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Abstract: We are interested here in modeling and estimating the anisotropy of 2D and 3D
Gaussian random fields through the geometry of their excursion sets. In order to do this,
we use Lipschitz-Killing curvatures of the level sets as functions of the levels and see them
as generalized processes for which we are able to obtain a joint functional Central Limit
Theorem. For 2D and 3D stationary Gaussian fields we provide explicit formulas for the
Lipschitz-Killing curvature densities from which we can deduce geometrical equivalent of
second spectral moments and anisotropy ratios that allow the estimation of the anisotropy
of the underlying Gaussian field.
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1. Introduction

Since the seminal works of Robert Adler on the geometry of random fields [1] and of Keith
Worsley on topological inference in neuroimaging [36], the study of the geometry of excursion sets
of random fields has known a growing interest, with important developments especially for the
Euler characteristic, used as a good approximation of the tail distribution of the supremum of
stationary smooth Gaussian fields [37]. In particular the so-called Gaussian kinematic formula [2]
nicely links mean geometries of an excursion set with observation window’s ones with respect to
the underlying statistical properties of the Gaussian field. However, this formula strongly depends
on the metric induced by the stationary Gaussian field, and only mean Euler characteristic can
be effectively computed in practice without any prior knowledge on the field. In contrast, in this
paper we consider Lipschitz-Killing curvatures of excursion sets computed with the usual Euclidean
metric in dimension d for both d = 2 and d = 3, corresponding to the usual dimensions of medical
images. This allows us to rely on numerous results and algorithms developed in stochastic geometry
for intrinsic volumes or Minkowski measures closely related to Lipschitz-Killing curvatures [30].

Moreover, as in our previous paper [7], we will have here a ”weak” point of view. Instead
of fixing a threshold level and considering the Lipschitz-Killing curvatures of the excursion set
above this level, we will consider simultaneously all the levels and thanks to a change of variable
formula (the coarea formula), we will be able to have a representation of these Lipschitz-Killing
curvatures as integrals over the function domain. This point of view also allows us to work on
the fine functional framework of generalized random processes [19]. In this setting, we are able
to propose consistent and asymptotic (as the size of the observation window grows) Gaussian
estimators of the Lipschitz-Killing curvature densities. Note that in sharp contrast with previous
results, we do not assume isotropy of the Gaussian field.

Actually, a main point of interest is: how to ”read” and ”estimate” the anisotropy of a random
field from the geometry of (some of) its excursion sets? We provide explicit parametric expressions
for Lipschitz-Killing densities in both dimension d = 2 and d = 3, as well as numerical evaluations.
It allows us to define new geometrical equivalent of spectral moments, related through elegant
isoperimetric inequalities, as well as robust anisotropy ratios in the sense that they do not depend
on the mean, nor on the standard deviation of the field that is crucial for image comparisons. As
illustrated on Figure 1 we will summarize the geometry of an excursion set as a (2D here) point
and this will allow us to visualize and estimate the anisotropy of the underlying Gaussian field.

A = 0.1651

Per = 0.0182


TC = 8.25 e-04

A = 0.1652

Per = 0.0187


TC = 7.36 e-04

Fig 1. Two excursion sets of Gaussian random fields. The left one is isotropic and the right one is not. They have
the same area, the same perimeter but different total curvature. Their geometry can be summarized as a point that
is on the almond curve in the isotropic case and that is inside the almond domain in the anisotropic case.

The paper is organized as follows. In Section 2 we recall the main definitions of Lipschitz-Killing
curvatures following [34], and introduce the Integral Lipschitz-Killing curvatures of a smooth
function that allow us to consider Lipschitz-Killing curvatures of its level sets as a tempered
distribution (with respect to the levels). Considering a smooth stationary random field we are
therefore able to define Lipschitz-Killing curvatures for which a functional joint Central Limit
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Theorem is established in dimension d = 2 or d = 3 under the additional assumption that the
underlying field is Gaussian. In contrast with previous Gaussian results [16, 25] based on Itô-Wiener
chaos expansion, our proof relies on preliminary general results stated under a quasi-association
assumption closer to [11], and which are postponed to the Appendix A. In Section 3, we focus on
dimension d = 2 and extend the Gaussian isotropic results of [8] to the anisotropic framework. We
give explicit formulas for the Lipschitz-Killing curvature densities with respect to two important
ordered geometrical equivalent of second spectral moments. This allows us to define an almond
curve of anisotropy and a first ratio of anisotropy R with values in (0, 1]. We proceed in a simililar
way in Section 4 for the dimension d = 3. Lipschitz-Killing curvature densities are also expressed
with respect to now three important geometrical equivalent of second spectral moments. The
ordering of these quantities is much more difficult to obtain than in the 2D case and strongly
relies on some isoperimetric inequalities. In addition to the almond curve of anisotropy we define
the heart curve of anisotropy involving the third index and get two respective ratios of anisotropy
R and RG ≤ R, both with values in (0, 1]. We illustrate all this in both dimensions d = 2 and
d = 3 through numerical experiments, checking the formulas for the Lipschitz-Killing curvatures,
the Central Limit behavior, and the statistical estimation of the anisotropy from the geometry of
an excursion set.

2. Lipschitz-Killing curvatures

2.1. Lipschitz-Killing curvatures : the general framework

Let us introduce some notations. In the following we will denote by Ld or simply by L (when there
is no ambiguity) the Lebesgue measure on Rd and by Hs the s-dimensional Hausdorff measure on
Rd. We have in particular Hd = Ld on Rd.

We now recall the definition of Lipschitz-Killing curvatures in the framework of smooth mani-
folds of Rd, as they are presented in the paper of Thäle [34]. Let M be a compact d-dimensional
submanifold in Rd with a C2 smooth boundary ∂M (that is then (d−1)-dimensional). For x ∈ ∂M ,
let κi(x), i = 1, . . . , d− 1, denote the d− 1 principal curvatures of ∂M at x. Then the Lipschitz-
Killing curvatures of M are defined by

∀j = 0, . . . , d− 1, Cj(M) =
1

αd−1−j

∫
∂M

σd−1−j(κ1(x), . . . , κd−1(x))Hd−1(dx), (1)

and Cd(M) = Ld(M),

where σk is the symmetric elementary function of order k, that is

σk(κ1(x), . . . , κd−1(x)) =
∑

1≤i1≤...≤ik≤d−1

κi1(x) . . . κik(x),

with the convention that σ0 = 1, and where αk, k ≥ 0 is the k-dimensional surface area of the
unit ball of Rk+1, that is :

α0 = 2, α1 = 2π, α2 = 4π, etc.

The Lipschitz-Killing curvatures have therefore the following interpretations:

• C0(M) = 1
αd−1

∫
∂M

κ1(x) . . . κd−1(x)Hd−1(dx) = χ(M) is the Euler Characteristic of M ,

that is related to the integral of the Gaussian curvature on ∂M by the Gauss-Bonnet Theo-
rem.

• Cd−2(M) = 1
α1

∫
∂M

(κ1(x) + . . . + κd−1(x))Hd−1(dx). When d ≥ 3 it is equal to d−1
2π b(M)

where b(M) is the mean breadth of M defined as the integral of the mean curvature on ∂M .
• Cd−1(M) = 1

α0

∫
∂M
Hd−1(dx) = 1

2H
d−1(∂M) is half the surface area (perimeter when d = 2)

of ∂M in Rd.
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• Cd(M) = Ld(M) is the volume of M in Rd.

Let U be an open bounded set in Rd. Then, the Lipschitz-Killing curvatures can be localized
in U : they are then denoted by Cj(M,U) and their formula involving the principal curvatures are
analogous to the ones of the Cj(M) given by (1), except that the integrals on ∂M are replaced by
integrals on ∂M ∩ U .

The Lipschitz-Killing curvatures are related to the volume of the r-parallel set to M through
the Weyl’s tube formula. This point will be discussed in the further remarks of Section 5.2.

2.2. The framework of smooth functions

Let f : Rd → R be a C2 function defined on Rd, with here d ≥ 2. For t ∈ R, the excursion set (or
level set) of f above the level t is given by

Ef (t) := {x ∈ Rd ; f(x) ≥ t}.

Let U be an open bounded subset of Rd, for instance U = (0, T )d with T > 0. Let t ∈ R, and

x ∈ U such that f(x) = t and ∇f(x) 6= 0. Then νf (x) = ∇f(x)
‖∇f(x)‖ ∈ S

d−1 is the unit inner normal

vector of Ef (t) at x ∈ ∂Ef (t). Now in an open neighborhood of such x ∈ U we can compute Dνf
using D2f , the Hessian matrix of f , and have

Dνf (x) =
1

‖∇f(x)‖
D2f(x)− 1

‖∇f(x)‖3
∇f(x)(D2f(x)∇f(x))t.

As the principal curvatures are the eigenvalues of the second fundamental form, it follows that the
d symmetric functions of the curvatures σd−1−j(κ1(x), . . . , κd−1(x)) may be explicitly computed
with formulas involving f(x) :=

(
f(x),∇f(x), D2f(x)

)
through

σd−1−j(κ1(x), . . . , κd−1(x)) =
1

‖∇f(x)‖
Fd−1−j(f(x)), (2)

with in particular (see [33] or [20] for instance)

F0(f(x)) = ‖∇f(x)‖, (3)

F1(f(x)) = −Tr(D2f(x)) +
∇f(x)tD2f(x)∇f(x)

‖∇f(x)‖2
, (4)

and for d ≥ 3

Fd−1(f(x)) = (−1)d−1∇f(x)tadj(D2f(x))∇f(x)

‖∇f(x)‖d
, (5)

where adj(D2f(x)) is the adjugate matrix of D2f(x) (that is the transpose of its cofactor matrix).
Note that for d = 2, one can also express F1 as

F1(f(x)) = − (∇f(x)⊥)tD2f(x)∇f(x)⊥

‖∇f(x)‖2
, (6)

with ∇f(x)⊥ = (−∂2f(x), ∂1f(x)).
Now, considering A = {x ∈ U ; ‖∇f(x)‖ = 0}, the coarea formula (see [17] p.112 for instance)

states that ∫
R
Hd−1

(
A ∩ f−1(t)

)
dt =

∫
A

‖∇f(x)‖dx = 0.

Hence, for a.e. t ∈ R and Hd−1 almost every x ∈ ∂Ef (t) ∩ U we have f(x) = t and ∇f(x) 6= 0.
Under an additional assumption this will allow us to define for a.e. t ∈ R

Cj(Ef (t), U) =
1

αd−1−j

∫
∂Ef (t)∩U

1

‖∇f(x)‖
Fd−1−j(f(x))Hd−1(dx),
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such that t 7→ Cj(Ef (t), U) is L1-integrable (in the sense that it coincides a.e. with a measurable
integrable function on R) and therefore to consider it as a tempered distribution. More precisely, let
us recall that the Schwartz space S = S(R) consists of infinitely differentiable functions h : R→ R
that are rapidly decreasing, that is, for all q ∈ N and k ∈ N,

‖h‖q,k = sup
t∈R

(1 + |t|)q|h(k)(t)| <∞,

where h(k) denotes the derivative of order k. It is a real vector space and it is equipped with the
topology given by the family of semi-norms ‖ · ‖q,k, q ∈ N and k ∈ N. It is well known that S is a
Fréchet space (i.e. a locally convex metrizable complete space). The space of tempered distributions
S ′ = S ′(R) is the topological dual of S, that is the space of continuous linear functionals on S.
Now for h ∈ S we are interested in the Integral Lipschitz-Killing Curvatures of f defined by

LCfj (h, U) :=

∫
R
h(t)Cj(Ef (t), U) dt. (7)

Proposition 1. Let f : Rd → R be a C2 function and note f(x) :=
(
f(x),∇f(x), D2f(x)

)
for

x ∈ Rd. Let U be a bounded open set of Rd and assume that, for k ∈ {0, 1, d− 1},∫
U

|Fk(f(x))|1I‖∇f(x)‖>0 dx < +∞, (8)

with Fk given by (3), (4) and (5). Then for j ∈ {0, d − 2, d − 1}, one has Cj(Ef (·), U) ∈ L1(R).
Moreover, for j ∈ {0, d− 2, d− 1, d}, one has Cj(Ef (·), U) ∈ S ′ with for all h ∈ S

LCfj (h, U) = 〈Cj(Ef (·), U), h〉 =

∫
U

Lj(h, f(x))dx, (9)

where h ∈ S 7→ Lj(h, f(x)) ∈ R is linear continuous for all x ∈ U , and given by

Lj(h, f(x)) =
1

αd−1−j
h(f(x))Fd−1−j(f(x))1I‖∇f(x)‖>0 forj 6= d,

and

Ld(h, f(x)) =

∫
R
h(t)1If(x)≥tdt.

Proof. Let us recall the coarea formula for Lipschitz mappings (see [17] p.117 for instance): for
any non-negative Ld-measurable or any Ld-integrable function g : Rd → R, the function t 7→∫
∂Ef (t)∩U g(x)Hd−1(dx) is L1-measurable and∫

U

g(x)‖∇f(x)‖ dx =

∫
R

∫
∂Ef (t)∩U

g(x)Hd−1(dx) dt.

Hence for k ∈ {0, 1, d−1}, and h a continuous bounded function we can define measurable functions
on U by

gk(x) = h(f(x))
Fk(f(x))

‖∇f(x)‖
1I‖∇f(x)‖>0 for x ∈ U.

Under the assumption (8) we obtain that∫
R

∫
∂Ef (t)∩U

|gk(x)|Hd−1(dx) dt ≤ ‖h‖0,0
∫
U

|Fk(f(x))|1I‖∇f(x)‖>0 dx < +∞.

Moreover, using again the coarea formula with max(gk, 0) and −min(gk, 0) and subtracting we
get ∫

R

∫
∂Ef (t)∩U

gk(x)Hd−1(dx) dt =

∫
U

h(f(x))Fk(f(x))1I‖∇f(x)‖>0 dx.
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It follows that t 7→
∫
∂Ef (t)∩U gk(x)Hd−1(dx) is L1-integrable. Then, using the definition of the Fk

in (2), we have for a.e. t ∈ R∫
∂Ef (t)∩U

gk(x)Hd−1(dx) = h(t)

∫
∂Ef (t)∩U

σk(κ1(x), . . . , κd−1(x))1I‖∇f(x)‖>0Hd−1(dx) dt

= h(t)

∫
∂Ef (t)∩U

σk(κ1(x), . . . , κd−1(x))Hd−1(dx) dt

= αd−1−kCd−1−k(Ef (t), U)h(t),

since for a.e. t ∈ R and Hd−1 a.e. x ∈ ∂Ef (t) ∩ U we have f(x) = t and ∇f(x) 6= 0. This implies
(taking h = 1) that t 7→ Cj(Ef (t), U) is L1-integrable for j ∈ {0, d− 2, d− 1} and in view of (7),

LCfj (h, U) =

∫
U

Lj(h, f(x))dx,

with Lj(h, f(x)) = 1
αd−1−j

h(f(x))Fd−1−j(f(x))1I‖∇f(x)‖>0. Hence we have also h 7→ Lj(h, f(x)) ∈
S ′ with

|Lj(h, f(x))| ≤ 1

αd−1−j
‖h‖0,0|Fd−1−j(f(x))|1I‖∇f(x)‖>0.

Finally, for j = d we can also define

Ld(h, f(x)) =

∫
R
h(t)1If(x)≥t dt,

satisfying |Ld(h, f(x))| ≤ 2‖h‖2,0, using the fact that
∫
R(1 + |t|)−2dt = 2. Since U is bounded we

also have h 7→ LCfd(h, U) =
∫
U
Ld(h, f(x)) dx ∈ S ′, with, by Fubini’s Theorem,

LCfd(h, U) =

∫
R
h(t)Cd(Ef (t), U) dt.

2.3. Smooth stationary random fields and Lipschitz-Killing curvature densities

We extend now the Lipschitz-Killing curvatures integrals to the case of smooth stationary random
fields.

Proposition 2. Let (Ω,A,P) be a complete probability space and (X(x))x∈Rd be a stationary
real-valued random field that is almost surely (a.s.) a C2 function on Rd. Assume moreover that

∀k ∈ {0, 1, d− 1}, E
(
|Fk(X(x))|1I‖∇X(x)‖>0

)
< +∞, (10)

for Fk given by (3), (4) and (5), and X(x) = (X(x),∇X(x), D2X(x)), x ∈ Rd. Let U be a
bounded open set of Rd. Then we can define Cj(EX(·), U) as a generalized integrable process for
j ∈ {0, d− 2, d− 1, d}, in the sense that

Cj(EX(·), U) : (Ω,A)→ (S ′,B(S ′))

is measurable, where B(S ′) is the Borel σ-field of the strong topology on S ′ and, for all h ∈ S,

E
(
|LCXj (h, U)|

)
≤
∫
R
|h(t)|E (|Cj(EX(t), U)|) dt < +∞.

Proof. First note that since (Ω,A,P) is a complete probability space, in view of the a.s. continuity,
up to setting the values of X at 0 on a negligible set, the field X : Ω × Rd → R is a P ⊗ Ld-
measurable function, as well as its first and second order partial derivatives. By stationarity,
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we deduce from (10) that
∫
U
|Fk(X(x))|1I‖∇X(x))‖>0 dx < +∞ a.s. and (8) is satisfied for k ∈

{0, 1, d − 1}. Hence, there exists a negligible set N of A such that for j ∈ {0, d − 2, d − 1},
Cj(EX(ω)(·), U) ∈ L1(R) ⊂ S ′ for ω /∈ N and we can set Cj(EX(ω)(·), U) = 0 for ω ∈ N . We

can therefore define LC
X(ω)
j (h, U), for h ∈ S, satisfying (9) for ω /∈ N and LC

X(ω)
j (h, U) = 0

for ω ∈ N . Using the fact that (ω, x) 7→ Lj(h,X(ω, x)) is P ⊗ Ld-measurable, it follows by

Fubini’s theorem that LCXj (h, U) : ω ∈ Ω 7→ LC
X(ω)
j (h, U) ∈ R is a well-defined real valued

random variable. Therefore, (LCXj (h1, U), . . . ,LCXj (hm, U)) is a random vector for all m ≥ 1 and
h1, . . . , hm ∈ S. Since the cylinder σ-field coincides with the Borel σ-field of the weak topology
but also of the strong topology on S ′ denoted by B(S ′) (see Corollary 3.9 of [9]) we can deduce
that Cj(EX(·), U) : (Ω,A)→ (S ′,B(S ′)) is measurable and therefore defines a generalized random
process. To conclude for integrability, it is enough to remark that by Fubini’s theorem and the
coarea formula

E
(
|LCXj (h, U)|

)
≤

∫
R
|h(t)|E (|Cj(EX(t), U)|) dt

≤ ‖h‖0,0
αd−1−j

∫
U

E
(
|Fd−1−j(X(x))|1I‖∇X(x)‖>0

)
dx < +∞,

by (10), using the stationarity of X and the boundedness of U . The result for j = d follows the
same lines as (ω, x) 7→ Ld(h,X(ω, x)) is P⊗ Ld-measurable and bounded by 2‖h‖2,0.

Thanks to the stationarity we will focus on Lipschitz-Killing curvature densities defined for
j ∈ {0, d− 2, d− 1} by

〈CXj , h〉 =

∫
R
h(t)C

X

j (t)dt =
E
(
LCXj (h, U)

)
Ld(U)

=
1

αd−1−j
E
(
h(X(x))Fd−1−j(X(x))1I‖∇X(x)‖>0

)
. (11)

Note that C
X

j ∈ L1(R) ⊂ S ′ and that for a.e. t ∈ R we have

C
X

j (t) =
E (Cj(EX(t), U))

Ld(U)
.

We can define in a simpler way C
X

d (t) = E(Cd(EX(t),U))
Ld(U)

= P(X(x) ≥ t) for all t ∈ R, such that

C
X

d ∈ S ′ (but not in L1(R)) with

〈CXd , h〉 =

∫
R
h(t)C

X

d (t)dt =
E
(
LCXd (h, U)

)
Ld(U)

.

To ensure sample paths smoothness, a simple assumption for stationary Gaussian random fields
may be given in term of covariance functions. More precisely, when X is a stationary Gaussian
field with mean m and variance σ2, we denote by ρ its covariance function, given by

ρ(x) = Cov(X(x), X(0)) = Cov(X(x+ y), X(y)),

for all x, y ∈ Rd by stationarity. Then it is sufficient to make the following hypothesis, denoted by
H :

ρ : Rd → R is a C4 positive definite function, with det(D2ρ(0)) 6= 0

and such that there exist C > 0 and δ > 0 with
∣∣∂kρ(x)− ∂kρ(0)

∣∣ ≤ C‖x‖δ,
for all k = (k1, . . . , kd) ∈ Nd with |k| =

d∑
l=1

kl = 4. (H)
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Corollary 1. Let (Ω,A,P) be a complete probability space and (X(x))x∈Rd be a stationary Gaus-
sian random field whose covariance function satisfies H. Then, there exists a modification of X
such that the assumptions of Proposition 2 are satisfied. Moreover for d ∈ {2, 3}, 0 ≤ j ≤ d and
h ∈ S, the random variable LCXj (h, U) is square integrable.

Proof. By Proposition 2.1 of [12], under H, there exists a modification of X such that X is C2 a.s.
Note that in this case ∇X(x) is an Rd-valued Gaussian vector of covariance given by Γ = −D2ρ(0)
and therefore ‖∇X(x)‖ > 0 a.s. with E(‖∇X(x)‖p(2−d)) < +∞ for all p ≥ 1 such that p(d−2) < d.
In view of (3), (4), or (5) we have therefore for all k ∈ {0, 1, d− 1},

E (|Fk(X(x))|) < +∞,

and (10) is satisfied. Moreover, for d ∈ {2, 3}, we also have E
(
Fk(X(x))2

)
< +∞, and LCXd−1−k(h, U)

is a square integrable random variable. The result for LCXd (h, U) simply comes from the fact that
Cd(EX(t), U) is a bounded random variable.

In this Gaussian setting, we obtain the following result, whose technical proof is postponed to
Appendix A.

Theorem 2.1. Let X be a stationary Gaussian field defined on Rd for d ∈ {2, 3}, whose covariance
function satisfies H and assume moreover that there exists β > 12 + d such that

max
|k|≤4

∣∣∂kρ(x)
∣∣ ≤ C(1 + |x|)−β . (12)

Then for Un = (0, n)d one has(√
Ld(Un)

(
Cj(EX(·), Un)

Ld(Un)
− CXj

))
0≤j≤d

distrib.−→
n→+∞

(Bj)0≤j≤d ,

where (Bj)0≤j≤d are centered Gaussian generalized random processes whose covariance functions

are given for all h, h̃ ∈ S and 0 ≤ j, k ≤ d, by

Cov
(
〈Bj , h〉, 〈Bk, h̃〉

)
=

∫
Rd

Cov
(
Lj(h,X(z)), Lk(h̃,X(0))

)
dz.

Here the convergence holds in distribution with respect to the strong topology of S ′(R).

Let us mention that the decay assumption (12) could be relaxed into max|k|≤4

∣∣∂kρ∣∣ ∈ L1(Rd)
for Gaussian fields, as assumed in [16], but here the proof of our theorem relies on an intermediate
result given under a more general assumption of quasi-associated field (not necessarily Gaussian).

Now, let us be more explicit about the covariances involved in Theorem 2.1. Note first that for
all h, h̃ ∈ S,

Cov
(
Ld(h,X(z)), Ld(h̃,X(0))

)
=

∫
R

∫
R
h(s)h̃(t)Cov(1IX(z)≥s, 1IX(0)≥t) ds dt.

Then, introducing for z ∈ Rd,

Σstdd(z) := Cov(1IX(z)≥s, 1IX(0)≥t), (13)

we obtain

Cov
(
Ld(h,X(z)), Ld(h̃,X(0))

)
=

∫
R

∫
R
h(s)h̃(t)Σstdd(z)ds dt.

Furthermore, for the other covariances, we will also be able to write them as

Cov
(
Lj(h,X(z)), Lk(h̃,X(0))

)
=

∫
R

∫
R
h(s)h̃(t)Σstjk(z)ds dt.



/ 9

Actually, by stationarity, for j < d,

E (Lj(h,X(z))) = E (Lj(h,X(0)) =
1

αd−1−j

∫
R
h(t)E (Fj(X(0))|X(0) = t) pX(0)(t)dt,

where pX(0) denotes the density of the Gaussian variable X(0), and

E
(
Lj(h,X(z))Ld(h̃,X(0)))

)
=

∫
R
h̃(t)E

(
h(X(z))E

(
Fd−1−j(X(z))

αd−1−j
1IX(0)≥t|X(z)

))
dt

=

∫
R2

h̃(t)h(s)

[
E
(
Fd−1−j(X(z))

αd−1−j
1IX(0)≥t|X(z) = s

)
pX(z)(s)

]
ds dt.

Then we can set

Σstjd(z) :=
[
E
(
Fd−1−j(X(z))1IX(0)≥t|X(z) = s

)
−E (Fd−1−j(X(0))|X(0) = s)P(X(0) ≥ t)

]pX(0)(s)

αd−1−j
.

(14)
And similarly, for k < d and z 6= 0, we set

Σstjk(z) := E
(
Fd−1−j(X(z))

αd−1−j

Fd−1−k(X(0))

αd−1−k
|X(0) = t,X(z) = s

)
p(X(0),X(z))(t, s)

− E
(
Fd−1−j(X(0))

αd−1−j
|X(0) = s

)
E
(
Fd−1−k(X(0))

αd−1−k
|X(0) = t

)
pX(0)(t)pX(0)(s), (15)

denoting by p(X(0),X(z)) the joint density of (X(0), X(z)). Note that (12) implies that ρ is an
integrable function and therefore X admits a spectral density, thus implying |ρ(z)| < ρ(0) = σ2

for all z 6= 0. This ensures the existence of p(X(0),X(z)) as soon as z 6= 0. Now, if we could justify
the interchange of integrals we should also obtain

Cov
(
〈Bj , h〉, 〈Bk, h̃〉

)
=

∫
R

∫
R
h̃(t)h(s)Σjk(s, t) ds dt,

with

Σjk(s, t) =

∫
Rd

Σstjk(z)dz,

allowing us to give a pointwise representation of the Gaussian generalized processes obtained at
the limit. This is precisely the purpose of the following corollary.

Corollary 2. Under the assumptions of Theorem 2.1, assuming moreover that for J ⊂ {0, . . . , d}
and V an open interval of R, we have:

(A1) The map t ∈ V 7→ CXj (t, Un) ∈ L2(Ω,A,P) is continuous for all n ≥ 1 and j ∈ J ;
(A2) For all ε > 0, there exists δ > 0 such that for all t, s ∈ V with |t− s| ≤ δ, for all n ≥ 1 and

j ∈ J ,
Var

(
CXj (t, Un)− CXj (s, Un)

)
≤ εLd(Un);

(A3) For all j, k ∈ J , for all (s, t) ∈ V × V we have
∫
Rd |Σ

st
jk(z)|dz < +∞, and the function

(s, t) ∈ V × V 7→ Σjk(s, t) :=
∫
Rd Σstjk(z)dz is continuous.

Then (√
Ld(Un)

(
Cj(EX(t, Un))

Ld(Un)
− CXj (t)

))
j∈J,t∈V

fdd−→
n→+∞

(
B̃j(t)

)
j∈J,t∈V

,

where
(
B̃j(t)

)
j∈J,t∈V

is a centered Gaussian process with covariance given by

Cov(B̃j(s), B̃k(t)) = Σjk(s, t).
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Proof. For sake of simplicity, we only sketch the proof for k = j ∈ J and s = t ∈ V . Let us first
choose h ∈ S non-negative with compact support such that

∫
R h(u)du = 1, as well as (hm)m≥1

its associated approximation of the identity, given by hm(u) = mh(mu). We set τtȟ(u) = h(t− u)
and may assume that τtȟm has support in V for all m ≥ 1. Then for all m, p ≥ 1,

Cov
(
〈Bj , τtȟm〉, 〈Bj , τtȟp〉

)
=

∫
R

∫
R
τtȟm(u)τtȟp(v)Σjj(u, v) du dv −→

m,p→+∞
Σjj(t, t),

using Fubini’s theorem and continuity, thanks to (A3). Then
(
〈Bj , τtȟm〉

)
m

is a Cauchy sequence

of Gaussian variables in L2 and we can set B̃j(t) its Gaussian limit. Note that therefore we also

have Var
(
B̃j(t))

)
= Σjj(t, t). Moreover, since Cj(EX(t, Un)) ∈ L2(Ω,A,P) by (A1), we have

E

[√Ld(Un)

(
Cj(EX(t, Un))

Ld(Un)
− CXj (t)

)
−
√
Ld(Un)

(
LCXj (τtȟm, Un)

Ld(Un)
− 〈CXj , τtȟm〉

)]2


=
1

Ld(Un)
Var

(
Cj(EX(t), Un))− LCXj (τtȟm, Un)

)
.

But

Cj(EX(t), Un)− LCXj (τtȟm, Un) =

∫
R
h(u)

(
Cj(EX(t), Un)− Cj

(
EX

(
t− u

m

)
, Un

))
du.

Therefore,

Var
(
Cj(EX(t), Un))− LCXj (τtȟm, Un)

)
=

∫
R2

h(u)h(v)...

Cov
(
Cj(EX(t), Un)− Cj

(
EX

(
t− u

m

)
, Un

)
, Cj(EX(t), Un)− Cj

(
EX

(
t− v

m

)
, Un

))
dudv.

By (A2), for ε > 0 and u, v with |u| ≤ δm and |v| ≤ δm, and by Cauchy-Schwarz inequality,
one has∣∣∣Cov

(
Cj(EX(t), Un)− Cj

(
EX

(
t− u

m

)
, Un

)
, Cj(EX(t), Un)− Cj

(
EX

(
t− v

m

)
, Un

))∣∣∣ ≤ εLd(Un).

Hence, for m large enough such that hm has compact support in [−δ, δ] one has,

1

Ld(Un)
Var

(
Cj(EX(t), Un))− LCXj (τtȟm, Un)

)
≤ ε.

Hence, choosing m such that we also have

Var
(
〈Bj , τtȟm〉 − B̃j(u)

)
≤ ε,

the results follows from Theorem 2.1, using the fact that we have

√
L(Un)

(
LCXj (τtȟm, Un)

Ld(Un)
− 〈CXj , τtȟm〉

)
d−→

n→+∞
〈Bj , τtȟm〉.

Note that for J = {d}, under the assumptions of Theorem 2.1, the random field X satisfies also
the assumptions of Corollary 2 on V = R and we recover results of Theorem 2 of [11]. Actually,
z 7→ Σstdd(z) is continuous on Rd and for all z ∈ Rd, by Lemma 2 of [11], we also have∣∣Σstdd(z)∣∣ ≤ 1

4σ2
|ρ(z)|,
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such that Σdd(s, t) =
∫
Rd Σstdd(z) dz is well-defined and Lebesgue’s theorem allows to check (A3)

on R.
For J = {d − 1} and d = 2, our result corresponds to the one obtained in Theorem 1 of

[23], under a general mixing condition, in Theorem 3 of [26] or in Theorem 4.7 of [5]. For a
general j ∈ {0, . . . , d}, we also refer to [25] who proved marginal Central limit theorems under an
assumption of isotropy that we have relaxed here. We also obtain a stronger result with a joint
Central limit theorem.

In the sequel we will compute explicitly Lipschitz-Killing densities C
X

j (t) at some level t ∈ R
and will estimate them using

Cj(EX(t,U))
Ld(U)

for an observation window U large enough.

3. Smooth stationary 2D Gaussian fields

3.1. Lipschitz-Killing curvature densities

When the dimension is d = 2, the quantities of interest are the Lipschitz-Killing curvatures C0,
C1 and C2 that are here, up to multiplicative constants, the Total Curvature (related to the Euler
Characteristic), the Perimeter, and the Area of the excursion sets of X in an open bounded domain
U . More precisely we define for a smooth stationary field X defined on R2 and h ∈ S

LAX(h, U) := LCX2 (h, U), LPX(h, U) := 2 LCX1 (h, U)

and LTCX(h, U) := 2π LCX0 (h, U).

Now we give explicit formulas for the Lipschitz-Killing curvature densities of a stationary C2

Gaussian field.

Theorem 3.1. Let X be a stationary Gaussian field of mean m ∈ R, variance σ2 > 0 and
whose covariance function ρ satisfies Hypothesis H. We write γ1, γ2 > 0 the eigenvalues of Γ =
−D2ρ(0) and denote by Φ the standard Gaussian cumulative distribution. Then the Lipschitz-
Killing curvature densities of X are given for a.e. t ∈ R by

AX(t) := C
X

2 (t) = 1− Φ
( t−m

σ

)
,

PerX(t) := 2C
X

1 (t) =

√
γPer

σ2

1

2
e−(t−m)2/2σ2

TCX(t) := 2πC
X

0 (t) =
γTC

σ2

1√
2π

t−m
σ

e−(t−m)2/2σ2

where

γPer =

(
1

2π

∫ 2π

0

√
γ1 cos2 θ + γ2 sin2 θ dθ

)2

, (16)

and
γTC =

√
γ1γ2. (17)

Therefore, the Gaussian random field X has same Perimeter density as a (weakly) isotropic Gaus-
sian field with second spectral moment γPer and same Total Curvature density as a (weakly)
isotropic Gaussian field with second spectral moment γTC. Moreover, we have

min(γ1, γ2) ≤ γTC ≤ γPer ≤ max(γ1, γ2),

where inequalities are strict if and only if γ1 6= γ2.

Proof. Let h ∈ S. For j = 2, the result simply comes from the fact that C
X

2 (t) = P(X(0) ≥ t) with
X(0) ∼ N (m,σ2). For j ∈ {0, 1}, by (11), since ‖∇X(0)‖ > 0 a.s. by H and since the random
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variable X(0) admits a probability density given by the function pX(0)(t) = 1
σ
√

2π
e−(t−m)2/2σ2

, we

have

α1−j〈C
X

j , h〉 = E (h(X(0))F1−j(X(0))) =

∫
R
h(t)E (F1−j(X(0))|X(0) = t) pX(0)(t)dt.

Hence, for a.e. t ∈ R, using (3) and (6),

C
X

1 (t) =
1

2
E(‖∇X(0)‖

∣∣X(0) = t)pX(0)(t)

C
X

0 (t) = − 1

2π
E
(

(∇X(0)⊥)tD2X(0)∇X(0)⊥

‖∇X(0)‖2
|X(0) = t

)
pX(0)(t).

In order to go ahead in the computations, we first remark that writing X = m + σY ◦ P , for

P orthogonal such that Γ = P t∆P with ∆ = diag(γ1, γ2), one has therefore C
X

j (t) = C
Y

j ( t−mσ )
and Y is centered with unit variance and admits γ1

σ2 ,
γ2
σ2 for spectral moments with (denoting by

Yi and Yij the first and second order partial derivatives of Y ):

γ1

σ2
= E(Y1(0)2),

γ2

σ2
= E(Y2(0)2), and E(Y1(0)Y2(0)) = 0.

Since Y is stationary Gaussian, we also have that ∇Y (0) is independent from Y (0) and D2Y (0),
and that Y (0) and D2Y (0) are correlated with covariance

E(Y (0)Y11(0)) = − γ1

σ2
, E(Y (0)Y22(0)) = − γ2

σ2
, and E(Y (0)Y12(0)) = 0.

Therefore the conditional expectations are given by

E(Y11(0)|Y (0) = t) = − γ1

σ2
t, E(Y22(0)|Y (0) = t) = − γ2

σ2
t, and E(Y12(0)|Y (0) = t) = 0.

Now, using that for a vector v ∈ R2, we have, denoting eθ = (cos θ, sin θ),

‖v‖ =
1

4

∫ 2π

0

|〈v, eθ〉| dθ,

and using that for a 1D Gaussian random variable Z of mean 0 and variance σ2
Z , we have E(|Z|) =√

2
πσZ , we get

C
Y

1 (t) =
1

2
E(‖∇Y (0)‖)pY (0)(t) =

1

8πσ
e−t

2/2

∫ 2π

0

√
γ1 cos2 θ + γ2 sin2 θ dθ.

To compute C
Y

0 (t), we first need to compute E(cos2 Θ) where Θ is the angle of ∇Y (0), i.e.
∇Y (0) = (‖∇Y (0)‖ cos Θ, ‖∇Y (0)‖ sin Θ). Since Y is not assumed isotropic, the law of Θ is not
necessarily uniform on [0, 2π). Indeed we have

E(cos2 Θ) =
σ2

2π
√
γ1γ2

∫∫
y2

1

y2
1 + y2

2

e−(σy1)2/2γ1e−(y2σ)2/2γ2 dy1dy2

=
1

2π

∫ 2π

0

γ1 cos2 θ

γ1 cos2 θ + γ2 sin2 θ
dθ. (18)

It follows that

E(sin2 Θ) =
1

2π

∫ 2π

0

γ2 sin2 θ

γ1 cos2 θ + γ2 sin2 θ
dθ.

Finally,

C
Y

0 (t) = − 1

2π

(
E(sin2 Θ)E(Y11(0)|Y (0) = t) + E(cos2 Θ)E(Y22(0)|Y (0) = t)

)
pY (0)(t),
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and combining everything, we get

C
Y

0 (t) =
t

σ2(
√

2π)5
e−t

2/2

∫ 2π

0

γ1γ2

γ1 cos2 θ + γ2 sin2 θ
dθ =

t

σ2(
√

2π)3
e−t

2/2√γ1γ2.

The last equality comes from the following computation:

1

2π

∫ 2π

0

γ1γ2

γ1 cos2 θ + γ2 sin2 θ
dθ =

2

π

∫ π/2

0

γ1γ2

γ1 cos2 θ + γ2 sin2 θ
dθ

=
2

π

∫ +∞

0

γ1γ2

γ1 + γ2s2
ds =

√
γ1γ2, (19)

where we have used a change of variable s = tan θ, and then recognized the derivative of the

function s 7→ arctan(
√

γ2
γ1
s).

The remark on the ”equivalent” isotropic fields that have same Perimeter density or same Total
curvature density as X comes from the fact that when γ1 = γ2 = γ, then the above computations
yield γPer = γTC = γ.

To prove the inequality between γTC and γPer, let us first notice that√
γPer =

1

2π

∫ 2π

0

1

2

(√
γ1 cos2 θ + γ2 sin2 θ +

√
γ1 sin2 θ + γ2 cos2 θ

)
dθ.

Then, for any s ∈ [0, 1], we have

1

2

(√
γ1s+ γ2(1− s) +

√
γ1(1− s) + γ2s

)
≥ ((γ1s+ γ2(1− s))(γ1(1− s) + γ2s))

1/4

=
(
γ2

1s(1− s) + γ2
2s(1− s) + γ1γ2(s2 + (1− s)2)

)1/4
=

(
γ1γ2 + s(1− s)(γ1 − γ2)2

)1/4 ≥ (γ1γ2)
1/4

,

and this proves the inequality, by simply setting s = cos2 θ and then integrating over θ. We also
remark that this inequality is strict if and only if γ1 6= γ2.

Note that we recover our previous results of [7] in the (weakly) isotropic case. Moreover, in the
anisotropic case, assuming that γ2 > γ1 and considering k =

√
1− γ1/γ2, one can write√

γPer =
√
γ2

2

π

∫ π/2

0

√
(1− k2) cos2 θ + sin2 θ dθ =

√
γ2

2

π
E(k),

where E(k) is the elliptic integral of the first kind, such that PerX(t) corresponds to the formula
of Theorem 11.3. of [4]. We also refer to Proposition 3.4 of [15] for planar Gaussian waves.

3.2. Visualization and estimation of the anisotropy

In this section, we are interested in visualizing and estimating the anisotropy of a Gaussian field
from the Lipschitz-Killing curvatures of its excursion sets. Here the anisotropy is understood in a
weak way, and it is summarized through the anisotropy ratio R defined by

R :=
γTC

γPer

.

Thanks to Theorem 3.1, we have R ∈ [0, 1], and R = 1 if and only if the spectral moments γ1

and γ2 are equal, meaning that the field X is (weakly) isotropic. More precisely, we can see R as

a function of α := min(γ1,γ2)
max(γ1,γ2) ∈ [0, 1] since

R =
γTC

γPer

=

√
γ1γ2(

1
2π

∫ 2π

0

√
γ1 cos2 θ + γ2 sin2 θ dθ

)2 =

√
α(

1
2π

∫ 2π

0

√
α cos2 θ + sin2 θ dθ

)2 .

This is illustrated on the left of Figure 2 where we show the graph of the function α 7→ R. It is
an increasing function that maps [0, 1] to [0, 1].
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3.2.1. The Almond curve of anisotropy

Inspired by the paper of Klatt et al. [24] for the visualization of anisotropy, from the formulas for
the Perimeter density and the Total Curvature density (Theorem 3.1), we see that if we set

x̃(t) =
PerX(t)

PerX(m)
= e−(t−m)2/2σ2

and ỹ(t) =
TCX(t)

PerX(m)2
=
γTC

γPer

4√
2π

t−m
σ

e−(t−m)2/2σ2

,

then the point (x̃(t), ỹ(t)) is on the curve

CR = {(x, y) ∈ R2 ; y2 +
16

π
R2x2 log x = 0}.

Notice that this curve is in the sub-domain x ∈ (0, 1] and that, thanks to the fact that R ≤ 1, it
is inside the domain defined by the closed curve

C1 = {(x, y) ∈ R2 ; y2 +
16

π
x2 log x = 0}.

This curve is ”canonical” in the sense that it is independent of the mean and of the variance of the
field. We call this curve the almond curve of anisotropy because of its shape, see Figure 2 right.
Points on this curve correspond to R = 1, that is γTC = γPer and thus γ1 = γ2, meaning the field
X is (weakly) isotropic.

Fig 2. On the left, plot of the function α 7→ R. On the right, the almond curves of anisotropy: the blue plain curve
is the curve C1 corresponding to isotropy, and the black dotted curve is a curve CR, with here R ' 0.92.

3.2.2. Estimating the anisotropy from one excursion set

Assume we observe an excursion set Ê of a sample of a Gaussian stationary random field X, in a
window U . The question is then: how to estimate the anisotropy ratio R from this set Ê only, that
is without having access to the whole field (nor its increments for instance). We ignore also at which
level t the field X was thresholded, and also what was its mean m or its variance σ2. Now from the
three observed Lipschitz-Killing curvatures densities (that are Â(E) = A(Ê)/L2(U) the normalized

Area of Ê, P̂er(E) = Per(Ê)/L2(U) the normalized Perimeter of Ê, and T̂C(E) = TC(Ê)/L2(U)
the normalized Total Curvature of E), we can proceed the following way:
- Compute an ”effective” threshold t̂, that is an empirical estimate of t−mσ , using the density area

of Ê:
t̂ = Φ−1(1− Â(E)).

- Then estimate PerX(m) by

p̂m := P̂er(E)et̂
2/2.
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Fig 3. First line: left, a sample of a centered isotropic Gaussian field X, size 1000 × 1000 pixels, with variance
σ2 = 1 and covariance of the form ρ(x1, x2) = exp(−γ1x21 +γ2x22) with γ1 = γ2 = 0.005. Middle: the almond curve
and some points from the isotropic field (100 samples). Right: corresponding estimations of the anisotropy ratio R
(= 1 here) as a function of the quantiles. Second line: same experiments but with now γ1 = 0.005 and γ2 = 0.002,
that corresponds to an anisotropic field with R ' 0.92.

- And the ”effective” spectral moments via

γ̂Per

σ2
= (2p̂m)2,

γ̂TC

σ2
= T̂C(E)

√
2π

t̂
et̂

2/2.

Finally estimate the anisotropy ratio with

R̂ =
γ̂TC

γ̂Per
=

T̂C(E)

p̂m
2

√
2π

4t̂
et̂

2/2.

This estimation procedure is inspired from the one developed by Elena Di Bernardino and Céline
Duval in [13], where they introduce the notion of ”effective” threshold, but where the framework
is quite different since they assume the Gaussian field is isotropic.

Note that only ”effective” spectral moments γPer

σ2 and γTC

σ2 are empirically accessible in practice
when X is not assumed standard (i.e. so that σ = 1) but our anisotropic ratio R itself is empirically
accessible. Moreover we can also compute a point on the almond curve (see Figure 3) by setting

x̂ =
P̂er(E)

p̂m
= e−t̂

2/2 and ŷ =
T̂C(E)

p̂m
2 = R̂

4√
2π
t̂e−t̂

2/2.

Let us remark that, assuming Ê is the realization of EX(t)∩Un for some t ∈ R and n large, under

the assumptions of Corollary 2 on an open neigborhood V of t and J = {0, 1, 2}, Â(E), P̂er(E) and

T̂C(E) are consistent and asymptotically Gaussian. When moreover t 6= m, by the delta method,
it should imply the same properties for the effective spectral moments and anisotropy ratio (see
Figure 8 in the additional experiments section B in the Appendix, where we also numerically check
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the central limit behavior of the anisotropy ratio). This restriction on t means that we shall not
have Â(E) close to 1/2 = Φ(0).

On Figures 3 and 4 (and also on Figure 9 in the additional experiments section B in the Ap-
pendix), we illustrate all the theoretical results of this section. The numerical computations of the
Lipschitz-Killing curvatures of the excursion sets are done thanks to the Matlab ”imMinkowski”
library1 developed by David Legland and described in [27]. As far as binary images are concerned,
it will be more convenient to work with ”quantiles” q ∈ [0, 1] so that the corresponding threshold
levels are given by t = m+ σΦ−1(q).

Fig 4. Densities C
X
0 (first line), C

X
1 (second line) and C

X
2 (third line), as a function of the level or the quantile

in the isotropic case (left part of the figure) and in the anisotropic one (right part of the figure). The Gaussian
fields are the same as the ones of Figure 3, here with one sample of size 1000× 1000 (n = 1000).

4. Smooth stationary 3D Gaussian fields

4.1. Lipschitz-Killing curvature densities

We are here interested in the 3D framework, and we consider a real-valued random field X defined
on R3. The quantities of interest are the Lipschitz-Killing curvatures C0, C1, C2 and C3 that
are now related to the Total Gaussian Curvature (also related to the Euler Characteristic by the
Gauss-Bonnet Theorem), the Total Mean Curvature (related to the mean breadth), the Surface
Area and the Volume of an excursion set. More precisely, for a smooth stationary field X defined
on R3 and h ∈ S we denote

LVX(h, U) := LCX3 (h, U), LSAX(h, U) := 2LCX2 (h, U),

LTMCX(h, U) := πLCX1 (h, U) and LTGCX(h, U) := 4πLCX0 (h, U).

1available at https://www.mathworks.com/matlabcentral/fileexchange/33690-imminkowski
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Theorem 4.1. Let X be a stationary Gaussian field of mean m ∈ R, variance σ2 > 0 and
whose covariance function ρ satisfies Hypothesis H. We write γ1, γ2, γ3 > 0 the eigenvalues of
Γ = −D2ρ(0) and denote by Φ the standard Gaussian cumulative distribution. Then the Lipschitz-
Killing curvature densities of X are given for a.e. t ∈ R by

VX(t) := C
X

3 (t) = 1− Φ
( t−m

σ

)
,

SAX(t) := 2C
X

2 (t) =

√
γSA

σ2

2

π
e−(t−m)2/2σ2

,

TMCX(t) := πC
X

1 (t) =
γTMC

σ2

1√
2π

t−m
σ

e−(t−m)2/2σ2

,

TGCX(t) := 4πC
X

0 (t) =

(
γTGC

σ2

)3/2
1

π

(
(t−m)2

σ2
− 1

)
e−(t−m)2/2σ2

,

where

γSA =

(
1

4π

∫
S2

√
γ1u2

1 + γ2u2
2 + γ3u2

3H2(du)

)2

, (20)

γTMC =
1

2
(γ1 + γ2 + γ3)− 1

8π

∫
S2

γ2
1u

2
1 + γ2

2u
2
2 + γ2

3u
2
3

γ1u2
1 + γ2u2

2 + γ3u2
3

H2(du), (21)

and γTGC = (γ1γ2γ3)1/3. (22)

Therefore, the Gaussian random field X has same Surface Area density as a (weakly) isotropic
Gaussian field with second spectral moment γSA, same Total Mean Curvature density as a (weakly)
isotropic Gaussian field with second spectral moment γTMC and same Total Gaussian Curvature
density as a (weakly) isotropic Gaussian field with second spectral moment γTGC. Moreover, we
have

min(γ1, γ2, γ3) ≤ (γ1γ2γ3)1/3 = γTGC ≤ γTMC ≤ γSA ≤
γ1 + γ2 + γ3

3
≤ max(γ1, γ2, γ3).

where the inequalities are strict if and only if min(γ1, γ2, γ3) < max(γ1, γ2, γ3).

Proof. As in the 2D case, we may assume that m = 0, σ2 = 1 and Γ = Diag(γ1, γ2, γ3) meaning
that

∀j = 1, 2, 3, γj := Γjj = E(Xj(0)2), and E(Xi(0)Xj(0)) = 0 when i 6= j,

denoting Xi := ∂X
∂xi

, Xij := ∂2X
∂xi∂xj

for 1 ≤ i, j ≤ d. The formula for VX is straightforward. Now

for j < 3, by Hypothesis H, we have ‖∇X(0)‖ > 0 a.s. and E(‖∇X(0)‖−1) < +∞. Since D2X(0)
is independent from ∇X(0), recalling (3), (4) (5), it follows that the assumption (10) is satisfied.
Then, for h ∈ S, by (11), since the standard Gaussian random variable X(0) admits a probability
density given by a function pX(0), we have

α2−j〈C
X

j , h〉 = E (h(X(0))F2−j(X(0))) =

∫
R
h(t)E (F2−j(X(0))|X(0) = t) pX(0)(t)dt.

Hence, for a.e. t ∈ R,

C
X

2 (t) =
1

2
E(‖∇X(0)‖

∣∣X(0) = t)pX(0)(t)

C
X

1 (t) =
1

2π
E
(
∇X(0)tD2X(0)∇X(0)

‖∇X(0)‖2
− Tr

(
D2X(0)

) ∣∣X(0) = t

)
pX(0)(t).

C
X

0 (t) =
1

4π
E
(
∇X(0)tadj(D2X(0))∇X(0)

‖∇X(0)‖3
∣∣X(0) = t

)
pX(0)(t).
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Note that since X is Gaussian, we have that ∇X(0) is independent from X(0) and D2X(0), and
that X(0) and D2X(0) are correlated with covariance

∀j = 1, 2, 3, E(X(0)Xjj(0)) = −γj , and E(X(0)Xij(0)) = 0 when i 6= j.

∀j = 1, 2, 3, E(X(0)Xjj(0)) = −γj , and E(X(0)Xij(0)) = 0 when i 6= j.

Therefore the conditional expectations are given by

E(Xjj(0)|X(0) = t) = −γjt, and E(Xij(0)|X(0) = t) = 0.

Moreover, we have
∂4
iijjρ(0) = E(Xii(0)Xjj(0)) = E(Xij(0)2).

Since by assumption D2ρ(0) = −Γ is diagonal, we have E(Xij(0)X(0)) = 0 and therefore

E(Xij(0)2|X(0) = t) = ∂4
iijjρ(0).

Using the formulas for the conditional distribution of Gaussian vectors, the covariance of (Xii(0), Xjj(0))
knowing X(0) = t is given by

E(Xii(0)Xjj(0)|X(0) = t) = γiγjt
2 + ∂4

iijjρ(0)− γiγj .

Therefore, putting all together, we get

E(Xii(0)Xjj(0)−Xij(0)2|X(0) = t) = γiγj(t
2 − 1),

which doesn’t require the fourth-order spectral moment anymore. We are now in position to

compute the different densities. We start with C
X

2 (t), which is equal to

C
X

2 (t) =
1

2
E(‖∇X(0)‖|X(0) = t)pX(t) =

1

2
E(‖∇X(0)‖)pX(0)(t).

We use here the property that if v ∈ R3, then

‖v‖ =
1

2π

∫
S2

|〈v, u〉|H2(du).

Now, as in the 2D case, using the fact that the expectation of the absolute value of a centered Gaus-

sian real random variable is
√

2
π times its standard deviation, we get, denoting u = (u1, u2, u3) ∈

S2,

C
X

2 (t) =
1

4π2
e−t

2/2

∫
S2

√
γ1u2

1 + γ2u2
2 + γ3u2

3H2(du) =
1

π

√
γSAe

−t2/2.

Then, for C
X

1 , using the conditional expectations and the fact that ∇X(0) is independant from
(X(0), D2X(0)), we have

2πC
X

1 (t) = tpX(0)(t)

[
γ1 + γ2 + γ3 − E

(
γ1X1(0)2 + γ2X2(0)2 + γ3X3(0)2

X1(0)2 +X2(0)2 +X3(0)2

)]
.

Using the law of the Xi(0) and a change of variable with spherical coordinates, we get that

E
(
γ1X1(0)2 + γ2X2(0)2 + γ3X3(0)2

X1(0)2 +X2(0)2 +X3(0)2

)
=

1

4π

∫
S2

γ2
1u

2
1 + γ2

2u
2
2 + γ2

3u
2
3

γ1u2
1 + γ2u2

2 + γ3u2
3

H2(du).

Hence,

2πC
X

1 (t) = 2γTMCtpX(0)(t).
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Finally, by independence of ∇X(0) from (X(0), D2X(0)), and the conditional expectations com-
puted above, we get (where the indices i, j, k below are all distincts):

4πC
X

0 (t) = pX(0)(t)

3∑
i=1

E
(

Xi(0)2

(X1(0)2 +X2(0)2 +X3(0))3/2

)
E(Xjj(0)Xkk(0)−Xjk(0)2|X(0) = t)

= (t2 − 1)pX(0)(t)

3∑
i=1

E
(

Xi(0)2

(X1(0)2 +X2(0)2 +X3(0))3/2

)
γjγk

= (t2 − 1)pX(0)(t)×
1

(2π)3/2

∫
S2

γ1γ2γ3

(γ1u2
1 + γ2u2

2 + γ3u2
3)3/2

H2(du)

= γ
3/2
TGC

1

π
(t2 − 1)e−t

2/2.

The last line above comes from the following computation. Let J denote the above integral on S2,
that can be also written as

J := 2

∫ π/2

0

∫ 2π

0

γ1γ2γ3

(γ1 sin2 ϕ cos2 θ + γ2 sin2 ϕ sin2 θ + γ3 cos2 ϕ)3/2
sinϕdθdϕ.

Then by a change of variable s = tanϕ, we have ds = (1+s2)dϕ, cos2 ϕ = 1
1+s2 and sinϕ = s√

1+s2
.

Therefore

J = 2

∫ +∞

0

∫ 2π

0

γ1γ2γ3 s

((γ1 cos2 θ + γ2 sin2 θ)s2 + γ3)3/2
dθ ds

= 2
√
γ3

∫ 2π

0

γ1γ2

γ1 cos2 θ + γ2 sin2 θ
dθ = 4π

√
γ1γ2γ3,

where we have used the computation made in the 2D case.
To prove the inequalities, let us first rewrite things using the random variable U = (U1, U2, U3) ∈

R3 that is assumed to be uniformly distributed on the unit sphere S2. Then

γSA = E
(√

γ1U2
1 + γ2U2

2 + γ3U2
3

)2

,

γTMC =
1

2
E
(
γ1(γ2 + γ3)U2

1 + γ2(γ1 + γ3)U2
2 + γ3(γ1 + γ2)U2

3

γ1U2
1 + γ2U2

2 + γ3U2
3

)
.

By concavity of the square root function, we first have that

γSA ≤ E(γ1U
2
1 + γ2U

2
2 + γ3U

2
3 ) =

1

3
(γ1 + γ2 + γ3),

because E(U2
i ) = 1/3 (this comes from the symmetry of the Ui’s and the fact that U2

1 +U2
2 +U2

3 = 1
a.s.). Note also that the inequality is strict for min(γ1, γ2, γ3) < max(γ1, γ2, γ3) by strict concavity
of the square root function.

The inequality between γSA and γTGC = (γ1γ2γ3)1/3 can also be obtained in a straightforward
way. Indeed, using again the concavity of the square root function, and the fact that

∑
i U

2
i = 1,

we have √
γ1U2

1 + γ2U2
2 + γ3U2

3 ≥
√
γ1U

2
1 +
√
γ2U

2
2 +
√
γ3U

2
3 .

And then taking the expectation on both sides we have

E
(√

γ1U2
1 + γ2U2

2 + γ3U2
3

)
≥ 1

3
(
√
γ1 +

√
γ2 +

√
γ3) ≥ (γ1γ2γ3)1/6,

thanks to the arithmetic-geometric inequality. Therefore

γSA ≥ γTGC.
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The inequalities for γTMC are more difficult to obtain. We first introduce the function

gγ : x ∈ R3 7→
√
γ1x2

1 + γ2x2
2 + γ3x2

3

and note that it is a twice continuously differentiable positive function on R3 r {0} with gradient
given by ∇gγ(x) = 1

gγ(x) (γ1x1, γ2x2, γ3x3). It follows that its directional gradient on the sphere at

a point x ∈ S2 is given by the orthonormal projection of ∇gγ(x) onto the tangent space at x that
is precisely 〈x〉⊥, namely

∇S2gγ(x) = ∇gγ(x)− 〈∇gγ(x), x〉x = ∇gγ(x)− gγ(x)x.

According to Poincaré - Wirtinger inequality (Theorem 5.4.1 of [21]) we have

Var (gγ(U)) ≤ 1

2
E
(
‖∇S2gγ(U)‖2

)
.

But we remark that γSA = E (gγ(U))
2

and that E
(
gγ(U)2

)
= 1

3 (γ1 + γ2 + γ3), while

E
(
‖∇S2gγ(U)‖2

)
= E

(
‖∇gγ(U)‖2

)
− E

(
gγ(U)2

)
.

Then Poincaré - Wirtinger inequality rewrites as

3

2
E
(
gγ(U)2

)
− γSA ≤

1

2
E
(
‖∇gγ(U)‖2

)
.

But

3

2
E
(
gγ(U)2

)
− 1

2
E
(
‖∇gγ(U)‖2

)
=

1

2
E
(
γ1 + γ2 + γ3 −

γ2
1U

2
1 + γ2

2U
2
2 + γ2

3U
2
3

γ1U2
1 + γ2U2

2 + γ3U2
3

)
= γTMC.

Hence we have obtained γTMC ≤ γSA. Note also that the case of equality in Poincaré - Wirtinger
inequality may only be achieved when gγ is constant on S2. Actually by Theorem 5.4.1 of [21], the
equality holds if and only if gγ − E(gγ(U)) is a spherical harmonic of degree 1. This implies that
g̃γ : R3 7→ gγ(x)−E(gγ(U))‖x‖ is an homogeneous polynomial of degree 1 with constant gradient.
But since, for (ei)1≤i≤3 the canonical basis, we have ∇g̃γ(ei) = (

√
γi − E(gγ(U)))ei, this implies

that
√
γi = E(gγ(U)) and therefore min(γ1, γ2, γ3) = max(γ1, γ2, γ3) with gγ(x) = E(gγ(U))‖x‖.

For the other inequality involving γTMC, we will use the isoperimetric inequality for 3D convex
bodies (see [28] for instance), that states that

SA3 ≥ 36πV 2,

where SA is the surface area and V is the volume. Now, taking a 3D ellipsoid of semi-axes
√
γ1,√

γ2,
√
γ3, we have that its volume is

V =
4

3
π
√
γ1
√
γ2
√
γ3 =

4

3
πγTGC

3/2,

and that its surface area is [22]

SA = 2π(γ1 + γ2 + γ3)− 2πE
(
γ2

1U
2
1 + γ2

2U
2
2 + γ2

3U
2
3

γ1U2
1 + γ2U2

2 + γ3U2
3

)
= 4πγTMC.

Therefore the isoperimetric inequality implies that

43π3γ3
TMC ≥ 36π

42

32
π2γ3

TGC,

which exactly means γTMC ≥ γTGC. Note also that equality in the isoperimetric inequality may
only be achieved when the body is a sphere (see [28] p.1190, result (2.7) for instance), that is when
min(γ1, γ2, γ3) = max(γ1, γ2, γ3).
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4.2. Visualization and estimation of the anisotropy

We are here interested in the visualization and in the estimation of the anisotropy from an excursion
set of a sample of a 3D Gaussian field, in a way similar to what was done in the 2D framework.

We define now two anisotropy ratios:

R :=
γTMC

γSA

and RG :=
γTGC

γSA

.

We have 0 ≤ RG ≤ R ≤ 1 because of Theorem 4.1, and since they are symmetric functions of the
γi’s, we can assume γ3 = max({γi}), and see R and RG as functions of α1 := γ1

γ3
and α2 := γ2

γ3
.

This is illustrated on Figure 5.

Fig 5. The anisotropy ratios R (on the left) and RG (on the right) as functions of α1 := γ1
γ3

and α2 := γ2
γ3

.

4.2.1. The Almond and Heart curves of anisotropy

Again, as in the 2D case, we can see the Lipschitz-Killing curvature densities as points on a curve,
that is now in R3. More precisely, considering

x̃(t) =
SAX(t)

SAX(m)
= e−(t−m)2/2σ2

,

ỹ(t) =
TMCX(t)

SAX(m)2
=

γTMC

γSA

π
√
π

4
√

2

t−m
σ

e−(t−m)2/2σ2

= R
π
√
π

4
√

2

t−m
σ

e−(t−m)2/2σ2

,

and z̃(t) =
TGCX(t)

SAX(m)3
=

(
γTGC

γSA

)3/2
π2

8

(
(t−m)2

σ2
− 1

)
e−(t−m)2/2σ2

= R
3/2
G

π2

8

(
(t−m)2

σ2
− 1

)
e−(t−m)2/2σ2

,

then this defines a parametric curve in R3, that has as a projection on the first two coordinates
an almond curve of cartesian equation

C(3d)
R = {(x, y) ∈ R2; y2 +

π3

16
R2x2 log x = 0},

and on the last two coordinates, the projection is a parametric curve of the form

C̃(3d)
R,RG

= {(y(s), z(s)) ∈ R2 ; y(s) = R
π
√
π

4
√

2
se−s

2/2, z(s) = R
3/2
G

π2

8
(s2 − 1)e−s

2/2, s ∈ R}.
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These two curves are shown on the first line of Figure 7, where the blue curves correspond to
the isotropic case (R = RG = 1) and the black ones correspond on the figures to R ' 0.91 and
RG ' 0.84. These black curves are inside the domains defined by the isotropic (blue) curves.

4.2.2. Estimating the anisotropy from one excursion set

Again, as in the 2D case, assume we observe an excursion set Ê of a sample of a Gaussian
stationary random field X, in a window U . The question is then: how to estimate the anisotropy
of X from this set Ê only, that is without having access to the whole field (nor its increments for
instance). We ignore also at which level t the field X was thresholded, and also what was its mean
m or its variance σ2. Now, from the four observed Lipschitz-Killing curvatures densities (that

are V̂(E) = V(Ê)/L3(U) the normalized Volume of Ê, ŜA(E) = SA(Ê)/L3(U) the normalized

Surface Area of Ê, T̂MC(E) = TMC(Ê)/L3(U) the normalized Total Mean Curvature of Ê and

T̂GC(E) = TGC(Ê)/L3(U) the normalized Total Gaussian Curvature of Ê), we can proceed the
following way:
- Compute an ”effective” threshold t̂, that is an empirical estimate of t−m

σ , using the volume of

Ê:
t̂ = Φ−1(1− V̂(E)).

- Then estimate SAX(m) by

ŜAm := ŜA(E)et̂
2/2.

- And finally estimate the anisotropy ratios via

R̂ =
T̂MC(E)

ŜA(E)2

4
√

2

π
√
π

1

t̂
e−t̂

2/2 and R̂G
3/2

=
T̂GC(E)

ŜA(E)3

8

π2

1

(t̂2 − 1)
e−t̂

2

.

As in the 2D case, we have performed some numerical experiments to illustrate all this. Let
us mention that such numerical experiments are much more difficult to conduct than in the 2D
case. The memory size and the computation time needed to proceed with a 3D volume are very
high. Only ”small” volumes were considered, with size 2003 voxels. Therefore the variances in
the estimation of the Lipschitz-Killing curvatures is quite high, see Figure 6. The estimation of
the anisotropy ratios from one excursion set is illustrated on Figure 7 (anisotropic case). See the
caption of the figures for more details. Additional experiments are also provided in the experimental
section B of the Appendix.

5. Further remarks

5.1. Link with the kinematic formula

For sake of simplicity, let us assume that X = (X(x))x∈Rd is a stationary smooth centered Gaussian
random field with unit variance, whose excursion set is given by EX(t) for some t ∈ R. By the
kinematic formula of Theorem 9.4.1 of [31], under the assumptions that Z := EX(t) is a standard
set (see Definition 9.2.1), it follows (see end of p.416) that for r > 0,

E
(
Vj
(
Z ∩B(0, r)

))
=

d∑
k=j

ck,d−k+j
j,d V k(Z)Vd−k+j(B(0, r)),

where, following the notations of [31], ck,d−k+j
j,d =

γ( k+1
2 )γ( d−k+j+1

2 )
γ( j+1

2 )γ( d+1
2 )

, with γ(a) =
∫ +∞

0
ta−1e−tdt

for a > 0, and the intrinsic volumes Vl correspond to Lipschitz-Killing curvatures Cl. Moreover,



/ 23

Fig 6. Lipschitz-Killing curvatures densities of the excursion sets of an isotropic Gaussian volume. Here we have
taken 20 samples of a 3D volume of size 2003 voxels, of a Gaussian field with mean m = 0, variance σ2 = 1 and
covariance of the form exp(−γ1x21 − γ2x22 − γ3x23) with γ1 = 0.01, γ2 = 0.02 and γ3 = 0.05. An example of such a
Gaussian volume is shown on the left of the first line, with one excursion set on the right. Using the Matlab toolbox
ImMinkowski [27], we have estimated the volume densities (second line, left), the surface area densities (second
line, right), the total mean curvature densities (third line, left) and the total Gaussian curvature densities (third
line, right). The densities are plotted else as functions of the level t or as functions of the quantile q. The stars
are the values for the 20 different samples.

following Corollary 9.4.1, we can identify V k(Z) with C
X

k (t) and rewrite the previous formula as

E
(
Cj
(
Z ∩B(0, r)

))
=

d∑
k=j

ck,d−k+j
j,d Vd−k+j(B(0, 1))C

X

k (t)rd−k+j .

Meanwhile, under the additional assumption that the joint distribution of the Gaussian vector
X(0) is non degenerate, the stationary random field X fulfills the assumptions of Theorem 4.2.1
of [3] and the Gaussian kinematic formula states that (see (4.0.1) therein)

E
(
L∇j
(
Z ∩B(0, r)

))
=

d−j∑
i=0

[
i+ j
i

]
L∇i+j(B(0, r))(2π)−i/2hi−1(t)

=

d∑
k=j

[
d− k + j
d− k

]
L∇d−k+j(B(0, 1))(2π)−(d−k)/2hd−k−1(t)rd−k+j ,
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Fig 7. Estimation of R and RG from the Lipschitz-Killing curvatures densities of an excursion set. The samples
are the same as the ones of Figure 6. Notice that, because of the term 1/t̂, the estimation of R is inaccurate for
values around t̂ = 0, whereas for RG the inaccuracy of estimation occurs around t̂ = ±1.

with the change of variable k = d − i, where L∇k denotes the Lipschitz-Killing curvatures under
the Riemannian metric given by Γ, the covariance matrix of ∇X(0),[

k
k − j

]
=

(
k

k − j

)
ωk

ωk−jωj
,

with ωk the volume of the k-dimensional unit ball of Rk, that is

ω0 = 1, ω1 = 2, ω2 = π, ω3 =
4

3
π, etc..

and h−1(t) = Φ(t), whereas hk(t) = 1√
2π
Hk(t)e−t

2/2 are the Hermite functions of order k ∈ N.

For j = 0 we obtain the mean Euler characteristic of EX(t) ∩B(0, r) as

E
(
χ(EX(t) ∩B(0, r)

)
=

d∑
k=0

L∇d−k(B(0, 1))(2π)−(d−k)/2hd−k−1(t)rd−k

=

d∑
k=0

ck,d−k0,d Vd−k(B(0, 1))C
X

k (t)rd−k.

Hence, identifying, we get for all 0 ≤ k ≤ d,

C
X

k (t) =
L∇d−k(B(0, 1))

Vd−k(B(0, 1))
cd,khd−k−1(t),
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where we set cd,k = (2π)−(d−k)/2

ck,d−k0,d

. Note that cd,d = 1, cd,0 = (2π)−d/2, and c2,1 = (2π)−1/2 γ(1/2)2

2 =

1
2

√
π
2 , while c3,1 = (2π)−1

(
1
2

)−1
= 1

π and c3,2 = (2π)−1/2
(

1
2

)−1
=
√

2
π . Hence we can define

geometrical second spectral moments for 0 ≤ k ≤ d− 1 by

λk =

(
L∇d−k(B(0, 1))

Vd−k(B(0, 1))

)2/(d−k)

.

Note that assuming that Γ = diag(γ1, . . . , γd) we obtain that λk =
(
Vd−k(E``(Γ))

Vd−k(B(0,1))

)2/(d−k)

, where

E``(Γ) is the Ellipsoid of semi-axes
√
γ1, . . . ,

√
γd (see [22] for explicit computations). Then, ex-

tended isoperimetric inequalities (see (1.1) of [29]) rewrite as

∀0 ≤ k ≤ d− 1, λ0 ≤ λk,

while the generalized Urysohn inequality (see (1.2) of [29]) states that

∀0 ≤ k ≤ d− 1, λk ≤ λd−1,

in accordance with our results for dimension d ∈ {2, 3} with λ0 = γTC, λ1 = γPer in dimension
d = 2 and λ0 = γTGC, λ1 = γTMC, λ2 = γSA in dimension d = 3 .

Finally, let us end by remarking that the mean Euler characteristic of EX(t) ∩ [0, T ]d for some
T > 0 is given according to Theorem 4.4.1 of [3] by

E
(
χ(EX(t) ∩ [0, T ]d)

)
=

d∑
k=0

L∇d−k+j([0, T ]d)(2π)−(d−k)/2hd−k−1(t).

and therefore, the Euler characteristic density of EX(t) ∩ [0, T ]d satisfies

lim
T→+∞

1

T d
E(χ(EX(t) ∩ [0, T ]d)) = (γ1 . . . γd)

1/2(2π)−d/2hd−1(t) = C
X

0 (t).

5.2. A functional Weyl’s tube formula

Considering a compact d-dimensional submanifold in Rd with a C2 smooth boundary, according
to Weyl’s tube formula [35] also called Steiner’s formula [18], the Lipschitz-Killing curvatures are
related to the volume of the r-parallel set (also called r-extension or r-dilation) of M by

Ld(Mr) =

d∑
k=0

ωkCd−k(M)rk,

where Mr = M ⊕B(0, r) = {x; dist(x,M) ≤ r} is the r-parallel set to M , and where ωk is still the
volume of the k-dimensional unit ball of Rk. The above tube formula is valid for r small enough
(more precisely smaller than the so-called reach of M , denoted by reach(M), and that is strictly
positive when M is a smooth compact submanifold). Now, this formula can be localized in the
sense that if we consider an open bounded subset U ⊂ Rd, the above tube formula becomes (see
[18] or [34] Theorem 26), for 0 < r < reach(M),

Ld(Mr,U ) =

d∑
k=0

ωkCd−k(M,U)rk, (23)

where here Mr,U = {x; dist(x,M) ≤ r and ΠM (x) ∈ U}, with ΠM (x) being the projection of x on
M , that is the closest point to x in M which is unique when dist(x,M) ≤ r < reach(M). Notice
that generally Mr,U is not equal to Mr ∩ U . Here the Lipschitz-Killing curvatures Cd−k(M,U)
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are localized in U and their formula involving the principal curvatures are analogous to the ones
of the Cd−k(M) given in Section 2 except that the integrals on ∂M are replaced by integrals on
∂M ∩ U . These are the quantities that we have considered in the previous sections.

Let f : Rd → R be a smooth function, and let U be a bounded open subset of Rd. For almost
every t ∈ R, Ef (t) = {x ∈ Rd ; f(x) ≥ t} is a smooth manifold and we can consider its Lipschitz-
Killing curvatures in U . We denote them by Ck(Ef (t), U) for k = 0, . . . , d. As recalled by Weyl’s
tube formula (23), we can obtain these Lipschitz-Killing curvatures as the coefficients of the powers
of r in the volume of the r-parallel set to Ef (t). More precisely we have, for r small enough,

Ld((Ef (t))r,U ) =

d∑
k=0

ωkCd−k(Ef (t), U)rk.

In Section 2.2, we have 1) used the formulas for the Ck involving the symmetric functions of
the curvatures, and the explicit formulas for these curvatures in 2D or 3D; 2) integrate these with
a test function h to have formulas for

∫
t
h(t)Ck(Ef (t), U) dt; 3) and finally these integrals were

written as an integral on x ∈ U thanks to the coarea formula [17].
But we could have done it the other way round. Indeed, we can use directly the coarea formula

on
∫
t
h(t)Ld((Ef (t))r,U ) dt, without knowing the formulas for the curvatures, and in fact recovering

them.
More precisely, let h be a test function, and for z = (x, s) ∈ U × R+ ⊂ Rd+1, let us define the
functions h̃ : U × [0, r]→ R and F : U × [0, r]→ Rd+1 by h̃(z) = h̃(x, s) = h(f(x)) and

F (x, s) = (f(x), x− s νf (x)) ,

where we denote

νf (x) =
∇f(x)

‖∇f(x)‖
∈ Sd−1 if ∇f(x) 6= 0, and νf (x) = 0 if ∇f(x) = 0.

A simple computation shows that νf is differentiable at all x such that ∇f(x) 6= 0 and that

Dνf (x) =
1

‖∇f(x)‖
D2f(x)− 1

‖∇f(x)‖3
∇f(x)(D2f(x)∇f(x))t.

Now, let K be a compact ball containing U1 (1-dilation of U). Then for ε > 0, let us consider the
following set of values

Vε = {t ∈ R ; reach(Ef (t) ∩K) ≥ ε}.

Then, since by Morse-Sard’s theorem the set of critical values has Lebesgue measure 0 in R, we
have that L1(R \ ∪ε>0Vε) = 0. Then, let us denote Gεf = f−1(Vε). For r < ε and t ∈ Vε, we have
that

Ef (t)r,U \ (Ef (t) ∩ U) = {x− s νf (x) ; x ∈ U and f(x) = t and s ∈ (0, r)}.

Therefore, by the coarea formula:∫
(U∩Gεf )×[0,r]

h(f(x))
∣∣det(DF (x, s))

∣∣ dx ds =

∫
Vε

h(t)(Ld((Ef (t))r,U )− Ld(Ef (t) ∩ U)) dt.

The right-hand term is equal to
∑d
k=1 ωkr

k
∫
Vε
h(t)Cd−k(Ef (t), U) dt, whereas in the left-hand

term we have

det(DF (x, s)) = det

(
∇f(x)t 0

Id − sDνf (x) −νf (x)

)
= ‖∇f(x)‖ det

(
νf (x)t 0

Id − sDνf (x) −νf (x)

)
.

(24)
This determinant is a polynomial in s, with degree d− 1 and with constant term (corresponding
to s = 0) equal to ±1.
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To identify the values of
∫
R h(t)Cd−k(Ef (t), U) dt for each k we just need to develop the above

determinant, and then let ε goes to 0.
When the dimension is d = 2, we have that

det(DF (x, s)) = ‖∇f(x)‖
(
1− s (Tr(Dνf (x))− νf (x)tDνf (x)νf (x))

)
,

which is positive for s small enough. Therefore, computing the integral on s between 0 and r, we
get a polynomial in r, that allows us to identify its coefficients, and we get

ω1

∫
h(t)C1(Ef (t), U) dt =

∫
U

h(f(x))‖∇f(x)‖ dx,

and

ω2

∫
h(t)C0(Ef (t), U) dt = −1

2

∫
U

h(f(x))‖∇f(x)‖
(
Tr(Dνf (x))− νf (x)tDνf (x)νf (x)

)
dx

= −1

2

∫
U

h(f(x))

(
Tr(D2f(x))− ∇f(x)tD2f(x)∇f(x)

‖∇f(x)‖2

)
dx.

We have thus recovered the formula for the curvature in dimension d = 2.

When the dimension is d = 3, considering a direct orthonormal basis of R3 of the form
(νf (x), T1(x), T2(x)), developing the above determinant in this basis, we get

det(DF (x, s)) = ‖∇f(x)‖(1− sTr(Dνf (x)) + s2 det(νf (x), Dνf (x)tT1(x), Dνf (x)tT2(x))),

which is positive for s small enough. Therefore, computing the integral on s between 0 and r, and
identifying the coefficients, we get

ω1

∫
h(t)C2(Ef (t), U) dt =

∫
U

h(f(x))‖∇f(x)‖ dx,

ω2

∫
h(t)C1(Ef (t), U) dt = −1

2

∫
U

h(f(x))‖∇f(x)‖Tr(Dνf (x)) dx

= −1

2

∫
U

h(f(x))

(
Tr(D2f(x))− ∇f(x)tD2f(x)∇f(x)

‖∇f(x)‖2

)
dx,

and

ω3

∫
h(t)C0(Ef (t), U) dt =

1

3

∫
U

h(f(x))‖∇f(x)‖ det(νf (x), Dνf (x)tT1(x), Dνf (x)tT2(x))) dx

=
1

3

∫
U

h(f(x))
∇f(x)tadj(D2f(x))∇f(x)

‖∇f(x)‖3
dx,

where adj(D2f(x)) is the adjugate matrix of D2f(x) (that is the matrix of its cofactors). We
have thus recovered the formulas for the mean curvature and the Gaussian curvature for implicit
surfaces in R3.
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tions: École D’Été de Probabilités de Saint-Flour XXXIX-2009. Springer Science & Business
Media.

[4] Azais, J. M. and Wschebor, M. (2009). Level sets and extrema of random processes and
fields. John Wiley And Sons Ltd, United Kingdom.

[5] Berzin, C. (2021). Estimation of local anisotropy based on level sets. Electron. J. Probab.
26 Paper No. 152, 72. MR4347380
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Appendix A: Central Limit Theorem

A.1. General results

We assume that X is a C2 stationary second order field (not necessarily Gaussian) and write
as before X = (X,∇X,D2X) the vector-valued field with values in Rs = R × Rd × Rd(d+1)/2,
following [16]. We recall that since X is C2 stationary second order, the covariance function
x 7→ ρ(x) = Cov(X(x), X(0)) is C4 and for 0 ≤ i, j, k, l ≤ d

Cov(Xij(x), Xkl(0)) = (−1)ε(k)+ε(l)∂
ε(i)+ε(j)+ε(k)+ε(l)
ijkl ρ(x),

where ε(i) = 1 if i 6= 0 and X0j(x) = Xj0(x) = Xj(x) while X00(x) = X(x). Hence we introduce

ρ̃(x) = max
|k|≤4

|∂kρ(x)|,

where k = (k1, . . . , kd) ∈ Nd and |k| =
∑d
i=1 ki. In order to prove a general central limit theorem,

we will work in this section under a strong quasi-association assumption, namely, we assume
that there exists C ≥ 1 such that, for all finite subsets I and J of Zd, for all p ≥ 1 and all
~x = (x1, . . . , xp) ∈ [0, 1]dp, for all Lipschitz functions f : Rs|I|p → R and g : Rs|J|p → R, we have

|Cov(f(X~x,I), g(X~x,J)| ≤ CLip(f)Lip(g)
∑
i∈I

∑
j∈J

p∑
l=1

p∑
l′=1

ρ̃(xl + i− (xl′ + j)), (25)

where X~x,I = (X(xl + i), i ∈ I, 1 ≤ l ≤ p). For h ∈ S and q ∈ N, we write ‖h‖q = ‖h‖q,0 + ‖h‖q,1.
Note that h is a Lipschitz bounded function with Lip(h) = ‖h‖0,1 ≤ ‖h‖q,1 and that ‖h‖0,0 ≤
‖h‖q,0. We consider a sequence (Tn)n of generalized random processes given, for n ∈ N, Un = (0, n)d

and h ∈ S, by

〈Tn, h〉 =
√
Ld(Un)

(
1

Ld(Un)

∫
Un

L(h,X(x))dx− E(L(h,X(0)))

)
(26)

=

∫
[0,1]d

Sn(h, x)dx

with, for B = (0, 1]d,

Sn(h, x) =
1

nd/2

∑
k∈nB∩Zd

(L(h,X(x+ k))− E(L(h,X(0))))

and h ∈ S 7→ L(h,x) ∈ R is linear continuous for all x ∈ Rs. Now let p ≥ 1 and ~x = (x1, . . . , xp) ∈
([0, 1]d)p be fixed. We consider the stationary vector-valued random field Y = (Yk)k∈Zd with values
in Rp where

Yk = (L(h,X(x1 + k), . . . , L(h,X(xp + k)))) := L(h,X~x+k).

The quasi-association assumption (25) will imply some dependence properties on the stationary
vector-valued random field Y = (Yk)k∈Zd .
In the following, we will use the notation BL(q) for q ≥ 1 to denote the set of functions from Rq
to R that are Lipschitz and bounded.

Definition A.1 (Definition 5.14 p.94 of [10]). The random field Y is called (BL,ψ, θ) dependent if
there exists a non-increasing sequence θ = (θr)r∈N with limr→+∞ θr = 0 such that for any disjoint
finite sets I, J ⊂ Zd with dist(I, J) ≥ r, and any bounded Lipschitz functions f ∈ BL(p|I|),
g ∈ BL(p|J |), one has

|Cov (f(YI), g(YJ))| ≤ ψ(|I|, |J |, f, g)θr.

The case where ψ(|I|, |J |, f, g) = Lip(f)Lip(g) min(|I|, |J |) is simply called (BL, θ) dependence.
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Note that when x ∈ Rs 7→ L(h,x) is a Lipschitz function, assumption (25) implies that Y =
(Yk)k∈Zd is a stationary (BL, θ) dependent field. Then, by Theorem 1.12 p. 178 of [10], the sequence
(Sn(h, x))n will have a Gaussian limit with variance σ2 as soon as (Var(Sn(h, x)))n tends to σ2.
However, for our specific application, we can not assume that the functional L is Lipschitz but
we can assume that L may be approximated by a Lipschitz function according to the following
hypothesis:

There exist α > 0 and C ≥ 1 such that ∀ε ∈ (0, 1], there is Tε : Rs → [0, 1] such that

Fh,ε : x ∈ Rs 7→ L(h,x)Tε(x) ∈ R is Lipschitz with Lip(Fh,ε) ≤ C‖h‖qε−1,

E
(
L(h,X(x))2

)
≤ C‖h‖2q,0 and E

(
L(h,X(x))2(1− Tε(X(x)))

)
≤ C‖h‖2q,0ε2α. (LA)

Proposition 3. Assuming that (25) and (LA) hold, if∑
i∈Zd

sup
‖y‖∞≤1

|ρ̃(y + i)| < +∞,

then the random field Y is (BL,ψ, θ) dependent with

ψ(|I|, |J |, f, g) = Lip(f)‖g‖∞|I|+ Lip(g)‖f‖∞|J |+ min(|I|, |J |)Lip(f)Lip(g) (27)

and for Cp(h) = 5C3p2‖h‖q(1 + ‖h‖q),

θr = Cp(h) max


 ∑

i∈Zd;|i|≥r

sup
‖y‖∞≤1

|ρ̃(y + i)|

 α
α+2

,
∑

i∈Zd;|i|≥r

sup
‖y‖∞≤1

|ρ̃(y + i)|

 . (28)

Proof. Let r ∈ N and denote θ̃r =
∑

i∈Zd;|i|≥r sup‖y‖∞≤1 |ρ̃(y + i)|. We set I, J ⊂ Zd with

dist(I, J) ≥ r and |J | ≤ |I| such that for any y ∈ [−1, 1]d∑
i∈I

ρ̃(y + i− j) ≤ θ̃(r), for all j ∈ J.

For f ∈ BL(p|I|) and ε ∈ (0, 1] to be fixed later, we write f ◦ Fh,ε with a slight abuse of notation
to denote the function that is in BL(sp|I|) with Lip(f ◦ Fh,ε) ≤ Lip(f)Lip(Fh,ε). Hence for
g ∈ BL(p|J |), we get by (25)

|Cov(f ◦ Fh,ε(X~x,I), g ◦ Fh,ε(X~x,J)| ≤ CLip(f)Lip(g)Lip(Fh,ε)
2
∑
i∈I

∑
j∈J

p∑
l=1

p∑
l′=1

ρ̃(xl + i− (xl′ + j))

≤ CLip(f)Lip(g)Lip(Fh,ε)
2|J |p2θ̃r. (29)

Now, let us remark that

|Cov(f(YI)− f ◦ Fh,ε(X~x,I), g(YJ))| ≤ 2‖g‖∞E(|f(YI)− f ◦ Fh,ε(X~x,I)|)
≤ 2‖g‖∞Lip(f)E (‖L(h,X~x,I)− Fh,ε(X~x,I)) ‖∞)

≤ 2‖g‖∞Lip(f)
∑
k∈I

p∑
l=1

E (|L(h,Xxl+k)|(1− Tε(Xxl+k)))

≤ 2C1/2p|I|‖g‖∞Lip(f)‖h‖q,0εα,

by assumption (LA), using Cauchy-Schwarz inequality. Similarly, one has

|Cov(f ◦ Fh,ε(X~x,I), g(YJ)− g ◦ Fh,ε(X~x,J))| ≤ 2C1/2p|J |‖f‖∞Lip(g)‖h‖q,0εα.
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Since C ≥ 1, by definition of (27), it follows that

|Cov (f(YI), g(YJ))| ≤ Cp(h)

5
ψ(|I|, |J |, f, g)

(
θ̃rε
−2 + 4εα

)
.

Now, when θ̃r ∈ (0, 1] we can choose ε = (θ̃r)
1

α+2 to get

|Cov (f(YI), g(YJ))| ≤ Cp(h)ψ(|I|, |J |, f, g)θ̃
α
α+2
r .

Otherwise, if θ̃r = 0 the result comes from letting ε tend to 0 and if θ̃r ≥ 1 by choosing ε = 1.

However, we can in fact be more precise in term of covariance control.

Proposition 4. Assuming that (25) and (LA) hold, one has for all x, x′ ∈ Rd

|Cov (L(h,X(x)), L(h,X(x′)))| ≤ 3C3‖h‖2q max
(
ρ̃(x− x′)

α
α+2 , ρ̃(x− x′)

)
.

Proof. As previously, let us choose ε ∈ (0, 1] to be fixed later and write for x ∈ Rd

L(h,X(x)) = Fh,ε(X(x)) + L(h,X(x)) (1− Tε (X(x))) .

Noting that x may be written as x = x̃+ k for some x̃ ∈ [0, 1]d and k ∈ Zd, by (25) we simply
get for x′ ∈ Rd,

|Cov(Fh,ε(X(x)), Fh,ε(X(x′))| ≤ CLip(Fh,ε)
2ρ̃(x− x′)

≤ C3‖h‖2qε−2ρ̃(x− x′).

Now, using Cauchy-Schwarz inequality, we obtain

|Cov(L(h,X(x)) (1− Tε (X(x))) , L(h,X(x′))|
≤ Var(L(h,X(x)) (1− Tε (X(x)))

1/2
Var(L(h,X(x′))1/2

≤ C‖h‖2q,0εα,

by (LA) using that the variance is smaller than the second order moment and the fact that Tε
has values in [0, 1]. Moreover, we obtain similarly

|Cov(Fh,ε(X(x)), L(h,X(x′)) (1− Tε (X(x′))))|

≤ Var(Fh,ε(X(x))1/2Var(L(h,X(x′)) (1− Tε (X(x′)))
1/2

≤ C‖h‖2q,0εα,

since E
(
Fh,ε(X(x))2

)
≤ E

(
L(h,X(x))2

)
. Hence,

|Cov (L(h,X(x)), L(h,X(x′)))| ≤ C3‖h‖2q
(
ε−2ρ̃(x− x′) + 2εα

)
.

Note that if ρ̃(x− x′) = 0 we get the upper-bound by letting ε tends to 0. If ρ̃(x− x′) ∈ (0, 1] we

choose ε = ρ̃(x− x′)
1

α+2 and otherwise we choose ε = 1 to get the result.

Then, under a natural decay assumption, we can define the asymptotic covariances of the
sequence (Sn(h, x))n. In particular this ensures the so-called finite susceptibility assumption (see
(5.3) p.90).

Corollary 3. Assuming that (25) and (LA) hold, we also assume that there exists β > d(α+2)
α

such that, for all x ∈ Rd,
ρ̃(x) ≤ C(1 + |x|)−β . (30)
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Then, there exists Cα,β,d > 0 such that, for all x, y ∈ Rd,∑
k∈Zd

|Cov (L(h,X(x+ k)), L(h,X(y)))| ≤ Cα,β,d‖h‖2q < +∞.

Hence, there exists a real-valued stationary Gaussian random field (B(h, x))x∈Rd with covariance
function given by

Cov(B(h, x), B(h, y)) =
∑
k∈Zd

Cov (L(h,X(x+ k)), L(h,X(y))) . (31)

such that
Cov (Sn(h, x), Sn(h, y)) −→

n→+∞
Cov(B(h, x), B(h, y)).

Proof. Note that by Proposition 4, since β α
α+2 > d, one has for all x, y ∈ Rd,∑

k∈Zd
|Cov (L(h,X(k + x)), L(h,X(y)))| ≤ 3C4‖h‖2q

∑
k∈Zd

(1 + |k + x− y|)−
βα
α+2 ,

and one can choose Cα,β,d = 3C4
∫
Rd(1 + |z|)−

βα
α+2 dz < +∞ since β > d(α+2)

α . Moreover by
stationarity of (L(h,X(x)))x∈Rd one has

Cov (Sn(h, x), Sn(h, y)) =
∑

k∈((−n,n)∩Z)d

d∏
j=1

(
1− |ki|

n

)
Cov (L(h,X(k + x)), L(h,X(y))) .

Hence one can define the stationary Gaussian field (B(h, x))x∈Rd with covariance function given
by (31) since this function is of non-negative type as a limit of covariance functions.

Note that when x 7→ L(h,x) is Lipschitz with E(L(h,X(x))2) < +∞, assumption (LA) is
satisfied for all α > 0 since one can choose Tε = 1. Then, as soon as there exists β > d such
that (30) holds true, we obtain the asymptotic normality of the Rp-valued vector (Sn(h, ~x))n for
any p ≥ 1 and ~x = (x1, . . . , xp) ∈ ([0, 1]d)p, by Corollary 1.13 p.180 of [10], using the (BL, θ)
dependence of Y . In the general case, noting that the ψ-dependency coefficient in (27) satisfies

ψ(|I|, |J |, f, g) ≤ Lip(f)‖g‖∞|I|+ Lip(g)‖f‖∞|J |+ |I||J |Lip(f)Lip(g),

the field Y is also λ-dependent as defined in [14]. By (30) we obtain that λY (r)(= θr) = Or→+∞(r−λ)
with λ = α

α+2 (β−d) and θr given by (28). Then, using Cramer-Wold device and Theorem 2 p.219
in [14] we obtain the asymptotic normality under stronger assumptions (A1) and (A2) as stated
in the following corollary.

Corollary 4. Assuming that (25), (LA) and (30) hold, assuming moreover that

(A1) there exists δ > 0 such that E(|L(h,X(0))|2+δ) < +∞ ,
(A2) α

α+2 (β − d) > max
(
2d, d(1 + 1

δ )
)

.

Then

(Sn(h, x))x∈[0,1]d
fdd−→

n→+∞
(B(h, x))x∈[0,1]d .

This result will allow us to get a central limit theorem for the sequence of generalized processes
given by (26), by approximating integrals by Riemann sums, under an appropriate continuity
assumption.

Proposition 5. Assuming that (25) and (LA) hold, if there exists δ > 0 such that for all x ∈ Rd

‖x‖ ≤ 1⇒ ωX(x) := E
[
‖X(x)−X(0)‖2∞

]1/2 ≤ C‖x‖δ. (32)
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Then, there exists Cα > 0 such that, for all x ∈ Rd with ‖x‖ ≤ 1,

E
[
|L(h,X(x))− L(h,X(0))|2

]1/2 ≤ Cα‖h‖qωX(x)
α

1+α . (33)

Assuming moreover (30) for β > d(α+2)
α , one can choose a version of (B(h, x))x∈Rd , given in

Corollary 3, that is γ-Hölder continuous on any compact sets of Rd for all γ < δ
2

α
1+α

(
1− d(α+2)

αβ

)
.

Proof. Let x ∈ Rd with ‖x‖ ≤ 1. First note that we may assume that ωX(x) ∈ (0, C]. Let us
remark that, as previously, using the fact that for ε ∈ (0, 1]

L(h,X(x)) = Fh,ε(X(x)) + L(h,X(x))(1− Tε(X(x))),

we have

E
[
|L(h,X(x))− L(h,X(0))|2

]1/2 ≤ Lip(Fh,ε)E [‖X(x)−X(0)‖∞] + 2C1/2‖h‖q,0εα

≤ C‖h‖q
[
ε−1ωX(x) + 2εα

]
.

Taking ε =
(
ωX(x)
C

) 1
1+α

we obtain (33).

Assuming moreover (30) for β > d(α+2)
α , for K ≥ 1,

E
[
|B(h, x)−B(h, 0)|2

]
= 2

∑
k∈Zd

Cov(L(h,X(k)), L(h,X(0))− L(h,X(x)),

≤ 2C1/2‖h‖q,0E
[
|L(h,X(x))− L(h,X(0))|2

]1/2
(2K + 3)d

+ 6C3‖h‖2q
∑

|k|>K+1

[max
(
ρ̃(k + x)

α
α+2 , ρ̃(k + x)

)
+ max

(
ρ̃(k)

α
α+2 , ρ̃(k)

)
],

using Cauchy-Schwarz inequality and Proposition 4. Hence, by (30) and (33), we can find C̃α,β,d >
0 such that

E
[
|B(h, x)−B(h, 0)|2

]
≤ C̃α,β,d‖h‖2q

(
KdωX(x)

α
1+α +K−( βα

α+2−d)
)
.

Then, choosing K = ωX(x)−
α+2
αβ

α
1+α , there exists Cα,β,d > 0 such that

E
[
|B(h, x)−B(h, 0)|2

]
≤ Cα,β,d‖h‖2qωX(x)

α
1+α (1− d(α+2)

αβ ).

In view of (32) and by stationarity of (B(h, x))x∈Rd , we can choose a version such that (B(h, x))x∈Rd

is γ-Hölder continuous on any compact set of Rd for γ < δ
2

α
1+α

(
1− d(α+2)

αβ

)
(see Proposition 9 in

[6] for instance).

Theorem A.2. Under the assumptions of Corollary 4, assuming moreover (32), one has for
h ∈ S,

〈Tn, h〉 =
√
Ld(Un)

(
1

Ld(Un)

∫
Un

L(h,X(x))dx− E(L(h,X(0)))

)
d−→

n→+∞

∫
[0,1]d

B(h, x)dx,

where (B(h, x))x∈[0,1]d is the continuous Gaussian random field with covariance function given by

(31). The random variable
∫

[0,1]d
B(h, x)dx is centered Gaussian with variance given by∫

Rd
Cov (L(h,X(z)), L(h,X(0))) dz. (34)
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Hence, there exists B a generalized Gaussian random process on (S ′,B(S ′)), with characteristic
functional given by

LB(h) := E
(
ei〈B,h〉

)
= E

(
ei

∫
[0,1]d

B(h,x)dx
)

= exp

(
−1

2

∫
Rd

Cov (L(h,X(z)), L(h,X(0))) dz

)
such that Tn

distrib.−→
n→+∞

B, where the convergence holds in distribution with respect to the strong

topology of S ′(R).

Proof. In view of Proposition 5, by continuity of (B(h, x))x∈[0,1]d we have the convergence of the
Riemann sums ∫

[0,1]d
B(h, x)dx = lim

m→+∞

1

md

∑
l∈(Z∩[0,m))d

B

(
h,

l

m

)
.

Hence the random variable
∫

[0,1]d
B(h, x)dx is centered Gaussian with variance given by∫

[0,1]d

∫
[0,1]d

Cov (B(h, x), B(h, y)) dxdy =

∫
[0,1]d

∫
[0,1]d

∑
k∈Zd

Cov (L(h,X(x+ k)), L(h,X(y))) dxdy

=

∫
Rd

Cov (L(h,X(z)), L(h,X(0))) dz,

by change of variables and Fubini’s theorem.
Note also that for x ∈ [0, 1]d, m > 0 and l ∈ (Z ∩ [0,m))d we have

Sn

(
h, x+

l

m

)
−Sn

(
h,

l

m

)
=

1

nd/2

∑
k′∈nB∩Zd

(
L

(
h,X

(
x+

l

m
+ k′

))
− L

(
h,X

(
l

m
+ k′

)))
.

Then, by stationarity,

Var

(
Sn

(
h, x+

l

m

)
− Sn

(
h,

l

m

))
≤

∑
‖k‖∞≤n

|r(h,k, x)|,

where
r(h,k, x) = Cov (L(h,X(x))− L(h,X(0)), L(h,X(x+ k))− L(h,X(k)))

satisfies, by Proposition 5 and Proposition 4 together with (30),

|r(h,k, x)| ≤ C2
α‖h‖2qωX(x)

2α
1+α and |r(h,k, x)| ≤ 12C3‖h‖2q|k|−

βα
α+2 .

It follows that we can find Cα,β,d > 0 such that

E
((

Sn

(
h, x+

l

m

))
− Sn

(
h,

l

m

))2

= Var

(
Sn

(
h, x+

l

m

)
− Sn

(
h,

l

m

))
≤ Cα,β,d‖h‖2qωX(x)

2α
1+α (1− d(α+2)

αβ ).

Then, ∥∥∥∥∥∥
∫

[0,1]d
Sn(h, x)dx− 1

md

∑
l∈(Z∩[0,m])d

Sn

(
h,

l

m

)∥∥∥∥∥∥
L2(Ω)

≤
∑

l∈(Z∩[0,m])d

∥∥∥∥∥
∫

[0,1/m]d

(
Sn(h, x+

l

m
)− Sn

(
h,

l

m

))
dx

∥∥∥∥∥
L2(Ω)
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Using Cauchy-Schwarz inequality,

E

(∫
[0,1/m]d

(
Sn(h, x+

l

m
)− Sn

(
h,

l

m

))
dx

)2

≤ 1

md

∫
[0,1/m]d

E
(
Sn(h, x+

l

m
)− Sn

(
h,

l

m

))2

dx.

Then, ∥∥∥∥∥∥
∫

[0,1]d
Sn(h, x)dx− 1

md

∑
l∈(Z∩[0,m])d

Sn

(
h,

l

m

)∥∥∥∥∥∥
L2(Ω)

≤ C
1/2
α,β,d‖h‖qm

d/2

(∫
[0,1/m]d

ωX(x)
2α

1+α (1− d(α+2)
αβ )dx

)1/2

.

In view of (32), this implies that∫
[0,1]d

Sn(h, x)dx = lim
m→+∞

1

md

∑
l∈Z∩[0,m]d

Sn

(
h,

l

m

)
,

where the convergence holds in L2(Ω), uniformly in n. Since√
Ld(Un)

(
1

Ld(Un)

∫
Un

L(h,X(x))dx− E(L(h,X(0)))

)
=

∫
[0,1]d

Sn(h, x)dx,

the result will simply follows from the fact that for m > 0, by Corollary 4, one has

1

md

∑
l∈Z∩[0,m]d

Sn

(
h,

l

m

)
d−→

n→+∞

1

md

∑
l∈Z∩[0,m]d

B

(
h,

l

m

)
.

Note that the variance of the Gaussian variable
∫

[0,1]d
B(h, x)dx is explicitly given by

σ2(h) :=

∫
[0,1]2

∫
[0,1]2

Cov(B(h, x), B(h, y))dxdy,

with
Cov(B(h, x), B(h, y)) =

∑
k∈Zd

Cov (L(h,X(x+ k)), L(h,X(y))) .

It follows by Proposition 4 that, on the one hand we can use Fubini’s theorem to obtain (34),
and on the other hand σ2(h) ≤ C‖h‖2q and therefore the characteristic functional LB : S(R)→ C
given by

LB(h) = e−
1
2σ

2(h),

is continuous at 0 and the conclusion comes from Theorem 2.3 of [9].

A.2. Gaussian case and Proof of Theorem 2.1

Assuming that X is a Gaussian field satisfying the assumptions of Theorem 2.1, by the Cramer-
Wold device, it is enough to prove that for (aj)0≤j≤d ∈ Rd+1 one has

√
Ld(Un)

d∑
j=0

aj

(
Cj(EX(·), Un)

Ld(Un)
− CXj ,

)
distrib.−→
n→+∞

d∑
j=0

ajBj ,
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where (Bj)0≤j≤d are the centered Gaussian generalized processes introduced in Theorem 2.1 and
the convergence holds in distribution with respect to the strong topology of S ′(R). Therefore we
let

Tn =
√
Ld(Un)

d∑
j=0

aj

(
Cj(EX(·), Un)

Ld(Un)
− CXj

)
and B =

d∑
j=0

ajBj .

Hence we need to check that the assumptions of Theorem A.2 are satisfied for h ∈ S and

L(h,X(x)) :=

d∑
j=0

ajLj(h,X(x)),

since

〈Tn, h〉 =
√
Ld(Un)

(
1

Ld(Un)

∫
Un

L(h,X(x))dx− E (L(h,X(0)))

)
.

Then we will identify the Gaussian limit. First, since X is a Gaussian field the quasi-association
assumption (25) is satisfied (see [32]). Second, for x = (u, v, w) ∈ R×Rd×Rd(d+1)/2 with a slight
abuse of notation we write

F0(x) = ‖v‖, F1(x) = −Tr(w) +
vtwv

‖v‖2
and F2(x) = −v

tadj(w)v

‖v‖3
,

and remark that x 7→ Ld(h,x) is bounded Lipschitz and clearly satisfies (LA). However for
0 ≤ j ≤ d − 1 we need to conveniently approximate x 7→ Lj(h,x) = h(u)Fd−1−j(x). For δ > 0
we can find a C1 function Tδ : Rd → [0, 1] such that Tδ(v) = 1 for ‖v‖ > δ and ‖∇Tδ‖ ≤
δ−1. Moreover for M > 0 we can find a C1 function TM : Rd × Rd(d+1)/2 → [0, 1] such that
TM (v, w) = 1 for ‖(v, w)‖ < M and TM (v, w) = 0 for ‖(v, w)‖ > 2M with ‖∇TM‖∞ ≤ 1. Then

x 7→ L(h,x)TM (v, w)Tδ(v) is C1 with gradient bounded by C‖h‖q
(
M
δ

)2
with C that does not

depend on M, δ, q = 2, and ‖h‖q = ‖h‖q,0 +‖h‖q,1. Now P(‖∇X(x)‖ ≤ δ) ≤ Cδd and one can find
cd > 1 such that for M large enough P(‖(∇X(x), D2X(x))‖ ≥M) ≤ e−cdM . For ε ∈ (0, 1], we set
δ = d

2cd
ε1/2| log(ε/2)| and M = d

2cd
| log(ε/2)| such that δ

M = ε and for all p′ ≥ 1, we have

E((1− TM (∇X(x), D2X(x))Tδ(∇X(x)))p
′
) ≤ P(‖∇X(x)‖ ≤ δ) + P(‖(∇X(x), D2X(x))‖ ≥M)

≤ Cεd/2(1 + | log(ε/2)|d).

Note also that for any p > 1, choosing p < d for d = 3, one has E(L(h,X(x))2p) ≤ Cp‖h‖2pq,0.

Hence, by Hölder inequality, inequalities (LA) are satisfied for α ∈ (0, d2 (1 − 1/p)). Then, under
Assumption (12) with β−d > 12, when d = 2, since (A1) is satisfied for all δ > 0, and 2d(1+4/d) =
12, one can find p > 1 large enough such that 2d(1 + 4

d(1−1/p) ) < β − d and take p′ > p with

α ∈ (0, d2 (1−1/p′)) and then α
α+2 (β−d) > 2d so that (A2) and together with (30) are also satisfied.

When d = 3, since 2d 4
d

1
1−1/d = 12, one can find δ < 1 and p′ < d such that d(1+ 1

δ ) 4
d

1
1−1/p < β−d.

Then taking α = d
2 (1−1/p) we can check both (A1), (A2) and (30). Finally, note that for ‖x‖ ≤ 1

one has

E
(
[Xij(x)−Xij(0)]2

)
= 2(−1)ε(i)+ε(j)

(
∂

2ε(i)+2ε(j)
ijij ρ(0)− ∂2ε(i)+2ε(j)

ijij ρ(x)
)
,

such that (32) is satisfied by (H).
It follows that all assumptions and therefore conclusions of Theorem 2.1 hold true.
To conclude it only remains to identify the asymptotic covariance. By linearity of B and L for
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h, h̃ ∈ S we obtain that

Var(〈B, h+ h̃〉) = Var(〈B, h〉) + Var(〈B, h̃〉) + 2Cov(〈B, h〉, 〈B, h̃〉)

=

∫
Rd

Cov
(
L(h+ h̃,X(z)), L(h+ h̃,X(0))

)
dz

=

∫
Rd

Cov (L(h,X(z)), L(h,X(0))) dz +

∫
Rd

Cov
(
L(h̃,X(z)), L(h̃,X(0))

)
dz

+ 2

∫
Rd

Cov
(
L(h,X(z)), L(h̃,X(0))

)
dz,

where we use the fact that, by stationarity and change of variables, one has∫
Rd

Cov
(
L(h̃,X(z)), L(h,X(0))

)
dz =

∫
Rd

Cov
(
L(h̃,X(0)), L(h,X(−z))

)
dz

=

∫
Rd

Cov
(
L(h̃,X(0)), L(h,X(z))

)
dz.

It follows that

Cov(〈B, h〉, 〈B, h̃〉) =

∫
Rd

Cov
(
L(h,X(z)), L(h̃,X(0))

)
dz

=

d∑
j=0

d∑
k=0

ajak

∫
Rd

Cov
(
Lj(h,X(z)), Lk(h̃,X(0))

)
dz,

and B =
∑d
j=0 ajBj where (Bj)0≤j≤d are centered Gaussian generalized processes with covariance

given by

∀j, k ∈ {0, . . . , d}, Cov(〈Bj , h〉, 〈Bk, h̃〉) =

∫
Rd

Cov
(
Lj(h,X(z)), Lk(h̃,X(0))

)
dz.

Appendix B: Additional numerical experiments

We provide in this section several additional figures to illustrate, through numerical experiments,
the statistical estimation of the anisotropy from the Lipschitz-Killing curvatures of an excursion
set.

B.1. In the 2D case

On Figures 8 and 9 we show error bars on the estimation of the anisotropy from one excursion
set of a 2D stationary Gaussian field, and we illustrate the central limit behavior by plotting the
standard deviation of the estimation of the anisotropy ratio R as a function of the observation
window size. See the caption of the figures for detailed comments on these numerical experiments.

B.2. In the 3D case

On Figures 10 and 11, we show some additional 3D experiments in the isotropic case. As in the
anisotropic case, the estimation of R = RG = 1 here is inaccurate when the effective level is close
to 0 (for R) or close to ±1 for RG. Now, these two ratios could be combined to accurately estimate
the isotropy whatever the effective level.



/ 39

Fig 8. Checking the central limit behavior. First line: estimation of R in the isotropic case (left) and in the
anisotropic one (right, here R ' 0.92). The estimation is done for three different quantiles (corresponding to the
three colors) and on different domain size T (x-axis of the plot). The confidence intervals have been obtained with
100 samples. Second line: standard deviation of the estimated value of R in the isotropic case (left) and in the
anisotropic one (right), for three different quantiles as a function of the inverse domain size 1/T . This plot shows
experimentally that the empirical standard deviation behaves like 1/T , with a slope that depends on the quantile.
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Fig 9. Estimating the anisotropy from one level. We consider here the same two Gaussian random fields as in
Figure 3. First line: estimation of γPer from one level set of one sample (of size 1000× 1000), as a function of the
quantile, in the isotropic case (left figure) and in the anisotropic one (right figure). Second line: same experiment
but for the estimation of γTC. Third line : same experiment but for the estimation of the anisotropy ratio R, that
is 1 on the left and 0.92 on the right. The confidence intervals have been obtained with 100 samples. Notice how
the estimations of γTC and of R degenerate around the quantile q = 0.5 since it corresponds to the effective level
t̂ = 0, and the division by t̂ is therefore unstable.
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Fig 10. Lipschitz-Killing curvature densities of the excursion sets of an isotropic Gaussian volume. Here we have
taken 20 samples of a 3D volume of size 2003 voxels, of a Gaussian field with mean m = 0, variance σ2 = 1
and covariance of the form exp(−γ1x21 − γ2x22 − γ3x23) with here γ1 = γ2 = γ3 = 0.01. An example of such a
Gaussian volume is shown on the left of the first line, with one excursion set on the right. Using the Matlab toolbox
ImMinkowski [27], we have estimated the volume densities (second line, left), the surface area densities (second
line, right), the total mean curvature densities (third line, left) and the total Gaussian curvature densities (third
line, right). The densities are plot else as functions of the level t or as functions of the quantile q. The stars are
the values for the 20 different samples.
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Fig 11. First line: the samples of the previous figure are plotted as points on the almond and heart curve of isotropy.
Second line: estimation of R and RG from the Lipschitz-Killing curvature densities of the excursion sets of the
samples.
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