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Breaking the chains: extreme value statistics and localization in random spin chains

Jeanne Colbois1, ∗ and Nicolas Laflorencie1, †

1Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France

Despite a very good understanding of single-particle Anderson localization in one-dimensional
(1D) disordered systems, many-body effects are still full of surprises, a famous example being the
interaction-driven many-body localization (MBL) problem, about which much has been written, and
perhaps the best is yet to come. Interestingly enough the non-interacting limit provides a natural
playground to study non-trivial multiparticle physics, offering the possibility to test some general
mechanisms with very large-scale exact diagonalization simulations. In this work, we first revisit the
1D many-body Anderson insulator through the lens of extreme value theory, focusing on the extreme
polarizations of the equivalent spin chain model in a random magnetic field. A many-body-induced
chain breaking mechanism is explored numerically, and compared to an analytically solvable toy
model. A unified description, from weak to large disorder strengths W emerges, where the disorder-
dependent average localization length ξ(W ) governs the extreme events leading to chain breaks. In
particular, tails of the local magnetization distributions are controlled by ξ(W ). Remarkably, we
also obtain a quantitative understanding of the full distribution of the extreme polarizations, which
is given by a Fréchet-type law. In a second part, we explore finite interaction physics and the MBL
question. For the available system sizes, we numerically quantify the difference in the extreme value
distributions between the interacting problem and the non-interacting Anderson case. Strikingly,
we observe a sharp ”extreme-statistics transition” as W changes, which may coincide with the MBL
transition.
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I. INTRODUCTION

A. Context

It is fairly well known that one-dimensional (1D) quan-
tum systems are strongly influenced by the presence of
random impurities or quenched disorder. This is firstly
true at the single particle level where the simplest 1D
nearest-neighbor hopping problem in a random potential
displays the Anderson localization phenomenon whose
hallmark is a real-space exponential decay of all eigen-
states, regardless of the strength of the disorder [1]. An-
other key property is the absence of transport at any en-
ergy in such localized systems, a direct consequence of de-
structive interferences of wave functions [2, 3]. Interest-
ingly, despite an abundant corpus of well-established re-
sults in the non-interacting limit, it has proven to be no-
toriously difficult to translate them to the more realistic
situation of finite interactions [4], with the notable excep-
tion of zero-temperature physics thanks to bosonization
and RG [5]. For the more general case of finite tempera-
ture, in principle involving all many-body excitations, the
celebrated many-body localization (MBL) problem has
attracted an enormous interest over the past decades [6–
20]. Remarkably, a great deal of effort has been put into
numerical simulations of interacting 1D models, mostly
the random-field Heisenberg spin chain [11, 13], for which
an ergodicity-breaking transition is expected at strong
enough disorder [13, 21–24].

Nevertheless, the objective of this work is not only ori-
ented towards interacting MBL. Instead we propose to
make a first detour to the non-interacting many-body
Anderson insulator through the less visited question of
extreme value theory. We will concentrate on the effect
of a random magnetic field on extreme polarizations in
one of the simplest disordered spin chain models, namely
the spin- 12 random-field XX chain, governed for L sites
on a ring by

Hxx =

L∑

i=1

J
(
Sx
i S

x
i+1 + Sy

i S
y
i+1

)
− hiS

z
i , (1.1)

which is the non-interacting limit of the 1D Heisenberg

model. Our goal is to develop a theoretical understanding
of the extreme magnetizations at any temperature, first
for this non-interacting case, building on a combination of
large-scale exact diagonalization with an extreme value
theory (EVT) analysis of local observables. Next, we
aim to extend our conclusions to the finite interaction
problem, thus offering us the possibility to strengthen
our understanding of MBL physics.

Univariate EVT [25–29] has proven useful in fields
as diverse as climate science [30–33] and extreme envi-
ronmental events [34, 35]; structural risks and related
safety measures [36, 37]; athletic records [38–41]; fi-
nance [42, 43]; and statistical physics [29, 44, 45]. In
particular, disordered condensed matter systems [46] of-
fer a very rich playground for EVT of correlated or un-
correlated random variables, with notable examples such
as random matrix theory [47, 48], height distribution of
surfaces [44, 49–51] and spin or structural glasses [52–
56]. Disordered spin chains represent a potentially very
interesting field of application for EVT, with the no-
table example of the random transverse-field Ising chain
model [57] for which EVT provides very sharp predic-
tions for the distribution of the lowest finite-size energy
gap [58–61]. EVT can also be used to study localization-
delocalization transitions: in the (single-particle) Ander-
son problem with long-range couplings, extreme values
of the eigenfunctions capture the localized or delocalized
nature of the wavefunctions [62]. Other recent examples
of studies include the ground-state energy distribution
of quantum disordered chains [63], the extremal statis-
tics of entanglement spectra across the 1D MBL transi-
tion [64, 65], the superfluid fraction in a one-dimensional
Bose gas [66] or the probability distribution of the com-
mutators of almost-conserved local operators [67].

In this MBL context, the full distributions have been
studied for the entanglement entropy [69–72], while much
less authors have addressed the pairwise correlations at
short [73] or long distance [11]. Also much less stud-
ied [74, 75] are the statistics of one of the simplest lo-
cal observables: the local magnetization ⟨Sz

i ⟩. Although
simple, this quantity can be of deep experimental rel-
evance, since inhomogeneous magnetic moment profiles
can be resolved directly by NMR spectroscopy [76–79].
On the theory side, only a few works have addressed mag-
netization statistics across the ergodic-MBL transition in
disordered spin chains, mostly at a qualitative level, for
instance observing a U-shape distribution in the localized
regime, contrasting with a Gaussian law in the ergodic
phase [80–83]. Interestingly, Ref. 81 noticed a power-law
decay of the probability to observe vanishing local mag-
netization P (0) ∼ 1/W , where W controls the disorder
strength, while at the same time tail singularities develop
with W for ⟨Sz

i ⟩ ≈ ± 1
2 . Motivated by these results, we

propose to use extreme value statistics to obtain a more
quantitative description of this crossover.
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FIG. 1. Microscopic mechanism of the chain breaking in the non-interacting case, Eq. (1.1), illustrated for a single L = 512 sites
sample with a disorder strength W = 5. (a) Expectation value of the local magnetization ⟨Sz

i ⟩ along the chain, computed with
ED for an eigenstate in the middle of the spectrum: we observe seemingly random oscillations between ±1/2. (b) Same as panel
(a) but for the deviations with respect to perfect polarization δi = 1/2 − |⟨Sz

i ⟩|, plotted in log-scale. Green circles highlight
the sites with the smallest deviations (strongly polarized spins). The most polarized site i⋆ = 92 is indicated by a vertical
green line and the cluster containing it by a green region in panels (a) and (b). (c) Zoom over the region surrounding i⋆: one
clearly sees a short-range correlation of the δi’s in its vicinity. (d) Microscopic mechanism at the origin of the chain breaking:
the most polarized site lies in a series of ℓmax ≈ lnL

ln 2
= 9 consecutively occupied orbitals ϕm, represented by full blue lines,

orange dashed lines representing the unoccupied orbitals. Panel (d) shows exponential fits to the exact single-particle states,
not necessarily symmetric, while panel (e) represents the corresponding toy model description with all ϕm in Eq. (1.3) having
the same localization length ξ; the resulting deviations are shown in panel (f). (g) Disorder dependence of the localization
length ξ(W ) computed from the Lyapunov exponent (see [68] Sec. S2) averaged over the density of states. The continuous lines
correspond to the analytical ansatz ξ−1 = ln[1 + (W/W0)

2], with W0 = 1.13, 1.22 (see text Eq. (3.1) and below). The inset
shows the same data for 1/ξ at large disorder.

B. Chain breakings in a nutshell: toy model as a
warmup

For a finite chain governed for instance by the quan-
tum XX model Eq. (1.1), the local spin densities ⟨Sz

i ⟩
can get very close to ± 1

2 upon increasing the strength
of the random field W , but never reach perfect (classi-
cal) polarization. This is an obvious consequence of the
quantum fluctuation terms in the Hamiltonian. How-
ever, such a classical spin freezing may happen when the
thermodynamic limit is taken, leading to a chain break,
i.e. some weak links effectively flowing to zero strength
when L → ∞. This was first observed and discussed
in Ref. 74 when investigating the extreme statistics in
random Heisenberg chains, where it was concluded that
quantum localization is associated to a chain breaking

mechanism. Formally speaking, this means a classical
freezing at the thermodynamic limit, i.e. the most polar-
ized site i⋆ will be such that

⟨Sz
i⋆⟩ −→

L→∞
±1

2
. (1.2)

Let us first give a heuristic explanation for this freezing
phenomenon in the non-interacting limit Eq. (1.1), which
describes free fermions in a random potential. In the
presence of disorder, all single-particle fermionic eigen-
states ϕm are Anderson localized. Following Refs. 74 and
84, we model these eigenstates by a simple exponential

|ϕm(i)|2 ∼ exp

(
−|i− im0 |

ξm

)
(1.3)

for all orbitals m, with ξm and im0 the corresponding lo-
calization lengths and centers. For a given filling fraction
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0 < ν < 1, the real-space density at a site i is given by

⟨ni⟩ =
∑

moc.

|ϕmoc.(i)|2, (1.4)

where the sum is performed over the νL occupied
fermionic levels moc.. In our toy model description, we
then make the defining assumption that all orbitals have
the same localization length ξm ≡ ξ. This strong assump-
tion, whose validity will be discussed in Sec. III in the
light of systematic ED results on the XX chain, allows us
to easily extract simple predictions. For instance, as a di-
rect consequence, the maximal (resp. minimal) fermionic
density is expected to occur in the middle of the longest
region of ℓmax consecutive sites that are occupied (unoc-
cupied) by an orbital [85]. At half-filling ν = 1/2, a con-
figuration with ℓ consecutive occupied (or empty) sites
occurs with a probability proportional to 2−ℓ, which, for
a finite chain of length L ≫ 1 yields ℓmax ≈ lnL/ ln 2.
Back to the spin language, the minimal deviation from
perfect polarization δmin ≡ 1

2 − |⟨Sz
i⋆⟩|, is then given by

δmin(L) ∼ exp

(
−ℓmax

2ξ

)
∼ L− 1

2ξ ln 2 , (1.5)

which defines the disorder-dependent freezing exponent

γ =
1

2ξ ln 2
. (1.6)

This simple reasoning, illustrated in Fig. 1 (a) to (f), will
be further discussed below in the paper, together with
large-scale numerical simulation results.

C. Summary of the results and outline of the paper

In the rest of the paper we will explore various aspects
of extreme polarizations in random-field spin chains at
infinite temperature. First, in Sec. II we use exact diag-
onalization (ED) to investigate large chains in the non-
interacting limit for which the statistics of local magneti-
zations, and particularly of its extreme values are probed
in great details. Finite-size scaling of the spin freezing
process will be systematically studied for a broad range
of disorder strengths, and compared to the concomitant
weak link formation leading to chain breaks in the ther-
modynamic limit. The associated disorder-dependent
spin freezing and weak-link exponents will be analyzed,
and compared to the simple the toy model expectation
Eq. (1.6). A key result, presented in Sec. IID, is that
throughout the entire Anderson insulating regime, the
distributions of extreme polarizations fall in the Fréchet
subclass of generalized extreme value theory.

The toy model is then further explored in Sec. III
for the many-body Anderson insulator, with a particu-
lar focus on its capability to provide quantitative results
against ED data. The minimal deviations (from per-
fect polarization) are nicely described by a scaling-law

inferred from the toy model, with a non-trivial scaling
variable ℓcluster/ξ, which is the ratio between the length
of the cluster hosting the most polarized spin ℓcluster and
the average localization length ξ. Interestingly, the same
toy model also provides quantitative results to explain
several features in the full distribution functions, as we
discuss in Sec. III B.
Finally, Sec. IV addresses the MBL question through

the lens of extreme value theory, building on both shift-
invert ED data and an interacting toy model description
from which we first make analytical conjectures valid at
strong disorder (Sec. IVA). We then compare numer-
ical data between XX and Heisenberg Hamiltonians for
both the typical extreme deviations (Sec. IVB) and their
full probability distribution functions (Sec. IVC). The
Kullbach-Leibler divergence, used to quantify the dif-
ferences / similarities between the interacting and non-
interacting distributions, exhibits a sharp change for a
critical disorder regime W ∼ 4 − 7, thus suggesting an
extreme-statistics transition, which might coincide with
the MBL transition.
We summarize and conclude in Sec. V. More details on

some technical aspects of the calculations are provided as
Supplemental Material [68].

II. EXACT DIAGONALIZATION OF THE
MANY-BODY ANDERSON INSULATOR

A. The non-interacting XX model

We start with the random-field XX chain model
Eq. (1.1), which can be recast as a tight-binding chain of
spinless fermions with random on-sites energies, governed
(up to a constant) by

Hxx =

L∑

i=1

J

2

(
c†i ci+1 + c†i+1ci

)
− hini. (2.1)

Throughout the paper, we consider J = 1 and a uniform
box distribution for the random fields hi, i.e.

P(h) =

{
1

2W if h ∈ [−W,W ],

0 otherwise,
(2.2)

which has a finite variance W 2/3. The model has a U(1)
symmetry corresponding to the total magnetization (par-
ticle number) being conserved. Unless otherwise stated,
we consider the spin-1/2 chain in the Sz

tot = 0 sector
(half-filling in the fermion language). Exact diagonaliza-
tion of the above quadratic Hamiltonian are performed
over several thousands (typically 104) independent sam-
ples for periodic chains of lengths spanning a few orders of
magnitudes (typically from L = 8 to L = 4096). For each
disordered sample, new fermionic operators are numeri-

cally obtained from standard ED: bm =
∑L

i=1 ϕm(i)ci,
such that the free-fermion Hamiltonian takes a diagonal
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FIG. 2. (a) Histograms of the local magnetizations ⟨Sz
i ⟩ at

half-filling and infinite temperature, shown for various disor-
der strengths. ED data for L = 512, periodic boundary condi-
tions, and 104 random-field realizations. P gradually changes
from an arch to a U-shaped curve with singular tails upon
increasing W . (b) The standard deviation of the distribution
of magnetizations as a function of the disorder strength (sym-
bols) saturates at 1/2 for strong disorder. (c) The weight of
the distribution at zero magnetization decreases with increas-
ing disorder (points). The dashed line represents the expected
zero magnetization weight in the strong disorder limit ∼ 1/W .

form

H =

L∑

m=1

Emb†mbm. (2.3)

All single-particle orbitals ϕm(i) are spatially localized
for any finite disorder strength W > 0. We focus on the
infinite temperature limit, corresponding to the middle of
the many-body spectrum with ϵ = 0.5 (see [68] Sec. S1
for some more details).

B. Distribution of local magnetizations

We first look at the distribution of the on-site mag-
netizations ⟨Sz

j ⟩, equivalent to the fermionic occupa-
tions ⟨nj⟩ = ⟨Sz

j ⟩ + 1/2. In Fig. 2(a) we observe the
development of singular tails for the extremal values
⟨Sz

i ⟩ → ±1/2 upon increasing the disorder strength W ,
with distributions becoming bimodal in the large disor-
der limit. The standard deviation σSz (W ), plotted in
Fig. 2(b), grows continuously with W and tends to satu-
ration at the bimodal distribution plateau σp → 1/2 for
strong disorder. At the same time, the weight at zero
magnetization vanishes P(0) ∼ 1/W , see Fig. 2(c), simi-
larly to the case with interactions [74, 81, 82, 84].

In contrast, for weak disorder the distribution P(⟨Sz
j ⟩)

changes from the strong disorder U-shaped convex form
and instead becomes concave. Therefore, the probability
of observing strongly polarized sites having ⟨Sz

i ⟩ close

to ±1/2 exhibits seemingly very different behaviors as a
function of the disorder strengthW . At strong disorder it
has previously been argued [74, 84] that the distribution
diverges as a power-law ∼ δ−|α|, where δ is the deviation
from perfect polarization, defined at each site by

δi =
1

2
− |⟨Sz

i ⟩|. (2.4)

Interestingly, we numerically find that the algebraic tail
at δ → 0 remains over the entire regime of disorder
strengths, as shown in Fig. 3 where the form

P(δ) ∼ δα ⇔ P(ln δ) ∼ exp [(1 + α) ln δ] , (2.5)

is always observed. The W -dependent exponent α ∈
] − 1,∞[ is found to continuously vary with the disor-
der strength, see Fig. 3(c) where we observe a saturation
α → −1 in the large W regime, while α → ∞ at weak
disorder. Although a qualitative change seems to occur
when the exponent α switches sign at W ∗ ≈ 1.8, at least
with respect to the divergent or vanishing character of
P(δ → 0), the physical regime is however the same on
the two sides of W ∗ which are both described by the
same Anderson localization phenomenology.

C. Extreme value theory and chain breaks

Power-law tails in the distributions yield strong conse-
quences for the minimal deviation δmin = minj δj , cor-
responding to the most polarized site. Indeed, follow-
ing the Gnedenko’s classical law of extremes, it is well-
known [29, 86] that for such an algebraic distribution of
independent random variables, the statistics of the ex-
tremes will fall into the Fréchet distribution universality
class. This will be further developed below, in Sec. IID
(see also Supplemental Material [68], Sec. S3). Before
this, we first focus on the finite-size scaling properties of
the extreme polarizations for finite chains of length L.
In the following we will further assume weak correlations
between the δi random variables, which is well-justified
as we discuss in more detail in Sec. IID 2.

1. Spin freezing

For a finite system of size L, the typical behavior of
the minimal deviation from perfect polarization δmin(L)
can be obtained from the simple argument that it must
occur exactly once in the chain, such that

∫ δmin(L)

0

P(δ) dδ ∼ 1

L
. (2.6)

Therefore, the algebraic distribution Eq. (2.5) yields the
following finite-size decay (which we will recover from a
more systematic EVT analysis in Sec. IID)

δmin(L) ∼ L− 1
1+α , (2.7)
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FIG. 3. Histogram of the deviations δi to perfect polarization
Eq. (2.4), for various disorder strengths W . Same ED data
as shown in Fig. 2(a). (a) The probability of small deviations
exhibit clear power-law scaling in log-log scale, Eq. (2.5). The
line indicates the most singular situation α = −1. (b) Distri-
bution of the logarithm of the deviations, showing the corre-
sponding exponential scaling. Note the striking structures for
strong disorder away from the small-δ tails regime, structures
which are invisible in the linear scale of Fig. 2(a). (c) Disor-
der dependence of the power-law exponent α Eq. (2.5), ob-
tained from fitting the tails of the distributions of ln δi (see
also Fig. 7). α switches sign at W ∗ ≈ 1.8.

FIG. 4. Infinite temperature ED data for the typical value
of the minimal deviations, exp[ln δmin] as a function of the
system size L and various disorder strengths W , plotted for
L ≫ ξ(W ). 103 field realizations were used for panel (a)
and 104 field realizations for panels (b) to (d). Dotted lines
are a guide to the eye. The extracted freezing exponent γtyp
Eq. (2.9) is shown in Fig. 7.
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thus linking the exponent α of the distribution with the
classical freezing exponent

γ =
1

1 + α
. (2.8)

This implies that for any α > −1, the minimal devia-
tion is expected to vanish in the thermodynamic limit
L → ∞, with a freezing exponent γ > 0, and the most
polarized site i⋆ eventually becomes classically frozen
⟨Sz

i⋆⟩ = ±1/2, in the sense that the quantum fluctua-
tions have completely disappeared.

This algebraic decay for δmin(L) Eq. (2.7) is checked
numerically by collecting the most polarized site for 104

samples and various sizes (we only use 103 samples at
weak disorder where sample-to-sample fluctuations are
weaker, thus allowing to reach larger sizes). To account
for the possible absence of self-averaging of these quanti-
ties, we consider two definitions of the freezing exponent
γ related to the typical and the average value of the min-
imal deviation:

δtypmin = eln(δmin) ∼ L−γtyp (2.9)

δavgmin = δmin ∼ L−γavg . (2.10)

In Fig. 4, we show ED results for the typical value of the
minimal deviations, which exhibit very clear power-law
decays with L. This remarkably remains true for a very
broad range of disorder strengths W , as illustrated by
the different panels of Fig. 4. For weak disorder, W < 1
[Fig. 4(a)], the asymptotic regime is only reached at suffi-
ciently large scale: typically we expect this scaling regime
when L ≫ ξ, with ξ the localization length averaged over
orbitals and disorder [Fig. 1(g)]. Even at larger disorders,
a careful look shows that the exponent of the power-law
decay changes slightly with the increasing system size.
This effect is at least partially due to the appearance
of bumps in the distribution of δmin for strong disorder
and modest system sizes ([68] Sec. S3), and is more pro-
nounced in the decay of the average minimal deviation.
This is taken into account in the evaluation of the freez-
ing exponent γtyp,avg by fitting ranges of six sizes (at
W < 1 and W > 30) and eight sizes (1 ≤ W ≤ 30) every
two sizes, and using the four last fits (largest sizes) to de-
termine the exponent, and all fits to determine the error
on the exponent (see Fig. 7). The extracted freezing ex-
ponent γtyp clearly increases with W , as we will further
discuss below in Sec. II C 3. Before this we briefly address
the chain breaking mechanism by looking at the spin-spin
correlations in the vicinity of the most polarized site.

2. Weak links and chain breaks

The power-law decay of the minimal deviation sug-
gests that in the thermodynamic limit, the chain will
eventually be cut upon increasing the system size. This
behavior may remind us of single-impurity Kane-Fisher
physics [87–89], where the system flows towards an open

chain fixed point. Another way to envision these weak
links is to see them as entanglement bottlenecks [70],
nearly frozen spins being disentangled from the rest of
the system. It is well-known that upon increasing disor-
der the distributions of entanglement entropies display a
growing peak at zero entropy (with or without interac-
tion) [70, 71, 90], which is directly related to the singu-
larity P(δ → 0) [74].
An explicit way to investigate such entanglement bot-

tlenecks, or weak links, is to look at the gradual breaking
of the chain when L is increased. To do so, we compute
(see [68] Sec. S1 for some details) the connected pairwise
spin correlations in the close vicinity of the most polar-
ized site i⋆, as illustrated in Fig. 5.

FIG. 5. Schematic illustration of the pairwise spin correla-
tions at short distance in the close vicinity of the most polar-
ized site i⋆, surrounded by L (left) and R (right) sites.

We numerically check that the longitudinal compo-
nents

Czz
ij = ⟨Sz

i S
z
j ⟩ − ⟨Sz

i ⟩⟨Sz
j ⟩ (2.11)

display a similar algebraic decay with L for the three
cases (i j) = (L i⋆), (i⋆ R), as well as (LR) which is
shown in Fig. 6 for the same parameters as the ones of
Fig. 4. The typical weak-link correlation decays as

|Czz
LR|typ ∼ L−θtyp , (2.12)

which defines the weak-link exponent θ [91].
It is straightforward to connect the above behavior

with the spin freezing of Eq. (2.10). Indeed, one can
model two nearly up-polarized sites using the approxi-
mate quantum sate

|Ψ⟩ ∝ |↑i↑j⟩+ ϵi |↓i↑j⟩+ ϵj |↑i↓j⟩ , (2.13)

with ϵi ∼ ϵj ≪ 1. For such an ansatz wave-function,
a simple calculation yields for the deviations δp ≈ ϵ2p ∼
L−γ , and a weak-link correlation

∣∣Czz
ij

∣∣ ≈ (ϵiϵj)
2 ∼ L−2γ , (2.14)

which leads to the following relation between the expo-
nents

θ = 2γ, (2.15)

expected to describe the strong disorder regime, as we
nicely check below in Fig. 7.

3. Freezing exponents

Fig. 7 shows the disorder dependence of the spin freez-
ing exponents γtyp,avg(W ) controlling the decay of the
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FIG. 6. Power-law decay of the typical value of the connected
longitudinal correlations : |Czz

LR| measured across i⋆ the most
polarized site, as illustrated in Fig. 5. Infinite temperature
ED data plotted as a function of the system size L for various
disorder strength W . Dotted lines are a guide to the eye. The
extracted weak-link exponent θtyp is shown in Fig. 7 (except
for W < 0.5 where it becomes too difficult to determine).

typical (resp. average) minimal deviation δtyp,avgmin , and of
the weak-link exponent θtyp(W ) [Eq. (2.12)] for the decay
of the (typical) spin correlations in the direct vicinity of
the most polarized site. The evaluation of the exponents
is limited at weak disorder by the need to reach very
large system sizes, and at strong disorder by the need
to compute very accurately extremely small deviations
δ (and even smaller correlations Czz

LR), as mentioned in
the previous section. Yet, the predicted Eq. (2.15) is in-
deed verified at strong disorder, and quite interestingly
it seems to remain valid down to W ∼ 2.

Further, we plot again the disorder-dependent α expo-
nent, which controls the power-law tails of the deviations
distribution, but in a form related to the exponent γ, as in
Eq. (2.8). The agreement with γtyp and γavg is striking at
small disorder (inset of Fig. 7), corresponding to the fact
that the exponent of the power-law tail indeed controls
the decay of the minimal deviation (Sec. IID). The agree-
ment remains quite good, despite the non-monotonous
structures appearing in the distributions which start to
affect the results (W ≳ 20), yielding larger errors and a
difference between γtyp, γavg and 1/(1 + α).

Finally, we note that the disorder-dependence of the
exponents is logarithmic at large disorder. This is rem-
iniscent of the disorder-dependence of the inverse lo-
calization length, and corresponds to the relation γ ∼=
(2ξ ln 2)−1 obtained in the simple toy model Eq. (1.6).
The agreement between the inverse localization length
and the freezing exponent is excellent in Fig. 7, down to

FIG. 7. Decay exponents of the minimal deviation (γavg,typ,
Eqs. (2.9), (2.10)) and of the spin correlations across the most
polarized site (θtyp, Eq. (2.12)), as a function of the disorder
strength W . We also show the disorder dependence of the
distribution exponent α [Eq. (2.5), Fig. 3(c)], related to the
freezing exponent by γ = 1/(1 + α) (Eq. (2.8)), and the toy
model result 1/(2ξ ln 2) [Eq. (1.6), Fig. 1(f)]. At large dis-
order, we observe the expected logarithmic growth with W ,
and the predicted factor of two between weak-link and freez-
ing exponents [Eq. (2.15)]. Note that γavg become intractable
at strong disorder, yielding very large error bars; for the other
error bars see the discussion in Sec. II C 1.
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disorder strengths W ∼ 1 − 2, which corresponds to the
regime where ξ becomes O(1).

D. Limiting distribution for the extreme
polarizations

We now discuss in detail the distribution of extreme
polarizations for finite chains of length L.

1. Extreme statistics distribution

The Fisher-Tippett-Gnedenko (or extreme value) theo-
rem [28, 86, 92–95] states that the limiting law controlling
the maximum of L independent identically distributed
random variables {xi}i=1,...,L can take three forms in the
limit of large sizes, depending on the tail of the proba-
bility density function p(x) at large x. There are three
families of limiting distributions which can be gathered in
the same generalized extreme value (GEV) distribution,
controlled by three parameters: the shape s, the location
µ and the scale σ. The probability density function for
the rescaled variable z = xmax−µ

σ is

P(z ; s) =

{
(1 + sz)

−(1+1/s)
e−(1+sz)−1/s

for s ̸= 0

e−(z+e−z) for s = 0

(2.16)
with (1 + sz) > 0. s = 0 corresponds to the Gumbel
distribution, s > 0 Fréchet and s < 0 the Weibull dis-
tribution. In the case of a power-law tail of the parent
distribution at large x,

p(x) = Ax−β−1, β > 0, (2.17)

a Fréchet law [92] is expected for the distribution of the

rescaled maximum z = xmax

(
AL
β+1

)− 1
β

PL (z) → βz−β−1 exp
(
−z−β

)
(2.18)

As numerically observed in Sec. II B, we expect that the
deviations δ from perfect polarization are distributed ac-
cording to a power-law P(δ) ∼ δα when δ → 0 (i.e.
mi = |⟨Sz

i ⟩| → 1/2), see Eq. (2.5) and Fig. 3, with
the disorder-dependent exponent α(W ) > −1 shown in
Fig. 3(c). If this is indeed the case, then the minimal
deviation for chains of length L, computed as follows

δmin =
1

maxi=1,...,L

(
1
δi

) , (2.19)

is expected to be distributed according to the Fréchet-
related law [96]:

PL(δmin) → ALδαmin exp

(
− AL

α+ 1
δα+1
min

)
. (2.20)

Changing variable to the logarithm of the minimal de-
viation u = ln δmin, we get the (reflected) generalized
Gumbel law

PL(u) → AL exp

[
(α+ 1)u− AL

α+ 1
e(α+1)u

]
, (2.21)

with scale σ = (α+ 1)−1, and location µ given by

µ = − 1

α+ 1
ln

(
AL

α+ 1

)
. (2.22)

This non-trivial dependence Eq. (2.21) is checked for the
numerical data using two-parameter fits in Fig. 8. The
location Eq. (2.22) directly gives the maximum of the
distribution, yielding another estimate for the typical de-
viation:

δtypmin(L) ≈
(

A

α+ 1
L

)− 1
α+1

, (2.23)

which nicely matches Eq. (2.7). Furthermore, the change
of variables ∆u = (α + 1)(ln δmin − µ), yields the scale-
invariant (reflected) Gumbel distribution

PL(∆u) ≈ exp [∆u − exp(∆u)] , (2.24)

perfectly illustrated on the right side of Fig. 8. It is im-
portant to note that this Gumbel distribution for ln δmin

corresponds to a Fréchet law for the inverse minimal de-
viations.
On the left side, fits to the law Eq. (2.21) are per-

formed using A and α as free parameters. The collapse
scale-invariant form Eq. (2.24) is then obtained using A
and α averaged over the various system sizes (errors are
shown by the gray area, see also Sec. S3 in [68]). At first
sight the agreement with the Gumbel distributions is very
good. Correspondingly, the extracted values of A and α
can be directly related to the amplitude and the exponent
of the decay of δtypmin in Eq. (2.23). We have checked ([68]
Sec. S3) that the resulting values of α agree within er-
rors with the power-law tail of the deviations (Fig. 3) and
with the freezing exponent γ. Recall that only the tails of
the distributions P(δ) follow a pure power-law, thus the
amplitudes A extracted from the fits in Figs. 8(a) to 8(d)
slightly differ from theoretical expectations coming from
a perfect power-law: A ≈ (α+ 1)2(α+1).

2. Small corrections to the limiting distributions

There are several sources of small corrections. First,
we should recall that the extreme value distributions are
only the limiting distributions, and finite-size corrections
should be expected (see e.g. [60]). Second, it is impor-
tant to say that the deviations δi are not fully indepen-
dent random variables, and therefore one might expect
some small differences with the limiting extreme value
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FIG. 8. (a) to (d): ED data for random-field XX chains. Distribution of ln δmin for 105 field realizations for various system
sizes. Solid lines are two-parameter fits to the data according to the reflected generalized Gumbel distribution Eq. (2.21). (e)
to (h): Collapse of these distributions obtained by defining ∆u = (α+1)(ln δmin − µ), with µ from Eq. (2.22), using the A and
α extracted from the fits in Figs. (a) to (d). The errors on ∆u coming from the uncertainties on A and α are represented by
the gray area. The dashed red line is the same in all four plots and corresponds to the scale-invariant Gumbel law Eq. (2.24).
In panels (d) and (h), we only plot the data for minimal deviations larger than numerical precision. At strong disorder and
small sizes, irregular bumps appear (see also Fig. 10).

theory distributions. In fact, the chain breaking mech-
anism tells us that the extreme polarizations occur in
clusters and are thus correlated within each clusters, see
Fig. 1(b). Fortunately, these correlations are found to be
weak (Sec. S3 in [68]): the spatial correlations of the de-
viations δi, averaged over disorder, decay exponentially
with a quite small correlation length ζ, remaining be-

low order of ten sites even at weak disorder. In such a
case, it is known [29] that one can predict the extreme
statistics distribution based on the distribution function
of the local minima for a system divided in blocks of
length ζ. Here, we expect the local minima to still follow
a power-law distribution, and the extreme value distri-
bution must describe the statistics of the global minima,
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as clearly visible in Fig. 8.
Nevertheless, we observe some small discrepancies.

First, at weak disorder, the left tail is not well fitted
by the limiting law; as a consequence the collapse in
Fig. 8(d) has relatively large errors. We suspect this
small skew to come from the slow convergence of the
power-law tail with the system size in this regime. In-
deed, the extreme value description seems to improve
when both L and disorder strength grow. However,
additional (non-monotonous) structures appear for very
strong disorder: note that they are already visible in
Fig. 3(b) for P(ln δi). On the other hand, it is impor-
tant to say that as the disorder increases, the tail of the
power law remains the correct description for very small
deviations. For example, data at W = 20 in Fig. 8(d)
show that the larger system sizes are still well described
by the power-law tail at very small deviations, but this
will gradually degrade when W becomes very large, as
more and more bumpy structures would develop. Inter-
estingly, these features have a simple microscopic origin
very well captured by the toy model, which will be dis-
cussed below, in Sec. III.

3. Connections with the random transverse-field Ising chain

Overall, the histograms of extreme polarizations
P(δmin) are fairly well described by the extreme value
theory over the entire localized regime (Fig. 8), following
the distribution Eq. (2.20) coming from a Fréchet dis-
tribution which is essentially controlled by the disorder-
dependent exponent α, primarily governing the tails of
the parent distributions P(δ) ∼ δα. While describing
a totally different physical effect, a similar Fréchet law
also characterizes the distribution of the lowest finite-size
energy gap ϵmin(L) of the random transverse-field Ising
chain model (TFIM) [58–61]. In that case, the relevant
exponent is the dynamical exponent z which controls the
singular distribution of renormalized energy scales in the
disordered regime [57] such that P(ϵ) ∼ ϵ−1+1/z, thus
yielding ϵmin(L) ∼ L−z [97]. Interestingly, one can make
a formal analogy between the finite-size gap vanishing in
the random TFIM and the chain-breaking occurring in
the many-body Anderson insulator. The freezing expo-
nent γ is the analog of z, but they remarkably behave in
opposite ways with their localization lengths: γ ∼ 1/ξ
at strong disorder, in stark contrast with the divergence
z ∼ ξ in the vicinity of the critical point of the random
TFIM.

III. NON-INTERACTING TOY MODEL

As introduced in Sec. I B, it was suggested in Refs. 74
and 84 that the algebraic vanishing of the minimal devi-
ation with the system size δmin(L) ∼ L−γ can be readily
explained by a simple toy model, in principle valid at
strong disorder. Supposing that each orbital ϕm is lo-

calized around a well-defined localization center im0 , see
Fig. 1(d), it is further assumed that its envelope de-
cays exponentially and symmetrically around that cen-
ter, with a site-independent localization length ξ, such
that |ϕm(i)|2 ∼ exp(−|i− im0 |/ξ).
As we have sketched in Sec. I B, this toy model is able

to explain the main feature of the spin freezing by relating
the typical deviation δtypmin at half-filling to the average
of the maximal sequence ℓmax of neighboring occupied
or empty orbitals in real space, Eq. (1.5), resulting in
a chain-breaking mechanism controlled by the freezing
exponent γ ∼ (2ξ ln 2)−1. In this section we want to
clarify and nuance the toy model results and draw further
consequences.

A. Scaling for the spin freezing

1. Localization length

The unique parameter of the toy model is the W -
dependent localization length ξ(W ), where the energy
dependence has been integrated over the single-particle
density of states (see Sec. S2 in [68] for the computa-
tion of ξ(E,W ) from the Lyapunov exponent [98–100]).
This energy-averaged localization length is known to di-
verge at weak disorder ∼ 1/W 2 [98, 101], while for
strong randomness a simple perturbative expansion of
the wavefunction around its localization center shows
that ξ−1 ∼ 2 ln(W ) [90]. Therefore, the simple Ansatz
formula [102] which combines both weak and strong dis-
order limits

ξ =
1

ln
[
1 + (W/W0)

2
] (3.1)

nicely fits the bill, as shown in Fig. 1(g) where we see
that Eq. (3.1) with W0 ∼ 1.2 captures extremely well the
exact numerics for ξ(W ).
As introduced in Sec. I B, the a priori simplistic toy

model provides a remarkably realistic description of the
many-body Anderson insulator. In particular, the sim-
ple expression for the freezing exponent γ ∼ (2ξ ln 2)−1

remains valid over a very broad range of randomness,
and only starts to deviate typically below W ∼ 2, as
clearly shown in Fig. 7. Nevertheless, in what fol-
lows, we are going to see that the extreme polarization
scaling derived within the simple toy-model framework,

δmin(L) ∼ exp
(
− ℓmax

2ξ

)
, can be extended to weaker dis-

order strengths, provided the fact that the maximal se-
quence ℓmax is replaced by ℓcluster, the average length of
the cluster hosting the most polarized spin.

2. Cluster length

Let us first define the cluster length ℓcluster for any
given sample as the size of the region surrounding the
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FIG. 9. Validity of the toy model for the description of the deviation δmin of the most polarized site i⋆. (a) Average length
ℓcluster of the cluster containing the most polarized site, as determined by the occupation of this site and its neighbors (see
text), and rescaled with the expected size dependence at strong disorder, lnL/ ln 2. The inset is a zoom on the difference of
the rescaled length to one. (b) Example of an even, empty, isolated cluster in the toy model. (c) Example of an odd, occupied,
non-isolated cluster in the toy model. (d) ED data for the power-law decay of the typical value of the minimal deviation,
rescaled with the localization length ξ(W ) and the average cluster length, for sizes L ≥ 12. Inset: same data but in linear scale.
The green line is a guide to the eye corresponding to Eq. (3.2) with a zero shift. Compare to Fig. 4.

most polarized site in which the magnetization does not
change sign (see green region in Fig. 1(a)). The moti-
vation for this definition is twofold: (i) it holds even at
weak disorder, in particular when the localization length
is large and a one-to-one correspondence between sites
and orbitals becomes ill-defined, and (ii) it remains valid
in the presence of finite interactions, namely for the MBL
problem discussed in Sec. IV.

We have numerically computed the disorder average
cluster size, and its rescaled form ℓsc = ℓcluster/ℓmax is
shown in Fig. 9(a). At strong disorder, we expect the
cluster lengths to be controlled by ℓmax = lnL/ ln 2. This
is indeed what is observed in Fig. 9(a) for a surprisingly
wide range of disorder strengths, down to W ∗ ∼ 1.5,
thus giving a rough estimate for the range of validity
of the toy model. Remarkably, for W ≤ W ∗ the aver-
age cluster length becomes significantly larger than ℓmax

and strong finite-size corrections start to appear, while
at intermediate values of W the average cluster length
is slightly below ℓmax. This non-monotonous behavior,
best visible in the inset of Fig. 9(a), results from the
competition between two effects. At intermediate disor-
der (typically 1 < W < 10) spatial fluctuations in the
localization lengths can lead to local configurations for
which the most polarized site may belong to a cluster
slightly smaller than ℓmax. On the other hand at smaller
W , where the notion of localization center start to be-
come fuzzier, sites that should be normally associated
to an empty orbital can have slightly more than half-
occupation, thus creating wider and wider clusters, as
clearly shown in Fig. 9(a). Correspondingly, the maxi-
mal number of sites with the same sign of the magneti-
zation remains everywhere larger or equal to ℓcluster and
can become extremely large at weak disorder, deviating

very strongly from the toy model value ℓmax.

3. Scaling plot and data collapse

With this in hands, we can now re-write the toy model
result Eq. (1.5) as an expression that can be tested at
large scales for the XX chain:

ln(δtypmin) = −ℓcluster
2ξ

− lnDW , (3.2)

where DW is a disorder-dependent constant. Using the
data from Fig. 4 and plotting it as a function of the ratio
of the mean cluster length to the localization length, in
Fig. 9(d), we observe and excellent collapse of the numer-
ical data. The fact that a good collapse is obtained even
when neglecting lnDW suggests that this correction has
a weak disorder dependence.
In fact, at weak to intermediate disorders (W ≲ 10),

where ℓcluster differs from the simple toy model predic-
tion, the collapse is much better than when using ln(L)/ξ
as a scaling parameter (Sec. S4 in [68]). Only small de-
viations to a perfect collapse can be observed for large
sizes for these disorder strengths. This means that the
deviation of ℓcluster from the expected ln(L)/ ln(2), ob-
served in Fig. 9(a), fully accounts for the deviation of
γ from 1/(2ξ ln 2) observed in Fig. 7. Thus, Fig. 7 and
further Fig. 9 show that the toy model yields an excel-
lent description of the chain breaking mechanism for the
typical minimal deviation.
We now describe how the toy model helps to explain

features of the minimal deviation distributions not cap-
tured by extreme value theory, in particular at strong
disorder and small sizes.
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FIG. 10. (a) and (b) Distribution of the deviations in the XX chain (symbols) at various disorder strengths W and in the
toy model (stepped histograms) at the corresponding localization length ξ(W ), for chains of 512 sites. (c) Distribution of the
minimal deviations in the toy model at W = 2. The arrows indicate the location of the peaks corresponding to (in blue) odd
length clusters in Eq. (3.5) and (in red) even-length clusters in Eq. (3.6). In gray, we indicate the expression for the spacing
between the peaks. (d) Corresponding ED distributions in the XX chain, shifted by lnDW = 1. (e) Distribution of the minimal
distributions in the toy model at W = 20. (f) Corresponding ED distributions in the XX chain, shifted by lnDW = 2.

B. Distributions

The toy model allows to exactly obtain some simple
results. Indeed, one can easily compute the deviation
at a distance r from the center of an isolated cluster of
empty orbitals surrounded by occupied orbitals, as in
Fig. 9(b), or of a cluster of occupied orbitals only sep-
arated from other clusters by two empty orbitals, as in
Fig. 9(c). These simple calculations directly yield several
results for the distribution of the deviations and of the
minimal deviations in the toy model.

1. Parent distribution P(δ)

First, the power-law tail is easily recovered (Sec. S4
in [68]): remembering that at half-filling the probability
of having a cluster of length ℓ is P(ℓ) ∝ 2−ℓ we can
roughly estimate the probability of a deviation δ and find
that

PL(ln(δ)) ∝ 2−2k ∼ 22ξ ln(δ) = e
ln(δ)

γ (3.3)

in agreement with Eq. (2.5).
Second, we find that there must be peaks in the distri-

bution around locations corresponding to integer values
of the cluster length ℓ: ln δ ∼ −ℓ/(2ξ). This is what we
show in Figs. 10(a) and (b). As can be seen in Fig. 10(a),
at weak disorder, the peaks merge into a single distribu-
tion in the toy model. The exponent is clearly different

from the XX chain exponent, corresponding to the dif-
ference between the toy model prediction γ = (2ξ ln 2)−1

and γtyp shown in Fig. 7. This comes from the difference

between ℓcluster and ℓmax discussed in the previous part.
In contrast, at strong disorder, the peaks are well sepa-
rated in the toy model, as visible in Fig. 10(b). Recall
that in the toy model picture, the deviations are solely
controlled by the distribution of cluster lengths, while
the effect of the distribution of the localization lengths
is neglected. In the XX chain, the fluctuations of the lo-
calization lengths smooth out the peaks, resulting in the
bumpy features noted in Fig. 3(b).

2. Extreme value distribution P(δmin)

Now, let us discuss the distribution of the minimal
deviations. The rough estimate Eq. (1.5) of the relation
between the minimal deviation and the maximal cluster
length can be refined. Considering the situation depicted
in Fig. 9(b), we get an upper bound for the minimal
deviation in the toy model (see Sec. S4 in [68] for detailed
calculations). For an even-length cluster, we have

δmin(ℓ) = e−
ℓ
2ξ , ℓ = 2k, (3.4)

while for an odd-length cluster, we obtain

δmin(ℓ) =
e−

ℓ
2ξ

cosh
(

1
2ξ

) , ℓ = 2k − 1. (3.5)
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Thus, well-defined peaks must also appear in the dis-
tribution of the logarithm of the minimal deviations in
the toy model, as shown in Figs. 10(c) and (e). The dis-
tance between peaks coming from clusters of the same
parity is controlled by the inverse localization length, in
agreement with Eqs. (3.4) and (3.5). We note that the
location of the peak due to an even-sized cluster of size
ℓ = 2k in Eq. (3.4) is always slightly smaller than that
coming from a cluster of size ℓ = 2k− 1. Only the latter
is depicted (in blue arrows) in Fig. 10.

In contrast, the situation in Fig. 9(c) yields an estimate
for a lower bound for the minimal deviation in a cluster
of length ℓ. For an even-sized cluster, we have

δlower
min (ℓ) = (1− e−

1
ξ )e−

ℓ
2ξ , (3.6)

a result depicted by red arrows in Figs. 10(c) and (e). We
show in Figs. 10(c) and (e) that the toy model distribu-
tions are indeed well-captured by this simple description.

Finally, in the minimal deviation distribution, the rel-
ative height of the peaks is directly related to the distri-
bution of the maximal cluster lengths Pmax

L (ℓ) via

PL

(
ln
(
δ
(ℓ)
0

))
=

ξ

2
Pmax
L (ℓ) . (3.7)

Thus, as the system size increases, the probability weight
shifts from small negative peaks towards larger negative
values, but the location of the peaks does not change, as
clearly depicted in Figs. 10(c) and (e).

In the XX chain, we recover all these effects for large
deviations, with further corrections due to the distribu-
tion in localization lengths (Figs. 10(d) and 10(f)). Since
the prefactorDW of the exponential decay of the minimal
deviation is controlled also by the localization lengths
distribution, there is a shift between the locations of the
peaks in the toy model and the XX chain, which we ap-
proximate by shifting the data in Figs. 10(d) and 10(f)
by the shift DW obtained from the typical minimal devi-
ation in Fig. 9(d). Thus, the simple toy model provides
a good rule-of-thumb for the location and height of the
bumpy features not captured by the extreme value distri-
butions for small to intermediate system sizes and large
W .

IV. CONSEQUENCES FOR THE MBL
PROBLEM

We now turn to finite interactions, in the middle of the
many-body spectrum, a case which has generated a huge
amount of theoretical and experimental activity during
the last decade: for recent reviews see [19, 20]. While the
status of MBL was thought to be well understood in 1D,
a new debate has recently emerged [103–105]. Indeed, the
broken ergodicity, numerically observed for the random-
field Heisenberg chain model

HHeisenberg =
∑

i

(
S⃗i · S⃗i+1 − hiS

z
i

)
, (4.1)

at a critical disorder strength Wc in a relatively large
range 3.5 ≤ Wc ≤ 5.5 [13, 21, 22, 74, 106], has been ar-
gued to be only a mere finite-size phenomenon, with the
”true” MBL transition occurring at much larger disorder
strengths Wc > 10 or even Wc > 20 [107]. Incidentally,
this would correspond to a tiny non-interacting average
localization length ξ ≈ 0.2. In light of these recent devel-
opments, the objective of this section is to open the tool-
box of extreme value statistics in order to reexamine the
ergodicity breaking transition for the celebrated random-
field Heisenberg chain Hamiltonian Eq. (4.1). This part
is organized as follows. In Sec. IVA we first start from
the non-interacting Anderson limit, and rewrite the inter-
acting model in the Anderson basis from which one can
derive a meaningful interacting toy model which helps
us to address the fate of the freezing mechanism in the
presence of interactions. We then use state-of-the-art nu-
merical simulations (shift-invert ED up to L = 22 sites)
in Sec. IVB to quantitatively explore the freezing and
compare Heisenberg with XX data. Sec. IVC is then
devoted to the EVS analysis. Building on the Anderson
insulator results of the previous sections, a direct compar-
ison of the distributions of extreme polarizations for the
interacting case turns out to be very instructive, thanks
to the quantitative tool provided by the Kullbach-Leibler
divergences [108].

A. Interacting toy model

1. XXZ model in the Anderson basis

Adding interactions to the XX chain Hamiltonian
Eq. (1.1) is straightforward, yielding the well-known XXZ
model

Hxxz = Hxx + Vz, (4.2)

where Hxx describes free fermions, see Eq. (1.1), and the
interacting part is given (up to an irrelevant constant) by

Vz = ∆

L∑

i=1

Sz
i S

z
i+1 = ∆

L∑

i=1

nini+1. (4.3)

Building on the previous result Eq. (2.3), Hxx is diagonal-

ized by the canonical transformation bm =
∑L

i=1 ϕm(i)ci.
In this Anderson basis of localized orbitals {ϕm}, the in-
teraction term Eq. (4.3) reads

Vz =
∑

l,m,p,q

Vlmpqb
†
l bmb†pbq, (4.4)

with matrix elements [109–111]

Vlmpq = ∆

L∑

i=1

ϕl(i)ϕm(i)ϕp(i+ 1)ϕq(i+ 1). (4.5)
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One can decompose the interaction Hamiltonian Eq. (4.4)
in 4 parts, introducing the density operator in the An-

derson basis nl = b†l bl

Vz =
∑

m

V(1)
m nm +

∑

l ̸=m

V(2)
l,mnlnm (4.6)

+
∑

l ̸=m ̸=p

V(3)
l,m,pnlb

†
mbp +

∑

l ̸=m ̸=p ̸=q

V(4)
l,m,p,qb

†
l bmb†pbq.

The first two terms V(1,2) are diagonal, and can be in-
terpreted as a first approximation for the celebrated l-bit
Hamiltonian [67, 112–116], while V(3,4) are off-diagonal.

2. Analytical expression for the toy model

The interacting XXZ Hamiltonian Eq. (4.2) in a ran-
dom magnetic field takes the following toy model form,
expected to be valid for strong disorder. Further assum-
ing that all Anderson orbitals are localized with a single
well-defined localization center, and with a unique local-
ization length ξ given by Eq. (3.1), we get (see supple-
mental material of Ref. 74)

Hxxz =

L∑

m=1

[(
Em + V(1)

)
nm +

∑

r≥1

J (2)
r nmnm+r

+
∑

1≤r<r′

J
(3)
r,r′nmb†m+r′bm+r

+
∑

1≤r<r′<r′′

J
(4)
r,r′,r′′b

†
mbm+rb

†
m+r′′bm+r′

]
, (4.7)

where Em are single-particle energies, V(1) ≈ ∆/W 2,

and the diagonal ”density-density” term J
(2)
r ∼

∆exp [−(r − 1)/ξ]. The off-diagonal contributions J (3,4)

also vanish exponentially with the inter-orbital dis-
tances [74], the decay being again controlled by the non-
interacting localization length ξ. We have deliberatly ig-
nored the non-trivial random sign structure of the above
terms, expected from Eq. (4.5), which is undoubtedly
frustrating. However, since we are working at high en-
ergy, the sign of the couplings should not be relevant in
the infinite temperature limit [117].

3. Perturbative arguments for the stability of the freezing
process

The pressing question here is: how the off-diagonal
terms in the above Hamiltonian will affect the freezing
process, which is rooted in the presence (and the sta-
bility) of a long region having ℓcluster ≈ lnL

ln 2 occupied
sites. Let us first define the following frozen state in the
Anderson basis

|ΨAL
frozen⟩ = |· · · 0 0 1 1 1 · · · 1 1 1︸ ︷︷ ︸

ℓcluster

0 0 · · ·⟩, (4.8)

for which the real-space occupation of the original

fermions ⟨nj⟩ = ⟨c†jcj⟩ is maximal in the middle of the
central region of length ℓcluster. We want to study the
stability of |Ψfrozen⟩, and ultimately the fate of δtypmin,
against off-diagonal perturbing terms in the interacting
toy model framework Eq. (4.7).
The dominant perturbation to the frozen state

Eq. (4.8) is the 3-body contribution, the 2nd line of
Eq. (4.7), having an amplitude ∼ W−d at large disor-
der [118] for particle exchanges at d ≥ 1 the relative dis-
tance between creation and annihilation sites. Ignoring
the sub-dominant 4-body terms, we conjecture the follow-
ing perturbative expansion for the frozen state Eq. (4.8)

|ΨMBL
frozen⟩ ∼ a0|ℓcluster⟩+ a1|ℓcluster − 1⟩

+ a2|ℓcluster − 2⟩+ · · · (4.9)

where |ℓcluster − p⟩ corresponds to |ΨAL
frozen⟩ in Eq. (4.8)

with ℓcluster − p consecutive occupied orbitals. Here we
will not try to anticipate the breakdown of such an ex-
pansion due to resonances, but instead we are interested
in the strong disorder limit where Eq. (4.9) should re-
main a good proxy, with ad ∼ W−d. In this regime, the
clustering process is stable, while being slightly reduced
by the off-diagonal terms. Hence, we expect a weak per-
turbative depletion of the cluster sizes, at leading order
in 1/W following

ℓAL
cluster − ℓMBL

cluster

ℓAL
cluster

∼ W−2. (4.10)

The chain breaking process being controlled by the decay

δtypmin ∼ exp
(
− ℓcluster

2ξ

)
, the relative difference between

the MBL freezing exponent γMBL and its non-interacting
counterpart γAL should then follow

∆γ =
γAL − γMBL

γAL
∼ W−2. (4.11)

Below, in Sec. IVB, we will test the above expression
against numerical simulations.

B. Numerical results for minimal deviations and
the chain breaking mechanism

In Fig. 11 we show shift-invert ED [13, 119] results at
infinite temperature for the interacting model governed
by the random-field Heisenberg Hamiltonian Eq. (4.1).
Our goal is to provide a quantitative comparison with
the non-interacting case. Before doing so, we first dis-
cuss the microscopic mechanism at play in the interacting
model. This is illustrated in Fig. 11(e) where the devi-
ations δi are plotted for a single sample (L = 22 sites,
W = 7). One clearly observes a cluster with a V-shaped
form, strongly reminiscent of the non-interacting physics
shown in Fig. 1(c), with the most polarized site been
located roughly in the middle of this cluster. Despite
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FIG. 11. Comparison of the minimal deviations between XX (∆ = 0, full circles, ED results) and Heisenberg models (∆ = 1,
open circles, shift-invert ED). (a) Finite-size decay of δtypmin(L) plotted for 1 ≤ W ≤ 90. The almost perfect agreement at
strong disorder between ∆ = 0 and ∆ = 1 data slowly deteriorates as the disorder diminishes. (b) Disorder-dependence of
the freezing exponents γ extracted for both cases from finite-window fits to the form δtypmin ∝ L−γ with L = [8 · · · 16]. The
excellent agreement at strong W starts to deviate around W ∼ 5. (c) Relative difference between the freezing exponents ∆γ

Eq. (4.11), plotted against W for various fitting windows (indicated on the plot). The analytically conjectured strong disorder
expansion Eq. (4.11) is also show (straight line). (d) For W = 7, comparison of the distributions P (ln δmin) for both models
(Heisenberg with open symbols vs. XX with lines and solid circles). The agreement improves with increasing system sizes (see
also Fig. 13 for a quantitative comparison). (e) Illustration of the microscopic chain breaking mechanism in the interacting case.
Shift-invert ED data for the deviations δi in a L = 22-site Heisenberg chain. Down (up) triangles denote negative (positive)
magnetizations: a V-shaped cluster is clearly visible, with the most polarized site roughly located in its center.

the relatively small system sizes available for ED in the
presence of interactions, it is reasonable to assume that
we are facing the same mechanism as in the free-fermion
case.

A more quantitative comparison is provided in
Fig. 11(a) where the typical deviations are shown for the
non-interacting XX (a selection of our ED data already
shown in Fig. 4) together with the interacting Heisenberg
model results, in both cases for a broad range of disor-
der strengths 1 ≤ W ≤ 90. As already discussed and
analyzed in Ref. 74 for Heisenberg, there is a qualitative
change in the finite-size scaling of δtypmin(L), going from a
power-law decay at strong W signalling localization, to
an ergodic regime at weaker disorder where δtypmin → 1/2.
This strong qualitative difference is a smoking gun for
the MBL transition, which we believe to be well captured
by the extreme polarizations. In Ref. 74 it was further
shown that the MBL transition found at Wc = 4.2(5) is
compatible with a Kosterlitz-Thouless scenario [74, 120–
124].

In Fig. 11(a), the comparison between Heisenberg
(open symbols) vs. XX (closed) is very instructive. At
strong disorder, as previously conjectured using pertur-

bative arguments, the freezing mechanism of the Ander-
son insulator is only perturbatively (∼ W−2) affected by
interactions. It is therefore not surprising to observe an
almost perfect match of δtypmin(L) data for the two models
at large enough disorder, which appears to be the case
for W ≥ 10. We note however that the non-interacting
freezing mechanism is systematically (albeit weakly) al-
tered by interactions: our data always obey

δtypmin (Heisenberg) − δtypmin (XX) ≥ 0, (4.12)

in agreement with the analytical arguments. When W
decreases this difference slowly grows and starts to be-
come qualitative (at the level of our available system
sizes) for W ∼ 5.
In order to probe this difference in a more quantita-

tive and systematic way, we extract the effective freezing
exponents γ by fitting numerical data to the power-law

δtypmin(L) ∝ L−γ . (4.13)

The exponents γ are estimated for both models at ∆ = 0
(XX) and ∆ = 1 (Heisenberg) over 5-point fitting win-
dows: L = [8 · · · 16] ; [10 · · · 18] ; [12 · · · 20] ; [14 · · · 22].
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FIG. 12. Distribution of the maximal polarization (a),(b) and the minimal deviations (c)-(f) in the XX chain (∆ = 0, full
circles) and in the Heisenberg chain (∆ = 1, open circles). (a)-(d) At weak disorder, finite size has opposite effects on the
distributions of the XX chain (a),(c) and of the Heisenberg chain (b),(d). (e), (f) For W = 3, the distributions have similar
exponential tails, but they strongly differ in the large deviations regime.

Results are reported in Fig. 11(b) for the first window
(for which we have data in the full range of disorder),
and for all windows in Fig. 11(c) where ∆γ , defined in
Eq. (4.11), is plotted against W . First in Fig. 11(b) we
find a clearly good agreement for γ at ∆ = 0 and 1 above
W ≈ 10, but below W ≈ 5 we observe a substantial drop,
signalling restoration of ergodicity [74]. The relative dif-
ference ∆γ in Fig. 11(c) displays significant variations,
and a well marked crossing of the different curves for
W ≈ 5. As a guide, we also show the strong disorder
analytical conjecture 1/W 2 Eq. (4.11), which appears to
be in reasonable agreement with the data, at least for the
smaller sizes, despite their quite large error bars in this
strong W regime. We also note an additional finite-size
decrease of ∆γ .

This analysis of the freezing exponents already allows
us to draw some partial conclusions. For sufficiently large
disorder, typically larger than W ∼ 10, it seems practi-
cally impossible to visually distinguish Anderson from
MBL. Nevertheless, the relative difference ∆γ remains
always positive, albeit tiny and quickly suppressed with
increasing W . This suggests that for large disorder the
interactions could be an irrelevant perturbation, at least
for spin freezing and chain breaking processes. In con-
trast, as W is reduced the difference begins to be no-
ticeable, with a fairly strong qualitative effect appearing
at W ∼ 5, roughly corresponding to the regime where

the instability of the MBL phase towards ergodicity is
observed [13, 21, 22, 74].

C. Interacting model and extreme value statistics

1. Distributions

We want to test the effect of interactions more pre-
cisely across the entire Anderson localized regime. The
main idea is to go beyond the typical behavior δtypmin(L),
and exploit our previous results obtained for the full dis-
tributions P(δtypmin). This will allow to better grasp the
deep similarities that exist between MBL and AL, and
to capture the ergodic instability when reducing W .
A first example is provided in Fig. 11(d) for W = 7,

where the comparison of the Heisenberg vs. XX distri-
butions P (ln δmin), plotted for various chains lengths,
shows very similar histograms, with all important fea-
tures well reproduced. Moreover, an essential observa-
tion is that the agreement between the two data sets
improves as the system size increases. This is in sharp
contrast to the weak disorder regime shown for W = 2, 3
in Fig. 12, where the behavior of interacting and non-
interacting models appears to be clearly qualitatively dif-
ferent. Looking more closely, for example for W = 3 on
the right hand side of Fig. 12, we observe for the interact-
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ing problem in Fig. 12(f) some signatures of the Gumbel
distribution Eq. (2.21), which was previously shown in
Fig. 12(e) to describe the log-minimal deviations in the
many-body Anderson insulator, and in particular the ex-
ponential tail at large negative values of ln δmin. How-
ever, two phenomena are observed as L increases: this
tail no longer shifts to the left and at the same time evolv-
ing features develop on the other side of the support, in
complete contrast to the previously discussed caseW = 7
where instead the similarity between the curves improves
with L.

2. Kullbach-Leibler divergences

In order to go beyond a simple qualitative compari-
son of two histograms, we want to quantify the differ-
ences and similarities between the interacting vs. non-
interacting distributions. We therefore introduce a mea-
sure of the proximity between two probability distribu-
tions (p and q), given by the Kullbach-Leibler (KL) di-
vergence [108] defined for a discrete set by

KL(p|q) =
∑

i

qi ln
qi
pi
. (4.14)

In the limiting cases, KL → 0 if both distributions p
and q are similar, while if they differ, KL is non-zero
and can be arbitrarily large, possibly diverging (see for
instance Refs. 13, 125–127 for a recent use of KL for
many-body quantum problems).

Therefore, we work with this tool to quantitatively
estimate the degree of similarity between the XX and
Heisenberg cases, concerning their extreme polarization
distributions P(ln δmin). Since this object is not strictly
speaking a distance measure (not p ↔ q symmetric) we
show the two versions in Fig. 13, where one can easily ap-
preciate the very marked qualitative difference between
two regimes. At strong disorder, KL is numerically found
to be very small which, as anticipated, signals that MBL
and AL yields very similar extreme polarization prop-
erties. In contrast, when disorder is reduced we nicely
observe a finite-size crossing around W ∼ 4 − 7 (gray
shaded area in Fig. 13) towards a regime where KL is
seemingly diverging with L, thus signaling that AL is
asymptotically destabilized by the interactions.

It is tempting to relate this sharp qualitative change
in KL(Heisenberg |XX) to the MBL-ergodic transition in
the Heisenberg model, which has already been exten-
sively discussed in the literature, but never from this
perspective. Indeed it is important to recall that here we
are specifically targeting the extreme polarization distri-
butions, and more particularly its comparison with the
well-known many-body Anderson localized case realized
by the random-field XX chain model. As a matter of
fact, such a comparison provides us a new original way
to address the relevance of interactions, and the conclu-
sion that we can draw here is the following. Above, say

W ≳ 7, the extreme statistics of the local spin densities
for both Heisenberg and XX are getting extremely close
to each other, almost indistinguishable, and this seems
to become increasingly true as the system size grows,
in agreement with the decrease of ∆γ . Our data then
strongly suggest that there is an extreme-statistics tran-
sition in the regime W ∼ 4−7. Whether or not this coin-
cides with the MBL transition remains an open question.

V. CONCLUSIONS

In this work, we have revisited many-particle Ander-
son and many-body localization physics in one dimension
using the new toolbox offered by the extreme value the-
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FIG. 13. Kullback-Leibler divergences Eq. (4.14) computed
for the distributions of ln δmin for the Heisenberg vs. Ander-
son localized XX chain models. Upon increasing the system
length, the distributions become either more and more simi-
lar (typically above W ∼ 6 − 7), or conversely they increase
their differences (below W ∼ 4). The two panels show the two
(unsymmetrical) versions of KL, both having quantitatively
similar behaviors. The grey shaded area corresponds to the
extreme-statistics transition regime W ∈ [4 ; 7].
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ory applied to this specific problem. By focusing on the
extreme polarizations of two spin chain models in a ran-
dom magnetic field, the many-body-induced spin freezing
mechanism (driving a chain breaking at the thermody-
namic limit) has been numerically explored, and com-
pared to an analytically solvable toy model.

In a first part, we have considered the non-interacting
limit provided by the XX chain. Using free-fermion ex-
act diagonalization at infinite temperature, the statistics
of the local magnetizations, and in particular of their
extreme values have been studied in great detail. The
emergence of a (disorder-dependent) power-law tail in
the distribution of local magnetizations has allowed us
to further elaborate on (i) the finite-size scaling of the
spin freezing process, which is necessarily accompanied
with (ii) a weak link formation leading to chain breaks
in the thermodynamic limit. The associated disorder-
dependent exponents: spin freezing γ, weak-link θ, and
the power-law tail of the distribution α, are all simply re-
lated, and controlled by the average localization length ξ.
Another important result of this non-interacting many-
body Anderson limit concerns the distributions of ex-
treme polarizations. Indeed, we found that a single uni-
versal distribution is able to describe the entire localized
regime, characterized by the Fréchet class of generalized
extreme value statistics.

Our exact numerics for the multiparticle (half-filled)
non-interacting case shows a surprisingly good agree-
ment with the analytically solvable toy model. Firstly,
at strong disorder, the power-law decay (with the system
size L) of the minimal deviations from perfect polariza-
tion is perfectly captured by the analysis of the longest
sequence of neighboring occupied (or empty) orbitals in
real space (ℓmax ∼ lnL). Nevertheless, this extreme
value argument does not exactly describe the entire An-
derson localized regime. Indeed, at weak disorder, typ-
ically when the localization length ξ > 1, a new length
scale which controls the freezing emerges, namely ℓcluster
which is the average length of the cluster hosting the
most polarized site. Interestingly, an excellent collapse
of the minimal deviations data is obtained (without any
adjusted parameter) when plotted against ℓcluster/ξ. Fi-
nally, the same toy model also provides quantitative re-
sults to explain several features in the probability distri-
bution functions.

Lastly, we have explored finite interaction physics and

the many-body localization problem from the perspective
of extreme value theory. First, based on an interacting
toy model, we have conjectured that the non-interacting
freezing and chain breaking process should survive in-
teractions in the strong disorder limit. Using state-of-
the-art shift-invert diagonalization, we have successfully
tested this conjecture (for the available system sizes)
by comparing XX and Heisenberg chain data for both
the typical extreme deviations and their distributions.
More precisely, we then juxtaposed these distributions,
and used the Kullbach-Leibler divergence for a quantita-
tive comparison of interacting and non-interacting cases.
This allowed us to reveal an extreme-statistics transition
in a critical disorder regime W ∼ 4− 7. This could coin-
cide with the MBL transition, but we leave it as an open
question for further work.

Our study opens up several other directions. The most
obvious and direct one concerns the concrete exploitation
of the spin-freezing phenomenon, which paves the way for
the controlled elimination of degrees of freedom, such as
in RG-type approaches at strong disorder [57, 128, 129].
For this purpose, it would be interesting to further study
not only the most polarized site, but also the density and
distance between chain breaks. Here, we have focused
on one of the simplest local quantities (the on-site mag-
netization), which already provides a very rich picture.
However, one could think of more sophisticated observ-
ables, such as entanglement estimates, more complicated
off-diagonal correlators, or more non-local objects such as
long-distance correlations. In any case, we strongly be-
lieve that the use of extreme statistics theory provides a
valuable tool to further investigate the fascinating world
of quantum disordered systems.
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localization in the Heisenberg XXZ magnet in a random
field, Phys. Rev. B 77, 064426 (2008).

[11] A. Pal and D. A. Huse, Many-body localization phase
transition, Phys. Rev. B 82, 174411 (2010).

[12] J. H. Bardarson, F. Pollmann, and J. E. Moore, Un-
bounded Growth of Entanglement in Models of Many-
Body Localization, Phys. Rev. Lett. 109, 017202 (2012).

[13] D. J. Luitz, N. Laflorencie, and F. Alet, Many-body local-
ization edge in the random-field Heisenberg chain, Phys.
Rev. B 91, 081103(R) (2015).

[14] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen,
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Supplemental material

Here, we provide some details on more technical aspects of the calculations: the fermionic description in Sec. S1,
the different definitions of the non-interacting localization lengths in Sec. S2, the extreme value theory in Sec. S3, and
the toy model in Sec. S4.

S1. FERMIONIC DESCRIPTION OF THE SPIN CHAIN MODEL

A. Jordan-Wigner transformation and models

The Jordan-Wigner transformation [130] maps spin- 12 operators to Dirac fermions

ni =
1

2
+ Sz

i (S1)

ci = exp


iπ

i−1∑

j=1

nj


S−

i (S2)

c†i = S+
i exp


−iπ

i−1∑

j=1

nj


 . (S3)

Therefore the spin- 12 XXZ model in a random-field is equivalent to a chain of interacting spinless fermions with random
on-sites energies:

HXXZ =
∑

i

[
J(Sx

i S
x
i+1 + Sy

i S
y
i+1 +∆Sz

i S
z
i+1)− hiS

z
i

]

=
∑

i

[J
2

(
c†i ci+1 + c†i+1ci + 2∆nini+1

)
− hini

]

+HB +C. (S4)

C is an extensive (but irrelevant) constant, and the term HB is a boundary contribution coming from the Jordan-
Wigner string. It only plays a role for periodic boundary conditions (PBC) and depends on Nf , the number of
fermions in the system, such that

HB =

{
−J

2 e
−iπNf (c†1cL + c†Lc1) PBC

0 OBC
. (S5)

The Hamiltonians in Eq. (S4) have a U(1) symmetry corresponding to the total magnetization being conserved and
the total charge being conserved, respectively; throughout this paper, we consider the spin- 12 chain in the Sz

tot = 0
sector (half-filling in the fermion language).

B. Exact diagonalization for free fermions

When ∆ = 0, the Hamiltonian in Eq. (S4) is a quadratic (free) fermion problem which can be numerically diago-

nalized for large system sizes. New fermionic operators are built bm =
∑L

i=1 ϕm(i)ci, such that H is diagonalized:

H =

L∑

m=1

Emb†mbm. (S6)

All single-particle orbitals ϕm(i) are spatially localized for any finite disorder strength. The XX chain can be studied in
the Sz

tot = 0 sector (L has to be even), which corresponds to Nf = L/2 non-interacting fermions. For each disordered
sample, the quadratic Hamiltonian is diagonalized, and one fills L/2 orbitals m1, m2 . . . , mL/2. For a given set of
occupied orbitals, the total energy is given by

E =

L/2∑

j=1

Emj
, (S7)
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where Emj
are the single-particle energies. Denoting by Emax and Emin the minimal and maximal energies of the

Hamiltonian in the Sz = 0 sector, we can define the energy density above the ground state as

ϵ = (E − Emin)/(Emax − Emin). (S8)

C. Correlations

Using Wick’s theorem to express the correlations efficiently in terms of fermions, we obtain a simple expression in
terms of the single-particle wavefunctions of the occupied orbitals ϕmj

(for i ̸= l):

Czz
i,l = ⟨Sz

i S
z
l ⟩ − ⟨Sz

i ⟩⟨Sz
l ⟩ (S9)

= −⟨c†i cl⟩⟨c
†
l ci⟩ (S10)

= −

∣∣∣∣∣∣

L/2∑

j=1

ϕ∗
mj

(i)ϕmj (l)

∣∣∣∣∣∣

2

, (S11)

where in the last equation, j labels the occupied orbitals. We see that in the free fermion chain, the (off-diagonal)
correlations must always be negative.

In particular, when there is a resonance between the two sites, then |Czz
i,l | ∼ 0.25. This plays a role in the distribution

of the weak-link correlations, which exhibits a bimodal structure, with most samples having close to zero correlations,
and a few samples having a resonance and |Czz

LR| ∼ 0.25. Such resonances occur when two conditions are satisfied:
(i) the field hL is one of the closest to the field hR, and (ii) the field hi⋆ is very different from both the other fields.
The probability of this occurrence is suppressed with 1/L2. This has little effect on the decay of the typical weak-link
correlations with system sizes, but for sufficiently high sampling rates, it does result in a decay of for the average
weak-link correlations dominated by L−2.

S2. LOCALIZATION LENGTHS

Throughout this work, we have used a disorder-dependent localization length, ξ(W ), which we plotted in Fig. 1g
(main text). We now discuss how this localization length is defined.

A. Motivation

In the (single-particle) Anderson problem, several related notions characterize the localization of orbitals, as re-
viewed for instance in Refs. 98 and 131. Perhaps the most intuitive is the inverse participation ratio (IPR) [132],
characterizing the number of sites that participate in the wavefunction

P−1 =

∑
i |ϕm(i)|4∑
i |ϕm(i)|2

. (S1)

The IPR is numerically easy to compute for a given solution in a given disorder realization; but it characterizes the
extent of the wavefunction rather than its exponential decay. For a given wavefunction, the localization length instead
captures how fast the tail of the eigenstate is suppressed:

|ϕm(i)|2 ≲ exp

(
−|i− xm

0 |
ξm

)
, (S2)

(where x0 could be not on a site). In general, this localization length ξm depends on the particular disorder realization
and the particular orbital ϕm(i), which might be very asymmetric or have resonances. At the same time, to compute
the localization length from the IPR, one has to assume a certain shape for the localized orbitals and invert the
equation to extract ξ [90]; this construction is sensitive to resonances and, furthermore, the IPR has non-analyticities
at the band edges [133]. Instead, one can use a different proxy to compute numerically the localization length ξ(E,W ):
the Lyapunov exponent [98–100, 133, 134], which we discuss shortly in the next section.
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B. Lyapunov exponent and random matrices

Here we give only a rough discussion of the Lyapunov exponent in 1D disordered systems, as it has been extensively
discussed elsewhere: Ref. 131 provides simple exercises, Refs. 100, 135, and 136 give a general discussion, and for a
practical approach for finite-size systems one can look at (e.g.) Ref. 134. The essential idea is to use the transfer
matrix formulation of the Anderson localization problem in 1D. Indeed, considering a solution ϕ of the single-particle
Anderson problem, we can relate its amplitude on each site by

(
ϕ(l+1)

ϕ(l)

)
= Tl(E)

(
ϕ(l)

ϕ(l−1)

)
=

l∏

j=1

Tj(E)
(
ϕ(1)

ϕ(0)

)
(S3)

where l and j label the sites, and where the transfer matrix from j to j + 1 for a single-particle energy E is given by

Tj(E) =
(E+hj

J/2 −1

1 0

)
. (S4)

In the remainder of this discussion, we omit the energy E in the notation of the transfer matrix for simplicity. We
immediately get that a solution to the fixed-boundary Schrödinger equation is given through a product of uncorrelated,
non-commuting 2× 2 random matrices with unit determinant. From Oseledets’ and Furstenberg’s theorems [98, 99,
137, 138], defining

Ml =

l∏

j=1

Tj (S5)

there exists a limiting matrix

Γ = lim
l→∞

(
M†

l Ml

) 1
2l

(S6)

which has real positive eigenvalues e+λ, e−λ; λ > 0 is the (maximum) Lyapunov exponent. An alternative definition
[145] is

λ := lim
l→∞

ln(|Ml|)
l

(S7)

(where | · | denotes the matrix norm), which is more directly related to the self-averaging quantity

λ(E) := lim
l→∞

ln |ϕ(l)(E)|
l

. (S8)

The Borland conjecture [98, 139], later made rigorous [140, 141] relates the exponential increase of one of the solution
of the Cauchy problem to the exponential localization of the wavefunction; the intuition is essentially that, following
the exponentially increasing solution from the left, we must get a matching exponentially decreasing solution from
the right. This directly relates λ(E) to 1/(2ξ(E)) for a given disorder distribution.

C. Results

In practice, there are several ways of numerically evaluating λ in Eq. (S7) (see e.g. [131] for a simple example
and [142] for an approach when one has access to extremely large samples). We follow Ref. 134 in systematically
constructing a solution at a given disorder strength and (single-particle) energy E . For each energy, we start with
a random initial condition and iterate applying Tj and normalizing until convergence below a threshold (order of
2 × 10−9 for W = 0.2 and up to 10−5 for strong disorder, where less stringent convergence is required). We take a
statistical average over 100 samples to have an error estimate (for finite size, there is a distribution of the Lyapunov
exponent at given E and W [134, 136]). To produce Fig. S1, we sampled 103 energies based on the ED results for a
chain of size L = 2048 and 103 samples for weak disorder (W < 2), and L = 512 and 104 samples for larger disorder.
For readability, we plot the results as a function of the normalized single-particle energies ε = (E−Emin)/(Emax−Emin).
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FIG. S1. Localization length ξ(ε,W ) from the Lyapunov exponent, where ε = (E − Emin)/(Emax − Emin) is the renormalized
single-particle energy.

The 1D Anderson model admits the following weak-disorder expansion for the localization length as a function of
the energy, away from the band edges [98, 135, 143] (see [142] for a recent summary and numerical verification of
those results):

ξ(E ,W ) =
3

W 2

(
1− E2

)
(E < 1), (S9)

where we used that the variance of the uniform distribution is V = W 2/3 and that the jump amplitude is t = J/2 = 1/2
in our case. There is also a correction at the band center [144] due to the Kappus-Wegner anomaly [101]:

ξ(E = 0,W ) =
105

32W 2
(S10)

Our numerical results fit very well both results at W = 0.2, as shown in Fig. S1.
Finally, the results shown in Fig. 1g are obtained by a direct averaging of our numerical results, which by construction

amounts to averaging ξ(E ,W ) over the density of states. We note that the well known behavior at weak disorder
(
ξ ∼ 1

W 2

)
and at strong disorder

(
ξ ∼ 1

2 ln(W )

)
are well-captured by the expression [102] ξ =

[
ln

(
1 +

(
W
W0

)2
)]−1

with W0 ∈ [1.13, 1.22] as discussed in Sec. III (main text).

S3. EXTREME VALUE THEORY

In Sec. IID, we have discussed the extreme value theory for the distribution of the minimal deviations. In this
section we review some basic results of extreme value theory for applications in the present work. We refer the
interested reader to Ref. 29 for a short introduction and to Ref. 28 for a detailed mathematical discussion.

A. Limit extreme value distributions

1. Generalized extreme value distribution

Univariate extreme value theory [28] predicts that the law controlling the maximum of L i.i.d random variables
{xi}i=1,...,L is controlled in the limit of L → ∞ by the tail of the parent distribution of these variables. There are three
families of limiting distributions which can be gathered in the same generalized extreme value (GEV) distribution
(Eq. (2.16) in the main text). The criteria are treated in detail in, for instance, Ref. 28, and useful examples are given
also in Ref. 29. Qualitatively, the three cases are



28

1. If the parent distribution has an exponential tail, the distribution of the maxima belongs to the attraction basin
of the Gumbel law. This is what we expect for the maximal magnetizations in the ergodic regime.

2. If the parent distribution has a power-law dependence with an upper bound for the support (as is the case for
the magnetization in the XX chain or in the XXX chain at strong disorder), the Weibull law applies (s < 0).
This is what is to be expected for the maximal magnetizations in the localized phases.

3. If the parent distribution has a (heavy) power-law tail at large values, then the Fréchet law applies.

Two forms are of particular interest to us. First, the Weibull case corresponds to an upper-bounded parent
distribution with a power-law behavior [29] and can be rewritten as:

fW
β,σ,µ(x) =

β

σ

(
µ− x

σ

)β−1

e−((µ−x)/σ)β (S1)

Second, the Gumbel distribution can be rewritten as

fG
σ,µ(x) =

1

σ
exp

[
−x− µ

σ
− e−

x−µ
σ

]
. (S2)

In particular, in Sec. IID, we discussed the fact that δmin follows a law related to the Fréchet distribution. An
immediate consequence is that v = − ln(δmin) follows a generalized Gumbel distribution. Indeed, using γ = (α+1)−1

we get

PL(v) = AL exp
(
−v/γ −ALγe−v/γ

)
(S3)

=
1

γ
exp

[
−v − γ ln(ALγ)

γ
− exp

(
−v − γ ln(ALγ)

γ

)]
, (S4)

and we can identify the Gumbel distribution with scale σ = γ and location µ = γ ln(ALγ), as stated in Eq. (2.24).

2. Minimal deviations from a Weibull distribution for the maximal magnetization

In the main text we have sketched a short derivation of the law for the minimal deviation, related to the Fréchet law
(in the thermodynamic limit for iid variables). An alternative derivation can be done by realizing that the maximal
deviation mmax = maxi mi must satisfy a (reverse) Weibull distribution with an upper limit at mmax = 1/2; we can
approximate this constraint on the GEV as

1/2 = µ− σ/s, s < 0. (S5)

Identifying

{
s = −1/(α+ 1) < 0

y = −(1 + sx) = 1
σ(α+1) (mmax − 1/2) < 0

(S6)

gives the expression of the distribution of the mmax as a reverse-Weibull distribution fW
α+1,σ(α+1),1/2(mmax)dmmax.

Identifying

{
δmin = 1/2−mmax

AL = (α+ 1)(σ(α+ 1))−(α+1)
(S7)

yields

PL(δmin)dδmin = fW
α+1,λ,1/2(mmax)dmmax (S8)

= ALδαmin exp

(
− AL

α+ 1
δα+1
min

)
dδmin (S9)
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FIG. S2. Decay of the correlations between the deviations, for two disorder strengths. The horizontal dotted line is a guide to
estimate the threshold below which the values are within errors. The light blue line sketches the decay that would correspond
to the localization length.

recovering the expected result. In the end, the distribution for δmin is given by the GEV distribution for mmax =
1/2− δmin

fA,L,γ(δmin)dδmin =
1

σ
fs

(
mmax − µ

σ

)
dmmax (S10)

with parameters




s = −1/(α+ 1) = −γ

σ = γ(ALγ)−γ

µ = 1/2− σ/γ = 1/2− (ALγ)−γ

. (S11)

B. Applicability of EVT

In Sec. IID we have compared our data to the limiting distribution coming from EVT. Here, we show numerical
evidence that the correlations between the deviations are indeed weak, decaying exponentially, such that EVT applies
to our data. Fig. S2 shows the correlations between the deviations as a function of the distance k, averaged over
samples. We note that these correlations decay exponentially. The correlation length is of a similar order of magnitude
as the localization length, illustrated by the light blue line in that figure, but it is smaller at weak disorder and seems
slightly larger at strong disorder, although it is difficult to evaluate it precisely.

C. Computing A and α from the EV distributions

In Fig. 8 (main text), we have performed fits using the extreme value distribution for u = ln(δmin). Further, we
have used the values of A and α averaged over the various sizes to collapse the distribution. In Fig. S3 we show the
values of A and α for the two most challenging cases, at W = 0.5 and W = 20, where the numerical results do not
match perfectly the expected limit distributions. For these two disorders, we show that, although the exponent α has
somewhat small fluctuations, the prefactor A has much larger errors. Those result in large corrections in the P(ln δ)
distributions; nonetheless, the values of A and α are compatible with the tail of the full distribution of the deviations.
In Fig. 8, the size of the gray area in the collapses is directly determined from the errors shown in Fig. S3.

S4. TOY MODEL

A. Deviations in the toy model

In Sec. III, we discussed the minimal deviations as obtained in the toy model. In this section, we derive some
of the key results. Eq. (3.4) (main text) is easily obtained when one considers a cluster of ℓ empty (respectively
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FIG. S3. Left column : determining A and α from the fits to the extreme value distribution. Right column: comparing the
average A and α to the ED results for the distribution of the deviations δ.

occupied) neighboring orbitals in a sample of otherwise occupied (respectively empty) sites. Indeed, within the toy
model framework, the deviation from perfect occupation at a distance r from the center of a cluster is:

δ(ℓ)r =





e−
(k−r)

ξ · (1+e
− 2r+1

ξ )

1+e
− 1

ξ
if ℓ = 2k,

e−
k+1−r

ξ · (1+e
− 2r

ξ )

1+e
− 1

ξ
if ℓ = 2k + 1

(S1)

Let us show in detail the computation of the deviation δ
(2k)
r for this case, for a distance r from the center measured

as in Fig. 9. Introducing x = e−1/ξ to simplify the expressions, we have

δ(2k)r = n(2k)
r =

1− x

1 + x

[
k+r∑

d=k−r

xd + 2

∞∑

d=k+r+1

xd

]
(S2)

=
1− x

1 + x

[
xk−r 1− x2r+1

1− x
+ 2

xk+r+1

1− x

]
(S3)

= xk−r 1 + x2r+1

1 + x
. (S4)

and the calculation for clusters of size ℓ = 2k + 1 yields

δ(2k+1)
r =

1− x

1 + x

[
k+r∑

d=k+1−r

xd + 2

∞∑

d=k+r+1

xd

]
(S5)

=
1− x

1 + x

[
xk+1−r − xk+r+1

1− x
+ 2

xk+r+1

1− x

]
(S6)

= xk+1−r 1 + x2r

1 + x
(S7)

which directly gives the results in Eq. (S1). The results are the same for an occupied cluster in a sea of empty sites.
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As a result, in the center of the cluster we have

δuppermin (ℓ) =




δ
(2k)
0 = e−

k
ξ if ℓ = 2k

δ
(2k+1)
0 = e

− (2k+1)
2ξ

cosh( 1
2ξ )

if ℓ = 2k + 1
(S8)

corresponding to Eqs. (3.4) and (3.5) in the main text (note that in the main text, we consider ℓ = 2k − 1).
The assumption of a cluster of empty (respectively occupied) sites in a sea of sites with the opposite occupation

yields an overestimated value for δmin. If instead we consider the other extreme - a cluster defined by empty sites
surrounded by only two occupied sites, we obtain

δ̃(2k)r =
1− x

1 + x

[
xk−r + xk+1+r

]
(S9)

δ̃(2k+1)
r =

1− x

1 + x

[
xk+1−r + xk+1+r

]
(S10)

hence, the minimal deviations are given by

δlower
min (ℓ) =

{
δ̃
(2k)
0 = xk(1− x),

δ̃
(2k+1)
0 = 2xk+1 1−x

1+x ,
(S11)

and therefore δlower
min (ℓ) = (1− e−

1
ξ )δuppermin (ℓ), corresponding to Eq. (3.6).

B. Distributions in the toy model

1. Recovering power-law tails

With the expressions in Eq. (S1) in hands, the power-law tail of the distribution of P(δ) in the toy model is easily
recovered. Recall that at half-filling, the probability of having a cluster of length ℓ is essentially P(ℓ) ∝ 2−ℓ (there are
small corrections but they are not relevant for us here). We can roughly estimate the probability of a deviation δ by

PL(ln(δ)) ∼
ξ

2


 ∑

{k,r}′

PL(2k) +
∑

{k,r}′′

PL(2k + 1)


 , (S12)

where the prime and second symbols correspond to summing over integers k, r such that

{k, r}′ = {k, r|r ≤ k and δ2kr ∼ δ} (S13)

{k, r}′′ = {k, r|r ≤ k and δ2k+1
r ∼ δ} (S14)

respectively. Since δ2kr ∼ δ can only happen for k ≥ −ξ ln(δ), one finds that

PL(ln(δ)) ∝ 2−2k ∼ 22ξ ln(δ) = e
ln(δ)
γtoy (S15)

in agreement with Eq. (3.3).

2. Location of the peaks and merging

Eqs. (S8) and (S11) give the distance to be expected between peaks in the distribution of ln(δmin) in the toy model.
In particular, one can directly read off Eqs. (S8) that peaks due to same parity clusters will be spaced by multiples
of 1/ξ. It is also clear that peaks should occur between isolated odd clusters, and even clusters surrounded by other
clusters with a similar occupation. The width of the peaks is thus estimated by

w(ξ) ≈ ln(2)− ln(1− e−
2
ξ ). (S16)

With this we can evaluate the order of magnitude of the localization length at which the separated peaks should
merge in a single distribution within the toy model: this is when w ≈ 1/ξ, and gives

ξ =
1

ln(1 +
√
2)

≈ 1.135, (S17)

which corresponds to a disorder W ≈ 1.4. This is in agreement with the observations in Fig. 10 (main text).
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FIG. S4. Collapse based on the cluster length ℓcluster or with ln(L)/ ln(2). At weak and intermediate disorder, the collapse
with ln(L)/ξ is not good, unlike the one with ℓcluster/ξ shown in Fig. 9 (main text).

C. Collapse with ln(L)

In Sec. III of the main text, we have seen that at weak disorder, the collapse with ℓcluster is surprisingly good, even
though this is a limit where the toy model should not apply this well. In Fig. S4, we show that, indeed, the collapse
is not as good if we use ln(L)/ξ instead of ℓcluster/ξ, for weak to intermediate disorder strengths.


