— Influence of the initial phase distribution on antiphase domains control and burying in MBE growth of III-Vs on "on-axis" Si

O A. Gilbert¹, J.-B. Rodriguez¹, M. Rio Calvo¹, M. Ramonda²,
L. Cerutti¹, C. Cornet³, G. Patriarche⁴, A. Trampert⁵, E. Tournié¹

I IES, University of Montpellier, CNRS, F- 34000, France
CTM-UM, University of Montpellier, F- 34000, France
Univ Rennes, INSA Rennes, CNRS, Institut FOTON – UMR 6082, F-35000, France
C2N, University of Paris Saclay, CNRS, UMR 9001, France
Paul-Drude-Institut für Festkörperphysik, Hausvogteiplatz 5-7, 10117 Berlin, Germany

Part of this work was sponsored by French program on "Investments for the future" (Equipex EXTRA, ANR11-EQPX-0016), the ANR- DFG FILTER project (ANR-20-CE92-0045) and the ANR PIANIST (ANR-21-CE09-0020) and NUAGES (ANR-21-CE24-0006) projects.

Monolithic integration for photonic integrated circuits (PICs)

Silicon(001):

Large-scale and low-cost manufacturing

Direct growth

Communication: optical datacom

Computing: quantum computing, IA

Sensing: gas sensing, biosensors

Light emission

Context

III-V:

Chrs Chrs

es

6

6

Chrs Chrs

6

CM

6

One domain grows slower and is buried

Anisotropy: different steps' composition

Miscut transfer in [110] direction: breaks the symmetry

C. Cornet *et al.*, « Zinc-blende group III-V/group IV epitaxy: Importance of the miscut », *Phys. Rev. Materials*, vol. 4, n° 5, p. 053401, mai 2020, doi: 10.1103/PhysRevMaterials.4.053401.

APDs morphologies

Initial phase distribution:

Nucleation-driven

Terrace-driven

Y. B. Bolkhovityanov and O. P. Pchelyakov, Phys.-Uspekhi 51, 437 (2008)

Initial island size > terraces width

Initial island size < terraces width

C. Cornet *et al.*, « Zinc-blende group III-V/group IV epitaxy: Importance of the miscut », *Phys. Rev. Materials*, vol. 4, nº 5, p. 053401, mai 2020, doi: 10.1103/PhysRevMaterials.4.053401.

Terrace-driven initial phase distribution

Terrace-driven regime burying

100 nm LOW T°C + **400 nm MT°C**

Si 0.50

Elongated shapes // miscut

No step-flow: why one phase grows faster?

Terrace-driven regime burying

Conclusion **Nucleation-driven Terrace-driven** 22 00 00 ➤ Miscut: [110] [110] transfer in [110] direction = breaks the symmetry > Anisotropy: faster incorporation in V-steps / faster island elongation in $[1\overline{1}0]$ III-V [-1 10] IV [110] [110] No APBs: 550 nm GaSb/Si 0.5° No APBs: 150 nm GaAs/Si 0.5°

A. Gilbert, M. Ramonda, L. Cerutti, C. Cornet, G. Patriarche, E. Tournié and J.-B. Rodriguez, "Epitaxial growth of III-Vs on on-axis Si: Breaking the symmetry for antiphase domains control and burying.", accepted for publication: April 2023 les on cars 16

Thank you for your attention

C2N

