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Abstract

We adopt a new perspective on the tensor product of arbitrary semi-lattices. Our basic
construction exploits a description of semi-lattices in terms of bi-extensional Chu spaces
associated to a target space defined to be the boolean domain. The comparison between our
tensor product and the canonical tensor product, introduced by G.A. Fraser, is made in the
distributive case and in the general case. Some properties of our tensor products are also
given.
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1 Preliminaries

The set B := {Y,N, L} will be equipped with the following poset structure :
VuveB, (u<v):& (u=L oru=v).

(%8, <) is also an Inf semi-lattice which infima will be denoted A. We have

x if x=y

Vx,y € B, x/\y:{J_ if xy

We will also introduce a commutative monoid law denoted e and defined by
VxeB, xeY=x, xeN=N lel=1.
This product law verifies the following properties

Vx €B,VBCB xo/\B:/\beB(xob),
Vx € B,YC Ccpain B xo\/B=\/pep(xeb).

(B, <) will be also equipped with the following involution map :
1:=1 Y=N N:=Y.

(B, <) will be called boolean domain.

2 Inf semi-lattices and States/Effects Chu spaces

2.1 States/Effects Chu spaces
We will say that the triple (&, &, &%) is a States/Effects Chu space iff

)

2)

3)

4)
®)

(6)

* the set G, called space of states, is a down-complete Inf semi-lattice (i.e. VS C & the

infimum ([ ] 6S) exists in &), which admits a bottom element denoted L ;

* the set &, called space of effects, is a down-complete Inf semi-lattice (i.e. VE C € the

infimum ([ ] °E ) exists in &);

S

+ &% is a map from € to B, called evaluation map, and satisfying

VieevSC S, e([]°5)= N (o),

Vo € G,VE C €, Sﬁ@E(G) =N\ &°(0),
and
VLl € ¢, (Vo €6, el(0)=¢7(0)) = (I=1),
Vo,0' €6, (Vice, e°(0)=¢°(0")) & (c=0").

(7)
8)

)
(10)



We will say that the space of states admits a description in terms of pure states iff we have
moreover

« the set of complely meet-irreducible elements of &, denoted &™* and called set of pure
states, is equal to the set of maximal elements Max(S) and it is a generating set for &,
i.e.

pure pure

voe6, o= o, where o_:=(6""N(1°0)) and 6" = Max(&). (11)

We will introduce the following notations :

Vie¢,3Tc¢ | Voe&,e(0)=¢"(0), (12)
e €€ | Voe&,gy,(0)=Y, (13)
dlec€ | VoeB,ef (o)=L (14)

We note that, for any [ € €, if (¢°)71(Y) # & (resp. (£°)1(N) # @) then (&°)(Y) (resp.
(¢°)71(N)) is a principal filter. Hence, we will introduce the following notations for effects.

Let us consider X,Y € & such that —357° 1 We denote [(Z o) the effect defined bym
€S )7N(Y):=1"Z and (¢ )'(N):=1"¥. (15)
(z.x) (z.x))
By extension, we denote [0_") the effect defined by
(ef? ) =1L and (ef? )Ny = (16)
X ¥,
and by [<"E,> the effect defined by
[, =l (17)

() @)

We note that the order on these effects is “inversed” with respect to the order on states. More
precisely,

[(21,2’]) C, [@2_2,2)) & (X) Jg Xpand X I, YY)

() Ce loymy)) € (21 36 ) (18)

/ /
([(-ﬁz’l) EG [(22,2’2)) = (Zl 26 22)

Theorem 1. Let us consider a map (A : & — B, 0 — a4) satisfying

Vo,6'€6, (0L, 0) = (as<ay), (19)
V{oi|iel} 6, aﬂiioi:/\iel Ao, (20)
Then, we have
Nice | Voeb, e’ (0)=ac. (21)
[

1557 means that £ and ¥’ have a common upper-bound in &, and —2¥’° means they have none.
24° X denotes the upper subset {c € & | 6 Jg X}.



Proof. Stralghtforward If {o| 0o = Y } and { 6 | ag = N} are not empty, it suffices to define

Ypi= |_| {o]ag=Y} X, = |—| {o]as =N} and [:= [, s (the case where some or all
of these subsets are empty is treated immediately). L

Theorem 2. Let us consider a map (B : € — B, [+— by) satisfying

vi,lee, (IC,l)= (b <by), (22)
V{i[iel}C € boe = /\icsby, (23)

ici !
Vie €&  br=b, (24)
by, =Y. (25)

Then, we have

NoecG | VieeE g(o)="b. (26)
[

Proof. Let us consider [p := |_|€{[ € €| by =Y}. Note that [ exists because € is a down-
complete Inf semi-lattice. Moreover, by, = Y because of the relation (23). Note also that
[ 3, [ implies by =Y because of the relation (22), and conversely by =Y implies [ 3, [p due
to the definition of [. Let us now introduce ¥, =[] © (SS) ~1(Y). For any [ such that [ J, (g,
we have £° (Z,) = .5‘[(3‘5 (X,)=Y,ie. eo (X,,) =Y. We could suppose that [ = [(2[372/[3) for a
certain Z{B € &. However, we note that, because of (23]) and (23)), we have [(2[37.) Ce [(E[B’E/[B)
and b[@[B_.) = b[(Z[B ) NeVe = by 50,2 ) Abg, =Y which would contradict the definition of [5.
Hence, we have to accept that [ = [(ZIB>')' Thus, we note that, for any [(s s, the property
[z5) e I is then equivalent to the property X 2 Ey,. Then, if [z 3y 2, [ we cannot have
E[i o (Z[B) =Y. We then conclude that the property 8[6(2[3) =Y is equivalent to the property
[ Q’@ [, or in other words 8[6 (Z[B) =Y is equivalent to by =Y. Using (24) and (12)), we deduce
that (¢ (X,)=N)< (8{‘5 (X,)=Y) <« (by=Y) < (by=N). As a final conclusion, we have
for any [ € € the equality &7 (Xg) = b;. This concludes the proof. O

Theorem 3.
V{oiliel} Conain ®, I0€6 | VI€E g°(0) =\ &7 (01),  (27)
¢ = | i o (28)
As a consequence, using Zorn’s Lemma, we deduce that
Vo €S, dJo'eMax(6)|ocC, o (29)

Proof. First of all, we note that {o; | i € I} Ccpein © and the monotonicity property of €%
implies that {€°(0;) | i € It Ccpain B for any [ € € and then Ve £°(0;) exists for any [ € &



due to the chain-completeness of ‘B.

Using the properties (8)(I2)(13) of the map € and the complete-distributivity properties satisfied
by B, we can check easily that the map [ — Vs €7 (0;) satisfies properties (22) @4 23).
As a consequence, the property is a direct consequence of Theorem 21

By definition of the poset structure on &, we deduce, from the property (VI € €, £°(0) =
Vier €°(03)), that 6 I o, Vi € I and (6’ Jg o3, Vi € I) = (0 Jg 0’). In other words,

GZU?@. O

iel

Remark 1. We now observe that, if G has a description in terms of pure states, then € inherits
a description in terms of pure states as well.

To check this point, we first note that the space of effects has a bottom element denoted L, and
defined by

Vo € 6, 8%(6) =1. (30)

Secondly, & appears to be an algebraic domain.
To prove this point, we firstly observe that € satisfies the following chain-completeness property

V{li[i €I} Cenain € €€ | Voeb,g(o)=\ice(o), (1)
¢
[ = | |iesli (32)

This is an immediate consequence of the down-completeness of G, using the general expression
of effects introduced in (13)) and subsequents, because of the properties (L8]).
We secondly observe that € is atomistic, i.e. 3]

e CE | { \\ﬁ i f@\,{ii%{[/ €|V T, (33)
de = {I,,[2e&"U{l ,[ze6™} (34)

and that
viee, =] |{lede|lC, 1} (35)

The property (29) implies directly the second condition of (33)). The first condition of (33)) is
easy to check using the expression of the order (I8). The property (33)) is a direct consequence
of property (LI).
Endly, the compacity of atoms is trivial.
The algebraicity of & follows.
As a conclusion of this analysis, if we define the ”pure effects” as the completely meet-irreducible
elements in &, we can check the following property analog to (1)) :
[
Vie €, [:I_l L., where 1| = (&

ure [
"0 (). (36)
Indeed, from previous results ¢ is a bounded-complete algebraic domain. The property (36) is
then a direct consequence of [4, Theorem 1-4.26 p.126].
We can conclude our analysis by characterizing explicitly the elements of Max(€&). 4] We have
explicitly

pure

¢ =Max(€) = {l., |IRZIU{D}U{D,}- (38)

3We adopt the notation VI € €, L, T I < (L, C,land VI €€ L, C, IC, [ = (L,=lorl'=1)).
4We introduce the following binary relation, denoted X5 and defined on & by

- — 6 — 6 — 6
V(c,0') € &?, ox0 & (Vo'C.0',00” andVo'C. 0,0'0"” andnotoo’ ). 37)



2.2 Morphisms

We turn the collection of States/Effects Chu spaces into a category by defining the following
morphisms.

Definition 1. We will consider the morphisms from a States/Effects Chu space (S 4, €4,£%4)
to another States/Effects Chu space (&g, @B,SGB ), i.e. pairs of maps f: &4 — Sp and
¥ €p — &4 satisfying the following properties (see [6]])

You €GaVIpECs £ F(f(0a)) = 8ﬁ?[3)(GA). (39)

Remark 2. Note that, the eventual surjectivity of f* implies the injectivity of f. This point uses
the property (I0). Explicitly,

V04,04 € Gy, f(04) = f(0}) Vi € €5, £ °(f(0a)) = €% (f(04)))

&

& (Vige €, e (04) = ef? /(04))

& (Vg e ¢, 8§3(6A> = 8[% *(c4))

& (oa=0y). (40)

In the same way, using the properties (9)) and the surjectivity of f, we can deduce the injectivity
of f*.
The duality property (39) suffices to deduce the following properties.

Theorem 4. The left-component f of a Chu morphism from (G4, €4, £%4) to (Sp, €5, £%8)
satisfies

VS C Gy, “8)=[1:" f(o) @1)
V€ CChain G, |_|“"e: LI f(o). (42)

As a consequence of (42)), f is in particular monotonic.
The right-component f* of a Chu morphism from (G4, €4, £%4) to (Sp, €5, £%8) satisfies

vEces (7B =[]0 £ (43)

VC Cenain €8, F( ) = =| | [Q:C i (44)

vic &g, (1) =f*(1) (45)

I (Vey) =Ve,- (46)

In particular, f* is monotonic. |

Proof. All proofs follow the same trick based on the duality relation (39) and the separation
property (L0). For example, for any S C &4 and any [ € €5, we have, using (39) and (8)) :

e (F[179) = e, (™)
= /\GeSg* (o)
= /\ceSS[ (f(o))
= &7 ([ots/(0) (47



We now use the property (10) to deduce (@1)). O

Theorem 5. For any monotonic map f: & — &' satisfyingV{o; | i€} C &, f(ﬂiiﬁi) =

|_|§:, f(0;), there exists a unique map f*: ¢’ — ¢ such that

Vi€ €, 7 (o) =& (f(0)). (48)
|
Proof. Direct consequence of Theorem [11 L

As a consequence of this theorem, the couple of maps (f, f*) defining a morphism from
(G4, C4,5%4) to (Gp, Ep,e%8) can then be reduced to the single data f. We will then speak
shortly of ”the morphism f from the space of states G4 to the space of states Gp” rather than
”the morphism from the states/effects Chu space (S, €4,€%4) to the states/effects Chu space
(S, €p, 863)”.

Definition 2. The space of morphisms from the space of states G4 to the space of states
Gp will be denoted €(S4,Sp). It is the space of maps from G4 to Sp that is order-
preserving and satisfies the homomorphic property (1).

Theorem 6. The composition of a morphism (f, f*) from (G4, €4, £%4) to (Sp, €, £58)
by another morphism (g,g*) defined from (&g, €3,£%8) to (S¢, €c,e%¢) is given by
(go f,f*og") defining a valid morphism from (G4, €4,£%4) to (S¢, €c,£%¢). [

Proof. Using two times the duality property, we obtain

e (g0f(0n)) = €pf (f(0)) =€ (1) (On)- (49)

O

Definition 3. We define the infimum of two maps f and g satisfying (41) (resp. two
maps f* and g* satisfying (43)) by Vo € G4, (fMg)(0o) := f(0o) Ms, g(o) (resp. Vle
€, (" Mg") (1) == f() N, (1)

Theorem 7. The infimum of a morphism (f, f*) from (G4, &4,&%4) to (Sp, Ep,£%8)
with another morphism (g, g*) defined from (S, €4,£%4) to (Sp, €p,£%8) is given by
(gNf,f*MNg*) defining a valid morphism from (G4, €4, £%4) to (S¢, E¢,£5¢). |

Proof. Using two times the duality property and the homomorphic property of €, we obtain

I3

e (fN18)(0a)) = &"(f(0a)) Ney(5(0a)) = €51 (0a) el (04) = €y (O4)- (50)

O



3 A new perspective on the construction of the tensor prod-
uct of semi-lattices

3.1 The canonical tensor product construction

Let us first introduce the classical construction of G.A. Fraser for the tensor product of semi-
lattices [2,13]. As it will be clarified in the next subsection a new proposal can be made for the
tensor product of semi-lattices.

Definition 4. Let A,B and C be semi-lattices. A function f : A X B — C is a bi-
homomorphism if the functions g, : B — C defined by g,(b) = f(a,b) and h;: A — C
defined by hy(a) = f(a,b) are homomorphisms for all a € A and b € B.

Theorem 8. [2, Definition 2.2 and Theorem 2.3]

The tensor product Ssp := G4 ® Sp of the two Inf semi-lattices G4 and Gp is obtained as
a solution of the following universal problem : there exists a bi-homomorphism, denoted
1 from G4 X Gp to Sap, such that, for any Inf semi-lattice G and any bi-homomorphism
f from G4 X Gp to G, there is a unique homomorphism g from Syp to G with f =go1.
We denote 1(0,0') = 0 ® 6’ for any 6 € G4 and ¢’ € Gp.

The tensor product Syp exists and is unique up to isomorphism, it is built as the ho-
momorphic image of the free ' semi-lattice generated by the set G4 X Gp under the
congruence relation determined by identifying (o Mg, 02 o’) with (61,6") M (02, 0") for
all 61,0, € 64,0’ € & and identifying (0,07 Mg 03) with (0,07) (0, 03) for all
0 €6,4,0],0, € Gp.

In other words, Ssp is the Inf semi-lattice (the infimum of S C S4p will be denoted [ ] %45 S)
generated by the elements 04 ® o with 64 € G4, 0p € Gp and subject to the conditions

(0aMg, 04) ®0p = (04 @ 0p) My, (04 ®0p), 4@ (0pMg, Op) = (0a®0p)M,  (04®0p).

Definition 5. The space Sqp = G4 ® Gp is turned into a partially ordered set with the
following binary relation

VOB, 04 € Sap, (Oap Cy,, Oap) ¢ (OapMy,, Opp = Oap). (52)

Definition 6. A non-empty subset R of G4 x Gp is called a bi-filter of G4 x Gp iff

V04,014,024 € G4,VOp, 01,028 € G,

((014,018) <(024,028) and (01 4,018) ER) = (024,028) €R, (53)
(G] ,A,GB), (GZ,A7 GB) ER = (G] A |_|6A GZ,A,GB> € 9“&, 54)
(0a,01,8),(04,028) €ER = (04,0187, 028) €R. (55)

(1



Definition 7. If {(014,018), -+ ,(0n4,0,8)} is a non-empty finite subset of G4 x S,
then the intersection of all bi-filters of &4 x &p which contain (61 4,01,8), - ,(0nA,OnB)
is a bi-filter, which we denote by F{(014,01,8), - ,(0na,0n8)}-

Lemma 1. If F is a filter of Syp = G4 ® &p then the set a(F) := {(04,08) € G4 X

Sp | oa®op € F } is a bi-filter of §4 x Sp. [ |
Lemma 2. [3, Lemma 1] Let us choose 64,01 4, ,0,4 € &4 and 0,013, -+ ,0,B €
Gp. Then,

SAB
(0a,08) € §{(01.4,018), "+, (Ona,0nB)} & ( 1<i<n Gi,A®Gi,B) C,,, 0A®0p.

Lemma 3. [3, Theorem 1]
Let us choose 64,014, -+ ,0,4 € G4 and 0p, 01 3, -+ ,0, 8 € Sp. Then,

N . . .
( 1A§Bi§n CiA® Gi,B) C,,, 0A®0p < there exists a n—ary lattice polynomial p | o4 Js, p(o14,-

and op Js_ p* (01,8, ", 0n,B).
where p* denotes the lattice polynomial obtained from p by dualizing the lattice opera-

tions. ]

3.2 The maximal tensor product

Let us now consider a radically different approach of tensor product, exploiting the notion of
States/Effects Chu spaces.

Definition 8. We will denote by Sag (or equivalently by &,0&p) the set of maps ® from
Cs, X Eg, to €| =B satisfying

V{lia|i€l} C¢&s,,Vip € sy, q>(|_|le, ias(g) = Nier (liasls)  (58)
V{ljp|jEJ} C Egp, Vs € Eg,, <I>([A,|_|JGB[ B) =\ jes ®(la,l;5), (59
Vih€Cs, P4, Ves,) = P, Ve, ) (60)

Vig € €sp  P(Veg,s18) = PDes, - B): (61)

PDeg,  Vee,) =Y, (62)

P(Deg, - Ves,) =N. (63)

S Ap 1s called the maximal tensor product of G4 and Gp.

7Gn,A)

(57)



1 §AB

Theorem 9. S is equipped with the pointwise partial order. It is a down-complete Inf
semi-lattice with

. < 5
V{®; |i €1} € Spp,Y(la, lg) € €o, x €sp, ([ i21P) (1. 18) := Nies Pilla, I5).
|
Theorem 10. The following maps are homomorphisms
n o Sap — ¢s, Ao: Sap — €5, 65)
P cb(':@@@f) ¢ (b(@@GAv')

with

Cs = {yel(Ces,B)|Victs, y(I)=y()and y(Yes) =Y}  (66)
Moreover, we have, for any space of states G, the following isomorphism :
¢s=6 (67)

Proof. Let ® be an element of S AB-
The map y from €g, to B defined by y(l4) := (I)([A,@QEGB> is an element of (&g, ,B) be-

cause of relation (38). We have VI € €, y( ) = y([) because of relation (60) and y/(Y¢ ) =
Y because of relation (62)). As a result, ¥ is an element of Q‘S*@A.

In the same way, the map Y’ from €g,, to B defined by y'(lp) := P(Q) Coyp: [p) is an element of

&, because of relations (B9)(61) and (62).
Secondly, we note the following isomorphism of Inf semi-lattices :

p:(‘Si(’E*G

o = p(o)|p(o)(l):=€S(0), Vi€ E. (68)

Indeed, for any 6 € &, we can define a map ¢ from €g to B by ¢(I) := £°(0). Using the
properties (I2)®)(@3) of €°, we deduce that @ € ¢s.
Reciprocally, using Theorem 2] we know that

Voce&s, WNocs |Viee g (c)=0o(). (69)

The bijective character of the map p is then established. We have also trivially, for any {o; | i €
I} C & the homomorphic property p([1]2,0;) =[1ic1p(0;) due to the property (7). O
Theorem 11. The inclusion of pure tensors in §A g 1s realized as follows :

6A XGB — S/AB

~

(GA,GB) —> lSAB(GA,GB) ‘ V([A, [B) € Qng X QEGB, lSAB(GA,GB)([A, [B) = ESA(GA) 0863(63) €B

Ip

10

(64)

(70)



Proof. The properties (38) and (39) are direct consequences of the properties (@) and (). The
properties ([@]) (61) (62) and (63) are direct consequences of the properties (1I2) (13) @). As a
conclusion, lSAB(GA, Op) € Sap for any (04,0p) in G4 x Gp.

Let us now consider (04, 0p) and (0}, 0p) in G4 X Sp such that l§AB(GA, Op) = lgAB(G/g,Gé).
We choose first of all [y := [5, ) and Ip := [(5, ). We have 1548(64,08)(I4,15) = YeY =Y
and then must have EGA( oy) =Y and 8[63(63) Y.ie. 04 Ty, o) and 0g T Op. Choosing

now [y =[5y and [ := [ ), we justify also o4 Jg, o, and op Je,p Gp. The map 1548 is
then injective. O

Theorem 12. We have the following relations

. < S
V{GI}A | 1€ I} C GA,VGB c (‘53, lSAB(I_lieA]G,"A,GB) = |_|l€] lSAB(G,A,GB) (71)
. < S
V{GLB ‘ 1c I} - GB,VGA c 6,4, lSAB(GA,|_|i€A] Gi,B) = I_llél; lSA (GA7Gi,B)- (72)
[ |

Proof. This is a direct consequence of properties (7)) and (). More explicitly,

V(la,1p) € €g, X Egp, IEAB(l_liGEAI 0ia08)(n.1s) = €4 ([ ]ici0ia) 0 €7 (0p)
= (Nicrg " (0ia)) 0 €% (05)
= Nie <SSA(Gi,A) . ESB(GB))
= /\iell§AB(Gi,AacB>([Aa (5)

= (Hlél;ls (Gi4,08))(la,1g).  (73)

In other words, lgAB(ﬂZ’} OiA,0B) = |—|12§ lSAB(GLA, op). O

Definition 9. We define Sz to be the sub Inf semi-lattice of Sy generated by the elements
lSAB(GA GB) for any (GA, GB) € Gy x Gp.

Sag will be equivalently denoted S,®Gp and called the minimal tensor product of G
and & B

3.3 The minimal tensor product

In the following, the set Z(S&4 x &p) will be equipped with the Inf semi-lattice structure U.

Definition 10. &7(G4 x Sp) is equipped with a congruence relation denoted =~ and
defined between any two elements {(0;4,0i5) | i € I} and {(0},,0}5) | j € J} of
K (6 A X G B) by

({(0ia,018) | i€ 1} = {(0] A oip)ljET}) &

(Vls € €4, VIg € €5, Nier 8[A 4(0ia) °SS (0i8) = N\ jes S[A A(0}4) '8553( cip)). (74)

11



The congruence class associated with U C G4 x Gp will be denoted U-..

Definition 11. We introduce the following injective Inf semi-lattice homomorphism

9(6A X 63)/% — S/AB
{(G,',A,Gi’B) | i€ I}% — .Q.({ (Gi,A,Gi,B> | i€ I}z) | VIA - @A,V[B c @B, (75)
Q({(0j4,0:8) | i €1}~)(la,IB) := Nier ESA(Gi,A) & ?(0ip).

We note that §AB is the image of Q in SV’AB.

If we adopt the following notation

VG € Sup, (G) = Max{U e P (S, xS3) | Q(Ux) 3, 6}
= {(ox,08) | Q({(on,08)}~) 3, G}, (76)
we note the following Galois relation
VG €845, YU € P(S4 xGp), (6)2U « 6L QUs). (77)

AB
Indeed, let us fix U := {(0;4,0;p) |i €I} and © € Sxp. We have
<8> U & Vie I,.Q({(G,',A,Gi’g)}%> Qg c
AB

& Vie ],V[A € QEA,VIB € QEB, 8([A, [B) < ESA(Gi,A) OESB(G,',B)

& Vi € €y, Vip € €p, G(la,lp) < /\ieI'SSA(Gi,A> 0853(6@3)

& oL, QUx) (78)

AB

As a consequence of this Galois relation, we obtain that

Theorem 13. S, 4B 1s a down-complete Inf semi-lattice with
. S,
Ui liel} C 2(Gxx&p), [ il AU)=) =(Jicr Ud=).  (79)
We will adopt the notation [ 122 0, 4&6; g := Q({ (Gi4,01.8) | i € I }) forany { (G4, 0:8) | i €

I}in@(GAXGB). |

Theorem 14. We have the following relations
. S ~ 5 ~
V{oija|icl} CSy,Vop € Gp, (|_|ieAl 0iA)Q0p = rliél;(ﬁi,A®GB), (80)
. ~ 5 S, ~
V{Gi,B | IS I} - GB,VGA € 6A7 GA®(|_|§3€E}GI'7B) = I_liél;(GA®Gi,B)- (81)
|

Proof. Rewriting of Theorem O
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Theorem 15. The following maps are homomorphisms

n SVAB — GA A §AB — 63 (82)
s ~ g ~
M oiaGois — [1id0ia M oiadois — [ligois
|
We can obviously clarify the poset structure on Sg.
Lemma 4.
s ~
(I_liéI;Gi,A@’Gi,B S5 |_|j€] <
(Vlq € €4, VIp € Ep, /\iezeﬁ’ (Gi,A>°3[ ?(oiB) </\j€]8[ (,A)°8[ (c}p)). (83)
|

This poset structure can be “explicited” according to following lemma addressing the word
problem in S4p.

Lemma 5.
s ~ ~
<|_|iél;0-i,A®Gi,B EgAB GA®GB>
At <(|_|fé1 Ok.A) Ce, 04 and (|_|,“ZZ, Om,B) Ce, 0B and

(vo cK G I ([ |tk 0ta) Co, 0a or ([ |2/ x Oms) Co, 08))  (84)
(3,7 cz’ with # U’ =2, N’ =@ {eyex' Tex|
(

|_|1<e;{ w2k OkA) Cs, 0a and ( K’ejéf’l_lmel x OmB) Ee GB) (85)

. . S, ~ ~ . .
Proof. The inequality [],27 0, 4®0; g C. 0a®0p is equivalent to
’ AB

Vig € €4, Vg € Ep, (/\ie] SSA(G,-’A) OSSB(G,'7B)> < 8[ 4(0y) OE[GB(GB). (86)

We intent to choose a pertinent set of effects [4 € €4 and [p € €p to reformulate this inequality.
Let us firstly choose [p = @63' Using (3)), we obtain

S
e ([Tic 014) < €54(04), Via € €4, (87)
which leads immediately (using (I0Q))
S
[ ]idi 6ia T, 0. (88)

Choosing [4 = QQGA, we obtain along the same line

HE 6ip Lg, OB- (89)
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Let us now consider @ & K G I and let us choose 4 and [p according to

ESA(G) =N,vVo Jg, I_lng ora and ESA(G) =1, elsewhere, (90)

SSB(G) :=N,Vo Jg_ I_lrilél,K Onp and SSB(G) =1, elsewhere. 1)
We deduce, from the assumption (86, that, for this @ & K ¢ I, we have

S S
(|_|k£1( Ok Eg, Oa) Or (I_lmlél—l( Omp Ee, OB)- (92)

We let the reader check that we have obtained the whole set of independent inequalities refor-
mulating the property (86). O

Theorem 16. If G4 and Gp admit J_GA and J_GB respectively as bottom elements, then

Sz admits a bottom element explicitly given by Lo =1 s, QL &g |
AB
Proof. Trivial using the expansion (84]). O
3.4 Canonical vs. minimal tensor product

Definition 12. We denote :S’Z%i the sub-poset of S, 4p defined as follows :
Si = {Q(Ux) | U Crin G4 x S} (93)

It is also a sub- Inf semi-lattice of §AB.

Theorem 17. We have the following obvious property relating the partial orders of 57;%1
and Syp. For any {(0;4,0i8) | i € I} Cfin G4 x Gp,
—5AB

S, 5 ~ ~
([ i&ioa®0ip) T, ca@05 = ([ |:i&joia®0in) 5 04@0p. 94)

We denote

~ . S~ _ S~
${(0ia,018) |1 €1} = {(04,0p) | (| [i&i0ia®0in) B 0r@0p} = (| [i&101aB0i8). (95)

Proof. First of all, it is clear that %{(G,-’A, oip) | i € I} is a bi-filter.

Secondly, it is easy to check that (0y4,0r5) € %{(GLA, oip) | i €1} for any k € I. Indeed, for
any K C I, if k € K we have (ﬂfEAK O14) Eg, Oka andif k ¢ K we have (M8, & Omp) =
Ok B.-

A]: a conclusion, and by definition of §{(0;a,0;) | i € I} as the intersection of all bi-filters
containing (0; 4, 0; ) for any i € I, we have then %{(G,-’A, oip)|i€l} DF{(0ia,0ip)|icl}.
We now use Lemma[2]to obtain the announced result. U

& Sp
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Definition 13. [5, definition p.117 and Section 11 Lemma 1 p.118] A space of states &
is said to be distributive iff

Vo,01,00 €6 |0#01,00, (01M302)Cs 0=
Jo1,0,€ 6| (01 C. 0], 0oC, 05 and 6 =0(l, 03). (96)

When G is distributive, we have the following standard properties satisfied, as soon as the
implied suprema are well defined

01Mg (2Ug 03) = (017g 02) Ug (0175 03) (97)
o1 Ug ((72 Mg 63) (G] Ug 62) Mg (G] Ug 63). (98)

Theorem 18. If G4 or Gp are distributive, then :S’Zg and Syp are isomorphic posets. W

Proof. We now suppose that G4 or S is distributive and we intent to prove that §{(0; 4, 0; ) | i €

Iy =§{(0ia,0:) | i € I} forany {(0;4,0i8) | i € I} Cfin Ga x Gp.
Let us prove the following fact : every bi-filter F which contains (0y 4, 0% ) for any k € I

contains also § {(0ja,0ip) | i € I'}. In fact, we can show that, for any bi-filter F we have

(Vkel, (oia0ip) €F) = (Ugty| |ik ovasl gt | Tnii_x Onp) €F,

v, A oo =2d N = {oyex Tex.

The first step towards (99) is obtained by checking that V.7, ¢" C 2!, oz U =21 ¢ N
K=o {oyex Ie X,

(Ui’e%’ﬂzel—l@ Gm) ;6 (Hlie%l_llfel( Gk) (100)

for any distributive G and any collection of elements of G denoted oy for k € I for which these
two sides of inequality exist. To check this fact, we have to note that, using [1, Lemma 8 p. 50],
we have first of all

(e ek 00) = I_IG{I_IieﬂK(A) ae ] K} , (101)

Kex

where g denotes the projection of the component indexed by K in the cardinal product [[xc » K.
Moreover, for any A € [[gc ¢ K, there exists L € #” such that J{ng(A) | K € '} D (I\L)

and then (|_|§EJ/7IK(A)) Ce (|_|2617L om) Ce (Lllez,e%/ﬂzel_[(, On). As aresult, we obtain

the property (100).
The second step towards (99) consists in showing that
(Vkel, (oea o) €F) = (Lxtn| 1ok ocns| Txin ik okp) €F (102)

for any ¢ C 2. This intermediary result is obtained by induction on the complexity of the
polynomial (u[ig % ﬂ,féK Ox 4) by using the following elementary result
/ / I (GAL'6 Gf,UGBHG GIIB)GF
F A B
VGA,GAEC‘SA,GB,GBEC‘SB, ((GA763>7(GA7GB>E ) = { (GA|_|6A Glg;GBl—lgB Gé)EF

15
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trivially deduced using the bi-filter character of F, i.e. properties (33)(34)(33).

As a final conclusion, using the explicit definition of §{(0;4,0;p) | i € I} as the intersec-
tion of all bi-ideals containing (oy 4,0% ) for any k € I, we obtain F{(0;4,0;p) |i € I} =
§{(0ia0i8) [ i € 1}.

S }; p and Syp are then isomorphic posets. L

Remark 3. We note that the distributivity property is a key condition to obtain previous isomor-
phism between SZ’; and S4p. Indeed, let us consider that &4 and Gp are both defined as the
lattice associated to the following Hasse diagram:

O] 0, O3

N |/
L

According to (84), we have (Lg ,Lg, )€ 3{(01,01),(02,02), (03, 03)}. However, we have
ObViOllSly (J-gAvj—@B) ¢ g{<61761)7 <62762)7 <637G3)}‘

3.5 Properties of the minimal tensor product

Let us now consider that &4 and Gp have a description in terms of pure states. We intent to
prove that S4p inherits a description in terms of pure states.

Theorem 19.

~ pure

SAB

pure

{oa0p| 0B, 05y } =Max(Ssp) (103)
|

Proof. First of all, it is a trivial fact that the completely meet-irreducible elements of Sap are
necessarily pure tensors of Sy, i.e. elements of the form oy ROp. B

Let us then cpnsider 0AR0p a completely meet-irreducible element of S4p and let us assume
that oy = I_ll'bEA]Gi:A for 0; 4 € &, for any i € I. We have then (6,®0p) = ((ﬂ?e’}ci,A)@GB) =

N ~ ~ . . . e~ .
[ lél; (0;4®08). On another part, 64 @0p being completely meet-irreducible in Sap, there exists
k € I such that 6y®0p = O} 4®0p, 1.6, 04 = O 4. As a conclusion, 0y is completely meet-
irreducible. In the same way, op is completely meet- 1rredu01ble As a first result, pure states of
pure

SAB are necessarily of the form osR0p with o4 € (‘SA ,0B € G
Conversely, let us consider 64 a pure state of G4 and op a pure state of Gp, and let us suppose
that (Hf’é’;c,-,A®Gi,B) = (o4®0p) with 0ia € 64 and o; p € Gp for any i € I. We now exploit
the two conditions (ﬂfgl OkA) = 04 and (ﬂzg ; Om,) = Op derived from the expansion (84).
From o4 € Max(&,4) and op € Max(Sp), we deduce that 6;4 = 64 and o;p = Op for any
i,j € 1. As a second result, we have then obtained that the state (c4®0p), with 04 a pure state
of G4 and op a pure state of Gp, is completely meet-irreducible.

From the expansion (84), we deduce also immediately that (64@0p) € Max(Ssp) as long as
04 € Max(G,) and op € Max(Sp). ]
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Theorem 20.

~ S
Vo €Spp, o=[ "o, where o_ = (Sxg N
SAB SAB

(17)). (104)

Proof. Letus fix ¢ € Sa.
~pure

We note that 6 . ¢’ forany 6’ € (S5 N (T ©)) and then o C_ MN*o. .
Sap SAB SAB

Secondly, denoting ¢ := (|_|,€1 0i AR 0} ), We note immediately that, for any o4 € S and

o GZ"W’ if oy Js, Oia and op J , Oi.B: then (64®0p) J Je,; O ie. (o4®03) € o, . As
AB
a consequence, we have

SAB SAB SaB SAB
- . 1
(|_|l€1 O'AEGPM re | GAQGA Gi O_Beegure ‘ GBQGB o5 GA®GB) _SAB ggAB ( 05)

Endly, using Theorem [I4lwe have

§AB = §AB §AB = §AB
0= |_| ic10iA®OI B = |_| i€l (|_| oA | o4, Oin GA)®(|_| ogeGR | 0], Oi B )

SaB 548 Sa ~
= [T Toteep orag, ol Tonesy opag, 0501508 (106)

As a final conclusion, we obtain

SaB |_|§AB |_|§AB ~ |_|SAB
= i : : = NG
(I_l i€l Oy GGZH ¢ | GA;GA CiA GBEGZM ¢ ‘ GB;GB OB (o'} ®GB) g~ ( 07)

SAB

O

Theorem 21. Let 645 and G} 5 be two elements of Sap having a common upper-bound.
Then the supremum of {Gap, Oy} exists in S4p and its expression is given by

_ s _

Gaplly Gip= ﬂce(ﬂﬁﬁj G (108)

SAB~ Sap
|
Proof. As long as 645 and G5 have a common upper-bound, G5 N GA 5 1s not empty.
. Sa ~ SaB o SaB ~
Secondly, it is clear that G5 = ( Fetu ) s [ Gedu5y, oand 6,5 = ( Gedy, o) s
SaB ~ - ke =N ~
|_|6 6,55, 0. Then, if we suppose there exists 0, such that 6yp,0,5 EfAB GAB we can
. .. ~,/ §AB ~ . . ~ ~,/

use Theorem 20| to obtain the decomposition 6, = ([ ] e, o) with necessarily Vo € 0y,
= = =/ AB = =/
oapl; © and 0 s 0, i.e. 6 € OapNCyp, and then (375 a5l o) C;  Oap- O

Theorem 22. If G4 and Gp are distributive, then S, 'Ap 18 also distributive.
Note, using Theorem [I8] that, in this situation, we have also Sﬁ;’ = Sug.
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In that case, the explicit expression for the supremum of two elements in SZZ' is given by

S~ ) ~
([ 1:270ia®0i5) |_| 2107490 ) =[ ie1, jes (GiaUs, 074)@(0i8 s, O 5)-

Proof. First of all, using Theorem [I8 we note that, as soon as &4 or &p is distributive, we
have Sqp = Sap as Inf semi-lattices. We are then reduced to prove the distributivity of Syp.
In reference to the definition of distributivity of an Inf semi-lattice given in Deﬁnition -,

. N
we have then to prove that if [ ] l’gignci,Aééci’B ESA 0,®03, then there exists o A® iB = SAB

0; A®0; g for any 1 <i < n such that |_|iA<Bl <n l’ 480/ g = 64®0p. From Lemma[3] we conclude
that it is sufficient to prove that, for any n—ary polynom1al p,if o4 3 Zs, p(014,--+,0,4) and
OB QGB p (018, ,0np), then there exist GI-A QGA 0; 4 and GlB e , OiB for1 < i < n such
that oy Jg p(0] 4, .0, ) and 0p I p*(0] g, ,0, p), and 6] 4, I ZI ,oaand o]z s Op
for1 <i<n.

The proof of this fact is sketched in [3, Theorem 3], and we give here a developed version of it.

Let us prove the following statement for any n—ary polynomial p :

Op Js, P(O14;+*,0na) =

/
ElGL A
This statement is obviously true for p(61 4, -+ ,0,.4) := Ok 4, it suffices to chose oy 4 = 04.

Let us assume that the induction statement is true for two n—ary polynomials p and ¢, and
let us prove the statement is also true for (pq).
We will assume o Js, p(C1A, - ,0n4) Ns, q(014,- -+ ,0n4). Then, there exist 74,04 € G4
such that oy QGA (14 Ms, 04) and 4 QGA p(O1.4,-+,0n4) and 84 QGA q(01.4, "+, 0nA)-
From distributivity of G4, we deduce that there exist 7, and 8} such that o4 = (7, N, 5)
and 7y, ;6A Y and &3 Jg 64 As aresult, we have 74 g p(014,+,044) and 8y Jg
q(01.4, " ;0nA).

(109)

Je, Oia V1 <i<n| (04 Dg, P(O]4r- O 4) and 04 Dy 04, ¥1 <i<n). (110)

By assumption, there exist 6] 4 J¢ ;4 and 6/ J Oiafor 1 <i<nwithy, Jg p(o] 4,0, ,)
and 8, Jg q(07 4, ,G ) and with ;43 Zl }{4 “and 04 A, Oy for 1 <i<n.
1

Let us denote A= l-?A I_IGA Ci4-
We first note that G4 J i for 1 < i <n.
From 6,4 Eg, 0;4 and Gix Cg, 0] forany 1 <i<n, and 7, g, p(0] 4, " ,0,,) and
5/ 6 q(GlA, .- Gr/z,A) we deduce YA e, p(G] Asce 7Gn,A) and 5 QGA q(Gl,A,~-~ ,6,,7A).
As a consequence, 64 = (¥4 Mg, 64) T, p(Gl a5 0na) Mg, q(C14,7++, Ona).
From o/ 4 Je }{4 and Gl’ ;GA 8’ for 1 <i<n, we deduce also G; 4 s, YA Mg, 8y = oy for
1<i<n.
As a summary, there exist G; 4 Js, Oia for 1 <i < n, such that o4 Js, p(Gia,-,0n4) Ms,
q(G14,--,0n4a),and Gj 4 s, 0 for 1 <i<n. Inother words, the n—ary polynomial (pMgq)
satisfies also the induction assumption.

Let us assume that the induction statement is true for two n—ary polynomials p and ¢, and
let us now prove the statement is also true for (p L g).
We will assume o4 QGA p(Gl’A, e 7Gn,A) |_|6A q(61 Aste 7Gn,A)- Then, we have 6, QGA p(G] At Gn,A)

18



and o4 Jg, (014, ,0n4)-
By assumption, there exist 6/, I ;.4 and ;4 I Ojafor1 <i<nwithox g, p(0] 4, 0, 4)
and o4 s, q(GfCA, ‘o ,G,QCA), and with G{A Js, Oa and Gl.’fA Js, Oa for1 <i<n.
Let us denote G4 := 0] 4 Mg, O4-
We first note that ; 4 QGA o;aforl <i<n.

From G4 Cg, Gl-/’A and G;a Cg, Gl.’fA for any 1 <i < n, and oy s, p(of’A,... 767/1,A) and
(o) QGA q(G{/,A’ ‘.- 7Grlz/,A)’ we deduce oy QGA p(alA, ‘e ,6,1’,4) and o4 QGA q(El’A, e ,6,,7A).
As a consequence, Oy QGA p(G1a,--,0n4) Us, q(G1a, ", 0n4A).

/ ! . b .
From C; A QGA o4 and ;A QGA oy for 1 <i < n, we deduce also G; 4 QGA oy forl <i<n.

S

As a summary, there exist G; 4 Js, Oia for 1 <i < n, such that o4 Js, p(G1a,--,0n4) Us,
q(G14,--,0n4a),and Gj 4 s, 0 for 1 <i<n. Inother words, the n—ary polynomial (pUq)
satisfies also the induction assumption.

By induction on the complexity of the n—ary polynomial p we have then proved the state-
ment. As a final consequence, S4p and then also S4p is a distributive Inf semi-lattice.

As a consequence of this distributivity property, we obtain the following simplification

s, ~ s, ~ s, s ~ ~
(Higci,A@Gi,B) U (ngffjl',A@GJ/',B) = |_|121; |_|JAeBJ ((Gi,A@Gi,B) U (GJI',A®GJ/',B)> - (111)
Using the expansion (84)), we know that

(6:A®0; ) Us (04807 5) = (GiaUg, 074)@(0i8Us, O} p) (112)

This concludes the proof of the formula (109). O

Theorem 23. Let us consider 01 4 and 0, 4 two distinct elements of &4, and o p and
0, g two distinct elements of Gg. We have then

(P ngB (617A®G17B |_|§AB GQ,Aé)Gng) and & ¢ Max(EAB)) = e {GI,A@BG],B, 627,4(}50273}.
|
Proof. Direct consequence of the expansion (84]) with Theorem O
3.6 Maximal vs. minimal tensor product
Lemma 6. For any ® € S 4B, We have
Vig € @(«53, (I)(@@GA,[B> =N (114)
Vi € QEGA, @([A,nggB):N (115)
|
Proof. Using (60) (61)) and (62), we deduce for any ® € Sap the following equations
P(Ves, Ves,) =N (116)
(D(@QEGAvgj@@B):N (117)
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Using (IT6)(IT7) ©2)(3) and (38)(39), we deduce for any ® € Sy the following equations

(D(QQEGAvJ—@@B):N (118)
P(Leg, Ves,) =N (119)
q)(@(’EGAvJ—Qf@B) =1 (120)
P(Leg, Ves,) =L (121)
We have also, using (118) (120) and (38)), for any ® € S 45 the following equation
@(LQGA,LGGB) =1. (122)

From (I18) and (59), we deduce that, for any [ € Eg, we have ®(2) Co, (B) AP Cs, Ig) =
N and then ®(Y¢.. Co, [3) = N. Here we have used the obvious property [z Mg [B = L¢g, satis-

fied by any (5 € Eg,. In the same way, using (I19) and (58]), we obtain the symmetrlc property.
As a result of our investigations of the consequences of (118) and (I19), we have obtained for

any @ € Syp the equations (I14) and (T13). O

Let us now investigate the consequences of (114) and (I13).

Lemma 7. Let us consider any & in Sup and any [4 € €g,. We are necessarily in one of
the following three cases

1.
CI)<[A7@€GB) =N, q)(avgjggl}) =Y,
Vip € QSGB, (I)([A, [B) =N, o . (123)
\V/[B,[% € 663 | B I_IGGB [}3 = L@GB, (q)([Aa[B) , (I)([A,[%» ¢ {(N,N),(Y,Y)}

2.
(b([A?fDGGB) :X’ qD(GuQJ@@B) =N,
Vig € €, (01, 15) =N, (124)
Vig, [y € Coy | BMe 5= Leg,s (Pllasla), Pl 1)) ¢ {(N,N), (Y, Y)}.

3.

(I)([AanyEGB) =1, ¢(G7fy€63) =1,
Vg, [;3 € 663 | B HGGB [;3 = L@GB,

Vg, [;3 € 663 | B HGGB [;3 = L@GB,

Proof. The distinction between the three cases is directly inherited from (60).

Let us consider the first case : @(14,) ¢, ) =Nand D(1y, Veg,) =Y. Using ®(l4, Ve, ) =
N and (I13) and (39), we obtain D(ly, J_%B) =N and then, V(g € Eg,, P(l4, ) =N. Secondly,
using ®(1,, QJ%B) =Y and (I13) and (39), we obtain P([,, LGGB) = 1, which means that for
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any Ip, [l € g, such that [ M, (3 = Leg, we have D(Iy, () AD(Ig,15) = L.

The second case (@([A,@%B) =Y and CID(E,Q)GGB) = N) is treated exactly in the same
way as the first case.

Let us conclude with the third case : ®(I4,¢g, ) = L and CID(E,@@GB) = 1. Using (113)
and (39), we obtain ®(l4, J-%B) = 1 and ®(ly, J_%B) = 1, which means that, for any [, [} €
€a, such that [ Mee, (3 = Leg, we have ®(la, [g) AD(Ia, ) = L and P(Iy, [5) A P(Ia, I) =
L. This concludes the proof. L

If we restrict ourselves to the elements of S4p, the conditions are in fact more severe.

Lemma 8. Let us now fix ® € Sqz and [, € ¢g,, and let us suppose that @([A,@%B) =Y.
Then, for any [ € Eg,, we have (®(Ia,15), @(I4,15)) € {(Y,N),(N,Y), (L, L)} |

Proof. Let us consider that & = [1:4% 154 (6; 4, 0, 5) = 1,24 61480 5.
G} G} G}
We have then Y = (I)([A,@@63> = /\ielg[AA(Gi,A> oé'gg (G,"B) = /\ielg[AA(Gi,A) oY = /\ie]g[AA(Gi,A> =
S

B
& . : .
SS A([M;&;0:.4). As a consequence, we obtain 85 *(0j4) =Y forany i € I. As aresult, we obtain

S
D(In, 1) = Aicse * (Gia) 0 £ " (018) = NicrY 0 € (0:8) = Nicr€y, (0i8) = £ " (M1 01.5)-
We now observe that ®(Iy, [g) = egB(ﬂiGEB,G,-,B) = eeB(ﬂZ‘}G,-,B) = ®(l4,[p). This concludes

g s

the proof. L

Lemma 9. Let us now fix ® € Sy and [4 € €s,. and let us suppose that ®(ly4, @@63) =1.
Then, for any [, [ € Eg, such that (5 Mee, (= Leg,. we have (®(I, l5) , P(Ia, 1)) €
{(L,N), (N, L), (L, L)} |

Proof. Let us consider that ® = ﬂf’é’; lgAB(GLA, OiB) = ﬂfg i AR . _
As it has been clarified in the third case of Lemmal[7] we have then necessarily (®(l4,(5), P(l4,(5)) ¢
{(N,N),(Y,Y)}. Let us suppose that ®(l4,[z) =Y. Due to the expression (3, we have

then necessarily SS *(0ia) =Y and 85 B(oip) =Y for any i € I and then, in particular, Y =
G (G} G G] :
/\ielg[AA(Gi,A> = /\ielg[AA(Gi,A) oY = /\ielg[AA(Gi,A) .8@;{63 (Gi,B> = CD([A’@@GB) = 1, which

is contradictory. As a conclusion, we cannot have ®(l4,[g) = Y. In the same way, we cannot
have ®(l,, ) =Y. This concludes the proof. O

Theorem 24. Let us fix for example G4 := B and Gp :=‘B. We have
Sa & Sas (126)
[

Proof. Let us denote by u the pure effect [(y N). The description of pure effects given in (Y is
here explicitly given by

pure

Cx = {Dey, Vg u, Ul (127)
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According to Lemmaf7land Lemma[§land Lemma[9, we can identify an element @ in Sap which
is NOT in Ssp. For example, the map defined from €g, x Eg,, to ‘B by

D(lg,lp) = /\r ligg /\[Be ey (1, 1) (128)

and
PDeg,Vee,) =Y, PDeg, Ves,) =N, ‘D@)%A @@b )=N, e, Ves,) =N,
(D(@QEGAqu) J—7 q)(@(’ngv@) = J—7 (I)(u @(’363) = J‘ q)<m723663) = J-7
CD(uAauB> — Y7 CD(uA7@> = N7 CD(uA,UB> (I)(UA,@) = I,

is a solution of this problem. U

3.7 Remarks on the maximal tensor product

Let us fix once again for example G4 := ‘B and &p :=‘B.

Remark 4. We can exhibit an interesting property of the element ® of Sy defined by (128) and

129). _ _ _ N

Let us denote ®; := YRY, &, := N®N and 1, := YRY l_lg N®N. We have

AB

(DI(QQEGA7@(’EGB):Y7 (DI(EDQS@A7@(’EGB):N7 q)l(ngf@A?@(’fGB):N? ¢1(@€6A7@€~3):N7
(Dl(@QEGAﬂJB):Nv q>l<2]@fbA7_B):N7 cI)](’vM,QJQSGB):N, cI)](’vM,QJQf@B):N, (130)
P (Yeg, us) =Y, P1(Yeg, u8) =N, @ (up,Ve,) =Y, P (Ua,Yeg,) =N,
Dy (ua,up) =Y, @y (ua,up) =N, @y (ua,up) =N, @y (ua,up) =N,
(DZ(QQEGA?@@GB):Y? (DZ(@@@A,@QSGB):Nv ¢2(@€6A7@(’363):N7 ¢2(@€6A7@€~3):N7
¢2(@€6A7u3) = N? ¢2<2]€6A,@) = N? q)2(uA723663) = N? q)2(uA723663) = N? (131)
Dy(Deg, - us) =N, P2(Vee,,18) =Y,  P2(ua;Peg,) =N, P24, Yeg,) =Y,
D, (ua,up) =N, D, (ua,up) =N, ®;(ua,up) =N, D, (ua,up) =Y,

P Vee, Vee,) =Y, Pr2Ves, Ves,) =N, P2Deg, Ves,) =N, P12Veg,,Vee,) =N,
P12(Yeg, - us) =N, @12(Ye, - uB) =N, P12(ua, Ve, ) =N, @15(1a, Ve, ) =N, (132)
P2 Veg, u8) =L, P2Peg, M) =L, Pr(wVes,) =L  Pr(@a,Yeg,) =L,

Do (ug,up) = L, ®iy(ug,up) =N, P15 (g, up) =N, Do (g, up) = L,

We have then
® . (Y®Y. N®N)
SAB SAB
® € Max(Sap) (133)
d¢{YRY,NQN}

This result has to be confronted with the result of Theorem
Remark 5. Let us consider the map @' defined from €g, X Eg,, to B by

D (Ig,lp) = /\re[Ae /\rBe[Be '(1y, 1) (134)
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Vee, - Vee,) =Y, Y Deg, - Ves,) =N. ¥ Deg, Vee,) =N CI’/@%A,@GGB):N
Vee, us) =N, P Deg,. ) =N, P, Vee,)=N, P Vee,) =
Ve, u8) =Y,  Peg, ) =N, (w1, Veg,) =Y,  P(04, Ve, ):
ug,ug) =L, @' (uq,ug) =N, @' (uz,up) =N, @' (g, up) =

The map @' is such that ((TSAB @)\ {®'}) admits a minimum element. More precisely,
Min ((TSABcp’) N {q:’}) = {Y&Y}. (136)

As aresult, @’ is a completely meet-irreducible element of Sxp but is NOT a maximal element
of S AB-
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