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Abstract  14 

Many species in aquatic environments face increased exposure to oncogenic pollution due to 15 

anthropogenic environmental change which can lead to higher cancer prevalence. The 16 

mechanistic relationship connecting environmental pollution and cancer is multifactorial and 17 

poorly understood, and the specific mechanisms are so far still uncharacterized. One potential 18 

mediator between pollutant exposure and cancer is oxidative damage to DNA. We conducted 19 

a study in the field with two flatfish species, European flounder (Platichthys flesus L.) and 20 

common dab (Limanda limanda L.) with overlapping distribution and similar ecological niche, 21 

to investigate if the link between oncogenic pollutants and cancer described in ecotoxicological 22 

literature could be mediated by oxidative DNA damage. This was not the case for flounders as 23 

neither PAH bile metabolites nor metallic trace element concentrations were related to 24 

oxidative DNA damage measurements. However, dabs with higher PAH metabolite 25 



concentrations did exhibit increased oxidative damage. High oxidative DNA damage also did 26 

not predict neoplasm occurrence, rather, healthy individuals tended to have higher oxidative 27 

damage measurements compared to fishes with pre-neoplastic tumours. Our analyses showed 28 

that flounders had lower concentrations of PAH bile metabolites, suggesting that compared to 29 

dab, this species is less exposed or better at eliminating these contaminants.  30 

Keywords: Oxidative stress, hepatic tumours, marine contamination, European flounder, 31 

Limanda limanda, wildlife cancer 32 

 33 

Introduction 34 

Cancer is a disease that arose with multicellularity, potentially affecting all 35 

multicellular organisms [1].  Increasing evidence suggests some species have evolved stronger 36 

tumour suppressor mechanisms than others [2,3]. Whilst these mechanisms are the result of 37 

species’-specific life-history and/or environmental exposure to natural oncogenic substances 38 

[4,5], many species face increasing pressure from anthropogenic activities that could affect 39 

cancer prevalence in natural populations [6,7]. 40 

There is evidence that some species can adapt to increased concentrations of oncogenic 41 

pollutants, especially if the selection pressures are high and pollution is present for extended 42 

time periods [8,9]. One step towards understanding the mechanisms behind evolved cancer 43 

defence mechanisms in natural populations is to focus on specific physiological pathways to 44 

explore why cancer prevalence varies between populations and species living in environments 45 

contaminated with hazardous chemicals. One potential mediator between pollutant exposure 46 

and cancer is oxidative DNA damage, as both organic pollutants [10] and metallic trace 47 

elements [11] increase it. This can lead to cancer initiation and progression by increasing DNA 48 

mutations or inducing genome instability and cell proliferation [12]. However, relatively little 49 

is known about how the amount of oxidative DNA damage impacts cancer risk in pollution-50 



exposed animal populations, as current studies published mostly focus on changes in 51 

antioxidants in response to a specific pollutant in laboratory settings [13-15].  52 

Flatfish, such as European flounders (Platichthys flesus L.) and dabs (Limanda limanda 53 

L.) have been studied for both pollution exposure and hepatic tumours [16, 17]. These benthic 54 

species are regularly used in biomonitoring surveys throughout the North Sea and Baltic Sea 55 

marine areas, which have been subjected to high concentrations of pollution for over a hundred 56 

years [18,19], through atmospheric and riverine inputs, and industrial point-sources (e.g. oil 57 

and gas platforms, [20-22]). Histopathological analyses have indicated that dabs have 58 

approximately 10 times higher liver neoplasia prevalence than flounders [23-28]. However, the 59 

causes behind this species-specific difference are not known.  60 

This field study investigates correlations between the formation of hepatic neoplastic 61 

lesions, and (a) concentrations of polycyclic aromatic hydrocarbon (PAHs) bile metabolites, 62 

(b) liver concentrations of metallic trace elements (Hg, Cd, As, Pb). We also investigate 63 

whether oxidative DNA damage (measured via 8- hydroxy-2′-deoxyguanosine, 8-OhdG) acts 64 

as a mediator between contaminant exposure and neoplasm occurrence.  65 

 66 

Methods 67 

Field Sampling 68 

Fish were collected using a trawler at ten Baltic and North Sea locations (See Table S1 for 69 

locations and numbers sampled) in August 2019. Fishes were weighed and measured before 70 

being killed by a percussive blow to the head that was followed by destruction of the brain 71 

using a surgical knife. Bile and liver samples were flash frozen in liquid nitrogen and stored at 72 

-80°C until analysis. A 3 mm liver section for histopathology analysis was stored in 4% 73 

formalin for 48 hours, then in 70% ethanol. Otoliths were collected to measure age. Sites were 74 



allocated as ‘reference’ or ‘polluted’ based on OSPAR/HELCOM data on local anthropogenic 75 

pressures (Table S1, [29-31]). 76 

Histopathology 77 

Liver samples were processed according to Feist et al [32] for histopathological analysis, 78 

prepared onto slides and analysed using a Nikon Eclipse 80i microscope. Foci of cellular 79 

alteration (FCA) and neoplastic lesions were recorded [32] (see supplementary Table S1 and 80 

figures S1, S2 for further details). 81 

PAH bile metabolites 82 

PAH bile metabolites were measured using fixed fluorescence methods. Bile samples were 83 

diluted with 48% ethanol (1:1600) [33] and read using a fluorescence spectrophotometer (BMG 84 

Omega Fluostar) measuring fixed wavelength pairs (excitation and emission, respectively). 85 

290/380 nm (2-ring PAH); 256/380 nm (3-ring PAH); 341/383 nm (4-ring PAH); and 380/430 86 

nm (5-ring PAH) [34]. The results were presented as fluorescence units (FU) [35].  87 

Trace metal concentrations 88 

 Liver samples were freeze-dried for 48 hours and ground to powder. Total Hg concentrations 89 

were measured, in duplicate (relative standard deviation for aliquots <10%), in subsamples of 90 

~1mg of homogenized liver using an advanced Hg analyser spectrophotometer (Altec AMA 91 

254) [36]. Remaining samples were analysed for trace elements arsenic (As), cadmium (Cd), 92 

and lead (Pb). Samples were digested with a mixture of 3 mL HNO3 and 5 mL HCl Suprapur 93 

quality, heated in a microwave oven and diluted to 50 ml with deionized water, and analysed 94 

by Inductively Coupled Plasma Atomic Emission Spectrometry (Varian Vista-Pro ICP-AES) 95 

and Mass Spectrometry (ICP-MS II Series Thermo Fisher Scientific).  96 

Oxidative stress markers 97 

Biomarker 8-hydroxy-2′-deoxyguanosine (8-OHdG) was used to measure oxidative lesions 98 

formed in nuclear or mitochondrial DNA induced by free radicals. DNA, extracted using the 99 



Purelink Genomic DNA Mini Kit (Invitrogen), was quantified using a Qubit 4 fluorometer. 100 

Standards were read on the dsDNA HS setting to calibrate the machine. 1μL of sample was 101 

added to 199μL of the working solution in triplicates, analysed, and the means calculated in 102 

ng/μL.  103 

Samples were prepared for ELISA kits (Cell Biolabs Inc, cat number STA-320) following the 104 

protocol for cell or tissue DNA samples by converting to single strand DNA, digesting DNA 105 

using nuclease P1 (M0660S, New England Biolabs), adding alkaline phosphotase (CIP, 106 

M0371S New England Biolabs), centrifuging at 6000g for 5 minutes and collecting 107 

supernatants. Plates were washed using BioTek ELx50 microplate washer and absorbance 108 

(wavelength 450nm) measured using a spectrophotometer (Biotek Synergy 2). Results were 109 

normalised against the DNA concentrations, converted from 1 to 4 strand DNA and presented 110 

as ng oxidised DNA bases per mg DNA.  111 

Statistical analysis 112 

Statistical analyses were run using R 4.0.5[37]. Principle component analysis (PCA), using 113 

packages “stats”[38] and “psych”[39], grouped 2 components (see Figures S3-S4) splitting the 114 

variables into metals (As, Cd, Pb, Hg) and hydrocarbons (2, 3, 4, 5 ring). Generalised linear 115 

models tested whether oxidative stress or tumours could be predicted by trace metals or PAH 116 

metabolite concentrations, age, location (Baltic or North Sea), or whether sites were 117 

polluted/reference (Table S3). Chi-squared tested for a difference between the number of fishes 118 

with or without neoplasms/FCAs (3-levels: no abnormalities, FCA, neoplasm). Finally, 119 

ANOVA and post-hoc Tukey tests tested for differences between oxidative stress and tumours. 120 

Other packages used for plotting and data reorganisation were ggplot2[40] tidyverse [41], 121 

car[42] and various dependencies within them. Additional analysis with subsets of data (fish 122 

aged 3+ as younger fish as less likely to develop cancer and sites where both species were 123 



present to exclude the influence of site characteristics on the results) are provided as 124 

supplementary material alongside all code and data (https://doi.org/10.5281/zenodo.7846187).  125 

 126 

Results  127 

Histopathology analyses indicated that dabs do not have significantly higher tumour prevalence 128 

(FCA or neoplasm) than flounders (Figure 1a, Chi-squared =2.81, df=2, p=0.2). This result 129 

could, however, be affected by the bias in the sampling, with more younger dabs in the data set 130 

compared to flounders. Linear models found that flounders were older and had higher amounts 131 

of oxidative DNA damage than dabs, dabs had significantly higher concentrations of PAH 132 

metabolites (Table 1). However, these results may be confounded by differences between sites. 133 

When we repeated the species comparison, including only the fish from the three sampling 134 

sites where both species were sampled, we found that only age was significantly different 135 

between dabs and flounders (Table S4). However, all the fishes with the highest contaminant 136 

concentrations were dabs (Figure 1b). There was a significantly higher variation (F-test) in 137 

metals (p<0.001) and hydrocarbons (p=0.007) in dabs than flounders, whereas age (p=0.057) 138 

and log-transformed oxidative DNA damage (p=0.555) did not vary significantly between the 139 

species. 140 

The generalised linear model suggested that neither age, contaminant concentrations, oxidative 141 

stress, or sea (North vs Baltic) influenced the likelihood of a fish developing neoplastic/pre-142 

neoplastic lesions (both species). However, there was significantly higher proportion of 143 

tumours in fish living in reference sites compared to more polluted sites (Table 2). 144 

Additionally, older flounders had more tumours than younger ones. As age is known to 145 

significantly affect cancer prevalence, and we had an over-representation of young dabs in our 146 

dataset, additional analysis excluding fishes under 3 years is provided in supplementary 147 

materials. Results of these models were the same as for the full dataset (Table S5). In order to 148 



check that site characteristics were not confounding our results, additional analysis was run 149 

with site as a predictor (Supplementary materials: Table S8, Figure S5). The model including 150 

site resulted in a singular fit, which suggests preferring a simpler model, as such we chose the 151 

models with "polluted/reference" and "sea" for the main results. 152 

There was a significantly higher level of oxidative damage in the fishes from the Baltic Sea 153 

than the North Sea for both species (t=-4.511, p<0.001), flounders (t-value= -2.305, p<0.031) 154 

but age, contaminant concentrations or whether a site was characterised as polluted/reference 155 

did not affect oxidative damage (Table S6). In dabs, oxidative damage was significantly higher 156 

in the Baltic (t-value=-4.198, p<0.001) and in dabs with higher concentrations of PAH 157 

metabolites. In the reduced dataset (only fish aged 3+) oxidative damage was significantly 158 

higher in the Baltic but the relationship, for dabs, with hydrocarbons (Table S7). 159 

An ANOVA model indicated that oxidative damage was significantly higher in healthy dabs 160 

compared to those with FCA (p=0.027) but not different between healthy individuals and those 161 

with neoplasms or an FCA (Figure 2). There were no significant differences for flounders. 162 

    163 

Discussion 164 

This field study with two flatfish species investigates whether the link between oncogenic 165 

contaminants and hepatic tumours, described in ecotoxicological literature, could be mediated 166 

by oxidative DNA damage. We did not find evidence for this in flounders, as neither PAH nor 167 

metallic trace element concentrations were related to their oxidative DNA damage, whereas in 168 

dabs, higher concentrations of PAH metabolites were related to increased oxidative damage. It 169 

is possible that including other contaminants (e.g., persistent organic pollutants) could provide 170 

a different picture. Furthermore, oxidative DNA damage was not related to neoplasm 171 

occurrence in flounders whereas healthy dabs had increased DNA damage compared to dabs 172 

with FCAs. When comparing the species with each other (previous studies indicated higher 173 



pollution-induced neoplasm prevalence in dabs than flounders [eg.23-28]) we found flounders 174 

had more oxidative DNA damage. However, contaminant concentrations varied more in dab 175 

compared to flounders suggesting potential differences in either exposure or pollutant removal 176 

mechanisms (Figure 1b). Additionally, PAH metabolite concentrations in flounders were lower 177 

than in dabs, suggesting more efficient organic pollutant metabolism in flounders. It must be 178 

noted, however, that age structure and sample sizes for age groups differed between the species, 179 

with more younger dab samples compared to flounders (Table S2). While age was included in 180 

the models, this still might confound the results when comparing species. Additionally, it 181 

should be noted that there are fewer ‘reference’ sites than ‘polluted’, and it is possible that 182 

adding additional sampling locations could change these results.  183 

Contaminants can induce oxidative stress by either enhanced reactive oxygen species 184 

generation and/or weakening of antioxidant/damage repair systems [43].  Fish studies have 185 

indicated that environmental contaminants can affect antioxidant levels (organic pollutants 186 

[44], heavy metals [45,46]). However, limitations in detecting oxidative stress, through 187 

measuring oxidants and antioxidants, occur from time-lagged and hormetic upregulation of 188 

protective mechanisms [47]. Therefore, we assessed the oxidative DNA damage (8-OHdG) 189 

from the liver tissue of fish exposed to contaminated environments. The levels of 8-OHdG in 190 

aquatic species have been studied as a biomarker of oxidative stress caused by contamination, 191 

showing increased levels in populations exposed to higher contamination burdens [48,49]. In 192 

our study, increased PAH metabolite concentrations in dabs, but not flounders, were related to 193 

higher oxidative DNA damage levels, suggesting that PAH metabolism is linked to increased 194 

DNA damage in dabs. The different results for dabs and flounders could arise here from the 195 

differences in sampling sites, as only 3 of the 10 sampling sites included both species. This 196 

result for dabs, whilst unexpected, could be an indication of acclimatization or adaptation 197 

processes, resulting from long-term exposure to oncogenic contamination to reduce oxidative 198 



DNA damage. However, a study on killifish (Fundulus heteroclitus) suggested that most of the 199 

DNA damage present following PAH exposure was the result of covalent binding of 200 

metabolites to DNA rather than from oxidative damage [50]. Whether this is the case for 201 

flounders and dabs remains to be studied.  Interestingly, tumours were not related to the levels 202 

of oxidative DNA damage in the liver, suggesting other processes must be involved that 203 

contribute more to tumour development in wild fish than oxidative DNA damage. Rather, in 204 

dabs with no abnormalities detected, there was less oxidative damage than in dabs with an FCA 205 

(no difference with neoplastic individuals or in flounders). 206 

In this study, older fishes had more oxidative DNA damage than younger ones. Increased DNA 207 

damage in older fish have been recorded in dabs using comet assay methods [51]. Additionally, 208 

a study on three-spined sticklebacks (Gasterosteus aculeatus) found that larger fishes have 209 

more DNA damage than smaller ones using comet assay and micronucleus tests [52], 210 

potentially resulting from either the higher metabolic need of larger fish, leading to more 211 

oxidative DNA damage, or DNA damage accumulation with age resulting from the senescence 212 

process. 213 

Fishing location had the greatest influence on elevated oxidative damage, demonstrated by 214 

Baltic Sea fish exhibiting a significantly higher oxidative damage than North Sea fish. Changes 215 

in salinity can cause oxidative stress in fish [53] and a study on olive flounder (Paralichthys 216 

olivaceus) found that hyposaline conditions caused oxidative stress [54] so it is possible that 217 

the low saline Baltic environment is increasing oxidative damage in flounders and dabs. 218 

Additionally, a report by the European Environment Agency suggests a larger proportion of 219 

the Baltic (96%) is polluted than the North Sea area (75%) [55] which could cause increased 220 

oxidative damage in the Baltic. Actively removing organic pollutants from the organism is 221 

considered a risk factor for cancer, as the by-products of active pollutant metabolism by the 222 

cytochrome p450 enzymes (CYPs) lead to carcinogenesis via DNA adduct formation [56,57]. 223 



In this study, fish caught in ‘reference’ sites had more tumours than those from ‘polluted’ sites. 224 

However, it should also be noted that migration of fishes was not accounted for when 225 

categorising sites as ‘reference’ or ‘polluted’ and exposure rates could vary between 226 

individual’s dependant on migratory distances. It is possible that fish living in heavily polluted 227 

environments can adapt/acclimate to cope with contamination [58]. In conclusion, we showed 228 

that in an ecosystem where pollution has persisted for a long time, it is not possible to find a 229 

clear link between contaminants (PAH and metallic trace elements), oxidative DNA damage, 230 

and neoplasms. In the North and Baltic seas, both flounders and dabs have had approximately 231 

50 generations to adapt to high concentrations of environmental contamination. We can suggest 232 

that both species, but especially flounders, could have gone through evolutionary processes, 233 

where stronger cancer defence mechanisms, more efficient pollutant metabolism, and 234 

protection against oxidative DNA damage was selected for. 235 
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 438 

Table 1: Linear model results for a difference between oxidative damage, age and contaminant 439 

burdens between species. * represents p-value <0.05, ** represents p<0.01.  440 

 Coefficient S.E. Wald Z Pr(>|Z|) 

Intercept -18.7452 5.1216 -3.660 0.000252

*** 

Oxidative DNA Damage(log) 2.3344 0.8339 2.799 0.005121

** 

https://doi.org/10.1016/j.marenvres.2006.04.015
https://www.ebi.ac.uk/ena/browser/view/PRJEB53201.


Metals -0.5968 0.4578 -1.304 0.1924 

     

Hydrocarbons -0.9054 0.3677 -2.462 0.0138* 

Age 1.1217 0.2451 4.577 <0.0001*

** 

 441 

Table 2: Model results (N=128) of variables influencing the differences in pre-442 

neoplastic/neoplastic tumours between both species and each species individually.  * 443 

represents p-value <0.05, ** represents p<0.01.  444 

  445 

    Estimate  Std. Error  t value  Pr(>|t|)    

Both  (Intercept)  3.11513  4.5926  0.678  0.49759   

  Metals  -0.20913 0.21477  -0.974  0.33019    

  Hydrocarbons  0.12996  0.22643  0.574  0.56601    

  Age  -0.02367  0.1649  -0.144  0.88584   

  Oxidative Stress  -0.56179  0.75214  -0.747  0.45511    

  Sea (North)  1.18170  0.71741  1.647  0.09927    

  Polluted  -1.4411  0.55388  -2.602  0.00927  **  

Dab  (Intercept)  9.92253  5.94056  1.670  0.0949    

  Metals  -0.20196  0.22902  -0.882  0.3778    

  Hydrocarbons  0.24261  0.28230  0.859  0.3901    

  Age  -0.03751  0.34256  -0.110 0.9128    

  Oxidative Stress  -1.73457 0.96487  -1.798  0.0722    

  Sea (North)  1.14057  1.03903  1.714  0.2723    

  Polluted  -1.56631  0.75596  -2.142  0.0383  *  

Flounder  (Intercept)  -23.9688  12.3031  -1.948 0.0514    

  Metals  -2.0686  1.4950  -1.384  0.1665    

  Hydrocarbons  -0.5449  0.6646  -1.820  0.4123    

  Age  0.9142  0.4362  2.096  0.0361  *  

  Oxidative Stress  3.1787  1.9040  1.669  0.0950    

  Sea (North)  1.6869  1.5987 1.055 0.2913    

  Polluted  -3.1224  1.4183  -2.201  0.0277  *  

 446 



 447 

 448 

 449 

 450 

Figure 1: A: The prevalence of cancer and foci of cellular alterations (FCA) in flounder (n=40) 451 

and dab (n=88) livers. Individual numbers on bars. B: PCA loadings for metallic trace elements 452 

and polycyclic aromatic hydrocarbons (PAHs).  453 

 454 

 455 

 456 

Figure 2: Mean (log-transformed) oxidative DNA damage between fish with neoplasms, foci 457 

of cellular alterations (FCA) or neither. Asterix (*) represents p<0.05. Bars represent mean +/- 458 

standard deviation. Dots are individual data points.  459 
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