−t̂2eff .

As in the 2D case, we have performed some numerical experiments to illustrate all this. Let
us mention that such numerical experiments are much more difficult to conduct than in the 2D
case. The memory size and the computation time needed to proceed with a 3D volume are very
high. Only ”small” volumes were considered, with size 2003 voxels. Therefore the variances in
the estimation of the Lipschitz-Killing curvatures is quite high, see Figure 7. The estimation of
the anisotropy ratios from one excursion set is illustrated on Figure 8 (anisotropic case). See the
caption of the figures for more details. Additional experiments are also provided in the experimental
section C of the Appendix.

5. Further remarks

5.1. Link with the kinematic formula

For sake of simplicity, let us assume that X = (X(x))x∈Rd is a stationary smooth centered (m = 0)
Gaussian random field with unit variance (σ2 = 1), whose excursion set is given by EX(t) for
some regular level t ∈ R and such that Lipschitz-Killing curvature densities are continuous in a
neighborhood of t. Then, the random set Z := EX(t) is a closed stationary random set and we
explore here links between the classical kinematic formula of stochastic geometry (we rely here on
[36]) and the Gaussian’s one of [2]. The kinematic formula of Theorem 9.4.1 of [36] p.414 holds
under the strong assumption that Z is a standard set (see Definition 9.2.1), meaning that one
can write Z ∩ [0, 1]d as an union of N convex bodies with E(2N ) < +∞. Under the additional
assumption that Z is isotropic (implied by the isotropy of X), this result states that for any convex
body W and any Borel set U ⊂ Rd,

E (Cj (Z ∩W,U)) =

d∑
k=j

ck,d−k+j
j,d V k(Z)Cd−k+j(W,U),

where (V k(Z))0≤k≤d are the so-called intrinsic volumes’ densities of Z and, following the notations

of [36], ck,d−k+j
j,d =

γ( k+1
2 )γ( d−k+j+1

2 )
γ( j+1

2 )γ( d+1
2 )

, with γ(a) =
∫ +∞
0

ta−1e−tdt for a > 0. But, as noticed at the



/Anisotropy through Lipschitz-Killing curvatures 23

Fig 7. Lipschitz-Killing curvatures densities of the excursion sets of an isotropic Gaussian volume. Here we have
taken 20 samples of a 3D volume of size 2003 voxels, of a Gaussian field with mean m = 0, variance σ2 = 1 and
covariance of the form exp(−γ1x2

1 − γ2x2
2 − γ3x2

3) with γ1 = 0.01, γ2 = 0.02 and γ3 = 0.05. An example of such a
Gaussian volume is shown on the left of the first line, with one excursion set on the right. Using the Matlab toolbox
ImMinkowski [32], we have estimated the volume densities (second line, left), the surface area densities (second
line, right), the total mean curvature densities (third line, left) and the total Gaussian curvature densities (third
line, right). The densities are plotted else as functions of the level t or as functions of the quantile q. The stars
are the values for the 20 different samples.

end of p.416 for the ”global case” where W ⊂ U , the isotropy assumption on Z may be removed
when considering W as an isotropic ball. Hence, for any r > 0, one has

E
(
Cj

(
Z ∩B(0, r), U

))
=

d∑
k=j

ck,d−k+j
j,d V k(Z)Cd−k+j(B(0, r), U),

as soon as B(0, r) ⊂ U . Now, following Corollary 9.4.1, we have for any bounded Borel set U and
k ∈ {0, . . . , d}

E (Ck(Z,U)) = V k(Z)Ld(U),

and therefore V k(Z) = C
X

k (t) (identifying the two terms when U is open bounded). Since we have
for B(0, r) ⊂ U ,

Cd−k+j(B(0, r), U) = rd−k+jVd−k+j(B(0, 1)),
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Fig 8. Estimation of R and RG from the Lipschitz-Killing curvatures densities of an excursion set. The samples
are the same as the ones of Figure 7. Notice that, because of the term 1/t̂eff , the estimation of R is inaccurate for
values around t̂eff = 0, whereas for RG the inaccuracy of estimation occurs around t̂eff = ±1.

we end with the following kinematic formula, under the assumption that Z = EX(t) is a standard
set,

E
(
Cj

(
Z ∩B(0, r), U

))
=

d∑
k=j

ck,d−k+j
j,d Vd−k+j(B(0, 1))C

X

k (t)rd−k+j . (27)

Meanwhile, under the additional assumption that the joint distribution of the Gaussian vector
X(0) is non degenerate, the stationary random field X fulfills the assumptions of Theorem 4.2.1
of [3] and the Gaussian kinematic formula states that (see (4.0.1) therein)

E
(
L∇
j

(
Z ∩B(0, r)

))
=

d−j∑
i=0

[
i+ j
i

]
L∇
i+j(B(0, r))(2π)−i/2hi−1(t)

=

d∑
k=j

[
d− k + j
d− k

]
L∇
d−k+j(B(0, 1))(2π)−(d−k)/2hd−k−1(t)r

d−k+j ,(28)

with the change of variable k = d − i, where L∇
k denotes the Lipschitz-Killing curvatures under

the Riemannian metric given by Γ, the covariance matrix of ∇X(0),[
k

k − j

]
=

(
k

k − j

)
ωk

ωk−jωj
,

with ωk the volume of the k-dimensional unit ball of Rk, that is

ω0 = 1, ω1 = 2, ω2 = π, ω3 =
4

3
π, etc..
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and h−1(t) = Φ(t), whereas hk(t) =
1√
2π
Hk(t)e

−t2/2 are the Hermite functions of order k ∈ N.
Note that without knowing Γ, we won’t be able to compute L∇

j for j ̸= 0. However, for j = 0, the

Lipschitz-Killing curvature L∇
0 does not depend on Γ and we obtain the mean Euler characteristic

of EX(t) ∩B(0, r) as

E
(
χ(EX(t) ∩B(0, r)

)
=

d∑
k=0

L∇
d−k(B(0, 1))(2π)−(d−k)/2hd−k−1(t)r

d−k. (29)

But recall that, in the ”global case” for U open bounded set such that B(0, r) ⊂ U , one has

E
(
χ(EX(t) ∩B(0, r))

)
= E

(
C0

(
EX(t) ∩B(0, r), U

))
.

Then (27) rewrites as

E
(
χ(EX(t) ∩B(0, r))

)
=

d∑
k=0

ck,d−k
0,d Vd−k(B(0, 1))C

X

k (t)rd−k.

Hence, identifying with (29), we get for all 0 ≤ k ≤ d,

C
X

k (t) =
L∇
d−k(B(0, 1))

Vd−k(B(0, 1))
cd,khd−k−1(t),

where we set cd,k = (2π)−(d−k)/2

ck,d−k
0,d

. Note that cd,d = 1, cd,0 = (2π)−d/2, and

c2,1 = (2π)−1/2 γ(1/2)
2

2
=

1

2

√
π

2
,

while c3,1 = (2π)−1
(
1
2

)−1
= 1

π and c3,2 = (2π)−1/2
(
1
2

)−1
=
√

2
π . This allows us to state the

following result in general dimension d ≥ 1.

Proposition 5.1. Let d ≥ 1 and let Γ be the covariance matrix of ∇X(0) assumed to be positive
definite. For 0 ≤ k ≤ d−1, we can define some geometrical second spectral moments of the smooth
centered unit variance field X by

λd,k =

(
L∇
d−k(B(0, 1))

Vd−k(B(0, 1))

)2/(d−k)

,

where L∇
d−k denotes the Lipschitz-Killing curvatures under the Riemannian metric given by Γ.

Moreover,
∀0 ≤ k ≤ d− 1, λd,0 ≤ λd,k ≤ λd,d−1.

Proof. Since Γ is symmetric, there exists an orthogonal matrix P such that Γ = P tdiag(γ1, . . . , γd)P

and for 0 ≤ k ≤ d− 1 one has λd,k =
(

Vd−k(Eℓℓ(Γ))
Vd−k(B(0,1))

)2/(d−k)

, where Eℓℓ(Γ) is the Ellipsoid of semi-

axes
√
γ1, . . . ,

√
γd (see [26] for explicit computations). Then, extended isoperimetric inequalities

(see (1.1) of [34]) rewrite as
∀0 ≤ k ≤ d− 1, λd,0 ≤ λd,k,

while the generalized Urysohn inequality (see (1.2) of [34]) states that

∀0 ≤ k ≤ d− 1, λd,k ≤ λd,d−1.
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This result is in accordance with our results for dimension d ∈ {2, 3} with λ2,0 = γTC, λ2,1 =
γPer in dimension d = 2 and λ3,0 = γTGC, λ3,1 = γTMC, λ3,2 = γSA in dimension d = 3.

Finally, let us end by remarking that when Γ is diagonal the mean Euler characteristic of
EX(t) ∩ [0, T ]d for some T > 0 is given according to Theorem 4.4.1 of [3] by

E
(
χ(EX(t) ∩ [0, T ]d)

)
=

d∑
k=0

L∇
d−k([0, T ]

d)(2π)−(d−k)/2hd−k−1(t)

= L∇
d ([0, T ]d)(2π)−d/2hd−1(t) + oT→+∞

(
T d
)
,

with L∇
d ([0, T ]d) = T d

(
d∏

i=1

γi

)1/2

= T d(λd,0)
d/2 and therefore, the Euler characteristic density

of EX(t) ∩ [0, T ]d satisfies

lim
T→+∞

1

Ld([0, T ]d)
E(χ(EX(t) ∩ [0, T ]d)) =

(
λd,0

)d/2
(2π)−d/2hd−1(t).

Hence in view of (20) we should obtain that

C
X

0 (t) =
(
λd,0

)d/2
(2π)−d/2hd−1(t),

generalizing our results in dimension d = 2 and d = 3 when m = 0 and σ2 = 1.

5.2. A functional Weyl’s tube formula

Considering a compact d-dimensional submanifold in Rd with a C2 smooth boundary, according
to Weyl’s tube formula [42] also called Steiner’s formula [22], the Lipschitz-Killing curvatures are
related to the volume of the r-parallel set (also called r-extension or r-dilation) of M by

Ld(Mr) =

d∑
k=0

ωkCd−k(M,Rd)rk,

whereMr =M⊕B(0, r) = {x; dist(x,M) ≤ r} is the r-parallel set toM , and where ωk is still the
volume of the k-dimensional unit ball of Rk. The above tube formula is valid for r small enough
(more precisely smaller than the so-called reach of M , denoted by reach(M), and that is strictly
positive when M is a smooth compact submanifold). Now, this formula can be localized in the
sense that if we consider an open bounded subset U ⊂ Rd, the above tube formula becomes (see
[22] or [41] Theorem 26), for 0 < r < reach(M),

Ld(Mr,U ) =

d∑
k=0

ωkCd−k(M,U)rk, (30)

where here Mr,U = {x; dist(x,M) ≤ r and ΠM (x) ∈ U}, with ΠM (x) being the projection of x on
M , that is the closest point to x in M which is unique when dist(x,M) ≤ r < reach(M). Notice
that generally Mr,U is not equal to Mr ∩U . Here the Lipschitz-Killing curvatures Cd−k(M,U) are
localized in U and their formula involving the principal curvatures are the ones given in Section
2.

Let f : Rd → R be a smooth function, and let U be a bounded open subset of Rd. For almost
every t ∈ R, Ef (t) = {x ∈ Rd ; f(x) ≥ t} is a smooth manifold and we can consider its Lipschitz-
Killing curvatures in U . We denote them by Ck(Ef (t), U) for k = 0, . . . , d. As recalled by Weyl’s
tube formula (30), we can obtain these Lipschitz-Killing curvatures as the coefficients of the powers
of r in the volume of the r-parallel set to Ef (t). More precisely we have, for r small enough,

Ld((Ef (t))r,U ) =

d∑
k=0

ωkCd−k(Ef (t), U)rk.
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In Section 2.2, we have 1) used the formulas for the Ck involving the symmetric functions of
the curvatures, and the explicit formulas for these curvatures in 2D or 3D; 2) integrate these with
a test function h to have formulas for

∫
t
h(t)Ck(Ef (t), U) dt; 3) and finally these integrals were

written as an integral on x ∈ U thanks to the coarea formula [20].
But we could have done it the other way round. Indeed, we can use directly the coarea formula

on
∫
t
h(t)Ld((Ef (t))r,U ) dt, without knowing the formulas for the curvatures, and in fact recovering

them.
More precisely, let h be a test function, and for z = (x, s) ∈ U × R+ ⊂ Rd+1, let us define the
functions h̃ : U × [0, r] → R and F : U × [0, r] → Rd+1 by h̃(z) = h̃(x, s) = h(f(x)) and

F (x, s) = (f(x), x− s νf (x)) ,

where we denote

νf (x) =
∇f(x)
∥∇f(x)∥

∈ Sd−1 if ∇f(x) ̸= 0, and νf (x) = 0 if ∇f(x) = 0.

A simple computation shows that νf is differentiable at all x such that ∇f(x) ̸= 0 and that

Dνf (x) =
1

∥∇f(x)∥
D2f(x)− 1

∥∇f(x)∥3
∇f(x)(D2f(x)∇f(x))t.

Now, let K be a compact ball containing U1 (1-dilation of U). Then for ε > 0, let us consider the
following set of values

Vε = {t ∈ R ; reach(Ef (t) ∩K) ≥ ε}.
Then, since by Morse-Sard’s theorem the set of critical values has Lebesgue measure 0 in R, we
have that L1(R \ ∪ε>0Vε) = 0. Then, let us denote Gε

f = f−1(Vε). For r < ε and t ∈ Vε, we have
that

Ef (t)r,U \ (Ef (t) ∩ U) = {x− s νf (x) ; x ∈ U and f(x) = t and s ∈ (0, r)}.
Therefore, by the coarea formula:∫

(U∩Gε
f )×[0,r]

h(f(x))
∣∣det(DF (x, s))∣∣ dx ds = ∫

Vε

h(t)(Ld((Ef (t))r,U )− Ld(Ef (t) ∩ U)) dt.

The right-hand term is equal to
∑d

k=1 ωkr
k
∫
Vε
h(t)Cd−k(Ef (t), U) dt, whereas in the left-hand

term we have

det(DF (x, s)) = det

(
∇f(x)t 0

Id − sDνf (x) −νf (x)

)
= ∥∇f(x)∥ det

(
νf (x)

t 0
Id − sDνf (x) −νf (x)

)
.

(31)
This determinant is a polynomial in s, with degree d− 1 and with constant term (corresponding
to s = 0) equal to ±1.

To identify the values of
∫
R h(t)Cd−k(Ef (t), U) dt for each k we just need to develop the above

determinant, and then let ε goes to 0.
When the dimension is d = 2, we have that

det(DF (x, s)) = ∥∇f(x)∥
(
1− s (Tr(Dνf (x))− νf (x)

tDνf (x)νf (x))
)
,

which is positive for s small enough. Therefore, computing the integral on s between 0 and r, we
get a polynomial in r, that allows us to identify its coefficients, and we get

ω1

∫
h(t)C1(Ef (t), U) dt =

∫
U

h(f(x))∥∇f(x)∥ dx,

and

ω2

∫
h(t)C0(Ef (t), U) dt = −1

2

∫
U

h(f(x))∥∇f(x)∥
(
Tr(Dνf (x))− νf (x)

tDνf (x)νf (x)
)
dx

= −1

2

∫
U

h(f(x))

(
Tr(D2f(x))− ∇f(x)tD2f(x)∇f(x)

∥∇f(x)∥2

)
dx.
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We have thus recovered the formula for the curvature in dimension d = 2.

When the dimension is d = 3, considering a direct orthonormal basis of R3 of the form
(νf (x), T1(x), T2(x)), developing the above determinant in this basis, we get

det(DF (x, s)) = ∥∇f(x)∥(1− sTr(Dνf (x)) + s2 det(νf (x), Dνf (x)
tT1(x), Dνf (x)

tT2(x))),

which is positive for s small enough. Therefore, computing the integral on s between 0 and r, and
identifying the coefficients, we get

ω1

∫
h(t)C2(Ef (t), U) dt =

∫
U

h(f(x))∥∇f(x)∥ dx,

ω2

∫
h(t)C1(Ef (t), U) dt = −1

2

∫
U

h(f(x))∥∇f(x)∥Tr(Dνf (x)) dx

= −1

2

∫
U

h(f(x))

(
Tr(D2f(x))− ∇f(x)tD2f(x)∇f(x)

∥∇f(x)∥2

)
dx,

and

ω3

∫
h(t)C0(Ef (t), U) dt =

1

3

∫
U

h(f(x))∥∇f(x)∥ det(νf (x), Dνf (x)tT1(x), Dνf (x)tT2(x))) dx

=
1

3

∫
U

h(f(x))
∇f(x)tadj(D2f(x))∇f(x)

∥∇f(x)∥3
dx,

where adj(D2f(x)) is the adjugate matrix of D2f(x) (that is the matrix of its cofactors). We
have thus recovered the formulas for the mean curvature and the Gaussian curvature for implicit
surfaces in R3.
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tions: École D’Été de Probabilités de Saint-Flour XXXIX-2009. Springer Science & Business
Media.
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Appendix A: Central Limit Theorem

A.1. General results

We assume that X is a C2 stationary second order random field (not necessarily Gaussian) and
write as before X = (X,∇X,D2X) the vector-valued field with values in Rs = R×Rd×Rd(d+1)/2,
following [19]. We recall that since X is C2 stationary second order, the covariance function
x 7→ ρ(x) = Cov(X(x), X(0)) is C4 and for 0 ≤ i, j, k, l ≤ d

Cov(Xij(x), Xkl(0)) = (−1)ε(k)+ε(l)∂
ε(i)+ε(j)+ε(k)+ε(l)
ijkl ρ(x),

where ε(0) = 0, ε(i) = 1 if i ̸= 0 and X0j(x) = Xj0(x) = Xj(x) while X00(x) = X(x). Hence we
introduce

ρ̃(x) = max
|k|≤4

|∂kρ(x)|,

where k = (k1, . . . , kd) ∈ Nd and |k| =
∑d

i=1 ki. In order to prove a general central limit theorem,
we will work in this section under a strong quasi-association assumption, namely, we assume
that there exists C ≥ 1 such that, for all finite subsets I and J of Zd, for all p ≥ 1 and all
x⃗ = (x1, . . . , xp) ∈ ([0, 1]d)p, for all Lipschitz functions f : Rs|I|p → R and g : Rs|J|p → R, we have

|Cov(f(Xx⃗,I), g(Xx⃗,J)| ≤ CLip(f)Lip(g)
∑
i∈I

∑
j∈J

p∑
l=1

p∑
l′=1

ρ̃(xl + i− (xl′ + j)), (32)

where Xx⃗,I = (X(xl + i), i ∈ I, 1 ≤ l ≤ p). For h ∈ S and q ∈ N, we write ∥h∥q = ∥h∥q,0 + ∥h∥q,1.
Note that h is a Lipschitz bounded function with Lip(h) = ∥h∥0,1 ≤ ∥h∥q,1 and that ∥h∥0,0 ≤
∥h∥q,0. We consider a sequence (Tn)n of generalized random processes given, for n ∈ N, Un = (0, n)d

and h ∈ S, by

⟨Tn, h⟩ =
√
Ld(Un)

(
1

Ld(Un)

∫
Un

L(h,X(x))dx− E(L(h,X(0)))

)
(33)

=

∫
[0,1]d

Sn(h, x)dx

with, for V = (0, 1]d,

Sn(h, x) =
1

nd/2

∑
k∈nV ∩Zd

(L(h,X(x+ k))− E(L(h,X(0))))

and h ∈ S 7→ L(h,x) ∈ R is linear continuous for all x ∈ Rs, x ∈ Rs 7→ L(h,x) ∈ R is measurable
for all h ∈ S and E

(
L(h,X(0))2

)
< +∞. Now let p ≥ 1, x⃗ = (x1, . . . , xp) ∈ ([0, 1]d)p and h ∈ S

be fixed. We consider the stationary vector-valued random field
Y = (Yk)k∈Zd with values in Rp where

Yk = (L(h,X(x1 + k)), . . . , L(h,X(xp + k))) := L(h,Xx⃗+k). (34)

The quasi-association assumption (32) will imply some dependence properties on the stationary
vector-valued random field Y = (Yk)k∈Zd .
In the following, we will use the notation BL(q′) for q′ ≥ 1 to denote the set of functions from Rq′

to R that are Bounded and Lipschitz.

Definition A.1 (Definition 5.14 p.94 of [12]). The random field Y given by (34) is called (BL,ψ, θ)
dependent if there exists a non-increasing sequence θ = (θr)r∈N with limr→+∞ θr = 0 such that
for any disjoint finite sets I, J ⊂ Zd with dist(I, J) ≥ r, and any bounded Lipschitz functions
f ∈ BL(p|I|), g ∈ BL(p|J |), one has

|Cov (f(YI), g(YJ))| ≤ ψ(|I|, |J |, f, g)θr.

The case where ψ(|I|, |J |, f, g) = Lip(f)Lip(g)min(|I|, |J |) is simply called (BL, θ) dependence.
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Note that when x ∈ Rs 7→ L(h,x) is a Lipschitz function, assumption (32) implies that Y =
(Yk)k∈Zd is a stationary (BL, θ) dependent field. Then, by Theorem 1.12 p. 178 of [12], the sequence
(Sn(h, x))n will have a Gaussian limit with variance σ2 as soon as (Var(Sn(h, x)))n tends to σ2.
However, for our specific application, we can not assume that x ∈ Rs 7→ L(h,x) is Lipschitz but
we can assume that x ∈ Rs 7→ L(h,x) may be approximated by a Lipschitz function according to
the following hypothesis:

There exist α > 0 and C ≥ 1 such that ∀ε ∈ (0, 1], there is Tε : Rs → [0, 1] such that

Fh,ε : x ∈ Rs 7→ L(h,x)Tε(x) ∈ R is Lipschitz with Lip(Fh,ε) ≤ C∥h∥qε−1,

E
(
L(h,X(x))2

)
≤ C∥h∥2q,0 and E

(
L(h,X(x))2(1− Tε(X(x)))

)
≤ C∥h∥2q,0ε2α. (LA)

Proposition A.1. Assuming that (32) and (LA) hold, if∑
i∈Zd

sup
∥y∥∞≤1

|ρ̃(y + i)| < +∞,

then the random field Y given by (34) is (BL,ψ, θ) dependent with

ψ(|I|, |J |, f, g) = Lip(f)∥g∥∞|I|+ Lip(g)∥f∥∞|J |+min(|I|, |J |)Lip(f)Lip(g) (35)

and for Cp(h) = 5C3p2∥h∥q(4 + ∥h∥q),

θr = Cp(h)max

((
θ̃r

) α
α+2

, θ̃r

)
, with θ̃r =

∑
i∈Zd;|i|≥r

sup
∥y∥∞≤1

|ρ̃(y + i)| (36)

Proof. Let r ∈ N, we set I, J ⊂ Zd with dist(I, J) ≥ r and |J | ≤ |I| such that for any y ∈ [−1, 1]d∑
i∈I

ρ̃(y + i− j) ≤ θ̃(r), for all j ∈ J.

Let ε ∈ (0, 1] to be fixed later. In view of (34), we also write Fh,ε (Xx⃗,I) := (Fh,ε(X(xl + i)), i ∈
I, 1 ≤ l ≤ p) For f ∈ BL(p|I|) and , we then write f ◦Fh,ε with a slight abuse of notation to denote
the function that is in BL(sp|I|) with Lip(f ◦ Fh,ε) ≤ Lip(f)Lip(Fh,ε). Hence for g ∈ BL(p|J |),
we get by (32)

|Cov(f ◦ Fh,ε(Xx⃗,I), g ◦ Fh,ε(Xx⃗,J)| ≤ CLip(f)Lip(g)Lip(Fh,ε)
2
∑
i∈I

∑
j∈J

p∑
l=1

p∑
l′=1

ρ̃(xl + i− (xl′ + j))

≤ CLip(f)Lip(g)Lip(Fh,ε)
2|J |p2θ̃r

≤ C3∥h∥2qLip(f)Lip(g)|J |p2ε−2θ̃r,

by assumption (LA). Now, let us remark that since YI = L(h,Xx⃗,I),

|Cov(f(YI)− f ◦ Fh,ε(Xx⃗,I), g(YJ))| ≤ 2∥g∥∞E(|f(YI)− f ◦ Fh,ε(Xx⃗,I)|)
≤ 2∥g∥∞Lip(f)E (∥L(h,Xx⃗,I)− Fh,ε(Xx⃗,I)) ∥∞)

≤ 2∥g∥∞Lip(f)
∑
k∈I

p∑
l=1

E (|L(h,Xxl+k)|(1− Tε(Xxl+k)))

≤ 2C1/2p|I|∥g∥∞Lip(f)∥h∥q,0εα,

by assumption (LA), using Cauchy-Schwarz inequality and the fact that Tε has values in [0, 1].
Similarly, one has

|Cov(f ◦ Fh,ε(Xx⃗,I), g(YJ)− g ◦ Fh,ε(Xx⃗,J))| ≤ 2C1/2p|J |∥f∥∞Lip(g)∥h∥q,0εα.
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Since C ≥ 1, by definition of (35), it follows that

|Cov (f(YI), g(YJ))| ≤
Cp(h)

5
ψ(|I|, |J |, f, g)

(
θ̃rε

−2 + 4εα
)
,

with Cp(h) = 5C3p2∥h∥q(4 + ∥h∥q). Now, when θ̃r ∈ (0, 1] we can choose ε = (θ̃r)
1

α+2 to get

|Cov (f(YI), g(YJ))| ≤ Cp(h)ψ(|I|, |J |, f, g)θ̃
α

α+2
r .

Otherwise, if θ̃r = 0 the result comes from letting ε tend to 0 and if θ̃r ≥ 1 by choosing ε = 1.

However, we can in fact be more precise in term of covariance control and will need it in the
sequel.

Proposition A.2. Assuming that (32) and (LA) hold, one has for all x, x′ ∈ Rd

|Cov (L(h,X(x)), L(h,X(x′)))| ≤ 3C3∥h∥2q max
(
ρ̃(x− x′)

α
α+2 , ρ̃(x− x′)

)
.

Proof. As previously, let us choose ε ∈ (0, 1] to be fixed later and write for x ∈ Rd

L(h,X(x)) = Fh,ε(X(x)) + L(h,X(x)) (1− Tε (X(x))) .

Noting that x may be written as x = x̃+ k for some x̃ ∈ [0, 1]d and k ∈ Zd, by (32) we simply
get for x′ ∈ Rd,

|Cov(Fh,ε(X(x)), Fh,ε(X(x′))| ≤ CLip(Fh,ε)
2ρ̃(x− x′)

≤ C3∥h∥2qε−2ρ̃(x− x′).

Now, using Cauchy-Schwarz inequality, we obtain

|Cov(L(h,X(x)) (1− Tε (X(x))) , L(h,X(x′))|
≤ Var(L(h,X(x)) (1− Tε (X(x)))

1/2
Var(L(h,X(x′))1/2

≤ C∥h∥2q,0εα,

by (LA) using that the variance is smaller than the second order moment and the fact that Tε
has values in [0, 1]. Moreover, we obtain similarly

|Cov(Fh,ε(X(x)), L(h,X(x′)) (1− Tε (X(x′))))|

≤ Var(Fh,ε(X(x))1/2Var(L(h,X(x′)) (1− Tε (X(x′)))
1/2

≤ C∥h∥2q,0εα,

since E
(
Fh,ε(X(x))2

)
≤ E

(
L(h,X(x))2

)
. Hence,

|Cov (L(h,X(x)), L(h,X(x′)))| ≤ C3∥h∥2q
(
ε−2ρ̃(x− x′) + 2εα

)
.

Note that if ρ̃(x− x′) = 0 we get the upper-bound by letting ε tends to 0. If ρ̃(x− x′) ∈ (0, 1] we

choose ε = ρ̃(x− x′)
1

α+2 and otherwise we choose ε = 1 to get the result.

Then, under a natural decay assumption, we can define the asymptotic covariances of the
sequence (Sn(h, x))n. In particular this ensures the so-called finite susceptibility assumption (see
(5.3) p.90 of [12]).

Corollary A.1. Assuming that (32) and (LA) hold, we also assume that there exists β > d(α+2)
α

such that, for all x ∈ Rd,
ρ̃(x) ≤ C(1 + |x|)−β . (37)
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Then, there exists Cα,β,d > 0 such that, for all x, y ∈ Rd,∑
k∈Zd

|Cov (L(h,X(x+ k)), L(h,X(y)))| ≤ Cα,β,d∥h∥2q < +∞.

Hence, there exists a real-valued stationary Gaussian random field (B(h, x))x∈Rd with covariance
function given by

Cov(B(h, x), B(h, y)) =
∑
k∈Zd

Cov (L(h,X(x+ k)), L(h,X(y))) , (38)

such that
Cov (Sn(h, x), Sn(h, y)) −→

n→+∞
Cov(B(h, x), B(h, y)).

Proof. Note that by Proposition A.2, under assumption 37, one has for all x, y ∈ Rd,∑
k∈Zd

|Cov (L(h,X(x+ k)), L(h,X(y)))| ≤ 3C4∥h∥2q
∑
k∈Zd

(1 + |k+ x− y|)−
βα
α+2 ,

and one can choose Cα,β,d = 3C4
∫
Rd(1 + |z|)−

βα
α+2 dz < +∞ since β > d(α+2)

α . Moreover, by
stationarity of (L(h,X(x)))x∈Rd one has

Cov (Sn(h, x), Sn(h, y)) =
∑

k∈(−n,n)d∩Zd

d∏
j=1

(
1− |ki|

n

)
Cov (L(h,X(x+ k)), L(h,X(y)))

−→
n→+∞

∑
k∈Zd

Cov (L(h,X(x+ k)), L(h,X(y))) .

Hence one can define the stationary Gaussian field (B(h, x))x∈Rd with covariance function given
by (38) since this function is of non-negative type as a limit of covariance functions.

Note that when x 7→ L(h,x) is Lipschitz with E(L(h,X(x))2) < +∞, assumption (LA) is
satisfied for all α > 0 since one can choose Tε = 1. Then, as soon as there exists β > d such
that (37) holds true, we obtain the asymptotic normality of the Rp-valued vector (Sn(h, x⃗))n for
any p ≥ 1 and x⃗ = (x1, . . . , xp) ∈ ([0, 1]d)p, by Corollary 1.13 p.180 of [12], using the (BL, θ)
dependence of Y . This could be directly used for the volume of the excursion set. In the general
case, noting that the ψ-dependency coefficient in (35) satisfies

ψ(|I|, |J |, f, g) ≤ Lip(f)∥g∥∞|I|+ Lip(g)∥f∥∞|J |+ |I||J |Lip(f)Lip(g),

the field Y is also λ-dependent as defined in [17]. By (37) we obtain that λY (r)(= θr) = Or→+∞(r−λ)
with λ = α

α+2 (β−d) and θr given by (36). Then, using Cramer-Wold device and Theorem 2 p.219
in [17] we obtain the asymptotic normality under stronger assumptions (MA1) and (MA2) as
stated in the following corollary.

Corollary A.2. Assuming that (32), (LA) and (37) hold, assuming moreover that

(MA1) there exists η > 0 such that E(|L(h,X(0))|2+η) < +∞ ,

(MA2)
α

α+2 (β − d) > max
(
2d, d(1 + 1

η )
)
.

Then

(Sn(h, x))x∈[0,1]d
fdd−→

n→+∞
(B(h, x))x∈[0,1]d .

This result will allow us to get a central limit theorem for the sequence of generalized processes
given by (33), by approximating integrals by Riemann sums, under an appropriate continuity
assumption.
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Proposition A.3. Assuming that (32) and (LA) hold, if there exists δ > 0 such that for all
x ∈ Rd

∥x∥ ≤ 1 ⇒ ωX(x) := E
[
∥X(x)−X(0)∥2∞

]1/2 ≤ C∥x∥δ. (39)

Then, there exists Cα > 0 such that, for all x ∈ Rd with ∥x∥ ≤ 1,

E
[
|L(h,X(x))− L(h,X(0))|2

]1/2 ≤ Cα∥h∥qωX(x)
α

1+α . (40)

Assuming moreover (37) for β > d(α+2)
α , one can choose a version of (B(h, x))x∈Rd , given in Corol-

lary A.1, that is γ-Hölder continuous on any compact sets of Rd for all γ < δ
2

α
1+α

(
1− d(α+2)

αβ

)
.

Proof. Let x ∈ Rd with ∥x∥ ≤ 1. First note that we may assume that ωX(x) ∈ (0, C]. Let us
remark that, as previously, using the fact that for ε ∈ (0, 1]

L(h,X(x)) = Fh,ε(X(x)) + L(h,X(x))(1− Tε(X(x))),

we have

E
[
|L(h,X(x))− L(h,X(0))|2

]1/2 ≤ Lip(Fh,ε)E [∥X(x)−X(0)∥∞] + 2C1/2∥h∥q,0εα

≤ C∥h∥q
[
ε−1ωX(x) + 2εα

]
.

Taking ε =
(

ωX(x)
C

) 1
1+α

we obtain (40).

Assuming moreover (37) for β > d(α+2)
α , for K ≥ 1,

E
[
|B(h, x)−B(h, 0)|2

]
= 2

∑
k∈Zd

Cov (L(h,X(k)), L(h,X(0))− L(h,X(x))) ,

≤ 2C1/2∥h∥q,0E
[
|L(h,X(x))− L(h,X(0))|2

]1/2
(2K + 3)d

+ 6C3∥h∥2q
∑

|k|>K+1

[max
(
ρ̃(k)

α
α+2 , ρ̃(k)

)
+max

(
ρ̃(k− x)

α
α+2 , ρ̃(k− x)

)
],

using Cauchy-Schwarz inequality and (LA) for the first term and Proposition A.2 for the second
one. Hence, by (37) and (40), we can find C̃α,β,d > 0 such that

E
[
|B(h, x)−B(h, 0)|2

]
≤ C̃α,β,d∥h∥2q

(
KdωX(x)

α
1+α +K−( βα

α+2−d)
)
.

Then, choosing K = ωX(x)−
α+2
αβ

α
1+α , there exists Cα,β,d > 0 such that

E
[
|B(h, x)−B(h, 0)|2

]
≤ Cα,β,d∥h∥2qωX(x)

α
1+α (1−

d(α+2)
αβ ).

In view of (39) and by stationarity of (B(h, x))x∈Rd , we can choose a version such that (B(h, x))x∈Rd

is γ-Hölder continuous on any compact set of Rd for γ < δ
2

α
1+α

(
1− d(α+2)

αβ

)
(see Proposition 9 in

[8] for instance).

We are now in position to prove the main result.

Theorem A.1. Under the assumptions of Corollary A.2, assuming moreover (39), one has for
h ∈ S,

⟨Tn, h⟩ =
√
Ld(Un)

(
1

Ld(Un)

∫
Un

L(h,X(x))dx− E(L(h,X(0)))

)
d−→

n→+∞

∫
[0,1]d

B(h, x)dx,

where (B(h, x))x∈[0,1]d is the continuous Gaussian random field with covariance function given by

(38). The random variable
∫
[0,1]d

B(h, x)dx is centered Gaussian with variance given by∫
Rd

Cov (L(h,X(z)), L(h,X(0))) dz. (41)
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Hence, there exists B a generalized Gaussian random process on (S ′,B(S ′)), with characteristic
functional given by

LB(h) := E
(
ei⟨B,h⟩

)
= E

(
ei

∫
[0,1]d

B(h,x)dx
)
= exp

(
−1

2

∫
Rd

Cov (L(h,X(z)), L(h,X(0))) dz

)
such that Tn

distrib.−→
n→+∞

B, where the convergence holds in distribution with respect to the strong

topology of S ′(R).

Proof. In view of Proposition A.3, by continuity of (B(h, x))x∈[0,1]d we have the almost sure
convergence of the Riemann sums∫

[0,1]d
B(h, x)dx = lim

m→+∞

1

md

∑
l∈mV ∩Zd

B

(
h,

l

m

)
,

where V = [0, 1)d. Hence the random variable
∫
[0,1]d

B(h, x)dx is centered Gaussian with variance

given by∫
[0,1]d

∫
[0,1]d

Cov (B(h, x), B(h, y)) dxdy =

∫
[0,1]d

∫
[0,1]d

∑
k∈Zd

Cov (L(h,X(x+ k)), L(h,X(y))) dxdy

=

∫
Rd

Cov (L(h,X(z)), L(h,X(0))) dz,

by change of variables and Fubini’s theorem.
Note also that for x ∈ [0, 1]d, m > 0 and l ∈ mV ∩ Zd we have

Sn

(
h, x+

l

m

)
−Sn

(
h,

l

m

)
=

1

nd/2

∑
k′∈nV ∩Zd

(
L

(
h,X

(
x+

l

m
+ k′

))
− L

(
h,X

(
l

m
+ k′

)))
.

Then, by stationarity,

Var

(
Sn

(
h, x+

l

m

)
− Sn

(
h,

l

m

))
≤

∑
∥k∥∞≤n

|r(h,k, x)|,

where
r(h,k, x) = Cov (L(h,X(x))− L(h,X(0)), L(h,X(x+ k))− L(h,X(k)))

satisfies, by Proposition A.3 and Proposition A.2 together with (37),

|r(h,k, x)| ≤ C2
α∥h∥2qωX(x)

2α
1+α and |r(h,k, x)| ≤ 12C4∥h∥2q|k|−

βα
α+2 .

It follows that we can find Cα,β,d > 0 such that

E

[(
Sn

(
h, x+

l

m

)
− Sn

(
h,

l

m

))2
]

= Var

(
Sn

(
h, x+

l

m

)
− Sn

(
h,

l

m

))
≤ Cα,β,d∥h∥2qωX(x)

2α
1+α (1−

d(α+2)
αβ ).

Using Cauchy-Schwarz inequality,

E

(∫
[0,1/m]d

(
Sn

(
h, x+

l

m

)
− Sn

(
h,

l

m

))
dx

)2

≤ 1

md

∫
[0,1/m]d

E
(
Sn

(
h, x+

l

m

)
− Sn

(
h,

l

m

))2

dx.
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Then, ∥∥∥∥∥∥
∫
[0,1]d

Sn(h, x)dx− 1

md

∑
l∈mV ∩Zd

Sn

(
h,

l

m

)∥∥∥∥∥∥
L2(Ω)

≤
∑

l∈mV ∩Zd

∥∥∥∥∥
∫
[0,1/m]d

(
Sn(h, x+

l

m
)− Sn

(
h,

l

m

))
dx

∥∥∥∥∥
L2(Ω)

≤ C
1/2
α,β,d∥h∥qm

d/2

(∫
[0,1/m]d

ωX(x)
2α

1+α (1−
d(α+2)

αβ )dx

)1/2

.

In view of (39), this implies that∫
[0,1]d

Sn(h, x)dx = lim
m→+∞

1

md

∑
l∈mV ∩Zd

Sn

(
h,

l

m

)
,

where the convergence holds in L2(Ω), uniformly in n. Since√
Ld(Un)

(
1

Ld(Un)

∫
Un

L(h,X(x))dx− E(L(h,X(0)))

)
=

∫
[0,1]d

Sn(h, x)dx,

the stated convergence in distribution will simply follows from the fact that form > 0, by Corollary
A.2, one has

1

md

∑
l∈mV ∩Zd

Sn

(
h,

l

m

)
d−→

n→+∞

1

md

∑
l∈mV ∩Zd

B

(
h,

l

m

)
.

Note that the variance of the Gaussian variable
∫
[0,1]d

B(h, x)dx is explicitly given by

σ2(h) :=

∫
[0,1]2

∫
[0,1]2

Cov(B(h, x), B(h, y))dxdy,

with
Cov(B(h, x), B(h, y)) =

∑
k∈Zd

Cov (L(h,X(x+ k)), L(h,X(y))) .

It follows by Proposition A.2 that, on the one hand we can use Fubini’s theorem to obtain (41),
and on the other hand, there exists C̃ such that σ2(h) ≤ C̃∥h∥2q. Therefore the characteristic
functional LB : S(R) → C given by

LB(h) = E
(
ei

∫
[0,1]d

B(h,x)dx
)
= e−

1
2σ

2(h),

is continuous at 0 and the conclusion comes from Theorem 2.3 of [11].

A.2. Gaussian case and Proof of Theorem 2.1

Assuming that X is a Gaussian field satisfying the assumptions of Theorem 2.1, by the Cramer-
Wold device, it is enough to prove that for (aj)0≤j≤d ∈ Rd+1 one has

√
Ld(Un)

d∑
j=0

aj

(
Cj(EX(·), Un)

Ld(Un)
− C

X

j ,

)
distrib.−→
n→+∞

d∑
j=0

ajBj ,
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where (Bj)0≤j≤d are the centered Gaussian generalized processes introduced in Theorem 2.1 and
the convergence holds in distribution with respect to the strong topology of S ′(R). Therefore we
let

Tn =
√
Ld(Un)

d∑
j=0

aj

(
Cj(EX(·), Un)

Ld(Un)
− C

X

j

)
and B =

d∑
j=0

ajBj .

Hence we need to check that the assumptions of Theorem A.1 are satisfied for h ∈ S and

L(h,X(x)) :=

d∑
j=0

ajLj(h,X(x)),

since

⟨Tn, h⟩ =
√

Ld(Un)

(
1

Ld(Un)

∫
Un

L(h,X(x))dx− E (L(h,X(0)))

)
.

Then we will identify the Gaussian limit. First, since X is a Gaussian field the quasi-association
assumption (32) is satisfied (see [37]). Second, for x = (u, v, w) ∈ R×Rd ×Rd(d+1)/2 with a slight
abuse of notation we write

F0(x) = ∥v∥, F1(x) = −Tr(w) +
vtwv

∥v∥2
and F2(x) = −v

tadj(w)v

∥v∥3
.

Then for x ∈ Rs and h ∈ S we have Ld(h,x) =
∫ +∞
u

h(t)dt and for 0 ≤ j ≤ d − 1, Lj(h,x) =
h(u)Fd−1−j(x). First remark that x 7→ Ld(h,x) is bounded by 2∥h∥2,0 and Lipschitz. Then it
satisfies (LA) for q = 2 and any α > 0 by choosing Tε = 1. Therefore, under (37), one has (MA1),
(MA2) as soon as β > 3d. However, for 0 ≤ j ≤ d − 1 we need to conveniently approximate
x 7→ Lj(h,x) = h(u)Fd−1−j(x). For δ > 0 we can find a C1 function Tδ : Rd → [0, 1] such that
Tδ(v) = 1 for ∥v∥ > δ and ∥∇Tδ∥∞ ≤ δ−1. Moreover for M > 0 we can find a C1 function
TM : Rd × Rd(d+1)/2 → [0, 1] such that TM (v, w) = 1 for ∥(v, w)∥ < M and TM (v, w) = 0 for
∥(v, w)∥ > 2M with ∥∇TM∥∞ ≤ 1. Then x 7→ Lj(h,x)TM (v, w)Tδ(v) is C

1 with gradient bounded

by C∥h∥q
(
M
δ

)
for j = d− 1−k and k = 0 or k = 1 but by C∥h∥q

(
M
δ

)2
for d = 3 and j = 0, with

C ≥ 1 that does not depend on M, δ, q = 0 (and consequently q = 2), and ∥h∥q = ∥h∥q,0 + ∥h∥q,1.
Using the fact that ∇X(x) admits a bounded density in the neighborhood of 0 one can find c > 0
such that

P(∥∇X(x)∥ ≤ δ) ≤ cδd.

Moreover, in view of Gaussian marginal distribution one can find cd > 0 such that for M large
enough

P(∥(∇X(x), D2X(x))∥ ≥M) ≤ e−cdM .

We consider in the sequel conditions on α > 0 for which (LA) can be satisfied and then
conditions on β in order to also check (MA1), (MA2) for each case separately.
• Case j = d−1−k for k = 0, 1. For ε ∈ (0, 1), we set Tε(x) = Tδ(v)TM (v, w) with δ = d

cd
ε| log(ε)|

and M = d
cd
| log(ε)| such that δ

M = ε.

Since E
(
F0(X(x))2p

)
= E

(
∥∇X(x)∥2p

)
< +∞ and E

(
F1(X(x))2p

)
≤ E

(
|2
∑d

i,j=1Xij(x)|2p
)
<

+∞ for any p ≥ 1, by Hölder inequality we get

E
(
Ld−1−k(h,X(x))2(1− Tε(X(x)))

)
≤ ∥h∥20,0E

(
Fk(X(x))2p

)1/p E((1− Tε(X(x)))p
′
)1/p′

,

for 1
p + 1

p′ = 1 as soon as p > 1, with

E
(
(1− Tε(X(x)))p

′
)

≤ P(∥∇X(x)∥ ≤ δ) + P(∥(∇X(x), D2X(x))∥ ≥M)

≤ Cεd(1 + | log(ε)|d),
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choosing C ≥ max(1, (cd/cd)
d), such that

E
(
Ld−1−k(h,X(x))2(1− Tε(X(x)))

)
≤ C∥h∥20,0E

(
Fk(X(x))2p

)1/p
εd/p

′
(1 + | log(ε)|d)1/p

′
.

We also have E
(
Ld−1−k(h,X(x))2

)
≤ C∥h∥20,0 and E

(
|Ld−1−k(h,X(x))|3

)
< +∞. It follows that

for any β > d (1 + 2(1 + 4/d)) one can find α ∈ (0, d/2) such that β − d > 2d(1 + 2/α) ensuring
(MA1) and (MA2) (with η = 1) and then choose p large enough such that d/p′ > 2α in order to
check (LA) with q = 0.
• Case d = 3 and j = 0 with d − 1 − j = 2. In contrast with the previous cases, using the
independence between ∇X(x) and D2X(x), one has only

E
(
F2(X(x))2+η

)
≤ E

(
[ max
1≤i,j≤d

|adj(D2X(x))|]2+η

)
E
(
∥∇X(x)∥−2−η

)
< +∞,

for any η < 1. Moreover x 7→ L0(h,x)TM (v, w)Tδ(v) has now a Lipschitz constant bounded by

C∥h∥q
(
M
δ

)2
. Hence for ε ∈ (0, 1), we must set Tε(x) = Tδ(v)TM (v, w) with δ = d

cd
ε1/2| log(ε1/2)|

and M = d
cd
| log(ε1/2)| such that

(
δ
M

)2
= ε.

Therefore, for any p > 1 and p′ > 1 with 1
p + 1

p′ = 1,

E
(
L0(h,X(x))2(1− Tε(X(x)))

)
≤ ∥h∥20,0E

(
[ max
1≤i,j≤d

|adj(D2X(x))|]2
)
E
(
∥∇X(x)∥−21I∥∇X(x)∥≤δ

)
+∥h∥20,0δ−2E

(
[ max
1≤i,j≤d

|adj(D2X(x))|]2p
)1/p

P(∥(∇X(x), D2X(x))∥ ≥M)1/p
′
,

by Hölder inequality for the second term. Then we can find cp > 0 and c̃p > 0 such that

E
(
L0(h,X(x))2(1− Tε(X(x)))

)
≤ cp∥h∥20,0

(
δd−2 + δ−2e

− cd
p′ M

)
≤ c̃p∥h∥20,0ε

d
2p′ −1

.

Then for β > d
(
1 + 2(1 + 8

d−2 )
)
one can find η < 1 and α < d−2

4 such that β−d > d
(
1 + 1

η

) (
1 + 2

α

)
to ensure (MA1) and (MA2). We can then choose p large enough to ensure that d

2p′ − 1 > 2α in

order to verify (LA). Combining both conditions on β in order to get (LA), (MA1) and (MA2)
satisfied for a general linear combination we must have β > 19d (corresponding to the worst case).
Finally, note that for ∥x∥ ≤ 1 one has

E
(
[Xij(x)−Xij(0)]

2
)
= 2(−1)ε(i)+ε(j)

(
∂
2ε(i)+2ε(j)
ijij ρ(0)− ∂

2ε(i)+2ε(j)
ijij ρ(x)

)
,

such that (39) is satisfied by (H).
It follows that all assumptions and therefore conclusions of Theorem 2.1 hold true.
To conclude it only remains to identify the asymptotic covariance. By linearity of B and L for

h, h̃ ∈ S we obtain that

Var(⟨B, h+ h̃⟩) = Var(⟨B, h⟩) + Var(⟨B, h̃⟩) + 2Cov(⟨B, h⟩, ⟨B, h̃⟩)

=

∫
Rd

Cov
(
L(h+ h̃,X(z)), L(h+ h̃,X(0))

)
dz

=

∫
Rd

Cov (L(h,X(z)), L(h,X(0))) dz +

∫
Rd

Cov
(
L(h̃,X(z)), L(h̃,X(0))

)
dz

+ 2

∫
Rd

Cov
(
L(h,X(z)), L(h̃,X(0))

)
dz,



/Anisotropy through Lipschitz-Killing curvatures 40

where we use the fact that, by stationarity and change of variables, one has∫
Rd

Cov
(
L(h̃,X(z)), L(h,X(0))

)
dz =

∫
Rd

Cov
(
L(h̃,X(0)), L(h,X(−z))

)
dz

=

∫
Rd

Cov
(
L(h̃,X(0)), L(h,X(z))

)
dz.

It follows that

Cov(⟨B, h⟩, ⟨B, h̃⟩) =

∫
Rd

Cov
(
L(h,X(z)), L(h̃,X(0))

)
dz

=

d∑
j=0

d∑
k=0

ajak

∫
Rd

Cov
(
Lj(h,X(z)), Lk(h̃,X(0))

)
dz,

and B =
∑d

j=0 ajBj where (Bj)0≤j≤d are centered Gaussian generalized processes with covariance
given by

∀j, k ∈ {0, . . . , d}, Cov(⟨Bj , h⟩, ⟨Bk, h̃⟩) =
∫
Rd

Cov
(
Lj(h,X(z)), Lk(h̃,X(0))

)
dz.

A.3. Proof of Corollary 2.2

Proof. For sake of simplicity, we only sketch the proof for k = j ∈ J and s = t ∈ V . Let us first
choose h ∈ S non-negative with compact support such that

∫
R h(u)du = 1, as well as (hm)m≥1

its associated approximation of the identity, given by hm(u) = mh(mu). We set τtȟ(u) = h(t− u)
and may assume that τtȟm has support in V for all m ≥ 1. Then for all m, p ≥ 1,

Cov
(
⟨Bj , τtȟm⟩, ⟨Bj , τtȟp⟩

)
=

∫
R

∫
R
τtȟm(u)τtȟp(v)Σjj(u, v) du dv −→

m,p→+∞
Σjj(t, t),

using Fubini’s theorem and continuity, thanks to (A3). Then
(
⟨Bj , τtȟm⟩

)
m

is a Cauchy sequence

of Gaussian variables in L2 and we can set B̃j(t) its Gaussian limit. Note that therefore we also

have Var
(
B̃j(t))

)
= Σjj(t, t). Moreover, since Cj(EX(t, Un)) ∈ L2(Ω,A,P) by (A1), we have

E

[√Ld(Un)

(
Cj(EX(t, Un))

Ld(Un)
− C

X

j (t)

)
−
√
Ld(Un)

(
LCX

j (τtȟm, Un)

Ld(Un)
− ⟨CX

j , τtȟm⟩

)]2
=

1

Ld(Un)
Var

(
Cj(EX(t), Un))− LCX

j (τtȟm, Un)
)
.

But

Cj(EX(t), Un)− LCX
j (τtȟm, Un) =

∫
R
h(u)

(
Cj(EX(t), Un)− Cj

(
EX

(
t− u

m

)
, Un

))
du.

Therefore,

Var
(
Cj(EX(t), Un))− LCX

j (τtȟm, Un)
)
=

∫
R2

h(u)h(v)...

Cov
(
Cj(EX(t), Un)− Cj

(
EX

(
t− u

m

)
, Un

)
, Cj(EX(t), Un)− Cj

(
EX

(
t− v

m

)
, Un

))
dudv.

By (A2), for ε > 0 and u, v with |u| ≤ δm and |v| ≤ δm, and by Cauchy-Schwarz inequality,
one has∣∣∣Cov (Cj(EX(t), Un)− Cj

(
EX

(
t− u

m

)
, Un

)
, Cj(EX(t), Un)− Cj

(
EX

(
t− v

m

)
, Un

))∣∣∣ ≤ εLd(Un).
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Hence, for m large enough such that hm has compact support in [−δ, δ] one has,

1

Ld(Un)
Var

(
Cj(EX(t), Un))− LCX

j (τtȟm, Un)
)
≤ ε.

Hence, choosing m such that we also have

Var
(
⟨Bj , τtȟm⟩ − B̃j(u)

)
≤ ε,

the results follow from Theorem 2.1, using the fact that we have

√
L(Un)

(
LCX

j (τtȟm, Un)

Ld(Un)
− ⟨CX

j , τtȟm⟩

)
d−→

n→+∞
⟨Bj , τtȟm⟩.

Appendix B: Additional proofs

B.1. Additional proof of Theorem 3.1

Recall that, for a.e. t ∈ R, using (6) and (9), we have

C
X

1 (t) =
1

2
E(∥∇X(0)∥

∣∣X(0) = t)pX(0)(t) and

C
X

0 (t) = − 1

2π
E
(
(∇X(0)⊥)tD2X(0)∇X(0)⊥

∥∇X(0)∥2
|X(0) = t

)
pX(0)(t).

In order to go ahead in the computations, we first remark that writing X = m + σY ◦ P , for
P orthogonal such that Γ = P t∆P with ∆ = diag(γ1, γ2), one has therefore C

X

j (t) = C
Y

j (
t−m
σ )

where Y is centered with unit variance and admits γ1

σ2 ,
γ2

σ2 for spectral moments with (denoting by
Yi and Yij the first and second order partial derivatives of Y ):

γ1
σ2

= E(Y1(0)2),
γ2
σ2

= E(Y2(0)2), and E(Y1(0)Y2(0)) = 0.

Since Y is stationary Gaussian, we also have that ∇Y (0) is independent from Y (0) and D2Y (0),
and that Y (0) and D2Y (0) are correlated with covariance

E(Y (0)Y11(0)) = − γ1
σ2
, E(Y (0)Y22(0)) = − γ2

σ2
, and E(Y (0)Y12(0)) = 0.

Therefore the conditional expectations are given by

E(Y11(0)|Y (0) = t) = − γ1
σ2
t, E(Y22(0)|Y (0) = t) = − γ2

σ2
t, and E(Y12(0)|Y (0) = t) = 0.

Now, using that for a vector v ∈ R2, we have, denoting eθ = (cos θ, sin θ),

∥v∥ =
1

4

∫ 2π

0

|⟨v, eθ⟩| dθ,

and using that for a 1D Gaussian random variable Z of mean 0 and variance σ2
Z , we have E(|Z|) =√

2
πσZ , we get

C
Y

1 (t) =
1

2
E(∥∇Y (0)∥)pY (0)(t) =

1

8πσ
e−t2/2

∫ 2π

0

√
γ1 cos2 θ + γ2 sin

2 θ dθ.
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To compute C
Y

0 (t), we first need to compute E(cos2 Θ) where Θ is the angle of ∇Y (0), i.e.
∇Y (0) = (∥∇Y (0)∥ cosΘ, ∥∇Y (0)∥ sinΘ). Since Y is not assumed isotropic, the law of Θ is not
necessarily uniform on [0, 2π). Indeed we have

E(cos2 Θ) =
σ2

2π
√
γ1γ2

∫∫
y21

y21 + y22
e−(σy1)

2/2γ1e−(y2σ)
2/2γ2 dy1dy2

=
1

2π

∫ 2π

0

γ1 cos
2 θ

γ1 cos2 θ + γ2 sin
2 θ

dθ. (42)

It follows that

E(sin2 Θ) =
1

2π

∫ 2π

0

γ2 sin
2 θ

γ1 cos2 θ + γ2 sin
2 θ

dθ.

Finally,

C
Y

0 (t) = − 1

2π

(
E(sin2 Θ)E(Y11(0)|Y (0) = t) + E(cos2 Θ)E(Y22(0)|Y (0) = t)

)
pY (0)(t),

and combining everything, we get

C
Y

0 (t) =
t

σ2(
√
2π)5

e−t2/2

∫ 2π

0

γ1γ2

γ1 cos2 θ + γ2 sin
2 θ

dθ =
t

σ2(
√
2π)3

e−t2/2√γ1γ2.

The last equality comes from the following computation:

1

2π

∫ 2π

0

γ1γ2

γ1 cos2 θ + γ2 sin
2 θ

dθ =
2

π

∫ π/2

0

γ1γ2

γ1 cos2 θ + γ2 sin
2 θ

dθ

=
2

π

∫ +∞

0

γ1γ2
γ1 + γ2s2

ds =
√
γ1γ2, (43)

where we have used a change of variable s = tan θ, and then recognized the derivative of the

function s 7→ arctan(
√

γ2

γ1
s).

B.2. Additional proof of Theorem 4.1

As in the 2D case, we may assume that m = 0, σ2 = 1 and Γ = Diag(γ1, γ2, γ3) meaning that

∀j = 1, 2, 3, γj := Γjj = E(Xj(0)
2), and E(Xi(0)Xj(0)) = 0 when i ̸= j,

denoting Xi :=
∂X
∂xi

, Xij := ∂2X
∂xi∂xj

for 1 ≤ i, j ≤ d. The formula for VX is straightforward. Now

for j < 3, by Hypothesis H, we have ∥∇X(0)∥ > 0 a.s. and E(∥∇X(0)∥−1) < +∞. Since D2X(0)
is independent from ∇X(0), recalling (6), (7) (8), it follows that the assumption (12) is satisfied.
Then, for h ∈ S, by (13), since the standard Gaussian random variable X(0) admits a probability
density given by a function pX(0), we have

α2−j⟨C
X

j , h⟩ = E (h(X(0))F2−j(X(0))) =

∫
R
h(t)E (F2−j(X(0))|X(0) = t) pX(0)(t)dt.

Hence, for a.e. t ∈ R,

C
X

2 (t) =
1

2
E(∥∇X(0)∥

∣∣X(0) = t)pX(0)(t)

C
X

1 (t) =
1

2π
E
(
∇X(0)tD2X(0)∇X(0)

∥∇X(0)∥2
− Tr

(
D2X(0)

) ∣∣X(0) = t

)
pX(0)(t).

C
X

0 (t) =
1

4π
E
(
∇X(0)tadj(D2X(0))∇X(0)

∥∇X(0)∥3
∣∣X(0) = t

)
pX(0)(t).



/Anisotropy through Lipschitz-Killing curvatures 43

Note that since X is Gaussian, we have that ∇X(0) is independent from X(0) and D2X(0), and
that X(0) and D2X(0) are correlated with covariance

∀j = 1, 2, 3, E(X(0)Xjj(0)) = −γj , and E(X(0)Xij(0)) = 0 when i ̸= j.

∀j = 1, 2, 3, E(X(0)Xjj(0)) = −γj , and E(X(0)Xij(0)) = 0 when i ̸= j.

Therefore the conditional expectations are given by

E(Xjj(0)|X(0) = t) = −γjt, and E(Xij(0)|X(0) = t) = 0.

Moreover, we have
∂4iijjρ(0) = E(Xii(0)Xjj(0)) = E(Xij(0)

2).

Since by assumption D2ρ(0) = −Γ is diagonal, we have E(Xij(0)X(0)) = 0 and therefore

E(Xij(0)
2|X(0) = t) = ∂4iijjρ(0).

Using the formulas for the conditional distribution of Gaussian vectors, the covariance of (Xii(0), Xjj(0))
knowing X(0) = t is given by

E(Xii(0)Xjj(0)|X(0) = t) = γiγjt
2 + ∂4iijjρ(0)− γiγj .

Therefore, putting all together, we get

E(Xii(0)Xjj(0)−Xij(0)
2|X(0) = t) = γiγj(t

2 − 1),

which doesn’t require the fourth-order spectral moment anymore. We are now in position to

compute the different densities. We start with C
X

2 (t), which is equal to

C
X

2 (t) =
1

2
E(∥∇X(0)∥|X(0) = t)pX(t) =

1

2
E(∥∇X(0)∥)pX(0)(t).

We use here the property that if v ∈ R3, then

∥v∥ =
1

2π

∫
S2

|⟨v, u⟩|H2(du).

Now, as in the 2D case, using the fact that the expectation of the absolute value of a centered Gaus-

sian real random variable is
√

2
π times its standard deviation, we get, denoting u = (u1, u2, u3) ∈

S2,

C
X

2 (t) =
1

4π2
e−t2/2

∫
S2

√
γ1u21 + γ2u22 + γ3u23 H2(du) =

1

π

√
γSAe

−t2/2.

Then, for C
X

1 , using the conditional expectations and the fact that ∇X(0) is independent from
(X(0), D2X(0)), we have

2πC
X

1 (t) = tpX(0)(t)

[
γ1 + γ2 + γ3 − E

(
γ1X1(0)

2 + γ2X2(0)
2 + γ3X3(0)

2

X1(0)2 +X2(0)2 +X3(0)2

)]
.

Using the law of the Xi(0) and a change of variable with spherical coordinates, we get that

E
(
γ1X1(0)

2 + γ2X2(0)
2 + γ3X3(0)

2

X1(0)2 +X2(0)2 +X3(0)2

)
=

1

4π

∫
S2

γ21u
2
1 + γ22u

2
2 + γ23u

2
3

γ1u21 + γ2u22 + γ3u23
H2(du).

Hence,

2πC
X

1 (t) = 2γTMCtpX(0)(t).



/Anisotropy through Lipschitz-Killing curvatures 44

Finally, by independence of ∇X(0) from (X(0), D2X(0)), and the conditional expectations com-
puted above, we get (where the indices i, j, k below are all distinct):

4πC
X

0 (t) = pX(0)(t)

3∑
i=1

E
(

Xi(0)
2

(X1(0)2 +X2(0)2 +X3(0))3/2

)
E(Xjj(0)Xkk(0)−Xjk(0)

2|X(0) = t)

= (t2 − 1)pX(0)(t)

3∑
i=1

E
(

Xi(0)
2

(X1(0)2 +X2(0)2 +X3(0))3/2

)
γjγk

= (t2 − 1)pX(0)(t)×
1

(2π)3/2

∫
S2

γ1γ2γ3
(γ1u21 + γ2u22 + γ3u23)

3/2
H2(du)

= γ
3/2
TGC

1

π
(t2 − 1)e−t2/2.

The last line above comes from the following computation. Let J denote the above integral on S2,
that can be also written as

J := 2

∫ π/2

0

∫ 2π

0

γ1γ2γ3

(γ1 sin
2 φ cos2 θ + γ2 sin

2 φ sin2 θ + γ3 cos2 φ)3/2
sinφdθdφ.

Then by a change of variable s = tanφ, we have ds = (1+s2)dφ, cos2 φ = 1
1+s2 and sinφ = s√

1+s2
.

Therefore

J = 2

∫ +∞

0

∫ 2π

0

γ1γ2γ3 s

((γ1 cos2 θ + γ2 sin
2 θ)s2 + γ3)3/2

dθ ds

= 2
√
γ3

∫ 2π

0

γ1γ2

γ1 cos2 θ + γ2 sin
2 θ

dθ = 4π
√
γ1γ2γ3,

where we have used the computation made in the 2D case.

Appendix C: Additional numerical experiments

We provide in this section several additional figures to illustrate, through numerical experiments,
the statistical estimation of the anisotropy from the Lipschitz-Killing curvatures of an excursion
set.

C.1. In the 2D case

On Figures 9 and 10 we show error bars on the estimation of the anisotropy from one excursion
set of a 2D stationary Gaussian field, and we illustrate the central limit behavior by plotting the
standard deviation of the estimation of the anisotropy ratio R as a function of the observation
window size. See the caption of the figures for detailed comments on these numerical experiments.

C.2. In the 3D case

On Figures 11 and 12, we show some additional 3D experiments in the isotropic case. As in the
anisotropic case, the estimation of R = RG = 1 here is inaccurate when the effective level is close
to 0 (for R) or close to ±1 for RG. Now, these two ratios could be combined to accurately estimate
the isotropy whatever the effective level.
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Fig 9. Checking the central limit behavior. First line: estimation of R in the isotropic case (left) and in the
anisotropic one (right, here R ≃ 0.92). The estimation is done for three different quantiles (corresponding to the
three colors) and on different domain size T (x-axis of the plot). The confidence intervals have been obtained with
100 samples. Second line: standard deviation of the estimated value of R in the isotropic case (left) and in the
anisotropic one (right), for three different quantiles as a function of the inverse domain size 1/T . This plot shows
experimentally that the empirical standard deviation behaves like 1/T , with a slope that depends on the quantile.
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Fig 10. Estimating the anisotropy from one level. We consider here the same two Gaussian random fields as in
Figure 4. First line: estimation of γPer from one excursion set of one sample (of size 1000× 1000), as a function
of the quantile, in the isotropic case (left figure) and in the anisotropic one (right figure). Second line: same
experiment but for the estimation of γTC. Third line : same experiment but for the estimation of the anisotropy
ratio R, that is 1 on the left and 0.92 on the right. The confidence intervals have been obtained with 100 samples.
Notice how the estimations of γTC and of R degenerate around the quantile q = 0.5 since it corresponds to the
effective level t̂eff = 0, and the division by t̂eff is therefore unstable.
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Fig 11. Lipschitz-Killing curvature densities of the excursion sets of an isotropic Gaussian volume. Here we have
taken 20 samples of a 3D volume of size 2003 voxels, of a Gaussian field with mean m = 0, variance σ2 = 1
and covariance of the form exp(−γ1x2

1 − γ2x2
2 − γ3x2

3) with here γ1 = γ2 = γ3 = 0.01. An example of such a
Gaussian volume is shown on the left of the first line, with one excursion set on the right. Using the Matlab toolbox
ImMinkowski [32], we have estimated the volume densities (second line, left), the surface area densities (second
line, right), the total mean curvature densities (third line, left) and the total Gaussian curvature densities (third
line, right). The densities are plot else as functions of the level t or as functions of the quantile q. The stars are
the values for the 20 different samples.
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Fig 12. First line: the samples of the previous figure are plotted as points on the almond and heart curves of
isotropy. Second line: estimation of R and RG from the Lipschitz-Killing curvature densities of the excursion sets
of the samples, as a function of the quantiles.
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