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1. Introduction
Understanding the historical variability of floods and heavy precipitation in the context of a changing climate is 
an important endeavor (Sharma et al., 2018). At a global scale, this understanding is hampered by the spatial spar-
sity of station data and the scarcity of long series spanning more than 50 years. Yet some long series do exist and 
may be highly informative when analyzed with adapted methods. The first aim of this work is hence to provide a 
100-year global analysis of the joint historical variability of floods and heavy precipitation, and to compare the 
outcome with literature results mostly based on shorter 50–60-year analysis periods. The second aim is to infer 
relations between hydrologic extremes and large-scale climate variables from this long analysis, and to use these 
relations to estimate probabilities of occurrence of extremes since 1836 at the global scale.

Abstract Floods and heavy precipitation have disruptive impacts worldwide, but their historical variability 
remains only partially understood at the global scale. This article aims at reducing this knowledge gap by 
jointly analyzing seasonal maxima of streamflow and precipitation at more than 3,000 stations over a 100-year 
period. The analysis is based on Hidden Climate Indices (HCIs). Like standard climate indices (e.g., Nino 
3.4, NAO), HCIs are used as covariates explaining the temporal variability of data, but unlike them, HCIs are 
estimated from the data. In this work, a distinction is made between common HCIs, that affect both heavy 
precipitation and floods, and specific HCIs, that exclusively affect one or the other. Overall, HCIs do not show 
noticeable autocorrelation, but some are affected by noticeable trends. In particular, strong and wide-ranging 
trends are identified in precipitation-specific HCIs, while trends affecting flood-specific HCIs are weaker and 
have more localized effects. A probabilistic model is then derived to link HCIs and large-scale atmospheric 
variables (pressure, wind, temperature) and to reconstruct HCIs since 1836 using the 20CRv3 reanalysis. In 
turn this allows estimating the probability of occurrence of floods and heavy precipitation at the global scale. 
This 180-year reconstruction highlights flood hot-spots and hot-moments in the distant past, well before the 
establishment of perennial monitoring networks. The approach presented in this study is generic and paves the 
way for an improved characterization of historical variability by making a better use of long but highly irregular 
station data sets.

Plain Language Summary Floods and heavy precipitation events still hold some mystery despite 
their disruptive impacts. As an illustration, the latest IPCC report (recently released in 2021) indicates that “the 
frequency and intensity of heavy precipitation events have increased since the 1950s”, but that at the same time 
“confidence about peak flow trends over past decades on the global scale is low.” Why this apparent disconnect 
between floods and heavy precipitation? Beyond trends, do floods and heavy precipitation vary together at the 
global scale? How are they related to atmospheric variables such as winds, temperature, atmospheric pressure? 
This article describes a 100-year analysis of floods and heavy precipitation data at the global scale. This 
analysis is made possible by an original probabilistic model adapted to station data sets with highly variable 
data availability (https://vimeo.com/802751683). The analysis first highlights wide-ranging increasing trends 
affecting heavy precipitation, whereas flood trends appeared weaker and less consistent. It is then used to 
identify climate configurations associated with the occurrence of floods and heavy precipitation, and to build 
a 180-year (1836–2015) reconstruction of floods and heavy precipitation probabilities at the global scale. This 
contributes to a better understanding of the historical variability of hydrologic extremes in the distant past.
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Many studies have analyzed historical changes in floods and heavy precipitation, as summarized in the latest IPCC 
report (IPCC, 2021, chapters 8 and 11). Focusing on large-scale studies, there is now growing evidence that heavy 
precipitation has increased over land since the 1950s (e.g., Dunn et al., 2020; Papalexiou & Montanari, 2019; Q. 
Sun et al., 2021; Westra et al., 2012). This overall increase is consistent with the larger water-holding capacity of 
a warmer atmosphere, but regional differences indicate that dynamic changes (e.g., change in storms trajectory) 
may play a role as well. In contrast, flood changes do not show such a consistent signal. Continental-scale studies 
generally find a mixture of increasing and decreasing trends, with many regions showing no discernible signal at 
all (e.g., Berghuijs et al., 2017; Blöschl, Hall et al., 2019; Do et al., 2017; Gudmundsson et al., 2019; Hodgkins 
et al., 2017; L. Slater et al., 2021). While the discrepancy between the consistent signal found for precipitation 
and the lack thereof for floods may appear surprising at first sight, it can be explained by the diversity and the 
complexity of flood-generating mechanisms (Sharma et al., 2018). For instance, Tramblay et al. (2019) showed 
that antecedent moisture conditions could resolve an apparent contradiction between increasing heavy precip-
itation and decreasing floods in Mediterranean France. Brunner et al.  (2021) also demonstrated the existence 
of a catchment-specific threshold below which flood changes do not reflect precipitation changes due to the 
confounding effect of land surface processes. Alternatively, one of the few robust flood signals is the change 
in flood timing for snowmelt regimes (e.g., Blöschl et al., 2017; Burn & Whitfield, 2017; Dudley et al., 2017), 
which is temperature-driven rather than precipitation-driven.

Although trends have been the focus of a majority of papers studying the historical variability of floods and heavy 
precipitation, other forms of temporal variability have also been studied. For instance, the tendency of events 
to cluster into flood-rich and flood-poor periods has attracted attention (Blöschl, Bierkens, et  al., 2019; Hall 
et al., 2014) and has been highlighted in some regions of Australia (Franks & Kuczera, 2002; Liu & Zhang, 2017) 
or Europe (Lun et al., 2020; Merz et al., 2016). Such a low frequency variability, also referred to as persistence, 
may result from the influence of oceanic modes of climate variability such as the Pacific Decadal Oscillation 
(Wei et al., 2021).

Detecting trends, persistence or any other type of temporal variability using station data faces several method-
ological challenges, as reviewed by L. J. Slater et al. (2020). The most typical approach used in the literature is 
to analyze each site separately, and then to look for coherent patterns using, for example, mapping or kriging 
of at-site results. This is the simplest approach but the limited length of many station series may induce a large 
sampling uncertainty and hence limits the power to detect trends or the ability to model more complex temporal 
structures (Bertola et al., 2020). The analysis is also generally restricted to a common period for all sites in order 
to make at-site results comparable, hence discarding valuable older data.

An alternative approach is to aggregate local series at the level of predefined regions, typically using spatial 
averaging (e.g., Papalexiou & Montanari, 2019) or by counting events (e.g., Hodgkins et al., 2017; Najibi & 
Devineni, 2018). The rationale behind this aggregation is to reduce the variability of local series in order to 
increase statistical power. However this approach still requires working with a short common period to avoid 
inhomogeneities due to a varying number of aggregated sites. Limitations for detecting a low-frequency signal 
using short series hence remain. The regions also need to be defined carefully since opposite trends within a 
region may cancel out.

A third approach is based on spatial modeling. The principle is to use the original at-site series within a proba-
bilistic model that makes explicit assumptions on how trends or other variability components vary across stations 
(e.g., Aryal et al., 2009; Bertola et al., 2020, 2021; Renard et al., 2006, 2008; X. Sun & Lall, 2015). This reduces 
estimation uncertainties at the cost of making assumptions that need scrutiny. It is also more complex to imple-
ment than the previous approaches because it requires accounting for spatial dependence and missing data, and it 
typically leads to a high-dimensional inference problem.

Beyond these methodological challenges, analyzing the historical variability of floods and heavy precipitation 
also faces the difficulty of handling station data sets with highly irregular data availability. It is striking to observe 
that most contributions to the latest IPCC report use analysis periods starting around 1960 and rarely before 1950 
(IPCC, 2021, see also a few examples in Table 1). There exist a few exceptions using ∼100-year long periods 
(e.g., Burn & Whitfield, 2018; Mediero et al., 2015; Q. Sun et al., 2021) but with a drastically reduced number 
of stations. In other words, most studies restrict themselves to short periods common to many sites or long 
periods common to a few sites, whereas station data sets often increase in data availability as the measurement 
network grows (see Figure 1 for an illustration). As discussed in previous paragraphs, this restriction often results 
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from methodological constraints and is hence not unavoidable. For instance, the Hidden Climate Indices (HCI) 
approach proposed by Renard et al. (2021) accommodates such growing data sets, and leads to estimates related 
to sparsely represented regions or periods being affected by larger uncertainties.

Another approach to alleviate the limitations of short and irregular data sets is to build reconstructed series, gener-
ally by downscaling long reanalyses such as 20CR (Compo et al., 2011). In France for instance, daily precipitation 
and temperature series have been reconstructed since 1871 (Caillouet et al., 2016; Devers et al., 2020, 2021; 
Radanovics et al., 2013), and have been transformed into catchment-scale streamflow series by hydrologic mode-
ling (Bonnet et al., 2017; Caillouet et al., 2017, 2021). At a larger continental or global scale, a related approach 
uses the outputs of global hydrologic models (Stahl et al., 2012). However, the existence of large inconsistencies 
between observed and modeled flood trends (Do et al., 2020) casts doubt on the adequacy of global hydrologic 
models to represent extremes in small to moderately-sized catchments. The latter generally constitute the majority 
of catchments monitored in station data sets and may also represent major interests such as operational monitor-
ing, flood warning, reservoir management, agricultural or environmental application.

Table 1 
Properties of Large-Scale Analyses of Floods and Heavy Precipitation for a Few Selected Recent References

Reference Var. a Extent # stations × period Key findings

Papalexiou and Montanari (2019) P Global b 8730 × 1964–2013 Overall increase in frequency

Dunn et al. (2020) P Global gridded c × 1950–2018 Overall increase, with regional differences

Q. Sun et al. (2021) P Global 7293 × 1950–2018 or 1974 × 1900–2018 Significant increases dominate, with 
regional differences

Hodgkins et al. (2017) Q Europe and North America 1204 × 1961–2010 or 322 × 1931–2010 No compelling evidence for increase in 
major floods

Blöschl, Hall et al. (2019) Q Europe 3738 × 1960–2010 Region-dependent, with both increases 
and decreases

Gudmundsson et al. (2019) Q Global (≈7000) × (40-year periods in 1951–2010) Region-dependent, with both increases 
and decreases

This article P and Q Global 3141 × 1916–2015 See Section 6

 aVariable: P for heavy precipitation, Q for floods.  bdata are available on all continents (Antarctica excluded) but density may strongly vary.  c1.875° × 1.25° longitude-
latitude grid.

Figure 1. Data availability: evolution of the number of precipitation (P) and streamflow (Q) stations (top) and maps of their location (bottom). The figure shows all 
selected stations as described in Sections 2.1 (P, 1721 stations) and 2.2 (Q, 1420 stations). Note however that the number of stations effectively used in each of the 
four seasonal analyses will be smaller due to the season-specific constraint described in Section 3.2.1. Zoomable versions of these maps are available online at https://
hydroapps.recover.inrae.fr/HEGS-paper.

https://hydroapps.recover.inrae.fr/HEGS-paper
https://hydroapps.recover.inrae.fr/HEGS-paper
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In an attempt to overcome the limitations identified in the previous paragraphs, this study undertakes a global-scale 
analysis of the joint historical variability of floods and heavy precipitation, with the following main objectives.

1.  Analyze a long 100-year period, and evaluate whether the detected trend and persistence components differ 
from those identified in the literature.

2.  Provide a 180-year reconstruction of probabilities of occurrence at precipitation/streamflow stations, with a 
global extent.

To achieve these objectives, this study uses a probabilistic model belonging to the recently-developed HCI frame-
work (Renard et al., 2021). HCIs are used in a similar way to standard climate indices such as Nino 3.4 or NAO 
(among many others) to explain the temporal variability of data. An important difference, however, is that HCIs 
are not predefined time series but instead are inferred from the data. They are conceptually similar to the princi-
pal components extracted from a space-time data set using Principal Component Analysis (PCA) (also known as 
Empirical Orthogonal Functions analysis, e.g., Hannachi et al., 2007).

A key strength of this HCI-based model is that it allows analyzing floods and heavy precipitation jointly, and 
distinguishing between: (a) trend and persistence components that affect both floods and heavy precipitation, 
and (b) components that are specific to only one of them. The model also handles varying data availability and 
does not rely on predefined geographical regions. The joint analysis of floods and heavy precipitation over a long 
period (objective 1) constitute the first innovation, as illustrated by Table 1. The 180-year reconstruction (objec-
tive 2) is also innovative, since no similar global-extent reconstructions of extreme probabilities computed at the 
scale of stations exist as far as our knowledge goes.

The remainder of this paper is organized as follows. Section 2 describes the precipitation, streamflow and atmos-
pheric data sets. Section 3 describes the models used for analyzing floods and heavy precipitation and for recon-
structing their probabilities of occurrence from atmospheric variables (pressure, wind and temperature). Results 
for the 100-year analysis and the 180-year reconstruction are described in Section 4. Section 5 compares the main 
findings of this analysis with literature results, and discusses limitations and avenues for future work. Finally, the 
concluding Section 6 summarizes the key insights from this work.

2. Data
2.1. Precipitation

Precipitation data are taken from HadEX2 (Donat et al., 2013) and its successor HadEX3 (Dunn et al., 2020) data 
sets, which are reference global-scale data sets for detecting changes in temperature and precipitation extremes 
(see IPCC, 2021, Chapter 11). HadEX data sets exist in two versions. The “station” data set contains time series 
of extreme indices derived from daily station measurements, for instance the time series of monthly maxima of 
daily precipitation (Rx1day). The “gridded” data set is a spatial interpolation of these extreme indices on a regular 
grid. The “station” data set is used in this work to avoid any smoothing effect induced by spatial interpolation and 
any temporal inhomogeneity induced by the varying number of available stations. Statistical analyses are based 
on seasonal maxima of daily precipitation, with the four seasons being defined as DJF, MAM, JJA and SON. The 
time series associated with each season is analyzed separately.

A subset of 1721 stations from HadEX data sets is used (Figure 1). The selection procedure is described in detail 
in Text S1 in Supporting Information S1, and can be broadly summarized as follows.

1.  Remove stations with less than 20 years of data: a higher threshold would result in many stations from Africa 
and South-East Asia being excluded from the study.

2.  Remove stations containing suspicious outliers (see Text S1 in Supporting Information S1 for details).
3.  Remove sets of stations sharing more than 10% of identical non-zero values: these are likely affected by an 

infilling procedure used in some countries where a single series is used to infill many others.
4.  Merge HadEX2 and HadEX3 by favoring the HadEX3 version whenever a station appears in both data sets: 

this allows preserving large parts of South America, Africa and Southeast Asia that had data in HadEX2 but 
not in HadEX3.

5.  Apply spatial subsampling by selecting the single longest station in a 2 × 2° box: this reduces large inhomo-
geneities in the spatial density of stations and makes their number more computationally manageable for the 
same global coverage.
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2.2. Streamflow

Streamflow data are taken from the GSIM data set (Do et al., 2018; Gudmundsson et al., 2018a), which contains 
time series of streamflow indices (e.g., monthly mean, min and max) at more than 30000 stations worldwide. 
GSIM includes the GRDC data set, which has been frequently used in large-scale hydrologic analyses (Global 
Runoff Data Centre, 2015), as well as 11 regional or national data sets. As for precipitation, statistical analyses 
are based on time series of seasonal (DJF, MAM, JJA, SON) maxima of daily streamflow, with the four seasons 
being treated separately.

GSIM is probably the most complete streamflow data set in terms of spatial coverage, but it includes highly regu-
lated catchments that are not suited to the analysis of climate-driven variability. The usual approach to avoid this 
challenge is to use “Reference Hydrologic Networks” (RHN, Burn et al., 2012; Whitfield et al., 2012), but RHNs 
are restricted to a few countries and do not have, to date, a global extent. In order to favor RHN or RHN-like 
stations while preserving the global extent of the GSIM data set, the following strategy for selecting stations is 
implemented.

1.  In countries where a known RHN exists, only GSIM stations belonging to the RHN are used. This applies to 
the European and North-American countries studied in the flood trend analysis of Hodgkins et al. (2017), plus 
Australia (Bureau of Meteorology, 2020) and Brazil.

2.  In countries that do not have a known RHN, stations are selected using GSIM metadata (series length and 
homogeneity, missing value rate, reliability of catchment delineation, population density, total dam volume 
and land cover type).

3.  For France and Australia, GSIM data are replaced with a more recent version of the RHN data sets: this allows 
improving space and time coverage and, in the case of Australia, to resolve an issue linked to the handling of 
quality flags (Gudmundsson et al., 2018b).

4.  As for precipitation, spatial subsampling is implemented but with a 0.5° grid box.

This selection procedure results in the subset of 1420 stations shown in Figure 1. Text S2 in Supporting Informa-
tion S1 provides more details on this procedure, and in particular on the metadata-based criteria used in point 2 
to judge the “RHN-ness” of stations in countries with no formal RHN.

2.3. Atmospheric Variables

In this work, atmospheric variables are used as predictors to reconstruct flood and heavy precipitation probabili-
ties in the distant past. Two long reanalysis products can be used for this purpose: the ERA-20C (Poli et al., 2016) 
and the twentieth Century (20CR, Compo et al., 2011) reanalyzes. We opted for the latter in its third version 
(20CRv3, Slivinski et al., 2019) because it is an ensemble reanalysis, with multiple members representing uncer-
tainty, and it also starts earlier (1836 vs. 1900 for ERA-20C).

Four variables are used in this study: temperature, zonal and meridional wind components at 850 hPa (T850, 
U850, V850) and mean sea level pressure (PRMSL). For each variable, data are averaged over the season of inter-
est and subsampled on a 2.8125° grid (1/4 of the original resolution) to avoid unnecessary storage and comput-
ing time issues. The 80 individual members provided by 20CRv3 to represent uncertainty are used rather than 
the ensemble mean (https://portal.nersc.gov/archive/home/projects/incite11/www/20C_Reanalysis_version_3/, 
accessed January 2022). These variables were chosen because they are frequently used to study large-scale 
climate variability and derive climate indices. Likewise, seasonal averaging is frequently applied when using 
climate-informed models for floods or heavy precipitation (e.g., X. Sun et al., 2015; Lee et al., 2018). However, 
we note that alternative choices could be made on both aspects: this will be further discussed in Section 5.4.

3. Methods
The study methodology uses two probabilistic models to implement three main tasks as summarized in Figure 2. 
We start by providing a short and intuitive introduction to the HCI modeling framework upon which the two prob-
abilistic models are built, referring to Renard and Thyer (2019) and Renard et al. (2021) for an in-depth descrip-
tion of technical aspects. We then describe the three tasks implemented in this work. The first task analyses the 
precipitation + streamflow data set in order to identify a set of HCIs that drive their temporal variability (Model 
1). In the second task, the effects of the same HCIs on atmospheric variables are estimated (Model 2). Finally, the 
third task uses these two models to reconstruct flood and heavy precipitation probabilities from atmospheric data.

https://portal.nersc.gov/archive/home/projects/incite11/www/20C_Reanalysis_version_3/


Journal of Geophysical Research: Atmospheres

RENARD ET AL.

10.1029/2022JD037908

6 of 26

3.1. A Short Introduction to HCI Modeling

Consider a space-time data set such as the one shown in Figure 3a, representing standardized streamflow anoma-
lies at S = 42 stations during T = 45 years (1970–2014, see Renard & Thyer, 2019). Let 𝐴𝐴 𝐴𝐴 (𝑠𝑠𝑠 𝑠𝑠) denote the random 
variable generating the observation at site s and time t. A common way to describe the temporal variability of 
such data is to use a linear regression to model the influence of a time-varying covariate 𝐴𝐴 𝐴𝐴(𝑡𝑡) at each site.

𝑌𝑌 (𝑠𝑠𝑠 𝑠𝑠) = 𝜆𝜆(𝑠𝑠)𝜏𝜏(𝑠𝑠) + 𝜀𝜀(𝑠𝑠𝑠 𝑠𝑠)𝑠 with 𝜀𝜀(𝑠𝑠𝑠 𝑠𝑠) ∼  (0𝑠 𝜎𝜎(𝑠𝑠)) (1a)

or equivalently: 𝑌𝑌 (𝑠𝑠𝑠 𝑠𝑠) ∼  (𝜆𝜆(𝑠𝑠)𝜏𝜏(𝑠𝑠)𝑠 𝜎𝜎(𝑠𝑠)) (1b)

A climate index such as Nino 3.4, for instance, is often used as the covariate 𝐴𝐴 𝐴𝐴(𝑡𝑡) . However, it is also possible to 
consider that the climate index is hidden by treating it as an unknown time series that needs to be inferred from 
the data. This cannot be achieved at a single site because the number of datapoints (T) is smaller than the number 
of unknown quantities (T + 2). However, inference becomes feasible when all sites are considered together, since 
the number of datapoints (T × S) becomes large compared with the number of unknowns (T + 2S).

The Gaussian HCI model of Equation 1 is closely related to PCA, as shown by Tipping and Bishop (1999). As 
an illustration, Figure 3b shows the estimated HCI 𝐴𝐴 𝐴𝐴𝐴(𝑡𝑡) (as described in Renard et al., 2021), and compares it with 
the first component of a standard PCA applied to the same data: the two time series are nearly identical. PCA 
therefore provides a convenient analogy to interpret the outcomes of an HCI model: the estimated HCI time series 

Figure 3. Illustration of a simple Hidden Climate Index (HCI) model and its relationship with Principal Component Analysis (PCA). (a) Standardized streamflow 
anomalies during the austral spring (SON) at 42 stations in Eastern Australia (one line per station). (b) Estimated HCI 𝐴𝐴 𝐴𝐴𝐴(𝑡𝑡) (black line) and 90% uncertainty interval 
(gray area). The red line is the standardized first component of a PCA applied to the same data. (c) Effect of the HCI at each site 𝐴𝐴 �̂�𝜆(𝑠𝑠) .

Figure 2. Methodological overview. (a) Two probabilistic models used in this study for describing hydrologic extremes (floods and heavy precipitation) and 
atmospheric variables (pressure, wind, temperature). Note that the two models share the same Hidden Climate Indices as input. (b) Tasks applied to implement the 
100-year analysis; (c) Tasks applied to perform the 180-year reconstruction.
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𝐴𝐴 𝐴𝐴𝐴(𝑡𝑡) can be thought of as the principal component driving the temporal variability of the data set. The associated 

spatial parameters 𝐴𝐴 �̂�𝜆(𝑠𝑠) (Figure 3c, called “effects” in statistical terminology) are similar to PCA loadings and 

control the strength of the HCI influence at each site: data from sites where 𝐴𝐴 �̂�𝜆(𝑠𝑠) is large closely follow the HCI 

𝐴𝐴 𝐴𝐴𝐴(𝑡𝑡) (or its opposite if 𝐴𝐴 �̂�𝜆(𝑠𝑠) is negative), while data from sites where 𝐴𝐴 �̂�𝜆(𝑠𝑠) ≈ 0 follow an unrelated pattern.

While the similarity with PCA is convenient for interpretation, we stress that HCI modeling has important advan-
tages over PCA that will be exploited in this work:

1.  It is based on an explicit probabilistic model, which provides a natural framework to make probabilistic 
predictions.

2.  Probabilistic assumptions such as the regression formula or the normality assumption in Equation 1 can be 
modified as needed.

3.  The treatment of missing values is straightforward with likelihood and Bayesian estimation methods (Renard 
et al., 2021) and does not require infilling; this is particularly useful for the data sets shown in Figure 1.

4.  Additional probabilistic assumptions can be made to model the time series 𝐴𝐴 𝐴𝐴(𝑡𝑡) (e.g., trend, autocorrelation) 
and the spatial process 𝐴𝐴 𝐴𝐴(𝑠𝑠) (e.g., spatial correlation).

3.2. Step 1: Identifying HCIs From Precipitation and Streamflow Data

3.2.1. Expressing Data as Nonexceedance Probabilities

Raw series of seasonal maxima are expressed in mm (P) or m 3·s −1 (Q), and in the case of streamflow they may 
vary by several orders of magnitude between sites. The usual approach of expressing streamflow in mm cannot 
be applied because catchment areas are unreliable for a non-negligible fraction of the data set (see Do et al., 2018, 
for details on this issue). Some form of standardization is therefore desirable to facilitate the derivation of a spatial 
model. Given the focus on extremes, we decided to consider the return period associated with each seasonal 
maxima, or equivalently but more conveniently, to transform seasonal maxima into nonexceedance probabilities 
(Figure 4). This is achieved at each site as follows:

1.  Extract the time series of annual maxima.
2.  Estimate a Generalized Extreme Value (GEV) distribution using the L-Moment method.
3.  Apply the cumulative distribution function (cdf) of this estimated GEV to seasonal maxima.

Note that the GEV is estimated using annual maxima, but is applied to seasonal maxima. Consequently, nonex-
ceedance probabilities will all be close to zero at a station where extremes never occur during the considered 
season, as illustrated in Figure  4b. An additional constraint is used to avoid such situations which are not 

Figure 4. Illustration of the transformation from raw data to nonexceedance probabilities using two Australian streamflow stations. In case (a), the maximum daily 
streamflow during the SON season (line) often coincides with the annual maximum (shaded area). This indicates that floods often occur during the SON season at this 
station, leading nonexceedance probabilities to exceed the 0.8 threshold (red line). By contrast, no floods occur during the SON season in case (b), and as a result, all 
probabilities are well below the 0.8 threshold: this station will therefore be excluded from the analysis for the SON season.
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representative of floods or heavy precipitation: at a given station, at least one probability value should exceed 
0.8 (i.e., at least one 5-year event should have occurred during the season). If this does not hold, the station is 
removed from the analysis for this season. This brings the number of stations effectively used in the analyses to 
1406 (P) and 818 (Q) for SON, 947 (P) and 834 (Q) for DJF, 1219 (P) and 1179 (Q) for MAM, 1406 (P) and 881 
(Q) for  JJA.

The use of probability-transformed values does not constitute a limitation in the context of this work. Indeed, 
the physical values (in mm or m 3·s −1) taken by extreme events at stations strongly depend on local factors (e.g., 
windward/leeward location for P, catchment size for Q), but probability-transformed values are sufficient to study 
the regional covariability of extremes and its modulation by the large-scale climate. Besides, nonexceedance 
probabilities can always be transformed back into mm (P) or m 3·s −1 (Q) by applying the quantile function of the 
estimated GEV distribution.

3.2.2. HCI Model

The model described in this section applies to data for one given season, and will be used four times to separately 
analyze SON, DJF, MAM, and JJA. Let 𝐴𝐴 𝐴𝐴 (𝑠𝑠𝑠 𝑠𝑠) and 𝐴𝐴 𝐴𝐴(𝑠𝑠𝑠 𝑠𝑠) denote precipitation and streamflow data at site s and 
time t, expressed as nonexceedance probabilities as described in the previous section. A natural distribution for 
such data belonging to the interval (0;1) is the Beta distribution 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴𝑎 𝑎𝑎) , where a and b are two shape param-
eters. In this work, a reparameterized version 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜇𝜇𝜇 𝜇𝜇) is favored, where � ∈ (0;1) is the mean and 𝐴𝐴 𝐴𝐴 𝐴 0 is a 
concentration parameter (the larger 𝐴𝐴 𝐴𝐴 , the smaller the variance). This reparameterized version makes the model 
more convenient to build and use since mean/concentration parameters are easier to interpret than shape param-
eters. The formulas to move between parameterizations are the following:

⎧
⎪
⎨
⎪
⎩

𝜇𝜇 = 𝑎𝑎∕(𝑎𝑎 + 𝑏𝑏)

𝜈𝜈 = 𝑎𝑎 + 𝑏𝑏

⇔

⎧
⎪
⎨
⎪
⎩

𝑎𝑎 = 𝜇𝜇𝜈𝜈

𝑏𝑏 = (1 − 𝜇𝜇)𝜈𝜈

 (2)

Precipitation and streamflow data are then assumed to be realizations from Beta distributions whose parameters 
vary in space and time as follows:

Distributions of𝑃𝑃 and𝑄𝑄 ∶

⎧
⎪
⎨
⎪
⎩

𝑃𝑃 (𝑠𝑠𝑠 𝑠𝑠) ∼ 𝐵𝐵𝐵𝐵𝑠𝑠𝐵𝐵(𝜇𝜇𝑃𝑃 (𝑠𝑠𝑠 𝑠𝑠)𝑠 𝜈𝜈𝑃𝑃 (𝑠𝑠𝑠 𝑠𝑠))

𝑄𝑄(𝑠𝑠𝑠 𝑠𝑠) ∼ 𝐵𝐵𝐵𝐵𝑠𝑠𝐵𝐵(𝜇𝜇𝑄𝑄(𝑠𝑠𝑠 𝑠𝑠)𝑠 𝜈𝜈𝑄𝑄(𝑠𝑠𝑠 𝑠𝑠))

 (3a)

Space-time model for𝜇𝜇:

⎧
⎪
⎨
⎪
⎩

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇𝑃𝑃 (𝑠𝑠𝑠 𝑙𝑙)) = 𝜁𝜁𝜇𝜇𝑃𝑃 (𝑠𝑠) +
𝐾𝐾∑
𝑘𝑘=1

𝜆𝜆𝑘𝑘𝑠𝑃𝑃 (𝑠𝑠)𝜏𝜏𝑘𝑘(𝑙𝑙) +
𝐾𝐾∑
𝑘𝑘=1

𝜃𝜃𝑘𝑘𝑠𝑃𝑃 (𝑠𝑠)𝛿𝛿𝑘𝑘(𝑙𝑙)

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇𝑄𝑄(𝑠𝑠𝑠 𝑙𝑙)) = 𝜁𝜁𝜇𝜇𝑄𝑄 (𝑠𝑠) +
𝐾𝐾∑
𝑘𝑘=1

𝜆𝜆𝑘𝑘𝑠𝑄𝑄(𝑠𝑠)𝜏𝜏𝑘𝑘(𝑙𝑙) +
𝐾𝐾∑
𝑘𝑘=1

𝜃𝜃𝑘𝑘𝑠𝑄𝑄(𝑠𝑠)𝜔𝜔𝑘𝑘(𝑙𝑙)

 (3b)

Space model for 𝜈𝜈:

⎧
⎪
⎨
⎪
⎩

log(𝜈𝜈𝑃𝑃 (𝑠𝑠𝑠 𝑠𝑠)) = 𝜁𝜁𝜈𝜈𝑃𝑃 (𝑠𝑠)

log(𝜈𝜈𝑄𝑄(𝑠𝑠𝑠 𝑠𝑠)) = 𝜁𝜁𝜈𝜈𝑄𝑄 (𝑠𝑠)

 (3c)

Equation 3 can be interpreted as a generalization of the simple HCI model of Equation 1b, using a different distri-
bution (Beta rather than Gaussian) and more complex regression formulas. Equation 3b describes how the mean 
of precipitation and streamflow data varies in space and time and is at the core of the model. The logit transfor-
mation is used to ensure that the mean remains in the interval (0;1). For each variable, the first term (𝐴𝐴 𝐴𝐴𝜇𝜇𝑃𝑃 (𝑠𝑠) or 

𝐴𝐴 𝐴𝐴𝜇𝜇𝑄𝑄 (𝑠𝑠) ) is a site-specific constant (a.k.a. intercept). The second term models time variability by means of a set of 
K HCI time series 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡) . The effect of these HCIs at each site is controlled by a set of K spatial processes (𝐴𝐴 𝐴𝐴𝑘𝑘𝑘𝑘𝑘 (𝑠𝑠) 
or 𝐴𝐴 𝐴𝐴𝑘𝑘𝑘𝑘𝑘(𝑠𝑠) ). Importantly, the same time series 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡) are used for both P and Q variables: the second term of Equa-
tion 3b therefore represents the temporal variability common to P and Q. By contrast, the third term models time 
variability in a similar way but uses distinct time series 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡) and 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡) for P and Q, respectively. This third term 
therefore represents the temporal variability specific to P or Q. Finally, Equation 3c states that the concentration 
parameters vary in space but not in time, with the log transformation ensuring they remain positive.
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In addition, it is assumed that any spatial or temporal dependence in precipitation and streamflow, or any 
cross-dependence between them, is induced by the HCIs and their effects. In statistical terms, this corresponds to 
making an assumption of conditional independence. We refer to Renard et al. (2021) for a thorough analysis of 
this assumption and its consequences, but one important point in the context of this work is that conditional inde-
pendence makes the treatment of missing values straightforward: data sets presenting highly irregular availability, 
such as those in Figure 1, can hence easily be accommodated.

Model specification is completed with additional assumptions on the time and space variability of HCIs and 
their effects. Starting with the latter, all spatial processes in Equation 3 are assumed to follow Nearest-Neighbor 
Gaussian Processes (NNGP, Datta et al., 2016a). Using the generic notation 𝐴𝐴 𝝅𝝅 = (𝜋𝜋(𝑠𝑠))𝑠𝑠=1∶𝑆𝑆 to denote any of the 
spatial processes in Equation 3 (𝐴𝐴 𝐴𝐴’s, 𝐴𝐴 𝐴𝐴 ’s or 𝐴𝐴 𝐴𝐴’s):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

� ∼ ���� (�,� )

�� = �, ∀� = 1. . .�

��,� = �20exp(−��,�∕�1) ∀�, � = 1. . .�

 (4)

Equation 4 corresponds to a constant-mean process with intersite covariance decreasing exponentially as a func-
tion of intersite distance. The NNGP is essentially a standard Gaussian Process that has been modified to make it 
computationally tractable with a large number of sites. It does so by avoiding the need to use the whole covariance 
matrix V (whose inversion/multiplication involves 𝐴𝐴 

(
𝑛𝑛3
)
 operations), replacing it by the use of many smaller 

m × m matrices representing covariances between the m nearest neighbors of each site (m = 5 is used in this 
study). We refer to the papers by Datta et al. (2016a, 2016b) and Banerjee (2017) for technical details.

Similar to the spatial effects, all HCI time series are assumed to follow NNGPs. Using as previously a generic 
notation 𝐴𝐴 𝝓𝝓 = (𝜙𝜙(𝑡𝑡))𝑡𝑡=1∶𝑇𝑇  to denote any of the HCI time series in Equation 3 (𝐴𝐴 𝐴𝐴’s, 𝐴𝐴 𝐴𝐴’s or 𝐴𝐴 𝐴𝐴’s):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

� ∼ ���� (�,� )

�� = �
(

� − �
2

)

, ∀� = 1. . .�

��,� = �20 exp(−|� − �|∕�1) ∀�, � = 1. . .�

 (5)

Two parameters are of particular interest in Equation 5 and will be specifically monitored in the results:𝐴𝐴 𝐴𝐴 repre-
sents a trend affecting the HCI, while 𝐴𝐴 𝐴𝐴1 controls its autocorrelation (the lag-1 autocorrelation is equal to 𝐴𝐴 𝐴𝐴−1∕𝛾𝛾1 ). 
The latter can be used to detect the existence of low-frequency variability (extreme-rich, extreme-poor periods). 
It is noted that many alternative models could be used to describe low-frequency variability (Henley et al., 2011), 
but the simple model of Equation 5 is considered fit for the purpose of first detecting its existence.

3.2.3. Inference

The model described in Section 3.2.2 requires estimating the intercepts 𝐴𝐴 𝜻𝜻 , the HCIs 𝐴𝐴 𝝉𝝉 , 𝜹𝜹,𝝎𝝎 , and their effects 
𝐴𝐴 𝝀𝝀,𝜽𝜽 along with the parameters of their hyper-distributions 𝐴𝐴 𝜶𝜶, 𝜼𝜼0, 𝜼𝜼1, 𝜷𝜷, 𝜸𝜸0, 𝜸𝜸1 . This is achieved by deriving the 

posterior distribution of these unknown parameters and exploring it with a Monte Carlo Markov Chain (MCMC) 
sampler. We refer to Renard and Thyer (2019) and Renard et al. (2021) for a complete technical description. In a 
nutshell, the key ingredients are as follows.

1.  Identifiability constraints that make the estimation of HCIs feasible: each HCI has mean zero and variance  one;
2.  A stepwise approach: the model is first estimated with a single component (K = 1 in Equation 3), yield-

ing estimates for 𝐴𝐴 𝐴𝐴1(𝑡𝑡), 𝛿𝛿1(𝑡𝑡), 𝜔𝜔1(𝑡𝑡) ; the second component (K  =  2) is then estimated conditionally on the 
first-component estimates, etc.;

3.  A customized MCMC algorithm that avoids unnecessary computations.

Prior distributions need to be specified for hyper-parameters. For 𝐴𝐴 𝜼𝜼1 and 𝐴𝐴 𝜸𝜸1 that control decorrelation distance 
and time, exponential priors with parameters 1,000 km and 10 years, respectively, are used to set their order of 
magnitude. Flat priors are used for all other hyper-parameters.



Journal of Geophysical Research: Atmospheres

RENARD ET AL.

10.1029/2022JD037908

10 of 26

MCMC sampling is performed by running 40 chains in parallel, corresponding to 10 chains for each of the 4 
seasons. Each chain is run for 30,000 iterations and the first third is discarded as burn-in. Computing time is 
case-dependent, but as a rough order of magnitude, 36 hr are needed to generate 30,000 MCMC samples (i.e., 
one chain) on a high-performance computing cluster. This is for one step of the stepwise approach described 
previously, and it therefore needs to be multiplied by the number of components considered, which is set to K = 5 
in this study.

3.3. Step 2: Estimating HCI Effects on Atmospheric Variables

Estimated HCI time series 𝐴𝐴 �̂�𝝉𝑘𝑘 , 𝐴𝐴 �̂�𝜹𝑘𝑘 and 𝐴𝐴 �̂�𝝎𝑘𝑘 are available for all k = 1…K after the completion of Step 1 (Section 3.2). 
As illustrated in Figure 2b, the next step is to estimate their effects on the atmospheric variables described in 
Section 2.3 (pressure, U and V wind and temperature). As previously, a generic notation 𝐴𝐴 �̂�𝝓𝑘𝑘 =

(
𝜙𝜙𝑘𝑘(𝑡𝑡)

)

𝑡𝑡=1∶𝑇𝑇

 is 

used to denote any of these HCI time series. Let 𝐴𝐴 𝐴𝐴𝑣𝑣(𝑔𝑔𝑔 𝑔𝑔) denote the value taken by the vth atmospheric varia-
ble at gridpoint g and time t (belonging to the calibration period used to estimated the HCIs). Each variable is 
centered and scaled to unit standard deviation, that is, standardized anomalies are considered. It is assumed that 
the space-time variability of variables W is influenced by the same HCIs as the one controlling precipitation and 
streamflow data according to the following model:

𝑊𝑊𝑣𝑣(𝑔𝑔𝑔 𝑔𝑔) ∼  (𝜇𝜇𝑣𝑣(𝑔𝑔𝑔 𝑔𝑔)𝑔 𝜎𝜎𝑣𝑣(𝑔𝑔))

with𝜇𝜇𝑣𝑣(𝑔𝑔𝑔 𝑔𝑔) = 𝜓𝜓0𝑔𝑣𝑣(𝑔𝑔) +
𝐾𝐾∑
𝑘𝑘=1

𝜓𝜓𝑘𝑘𝑔𝑣𝑣(𝑔𝑔)𝜙𝜙𝑘𝑘(𝑔𝑔)
 (6)

For a given variable v and a given gridpoint g, this equation is a standard linear regression model, which allows 
estimating the effects 𝐴𝐴 𝝍𝝍 using standard regression formulas. More precisely, let 𝐴𝐴 𝒘𝒘 denote observations of the 
atmospheric variables for the T calibration time steps, arranged in a matrix with T rows and G × V columns (this 
assumes that all V variables are observed on the same spatial grid of size G, but this can easily be generalized). 
Moreover let the estimated HCIs be arranged in a T × (K + 1) matrix 𝐴𝐴 𝚼𝚼 as follows:

𝚼𝚼 =

⎛
⎜
⎜
⎜
⎜
⎝

1 𝜙𝜙1(𝑡𝑡1) . . . 𝜙𝜙𝐾𝐾 (𝑡𝑡1)

⋮ ⋮ ⋮ ⋮

1 𝜙𝜙1(𝑡𝑡𝑇𝑇 ) . . . 𝜙𝜙𝐾𝐾 (𝑡𝑡𝑇𝑇 )

⎞
⎟
⎟
⎟
⎟
⎠

 (7)

Estimation of the effects 𝐴𝐴 𝝍𝝍 can then be performed using the ordinary least squares estimator:

⎛
⎜
⎜
⎜
⎜
⎝

�̂�𝝍0,

�̂�𝚿

⏞⏞⏞⏞⏞⏞⏞⏞⏞

�̂�𝝍1, . . . , �̂�𝝍𝐾𝐾

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝐺𝐺𝐺𝐺 ×(𝐾𝐾+1)

⎞
⎟
⎟
⎟
⎟
⎠

⊺

=
(
𝚼𝚼

⊺
𝚼𝚼
)−1

⏟⏞⏟⏞⏟

(𝐾𝐾+1)×(𝐾𝐾+1)

× 𝚼𝚼
⊺

⏟⏟⏟

(𝐾𝐾+1)×𝑇𝑇

× 𝒘𝒘

⏟⏟⏟

𝑇𝑇×𝐺𝐺𝐺𝐺

 (8)

Note that the formula in Equation  8 applies to observed atmospheric variables 𝐴𝐴 𝒘𝒘 . However, as explained in 
Section 2.3, the 20CRv3 reanalysis provides 80 realizations of atmospheric variables 𝐴𝐴 𝒘𝒘 to represent the uncer-
tainty affecting the reanalysis. This uncertainty can be propagated forward to the effects 𝐴𝐴 𝝍𝝍 by simply reapplying 
Equation 8 to each of the 80 realizations.

3.4. Step 3: Reconstructing Flood and Heavy Precipitation Probabilities From Atmospheric Variables

As illustrated in Figure  2c, the objective of this third step is to use the atmospheric variables described in 
Section 2.3 to reconstruct the HCI time series which, in turn, can be used to estimate flood and heavy precipita-
tion probabilities using the HCI model of Step 1. This is of particular interest to extend the analysis period from 
1916–2015 to 1836–2015.

For a particular time step t*, the task is therefore to estimate the HCIs 𝐴𝐴 𝝓𝝓
∗ using atmospheric data 𝐴𝐴 𝒘𝒘

∗ . Equation 6 
can once again be used for this purpose, but in an “inverted” setup: effects 𝐴𝐴 �̂�𝝍 are known from Equation 8 and 
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HCIs 𝐴𝐴 𝝓𝝓
∗ are sought, which is the opposite of step 2. Since standard deviations 𝐴𝐴 𝐴𝐴𝐴𝑣𝑣(𝑔𝑔) have also been estimated in 

the previous step, a weighted least squares estimator can be used to compute the reconstructed 𝐴𝐴 �̃�𝝓

∗ :

�̃�𝝓

∗
=
(
�̃�𝜙1(𝑡𝑡

∗), . . . , �̃�𝜙𝐾𝐾 (𝑡𝑡
∗)
)⊺

=

(
�̂�𝚿

⊺

�̂�𝛀�̂�𝚿

)−1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝐾𝐾×𝐾𝐾

× �̂�𝚿
⊺

⏟⏟⏟

𝐾𝐾×𝐺𝐺𝐺𝐺

× �̂�𝛀
⏟⏟⏟

𝐺𝐺𝐺𝐺 ×𝐺𝐺𝐺𝐺

×
(
𝒘𝒘

∗ − �̂�𝝍0

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝐺𝐺𝐺𝐺 ×1

 (9)

where 𝐴𝐴 �̂�𝛀 is a GV × GV matrix containing 𝐴𝐴 1∕𝜎𝜎2
𝑣𝑣 (𝑔𝑔) on its diagonal and 𝐴𝐴 �̂�𝚿 is defined in Equation 8. The recon-

structed 𝐴𝐴 �̃�𝝓

∗ can then be used in the HCI model of Equation 3 to reconstruct the distribution of P and Q and any 
related quantities (e.g., probability of exceeding some threshold, task 3b in Figure 2c). As previously, this process 
can be repeatedly applied to the 80 20CRv3 members to propagate the associated uncertainty.

4. Results
This section follows the steps outlined in Figure 2. HCI time series and their spatial effects are first identified 
from P and Q data and their properties are described. The effects of these HCIs on atmospheric variables are 
then estimated, and the associated regression model is finally used to reconstruct flood and heavy precipita-
tion distributions since 1836. The latter analysis also includes an assessment of the reliability and sharpness 
of  the probabilistic reconstructions using a cross-validation exercise. Detailed results are shown only for the SON 
season in the paper. Results for other seasons are available through an online app https://hydroapps.recover.inrae.
fr/HEGS-paper (see also Acknowledgments) and are only summarized herein.

4.1. Hidden Climate Indices

4.1.1. MCMC Convergence

MCMC convergence is assessed with the Gelman-Rubin (GR) criterion (Gelman & Rubin, 1992) and by visual-
izing MCMC traces (not shown). For most inferred quantities, the GR criterion is well below 1.2 and the MCMC 
traces show that the chains are mixing well, indicating good convergence. Overall, convergence is much faster for 
the P-specific HCIs 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡) than for Q-specific and common HCIs 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡) and 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡) . Further analysis of the GR values 
reveals that convergence difficulties mostly pertain to HCI values 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡) and 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡) at the beginning of the period, 
which can be explained by the scarcity of streamflow data prior to 1950 (Figure 1).

4.1.2. HCIs and Their Effects in SON

Figure 5 shows the estimated HCIs and their effects for the first component (additional components are illustrated 
in the online app). The P-specific HCI 𝐴𝐴 𝐴𝐴1 shows a slight decreasing trend (the 90% interval for β does not contain 
zero) but no strong autocorrelation. Its effects are concentrated in central North America and are mostly nega-
tive: high values of 𝐴𝐴 𝐴𝐴1 are hence associated with lower-than-usual heavy precipitation in this area. Note that the 
decreasing trend should be interpreted in relation to the sign of HCI effects: here the combination of a decreasing 
HCI trend and negative effects translates into increasing heavy precipitation.

The Q-specific HCI 𝐴𝐴 𝐴𝐴1 shows a slight increasing trend and no noticeable autocorrelation. Its effects reveal a 
dipole structure across the North-Atlantic: high values of 𝐴𝐴 𝐴𝐴1 are associated with higher-than-usual floods in the 
Eastern US, but lower-than-usual ones in Western Europe. Note that these effects are approximately twice as 
large (in absolute value) as those estimated for the P-specific HCI (compare color scales in Figure 5). Given the 
model in Equation 3b and the fact that HCIs are standardized to unit standard deviation, this indicates that the 
distribution of Q may show larger temporal variations than that of P.

The common P + Q HCI 𝐴𝐴 𝐴𝐴1 shows no strong trend or autocorrelation. It mostly affects Australia, indicating that 
heavy precipitation and floods are affected by a common temporal signal in this region. This shared variability 
suggests a close association between heavy precipitation and floods, indicating that typical confounding factors 
such as antecedent moisture or snowpack play a limited role during the SON season.

Finally, Figure 5 shows that uncertainty intervals around the HCIs are fairly tight, indicating that HCIs can be 
precisely identified from the data. For Q-specific HCI 𝐴𝐴 𝐴𝐴1 and common P + Q HCI 𝐴𝐴 𝐴𝐴1 , intervals are about twice 
larger at the beginning of the period than at the end, reflecting the strongly decreasing availability of streamflow 
data.

https://hydroapps.recover.inrae.fr/HEGS-paper
https://hydroapps.recover.inrae.fr/HEGS-paper
https://hydroapps.recover.inrae.fr/HEGS-paper/
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4.1.3. HCI Properties for All Seasons

Figure 6 evaluates the existence of trend or autocorrelation in the HCIs for all seasons. Note that it makes sense 
to compare trend or autocorrelation values across seasons and HCIs because all HCIs have the same standard 
deviation equal to one (see identifiability constraints in Section 3.2.3). Marked trends are found for the P-specific 
HCIs. For each of the four seasons, a large trend makes one component stand out. Figure 7 shows for instance 
the second P-specific HCI in SON and its effects: the upward trend is indeed clearly visible, and moreover the 
HCI effects are widespread, suggesting that the trend affects many areas of the world. A similar observation can 
be made for other seasons (see online app). A few trends are found for the Q-specific HCIs, but they are much 
smaller than those affecting heavy precipitation, and the associated effects are also much less widespread (see 
online app). Finally, trends are barely noticeable for the common P + Q HCIs. Overall, these results are consistent 
with the literature finding that heavy precipitation shows some sign of global increase over land areas, whereas 
floods do not show such a consistent signal.

The bottom row of Figure 6 indicates that most HCIs do not show noticeable autocorrelation, suggesting that 
they represent modes of interannual, rather than low-frequency, variability. The strongest autocorrelation is 
detected for the third P-specific HCI during DJF, but closer inspection reveals a step-change behavior rather 
than a low-frequency oscillation (see online app). The second P + Q HCI in MAM also shows some moderate 
autocorrelation, and it mostly affects the East Coast of Australia (see online app).

4.2. HCI Effects on Atmospheric Variables

The interest in quantifying the effect of HCIs on atmospheric variables is twofold: first, it can shed light on the 
origin of the HCIs, and hence on the variability of floods and heavy precipitation, in terms of large-scale circu-
lation; second, it sets up the regression model that will be used in Step 3 for reconstruction. Figure 8 maps the 

Figure 5. Hidden Climate Indices (HCIs) and their effects for the first component (SON season). Rows correspond to the HCI type (P-specific, Q-specific or common 
to P and Q). Panels on the left show the HCI time series, with 90% posterior intervals shown in gray. Center and right panels show the associated spatial effects on P 
and/or Q. For each row, the title gives estimated values and 90% posterior intervals for the trend parameter β and the lag-1 autocorrelation 𝐴𝐴 𝐴𝐴 = 𝑒𝑒−1∕𝛾𝛾1 .

https://hydroapps.recover.inrae.fr/HEGS-paper/
https://hydroapps.recover.inrae.fr/HEGS-paper/
https://hydroapps.recover.inrae.fr/HEGS-paper/
https://hydroapps.recover.inrae.fr/HEGS-paper/
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effects of the HCIs described in Figure 5 on the four atmospheric variables (corresponding to 𝐴𝐴 �̂�𝝍𝑘𝑘 in Equation 8). 
These effects are referred to as “HCI atmospheric effects” in this section, as opposed to the “HCI hydrologic 
effects” that were described in Figure 5. HCI atmospheric effects can be compared both in space and between 
variables since atmospheric variables have been centered and scaled.

Hydrologic effects of P + Q HCI 𝐴𝐴 𝐴𝐴1 are essentially restricted to Australia (see Section 4.1.2 and Figure 5), and 
the associated atmospheric effects shown in Figure 8 (bottom row) reflect well-known drivers of floods and 
heavy precipitation in this region. More precisely, strong westerly winds in the equatorial Indian Ocean, negative 
pressure anomaly in the Eastern Indian Ocean and cold anomaly in the Western Indian Ocean are all typical 
fingerprints of the negative phase of the Indian Ocean Dipole (IOD). Likewise, the cold anomaly pattern in the 
equatorial Pacific is typical of La Niña events. This single HCI can therefore be seen as the combination of the 
two most influential standard climate indices in this area, namely IOD and ENSO.

Atmospheric effects of Q-specific HCI 𝐴𝐴 𝐴𝐴1 (middle row) highlight well-structured patterns of pressure and winds. 
For atmospheric pressure, the key features are widespread positive effects over the Pacific Ocean, and a dipole 
over the Eastern US and Western Europe, similar to the one observed for hydrologic effects (Figure 5). The latter 
can be easily interpreted: high values of 𝐴𝐴 𝐴𝐴1 are associated with positive (resp. negative) pressure anomalies over 
Western Europe (resp. Eastern US), and hence with less (resp. more) floods. For zonal wind, banded patterns 
crossing the North Atlantic may be associated with the trajectory of storms reaching Western Europe, with a 

Figure 6. Summary of Hidden Climate Indices properties for all 5 components and 4 seasons. Boxes denote 90% posterior intervals for the absolute trend |β| (top) and 
the lag-1 autocorrelation 𝐴𝐴 𝐴𝐴 = 𝑒𝑒−1∕𝛾𝛾1 (bottom). Outlined boxes highlight “large” trends and autocorrelations, and correspond to β-intervals not containing 0 or r-intervals 
above 0.1.

Figure 7. Same as Figure 5 for the P-specific Hidden Climate Indices (HCI) of the second component. This HCI is characterized by a large and wide-ranging 
increasing trend.
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similar interpretation as above (less westerly winds over Western Europe mean less floods). For meridional wind, 
fairly localized poles are found in the Tropical Atlantic. Since SON is the hurricane season, these may correspond 
to wind patterns that favor the landfall of tropical storms and hurricanes in the Eastern US.

Hydrologic effects of P-specific HCI 𝐴𝐴 𝐴𝐴1 are concentrated in the central US (Figure 5). The associated atmos-
pheric effects (top row of Figure 8) are less clearly structured than for other HCIs and are hence more difficult to 
interpret. Pressure and temperature dipoles are found over Alaska and the western US. The negative anomaly in 
meridional wind located in the southern US may reflect the influence of moisture transport from the south (less 
southerly winds means less heavy precipitation in the central US). The atmospheric effects of other HCIs and 
other seasons are illustrated in the online app.

4.3. Reconstruction

4.3.1. Reconstructing Time-Varying Distributions

Figure 9 shows the HCIs reconstructed from atmospheric variables, as described in Section 3.4. Overall they 
are in good agreement with the HCIs that were directly estimated from P and Q data over the period 1916–2015 
(average correlations: 0.71, 0.68 and 0.77 for 𝐴𝐴 𝐴𝐴1, 𝜔𝜔1, 𝜏𝜏1 , respectively). The added value of the reconstruction is 
that it extends back to 1836, at the cost however of an increased uncertainty: the dispersion of the 80 members of 
20CRv3 is 3–4 times larger at the beginning of the period than at the end.

The reconstructed HCIs can then be used in the model of Equation 3 to derive the time-varying distributions 
of P and Q over the period 1836–2015 and at all sites. Figure 10 illustrates these distributions for two sites in 
Australia, while the corresponding reconstructions for all sites and all seasons are released as an open data set 
(see Open Research section). In any given year, the variance of the distribution represents the uncertainty in the 
reconstruction, which is affected by both the uncertainty in reconstructed HCIs as discussed in the previous para-
graph, but also by the uncertainty in the estimation of all spatial terms in Equation 3. For the precipitation site, 
the time-varying distribution has a large variance, resulting in a 90% probability interval that covers an important 
part of the (0;1) y-axis interval (average width: 0.74). In contrast, the streamflow time-varying distribution is less 
uncertain (average width: 0.57), which allows highlighting years with well above-average flood probabilities: 

Figure 8. Effects of Hidden Climate Indices (HCIs) on atmospheric variables for the first component (SON season). As in Figure 5, rows correspond to the HCI type 
(P-specific, Q-specific or common to P and Q), columns to the atmospheric variable the effect applies to. Effects in this figure are computed with Equation 8 using 
atmospheric data provided by the first member of the 20CRv3 reanalysis.

https://hydroapps.recover.inrae.fr/HEGS-paper/
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1975 or 1992, during which major floods indeed occurred, but also 1910 or 1916, before the availability of any 
streamflow data at this site, or even anywhere in Australia.

The time-varying distributions can be further appraised by evaluating reliability and sharpness. Reliability is 
based on the Probability Integral Transform (PIT) diagram (Laio & Tamea, 2007) which evaluates the consistency 

Figure 9. Hidden Climate Indices (HCIs) reconstructed from atmospheric data (pressure, wind, temperature) for the first component (SON season). In each panel, 
the red line corresponds to the HCI estimated from floods and heavy precipitation data (as shown in Figure 5). Each thin black line is a reconstruction based on one 
member of the 20CRv3 reanalysis, using Equation 9.

Figure 10. Time-varying distributions derived from reconstructed Hidden Climate Indices for one precipitation (top) and one streamflow (bottom) site, both located in 
Northern Victoria, Australia (SON season). The solid line denotes the median, stacked colored bands represent 50%, 80%, and 90% probability intervals, dots represent 
observed values. The title gives reliability and sharpness indices, ranging between 0 (poor) and 1 (good). The subplot panel shows the Probability Integral Transform 
diagram used to evaluate reliability (see Section 4.3.1 for details).
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between the time-varying distributions (with cdf Ft(x)) and the observations ot through the uniformity of PIT 
values Ft (ot). A reliability index can be computed using the area between the PIT curve shown in Figure 10 and 
the diagonal (Renard et al., 2010). The sharpness index is proportional to the interannual variance of the distribu-
tion's mean (Renard et al., 2021). Both indices are scaled between 0 (poor) and 1 (good).

For the precipitation site, the time-varying distribution is very reliable but not very sharp (Figure 10): it does 
not strongly vary between years. In contrast, the streamflow time-varying distribution is slightly less reliable but 
much sharper. This is a consequence of HCI effects tending to be larger for Q-specific HCIs than for P-specific 
ones, as discussed in Section  4.1.2. Reliability and sharpness indices at all sites are reported in Figure  11. 
Overall reliability indices are similar for both variables. The lack of marked spatial structures suggests that the 
reliability of reconstructions is similar across regions. By contrast, sharpness varies much more both spatially and 
between variables. Overall sharpness is markedly lower for P than for Q. Southeast Australia is the area where 
P-reconstructions are the sharpest, probably due to the strong influence of large-scale modes of climate variability 
that can be predicted from atmospheric variables. Sharpness strongly varies in space for Q-reconstructions: for 
instance it is much higher in Australia than in Japan, and this cannot be blamed on data availability since the 
station density is similar in both cases. Also note that the properties of reconstructions may also vary across 
seasons (not shown): for instance, during MAM and JJA, reconstructed distributions of streamflow have high reli-
ability and sharpness in large parts of the Western US, probably linked to snowmelt-induced flows. The sharpness 
of precipitation reconstructions also appears to be higher in DJF.

4.3.2. Cross-Validation

A cross-validation experiment is used to complement the previous assessment of reliability and sharpness in a 
predictive context. The estimation sample comprises even-numbered years and is used to estimate HCI atmos-
pheric effects (regression model used in Section 4.2). The validation sample comprises odd-numbered years and 
is used to compare observed values with reconstructed time-varying distributions. Figure 12 summarizes the 
results for both heavy precipitation and floods, with reliability and sharpness indices computed on the validation 
sample only, or on the full data set as in Section 4.3.1.

PIT diagrams in Figure  12a indicate a good overall reliability for both P and Q and confirm that reliability 
remains good in validation. Figure 12b breaks down this assessment at the station scale by showing the distribu-
tion of reliability indices. Reliability is again acceptable for both P and Q (although slightly better for the former) 

Figure 11. Reliability and sharpness indices associated with the reconstructed time-varying distributions (as shown in Figure 10 for two sites), for all precipitation and 
streamflow sites (SON season).
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and there is no marked reliability loss with the validation sample. It is also of interest to compute the reliability 
index for each year rather than for each station in order to assess whether the reconstruction quality remains stable 
in time. Figure 12d suggests that this is indeed the case: reliability is stable and high (mostly above 0.9) after 
1960 in all cases. It is more variable before 1960 for variable Q, but this may be attributed to sampling variabil-
ity: streamflow data are indeed scarce before 1960 (see Figure 1), so that reliability indices are computed on a 
small number of stations for earlier years. Finally, Figure 12c shows the distribution of sharpness indices across 
stations. It confirms that Q reconstructions are much sharper than P ones, and it also suggests a noticeable loss 
of sharpness for the validation sample.

4.3.3. Reconstructing Probability Maps

A possible way to use the time-varying distributions of Section 4.3.1 is to compute the probability of exceeding 
the T-year quantile at each site and in any given year. Using Figure 10 as an illustration, this corresponds to the 
probability of exceeding the value 1−1/T according to the time-varying distributions. These probabilities are 
released as an open data set (see Open Research Section) for the four seasons and for return periods T = 2, 10, 
and 100 years. The corresponding maps can be browsed through in the online app. Figure 13a shows an example 
of such a map for the 10-year quantile (i.e., T = 10) in SON 1903. At each site, the probability can be compared 
to 1/T = 0.1, which is an upper bound for the marginal (i.e., long-term average) probability. It is only an upper 
bound because the map refers to seasonal rather than annual maxima (the marginal probability would be equal 
to 0.1 if annual maxima systematically fell in SON). For this particular year, the P map does not highlight strong 
exceedances of the value 0.1, which is a consequence of the low sharpness of P-reconstructions. At the opposite, 
the Q map suggests a “flood hotspot” in the Northeastern US, where the probability of a 10-year flood exceeds 
0.4, and to a lesser extent, in Northwestern US, Western Europe and Southern Australia.

Figure 14 provides a synthetic view of these probability maps in SON for the whole period 1836–2015 by sorting 
the stations according to the AR6 region they belong to (Iturbide et al., 2020). For heavy precipitation, the most 
prominent feature is the clustering of higher-than-usual occurrence probabilities after ∼1950 in most regions. 
This indicates that atmospheric conditions have been more favorable to the occurrence of heavy precipitation 
events in the recent decades, in line with the widespread increase detected in station data (Section 4.1.3). Similar 
high-probability clusters can also be found during the nineteenth century in a few regions such as Eastern and 
Western North America (ENA and WNA). The figure for floods is quite distinct from the precipitation one: it 

Figure 12. Assessment of the reliability and sharpness of reconstructed time-varying distributions in a cross-validation exercise (SON season). (a) Probability Integral 
Transform diagrams for all stations; (b) distribution of reliability indices computed by station; (c) distribution of sharpness indices computed by station; (d) time series 
of reliability indices computed by year.

https://hydroapps.recover.inrae.fr/HEGS-paper/
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does not highlight any widespread trend but rather region-specific patterns. In particular, high-probability clus-
ters are visible during the mid-nineteenth century in Western and Central Europe (WCE), in the Mediterranean 
(MED) and in some regions of Asia (EAS and SAS). Conversely atmospheric conditions have been less favorable 
to the occurrence of floods during the most recent decades in these regions. The opposite pattern is observed in 
Northern Europe (NEU) and in North America (WNA and ENA), with high-probability clusters appearing in 
recent decades.

It is also of interest to inspect in more detail specific areas, in particular those showing good reliability and sharp-
ness (Figure 11). Here we focus on a region of the Northeastern US delimited by the Appalachian Mountains 
to the west, North Carolina to the south and the State of New York to the north (Figure 13b). This region was 
selected due to the availability of an inventory of historical floods provided by the NOAA-NWS Middle Atlantic 
River Forecast Center (https://www.weather.gov/marfc/Flood_Frequency). According to this inventory, major 
flooding occurred during the SON season in 1877, 1896, and 1903. Figure 13b shows the associated flood proba-
bilities reconstructed from atmospheric variables (and hence not directly using streamflow information since the 
P and Q data sets started in 1916). These three particular years are indeed characterized by probabilities above 
0.1 (middle column), and up to 4 times above it in 1903. By contrast, the non-flood years before and after 1896 
and 1903 show probabilities close to 0. The case of 1877 is different since the previous year also shows high 
probabilities, but the inventory does not mention any flood in 1876.

5. Discussion
5.1. How Do Results From the 100-Year Analysis Compare With Literature?

The joint modeling of floods and heavy precipitation and the use of a 100-period make this study stand out from 
other large-scale analyses in the literature, as illustrated in Table 1. It is therefore of interest to assess whether 
these specific features yield insights that differ from those of the literature.

Overall, the results in terms of trends (or lack thereof) are remarkably consistent with the literature. The 
wide-ranging trends found in P-specific HCIs are in agreement with IPCC's statement that heavy precipitation 
has increased since the mid-twentieth century (IPCC, 2021, chapter 11): the statement hence also holds since the 
early twentieth century, and it still holds for each of the four seasons (Figure 6). In contrast to heavy precipitation, 
trends affecting Q-specific HCIs are smaller and have much more localized effects. This is also in line with the 
lack of globally-consistent flood trend reported in the literature, suggesting that this negative result is not due to 
the relative short period used in most flood analyses (Table 1). Finally, trends affecting common P + Q HCIs are 
barely noticeable, confirming that floods and heavy precipitation should not be expected to change in the same 
way (Sharma et al., 2018), unlike annual streamflow and precipitation (McCabe & Wolock, 2011).

Figure 13. Reconstructed probabilities of exceeding a 10-year event during the SON season. (a) Example of global maps for both heavy precipitation (top) and floods 
(bottom) during SON 1903. (b) Regional zoom for floods during nine selected years. Each row shows three consecutive years, with the one in the middle column 
corresponding to the occurrence of a major historical flood in SON (1877, 1896, and 1903).

https://www.weather.gov/marfc/Flood_Frequency
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It is also of interest to make this comparison at a smaller regional scale, for instance using the AR6 regions shown 
in Figure 14a and used in the recent analyses of Q. Sun et al.  (2021, heavy precipitation) and Gudmundsson 
et al. (2019, floods). To achieve this, the time-varying mean of the Beta distribution (𝐴𝐴 𝐴𝐴(𝑠𝑠𝑠 𝑠𝑠) in Equation 3) is 
computed for each individual station over the whole period 1916–2015. The resulting time series are grouped by 
AR6 region and the common regional trend is computed for each region. The corresponding figures are shown 
in the Supporting Information (Figures S1–S8 in Supporting Information S1). For heavy precipitation (Figures 
S1–S4 in Supporting Information  S1), the trends are remarkably consistent with the results described by Q. 
Sun et al. (2021, in particular their Table 1). These authors reported mostly increasing trends in annual maxima 

Figure 14. Synthetic illustration of the 180-year reconstruction for the SON season. (a) AR6 regions as defined by Iturbide et al. (2020). (b) Reconstructed 
probabilities of exceeding a 10-year precipitation during the SON season, for all years (columns) and stations (rows, sorted by AR6 region then by latitude within each 
region). Colors and acronyms in the right stripe correspond to the AR6 regions shown in panel (a). (c) Same as (b) for probabilities of exceeding a 10-year flood.
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of daily precipitation in several regions of North America (CNA, ENA, NCA), Europe (NEU, EEU) and Asia 
(WSB, RFE). For all these regions, increasing trends are also discernible over the period 1916–2015 and for most 
seasons (Figures S1 to S4 in Supporting Information S1). Conversely, regions where trends were reported as less 
consistent (SAU, RAR, NWN) also show no clear increasing trend in our results. The only notable discrepancy 
is the MED region, for which Q. Sun et al. (2021) reported rather inconsistent trends while our results show a 
discernible increasing trend, especially in SON which is the most extreme-prone season (Figure S1 in Supporting 
Information S1). For floods, the comparison with the results of Gudmundsson et al. (2019, in particular their 
Figure 3) is not as conclusive. One of the strongest result reported by these authors was a decrease in stream-
flow of the MED region, including for annual maxima, but our results highlight no clear trend in the main flood 
seasons (DJF and SON, Figures S6 and S5 in Supporting Information S1). On the other hand, the clear decreasing 
trend reported by Gudmundsson et al. (2019) for SAU since the 1970s is also visible for 3 seasons in our results 
(Figures S5–S7 in Supporting Information S1), but not in JJA which is the most extreme-prone season in this 
region (Figure S8 in Supporting Information S1). Several reasons may explain this mostly inconclusive compar-
ison for floods. First, the 100-year time period used here differs from those used in the literature (see Table 1), 
and many authors reported that flood trends are highly sensitive to the selected period (see e.g., Gudmundsson 
et al., 2019; Hodgkins et al., 2017). Moreover, we performed four separate seasonal analyses, while other compa-
rable global-scale trend analyses worked at the annual scale, thus complicating direct comparisons. Finally, flood 
trends are overall quite weak and spatially inconsistent, making them more sensitive to data or methodological 
differences between studies.

Results in terms of low-frequency variability are only partly consistent with the literature. Indeed, several stud-
ies have highlighted significant clustering of flood events in time in some regions of Australia (e.g., Franks & 
Kuczera, 2002) or Europe (e.g., Lun et al., 2020), which should result in the presence of autocorrelation in HCIs. 
Some confirming evidence is found in the case of Australia: the second P + Q HCI during the MAM season has 
a noticeable autocorrelation (Figure 6, bottom right panel), and it mostly affects Eastern Australia. However, 
no noticeable autocorrelation is detected for other HCIs affecting Europe. This failure to detect flood clustering 
might be partly due to the lack of power of the HCI model used in this study to detect such variability. We stress, 
however, that the long 100-year analysis period used in this paper is beneficial in terms of detection power. 
Moreover, the HCI framework is not inherently unable to detect low-frequency variability, as demonstrated by 
Renard and Thyer (2019) using a synthetic experiment. Finally, we applied the HCI model used in this study 
to Sea Surface Temperature data (SST, not shown), and the model identified components with a very clear 
low-frequency signal. Our interpretation is therefore that low frequency variability may exist but it only accounts 
for a small part of the temporal variability of floods and heavy precipitation, at least when they are considered at 
the global scale over the last 100 years.

5.2. Originality of the 180-Year Reconstruction

A key contribution of this work is the global reconstruction of flood and heavy precipitation probabilities since 
1836. This reconstruction allows highlighting periods during which atmospheric pressure, wind and temperature 
conditions were favorable to the occurrence of extremes in specific regions. The widespread increase in heavy 
precipitation probabilities is in line with their expected behavior under a warming climate and with the increasing 
trends revealed by the 100-year analysis. Regarding floods, the high-probability period affecting Western, Central 
and Southern Europe during the mid-nineteenth century is worth a particular note since it predates the availability 
of station data and is hence purely identified from atmospheric information. Interestingly, this period is consistent 
with one of the flood-rich period identified by Blöschl et al. (2020) using historical information. The release of 
the reconstruction as an open data set makes it open to further appraisal by means of local historical data or other 
sources of information.

In addition to its length, the uniqueness of the reconstruction lies in the fact that it reaches a global extent while 
operating on station data (i.e., streamflow measured at hydrometric stations and precipitation measured at rain-
gauges). As far as we know, similar long and station-based reconstructions have been limited to a national extent 
so far (e.g., Caillouet et al., 2017; Devers et al., 2020, 2021, in France). Alternatively, global-extent hydrologic 
reconstructions are generally shorter and operate on relatively large gridcells, which makes them relevant for 
large catchments only. As an illustration, the reconstruction of Alfieri et al. (2020) (1980–2018) was calibrated 
on catchments larger than 5,000 km 2, which only represents around 10% of the catchments we used in this work. 
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The 180-year reconstruction therefore fills a gap in the landscape of hydrologic reconstructions. A drawback of 
this uniqueness is that a detailed quantitative comparison with existing products is difficult.

From a methodological standpoint, this reconstruction also constitutes a proof of concept for a “bottom-up” 
approach that starts from hydrologic data observed on operational station networks and attempts to uncover 
sources of predictability from the larger-scale climate (Figure 2). This approach is generic and could be applied 
to other surface variables and other spatial or temporal scales. The “bottom-up” approach is to be compared with 
the more standard “top-down” method that transforms climate inputs into streamflow by means of hydrologic 
modeling (see Prudhomme et al., 2010, for a similar discussion in the context of future projections).

5.3. Improving Reconstructions Using Historical Information

In this study historical information is used to identify the dates of remarkable flood events that could be compared 
against reconstructed flood probabilities. While this is the most straightforward use of this information, it does 
not fully take advantage of its richness to better understand flood risk (Brázdil et  al.,  2006). In particular, 
historical information goes back in time much further than reanalyzes. As a few examples, the flood inventory 
used in Section 4.3.3 goes back to 1687; historical floods of large European rivers such as the Rhône (Pichard 
et al., 2017) or the Rhine (Wetter et al., 2011) have been documented since around 1300; the European historical 
data set collated by Blöschl et al. (2020) goes back 500 years; paleofloods even allow considering millennial time 
scales (Wilhelm et al., 2022). In addition, regional historical data sets provide information on the spatial structure 
and extent of large-scale flood events. Finally, historical data may include information on flood intensity, albeit 
a possibly qualitative one.

A promising research avenue would therefore be to derive reconstructions of flood and heavy precipitation proba-
bilities based on the joint use of three sources of information: station measurements, long atmospheric reanalyzes 
and paleo-historical data. In addition to the availability of large-scale, well-documented and homogeneous data 
sets, a necessary ingredient to achieve this is a flexible probabilistic model that can be properly adapted to the 
specificity of such a mixed data set. This includes the joint use of different types of data (qualitative, quantitative 
both discrete and continuous), the handling of missing and censored values, the ability to account for the complex 
space-and-time-varying availability of historical sources, etc. The HCI framework used in this study has been 
built with such a flexibility as a core objective, and could hence be adapted to perform this analysis. This has the 
potential to improve both the quality and the temporal extent of long-term reconstructions of floods and heavy 
precipitation.

5.4. Further Improving Historical Reconstructions

Several promising directions exist to improve the sharpness of probabilistic reconstructions, globally for heavy 
precipitation and at least in some regions for floods. A first direction would be to consider alternative predictor 
variables. For instance, atmospheric variables such as vertical temperature gradient or vertical wind shear may be 
important for extreme-generating phenomena such as hurricanes and medicanes (Cavicchia et al., 2014). Alterna-
tively, surface variables describing antecedent moisture and snowmelt may also be of interest for floods (Blöschl, 
Hall, et al., 2019).

A second direction would be to avoid the seasonal averaging of atmospheric predictors. Indeed, this averaging is 
likely to “smooth out” features that are important for floods in small catchments and for local precipitation. The 
use of seasonal quantiles rather than averages may be considered. An alternative solution would be to preserve 
the daily resolution of atmospheric fields and to look for specific dynamic patterns that are associated with floods 
and heavy precipitation, using for instance a lag-embedding approach (Giannakis & Majda, 2012).

Finally, a third direction to improve historical reconstructions would be to leverage recent progress in Machine 
Learning (ML), in particular in neural network approaches tailored to large spatiotemporal data sets (e.g., Nielsen 
et al., 2022). We note that the methods used in this work already share many similarities with ML approaches. 
For example, the HCI model can be viewed as an extension of probabilistic PCA (Renard et  al.,  2021). The 
prediction method described in Section 3.4 is known in ML as the inverse regression approach (see Devijver & 
Perthame, 2020, and reference therein for details). The idea of using HCI time series as intermediate variables 
when both predictor and predictand variables are highly dimensional (thousands of gridpoints/sites) is similar to 
the encoder-decoder approach used in ML (Murphy, 2012).
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All these avenues for improvement notwithstanding, we note that there may also be intrinsic predictability limits 
related to the nature of floods and heavy precipitation: their high variability in both space and time make them 
much more difficult to predict from large-scale climate than for example, seasonally-averaged precipitation/
streamflow or smoother variables such as temperatures. As an illustration, applying the exact same framework as 
in this study to SST predictand yielded much sharper reconstructions than those obtained with floods and heavy 
precipitation (not shown).

5.5. The Importance of Global Station-Based Data Sets

The use of large global-scale data sets does not allow performing a thorough analysis of data quality at every 
site. However, the quality checks and screening procedures implemented by data owners, data set providers 
and ourselves provide confidence that data errors, while certainly not absent, are isolated. A more challenging 
issue is the adequacy of the selected streamflow stations to monitor climate-driven variability. Indeed, HCIs 
may compensate for omitted time-varying factors affecting the data, including anthropogenic influences (e.g., a 
catchment moving from natural to regulated). The main safeguard against this issue is our attempt at selecting 
“RHN-like” stations in countries with no known RHN (Section 2.2). This procedure is far from infallible, so 
that regulated catchments likely made it into the analyzed data set. However, we are confident that they did not 
strongly affect the results for two reasons. First, the majority of stations used in this study (66%) do come from 
a formal RHN. The second reason is methodological: the spatial model used for HCI effects (Equation 4) favors 
the identification of HCIs having a smooth and consistent effect at the regional scale. Isolated stations affected 
by non-climatic changes are hence unlikely to be picked up by the first few HCIs, unless these changes have a 
wide-ranging spatial effect (e.g., a change in the measurement process affecting a whole country).

The challenges discussed above apply to any study trying to identify climate-driven trends or variability in 
hydrologic regimes. Consequently, initiatives aimed at collating global station-based data sets and documenting 
their properties are of prime importance. As an illustration, the recent ROBIN initiative (https://www.ceh.ac.uk/
our-science/projects/robin) is an important step toward collating existing RHNs at the global scale. More gener-
ally, a perennial approach to collating and managing multi-national streamflow data sets - RHN or not - is needed 
to avoid recurring difficulties such as homogenizing quality flags, documenting infilling procedures, detecting 
duplicates, performing regular updates etc. We therefore second the call by Gudmundsson et al. (2018a) for ‘the 
hydrological community […] to collectively improve the organization of initiatives for coordinated systems that 
facilitate updating, storage and documentation of existing data, and to lobby for existing closed databases to be 
made open and accessible’.

6. Conclusion
Understanding how floods and heavy precipitation may evolve in a changing climate requires characterizing their 
historical space-time variability as well as their co-variability. The overarching aim of this study was to contribute 
to this characterization by means of two long and global-scale analyses. The first analysis jointly explores floods 
and heavy precipitation station data over a 100-year period. The second analysis provides a 180-year reconstruc-
tion of flood and heavy precipitation probabilities derived from atmospheric information.

The 100-year analysis highlights wide-ranging increasing trends affecting heavy precipitation, whereas flood 
trends are weaker, may be upward or downward and affect smaller regions. These results mostly confirm liter-
ature findings (e.g., IPCC, 2021; Sharma et al., 2018) and put them on firmer ground by extending the analy-
sis period (100-year vs. the typical 50–60-year used in the literature) and jointly analyzing floods and heavy 
precipitation. Despite its length, the analysis does not detect strong persistence components affecting the data, 
suggesting that low-frequency variability accounts for a small fraction of the temporal variability of floods and 
heavy precipitation.

The second analysis provides a 180-year, global-scale reconstruction of flood and heavy precipitation probabil-
ities, based on atmospheric pressure, wind and temperature variables taken from the 20CRv3 reanalysis. This 
reconstruction was found to be reliable for both floods and heavy precipitation, but sharpness is much higher for 
the former than for the latter. In general, higher-than-usual precipitation probabilities were found to cluster in the 
latest decades, reflecting atmospheric conditions favorable to the occurrence of heavy precipitation events, as 
expected under a warming climate (IPCC, 2021). Flood probabilities patterns did not follow such a general behav-
ior and were found to be much more region- and season-specific. The reconstruction allowed identifying regions 

https://www.ceh.ac.uk/our-science/projects/robin
https://www.ceh.ac.uk/our-science/projects/robin
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with abnormally high flood probabilities in the distant past, for years well before the establishment of perennial 
station networks. The reconstruction is released as an open data set, which may enable more in-depth analyses at 
smaller spatial scales, using local historical data sets or other sources of information.

From a methodological standpoint, the HCI approach used in this study has several decisive advantages for 
analyzing station-based data sets. It naturally accommodates varying data availability: this avoids restricting 
the analysis to either a short period common to many stations or a long period for a few stations. The approach 
also allows analyzing the covariability of several variables measured on distinct networks by assuming that they 
are under the influence of common HCIs. Finally, it simplifies the derivation of relationships between highly 
dimensional predictor and predictand variables by using the HCI time series as low-dimensional intermediate 
variables. The HCI approach is very general and could hence be applied to study the historical variability of other 
phenomena at a large spatial scale. This includes other aspects of the hydrologic regime such as water resources 
and droughts, but also other variables characterizing the state of ecosystems in the context of a changing climate.

Station data sets originating from long-term monitoring networks constitute a most valuable asset to understand 
the historical variability of hydro-climatic variables. The statistical models used to analyze these data sets should 
be flexible enough to adapt to their peculiarities and make the best possible use of available data. This may 
improve not only the characterization of natural variability, but also the ability to derive predictive methods for 
past reconstructions or future projections.

Data Availability Statement
All data used in this article originate from open data sets, as cited in the text. The following repositories have been 
created to complement the article.

•  The 180-year reconstruction and the station data for streamflow and precipitation seasonal maxima are avail-
able in a Zenodo repository (Renard, 2023b, https://doi.org/10.5281/zenodo.7680097)

•  R scripts used for setting up models, analyzing results, preparing figures and the interactive app are available 
in a Zenodo repository (Renard, 2023a, https://doi.org/10.5281/zenodo.7680594)

•  MCMC simulations have been performed with the following computing codes:
 -  STooDs v0.1.0 (Renard, 2021b, https://github.com/STooDs-tools/STooDs)
 -  R interface RSTooDs v0.1.1 (Renard, 2021a, https://github.com/STooDs-tools/RSTooDs)

The interactive app to browse through the results for all seasons and variables is also available online at https://
hydroapps.recover.inrae.fr/HEGS-paper. Data can be visualized in a sonified animation at https://vimeo.
com/802751683.
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