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ABSTRACT

We investigate the three-point functions of the weak lensing cosmic shear, using both analytic methods and numerical results from
N-body simulations. The analytic model, an isolated dark matter halo with a power-law profile chosen to fit the effective index at
the scale probed, can be used to understand the basic properties of the eight three-point functions observed in simulations. We use
this model to construct a single three-point function estimator that “optimally” combines the eight three-point functions. This new
estimator is an alternative to Map statistics and provides up to a factor of two improvement in signal to noise compared to previously
used combinations of cosmic shear three-point functions.
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1. Introduction

The quality of recent and upcoming galaxy weak lensing surveys
is rapidly improving and allows increasingly high signal to noise
determination of second and third order cosmic shear correlation
functions, which contain very interesting cosmological informa-
tion. For example, the two point function constrains a combi-
nation of Ωm and σ8 (Bernardeau et al. 1997) with some sensi-
tivity to the shape of the primordial power spectrum (Schneider
et al. 2002) and the equation of state of the dark energy com-
ponent (Benabed & Van Waerbeke 2004). The three-point func-
tion, which we investigate in this paper, is particularly important
for breaking degeneracies on two-point statistics, giving a strong
constraint on Ωm (Bernardeau et al. 1997) with a small depen-
dency on the dark energy component (Benabed & Bernardeau
2001). Studies of three-point statistics have recently received
a great deal of attention from the theoretical side (Bernardeau
et al. 2003; Schneider & Lombardi 2003; Takada & Jain 2003a,c,
2002; Zaldarriaga & Scoccimarro 2003; Schneider et al. 2005),
inspired in part by the detection of an averaged cosmic shear
three-point function (Bernardeau et al. 2002).

Weak gravitational lensing detection is based on studying the
alignment of background galaxies due to the lensing effect of the
intervening mass (Bartelmann & Schneider 2001), which pro-
vides a measure of the average shear γ. From this estimator, one
could in principle obtain the projected mass κ, however this re-
quires inverting a non-local relation (see Eq. (3) below), which
is very sensitive to the boundary conditions and thus difficult in
galaxy surveys with complicated geometries and masks due to
bright stars, etc.

One possible alternative is to build statistics of the projected
mass κ without reconstruction of κ itself, by finding a local op-
eration on the shear that will give some filtered version of the
projected mass. A well-known procedure of this type, the aper-
ture mass statistic or Map (Schneider et al. 2002), corresponds to

� Appendices are only available in electronic form at
http://www.edpsciences.org

averaging the two-point function of κ with a compensated (zero
integrated volume) filter. In terms of the shear, it corresponds to
convolving the shear two-point functions with a compact support
filter. This statistic is not optimal in terms of signal to noise, and
although it can be extended to the three-point correlation func-
tion (Schneider & Lombardi 2003), it leads to a determination of
the projected skewness with a rather poor signal to noise (Jarvis
et al. 2004; Pen et al. 2003). This can be solved partly by suit-
ably designing the window involved in the Map statistic, but at
the price of more complicated equations (Jarvis et al. 2004).

For these reasons one would like to use statistics of the shear
field to constrain cosmological models. The difficulty with this
approach is that the shear is a spin-2 field, and thus the geomet-
rical properties of its correlation functions are much more com-
plicated than for the scalar field κ, particularly when one goes
beyond two-point statistics. For a general triangle configuration,
there are eight non-vanishing three-point functions of the cosmic
shear field (Schneider et al. 2002; Takada & Jain 2003a).

In this work we study the main features of the cosmic shear
three-point functions using numerical simulations (see Takada
& Jain 2003a, for previous work), and compare these results to
a simple analytic model (following the ideas in Zaldarriaga &
Scoccimarro 2003) to extract the main features for the purpose
of defining an optimal linear combination of the eight three-point
functions into a single object, which is easier to deal with. This
generalizes the previous study in Bernardeau et al. (2003), where
a particular linear combination was selected based on the pattern
of the three-point functions under some conditions, tested empir-
ically with numerical simulations. Here we pay particular atten-
tion to avoiding cancellations that can occur when doing such
linear combinations, with the purpose of maximizing signal to
noise.

This paper is organized as follows. In Sect. 2 we discuss
the basics of weak lensing cosmic shear, and present the ge-
ometrical properties of the shear two-point functions (Kaiser
1992) and then extend the results to the three-point func-
tions (Schneider et al. 2002; Zaldarriaga & Scoccimarro 2003).
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In Sect. 3 we present a simple analytic model based on a power-
law profile, which allows us to extract the basic properties of the
shear three-point functions. In Sect. 4 we present the results of
measurements in numerical simulations and compare to the ana-
lytic model. In particular, we show that in the range of scales be-
tween 1 and 3 arcmin they agreement with an isothermal sphere
is very good. In Sect. 5 we use these results to construct an esti-
mator that combines the eight three-point functions into a single
object, and compare the signal to noise of this new statistic to
the estimator previously used in the literature to detect a cosmic
shear three-point function (Bernardeau et al. 2002, 2003).

2. Weak lensing and three point function

2.1. The convergence and shear fields

To first order in the density perturbations, the weak lensing effect
is determined completely by its convergence field κ which is a
simple projection of the matter density contrast along the line of
sight (Bartelmann & Schneider 2001; Bernardeau et al. 1997)

κ(θ) =
∫

dz
H(z)

w(z) δ(θ, z), (1)

where the weight w is the lensing efficiency function which reads

w(z) =
3
2
Ω0

D(z)D(z, zs)
D(zs)

(1 + z), (2)

in the case of a infinitely thin source plane at redshift zs.
Here D(z1, z2) is the angular distances between redshifts z1
and z2 and Ωm the present dark matter density in units of the
critical density. We will focus our analysis on the three-point
function of the lensing shear γ. Ignoring higher-order correc-
tions perturbation theory, the shear field is simply related to the
convergence field κ by the non-local equations

γ1 = ∆
−1

(
∂2

1 − ∂2
2

)
κ,

γ2 = ∆
−12 ∂1∂2 κ,

(3)

where ∆−1 denotes the inverse Laplacian operator. With these
equations, the information contained in the weak lensing effect
is simple to understand. The convergence field is simply a pro-
jection along the line of sight of the matter density contrast. Thus
its second and third moments are related, up to projection effects,
to the two- and three-point functions of the density contrast. The
shear and convergence field, being equivalent through Eq. (3),
contain the same information.

The shear γ transforms as a spin-2 object. Equation (3)
is the analogous to that defining the E and B components of
the polarization in terms of the Q and U Stockes parameters.
The convergence field plays here the role of the E polariza-
tion, and there is no B component to the weak lensing ef-
fect to this order. Such contribution can be produced by de-
viations of the Born approximation, and have been shown to
be more than two orders of magnitude smaller than the dom-
inant scalar mode (Cooray & Hu 2002; Jain et al. 2000). In
addition, in observations B modes can arise due to system-
atic effects. Recent detections of the cosmic shear have mea-
sured different levels of B modes (for a discussion see e.g.
Refregier 2003), whose dominant source appears to be errors
in the PSF correction. Fortunately, recent improvements in this
matter (Hoekstra 2004; Jarvis & Jain 2004; Jarvis et al. 2005)
result in a very low level of B modes. Another potential system-
atics is the possible intrinsic alignment of neighboring galaxies

(Brown et al. 2002; Catelan et al. 2001; Crittenden et al. 2001,
2002), which can be ameliorated by using galaxies in differ-
ent redshift bins (Heymans & Heavens 2003; King & Schneider
2002), or in the specific case of shear three-point functions, by
taking advantage of its geometrical properties (Schneider 2003).

2.2. The shear two-point function

The naive computation of the two point function of the shear
field,

〈
γiγ j

〉
, vanishes by symmetry reasons. This is because the

pseudo-vector γ transforms under rotation as a spin-2 object,
which means that,

γ = γ1 + iγ2, Rφ (γ) = (γ1 + iγ2) ei2φ, (4)

where Rφ represents a rotation by angle φ. It is possible, how-
ever, to build combinations of γiγ j that do not average to zero.
For example, the combination 〈γAγ

∗
B〉|AB|=� is invariant under ro-

tations, and thus non-zero upon averaging. More generally, the
two quantities

ξ+(θ) =
1
2

〈
γAγ

∗
B + γ

∗
AγB

〉
|AB|=θ (5)

ξ−(θ) =
1
2

〈
γAγB + γ

∗
Aγ
∗
B
〉
|AB|=θ , (6)

are non-zero.
This property is easy to understand in terms of a tangential

and cross decomposition of the two-point shear correlation func-
tion. If we call ϕ the angle of the AB vector relative to the x axis,
we can define, for our two point a tangential (+) and a cross (×)
shear by

γ+ + iγ× = (γ1 + iγ2) e−i2ϕ, (7)

where the cross shear is oriented toward the direction π/4+ϕ, to
account for the transformation properties of the shear. In this lan-
guage the geometrical properties of the component of the shear
are easier to understand. The tangential component γ+ is of pos-
itive parity, whereas γ× of negative parity. We call parity trans-
formation any reflexion, for example, the reflexion on the x axis
that transform y into −y. The reflexion about the center of the
segment AB that exchange A and B is another example that we
will use in the following. Under parity transformation, a γ+ will
transform into itself, whereas a γ× will acquire a minus sign.

For the two-point function, a reflexion about the center of AB
is equal to a rotation by an angle π due to the transformation
properties of the shear pseudo vector under rotations. Therefore,
for a parity negative two points function D−, one would have, for
a parity transformation P

P(D−) = −D−
= Rπ(D−)

= D−
= 0. (8)

Only the positive parity combinations of γ+,× will be non-zero. In
other word, any non zero two-point function can be decomposed
as a linear combinations of

ξ++(θ) = 〈γ+γ+〉θ (9)

ξ××(θ) = 〈γ×γ×〉θ . (10)

In particular the correlation functions ξ± defined above read

ξ±(θ) = ξ++ ± ξ××. (11)
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Fig. 1. Definition and convention of triangle variables.

2.3. The shear three-point functions

Here we extend the approach in the previous section to the three-
point functions. In order to do this, we first need to define how
we describe triplets of points. For any triplet, we call the three
vertices θi, with i taken modulo 3, so that the triangles θ1θ2θ3 is
always oriented. We define the sides �i and the oriented angles
at each vertex ψi such that

�i ≡ θi+1 − θi+2 (12)

ψi ≡
( ̂�i+1, �i+2

)
. (13)

Figure 1 summarize these definitions.
Because of translation invariance, the three-point functions

depend only on the relative positions of the vertices, so we shall
use the three lengths �i to specify our oriented triangles.

To define the shear three-point functions we decompose the
shear into cross and tangential components in some basis rela-
tive to the triangle (Zaldarriaga & Scoccimarro 2003; Schneider
& Lombardi 2003). This is simpler than trying to find all possible
combinations of the three pseudo-vectors γ that have non-zero
three-point functions, but of course is equivalent. Choosing a ba-
sis was “natural” in the case of the two-point function (given by
the line joining the two points), but less obvious for a triangle.

Since we are interested in the three-point functions, the
knowledge of the position of the points is irrelevant; only their
relative positions matters. Therefore, we will drop the vector no-
tation for the vertices θi. Thus, any configuration is completely
described by either the three points relative positions, the three
angles or the three side length. Of course, since we have decided
to only deal with oriented triangles, the length, and not the side
vectors are enough.

A simple solution is to pick some “special” points of the tri-
angle and to project the shear along the vector linking this point
and the vertex we are interested in. Note that it is not, in fact,
necessary to choose such a special point. Any set of three orien-
tations defined by invariant properties of the configuration will
do. In the following, we call this choice of orientation a pro-
jection convention. Any change of projection convention can be
described by a rotation of each of the projection directions at
each vertex of the triangle. Of course, each of these rotations
can in principle depend on the shape of the triangle. We will
call such change a rotation of the projection convention of an-
gle (ζ1, ζ2, ζ3).

Once the projection convention is chosen, the shear field at
the three vertices of the triangle can be decomposed in a tan-
gential and a cross component, γ = (γ+, γ×). As in the two
point function case, these two components have, respectively,
positive and negative parity. This decomposition leads to eight
different three-point functions γµνρ, µ, ν and ρ being + or ×.
Half of them, γ+++ and γ+×× plus permutations are parity pos-
itive, whereas γ××× and γ×++ plus permutations are of negative

parity. Since the three-point functions also depend upon the pro-
jection convention, we will sometimes denote them by γ(ζ1 ,ζ2,ζ3)

µνρ ,
(ζ1, ζ2, ζ3) being a rotation to the reference frame.

We have seen that for the two-point function, parity prop-
erties reduce the number of independent functions from four to
only two. One can wonder whether the parity properties will also
reduce the number of non zero three-point functions. The parity
negative two-point functions vanish because after a parity trans-
formation, a simple rotation will bring back the points to the ini-
tial position (see Eq. (8)). This is not the case for three-point
functions, except in the special cases of equilateral triangles,
and some isoceles configurations, where a rotation can mimic
a parity transformation (Schneider & Lombardi 2003). This is
why in the general case parity-negative three-point functions are
non-zero (Schneider & Lombardi 2003; Takada & Jain 2003a).
Formally a parity transformation of a parity negative three-point
function for a configuration θ1θ2θ3 gives

P
[
γ

(ζ1,ζ2,ζ3)
µνρ (�1, �2, �3)

]
= −γ(ζ1 ,ζ2,ζ3)

µνρ (�1, �2, �3)

= γ
(ζ1 ,ζ3,ζ2)
µρν (�1, �3, �2), (14)

where we have assumed that the transformation exchange the
last two vertices. Thus, only if �3 = �2, ζ2(�1, �2, �3) =
ζ3(�1, �2, �3) and ρ = ν, parity forces the three-point function to
be zero. Note that for simple projection conventions, the prop-
erty ζ2(�1, �2, �3) = ζ3(�1, �2, �3) will usually be verified.

A free parameter that we overlooked in the case of two-
point function is the choice of projection convention. Indeed, we
picked the easiest projection where the angles from the reference
frame were the same for the two points. If we now allow these
two angles to be different, we break the property that the 〈γ+γ×〉
are zero, since we cannot equate parity transformations and π ro-
tations, and we are then in similar situation to that of three-point
functions. The choice of projection that seemed most natural for
the two-point function has this extra property that its parity neg-
ative component is zero.

Is it possible to find an analogous “natural” projection con-
vention that reduces the number of non-zero three-point func-
tions? This problem has been partly investigated by (Schneider
& Lombardi 2003). Here we shall reproduce their results and
extend them to answer the question of the preferred projection
convention.

In the two-point function cases, as we discussed above,
a rotation from the natural projection convention will induce
non-zero parity negative part. One can show that the ξ± will
transform as

ξ
(ζ1 ,ζ2)
± = e−i(ζ1±ζ2)ξ±. (15)

In other words, the ξ± only acquire a phase, their amplitude is in-
variant. One can build equivalent “rotational invariant” the three-
point functions as described in details in (Schneider & Lombardi
2003), where it is showed that any change of the projections axis
of the three points will leave the following four complex quanti-
ties invariants up to a phase

Γ0 = 〈γ1γ2γ3〉 , Γi =

〈
γ∗i

∏
j�i

γ j

〉
, (16)

with i = 1, 2, 3, which can be written as,

Γµ = Aµνγ
⊕
ν − i Bµνγ

⊗
ν , (17)

where µ, ν = 0, 1, 2, 3 and the matrices A and B have all elements
equal to ± 1, Bµν ≡ 1 − 2δµν, Aµν ≡ Bµν(1 − 2δµ0). In addition,
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γ⊕ and γ⊗ denote, respectively, the positive- and negative-parity
three-point functions,

γ⊕ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
γ+++
γ+××
γ×+×
γ××+

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , γ⊗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
γ×××
γ×++
γ+×+
γ++×

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (18)

The transformation of the Γi under the rotation of the projection
directions are given by

Γ′0 = e2i(ζ1+ζ2+ζ3)Γ0 (19)

Γ′1 = e2i(−ζ1+ζ2+ζ3)Γ1 (20)

Γ′2 = e2i(ζ1−ζ2+ζ3)Γ2 (21)

Γ′3 = e2i(ζ1+ζ2−ζ3)Γ3. (22)

This property has some interesting consequences. Indeed,
Eqs. (19)−(22) show that projection convention rotations will
not change the modulus of the Γi. At most, if a preferred projec-
tion exists (i.e. if the eight three-point functions are redundant),
they can be reduced to four quantities. It might be possible that
for a given triangle shape one can find a preferred convention
projection for which all parity-negative three-point functions
will be zero (one of course can always find a rotation that yield
three vanishing three-point functions). Let us note (ζ1, ζ2, ζ3) the
rotation that will transform a given projection convention into
the projection we are looking for. Equations (19)−(22) define a
system of four equations that our ζi have to verify. This is possi-
ble if and only if Φi, the phases of the Γi, verify the relation

Φ0 = Φ1 + Φ2 + Φ3 + kπ k ε Z. (23)

For isosceles triangles, this condition can be shown to be true.
Indeed, the parity properties imply that for any isoceles configu-
ration in θ1, the following relations hold

Γ2 = Γ
∗
3 (24)

Γ1 = Γ
∗
1 (25)

Γ0 = Γ
∗
0, (26)

that is, Φ0 and Φ1 are zero (modulo π), whereas Φ2 =
−Φ1. The rotations that change a projection convention to one
with the zero parity negative three-point functions are of the
form (0,−Φ/4,Φ/4), where Φ = Φ2 = −Φ3 is the phase in
the first projection convention. Note that this result is of little
use, since it just shows in a different language that only four
quantities are needed to describe the isosceles configurations,
which can be shown only from parity considerations. Moreover,
the phase Φ has to be evaluated in order to find the preferred
convention projection.

Neither parity properties, nor geometrical considerations al-
low us to prove or disprove the conditions in Eq. (23) in the
general case. The answer to our question will have to come from
the computation of the three-point functions that we will exhibit
in the next section.

3. Analytical predictions for the three point
functions

We now proceed to calculate the eight shear three-point func-
tions. This can be done in terms of the eight γµνρ or four Γi which
are completely equivalent. In fact we will present results in both
representations, although most of the time we deal with Γi.

To compute the three point functions of the shear, we will
use a simple model that captures most of the features of a more

detailed calculation. The reason for studying such a simplified
model will become clear in Sect. 4 when we discuss how to “op-
timally” combine the eight three-point functions into a single
three-point function.

3.1. A single halo

Weak lensing surveys provide their best constraints at scales
small enough (one to ten arc minutes) that are well into the non-
linear regime. For example, for measurements on background
galaxies at redshift around unity, the weak lensing efficiency
is maximum at about z = 0.43 for an Ωm = 0.3, ΩΛ = 0.7
cosmology, for which one arc minute corresponds to a distance
of 0.3 Mpc/h. For such scales, contributions to lensing statistics
come mainly from light deflection by single dark matter halos,
and it is a good approximation to compute the light deflection
ignoring coupling between different deflections (Cooray & Hu
2002; Van Waerbeke et al. 2001). In the language of the so-called
halo model (Cooray & Sheth 2002), statistics are dominated by
the “one-halo” contribution, and this has been verified for the
shear three-point functions by comparison with measurements in
numerical simulations (Takada & Jain 2003a,c). Remarkably, as
shown in Zaldarriaga & Scoccimarro (2003), for scales of about
three arc minutes the full dependence of the shear three-point
functions on the triangle shape for the halo model agree very
well with a calculation based on a singular isothermal sphere up
to an overall amplitude. Given these results, we will only slightly
go beyond the singular isothermal model. We shall assume that
the shear three-point functions can be calculated by the contri-
bution from one spherical halo located at the maximum of the
lensing efficiency window. The halo profile will be taken as a
general power-law

ρ(r) ∝ 1
rn
, (27)

where n = 2 corresponds to an isothermal sphere. In general,
simulations suggest dark matter halos have n ∼ 1 near the halo
center and n ∼ 3 at large distances (Navarro et al. 1997),

ρ ∝ 1
r(ro + r)2

, (28)

where the effective profile index is neff = 2 when r = ro, typi-
cally a tenth of the halo virial radius. Assuming a fixed n (which
can be determined by the angular scale probed and the halo
mass of the dominant contribution to the three-point function)
we loose cosmological information, but on the other hand the
calculation can be done analytically and also the scaling proper-
ties of Eq. (27) allows us to ignore the halo profile normalization
and the effects of projection which enter as an overall constant.

Computing lensing by a spherical halo is very simple. From
Eqs. (1), (3) and (27) it follows that the shear pattern behaves as

γ =

[
cos(2θ)
sin(2θ)

]
γ(r), (29)

with

γ(r) = r1−n. (30)

The contribution of such a halo to the three-point functions is
therefore

γµνρ(�1, �2, �3) =
∫

d2u Pµ · γ(θ1) Pν · γ(θ2) Pρ · γ(θ3), (31)
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where the symbols Pµ stand for the projectors in the + and ×
directions. The three points are taken at the positions θi, such
that �i = θi+1 − θi+2, and we use all our indices i modulo 3.
Note that we integrate out the position of the center of the halo,
denoted by u.

Equations (30) and (31) imply that in our simple model, the
following scaling relationship holds,

γµνρ(λ �1, λ �2, λ �3) = λ5−3n γµνρ(�1, �2, �3). (32)

Since all choices of projections are equally valid, we can choose
here the projection operator to simplify the calculation as much
as possible. Here we will take the projection direction at each
vertex to be that of the opposite side. Note that this is equivalent,
up to a sign, to projecting along the lines joining each vertex
of the triangle to its orthocenter (Schneider & Lombardi 2003).
For simplicity, we shall refer to our projection as “orthocenter”.
With this choice, the projected shear reads

Pµ · γ(θi) =
trigµ(2φi)

|θi − u|n−1
, (33)

where trig+ ≡ cos and trig× ≡ sin. The angle φi is the angle
defined by the line joining the vertex and the center of the halo
and the opposite side of the vertex

cos(φi) =
(u − θi) · �i
|u − θi| �i

· (34)

Given our choice of projection, the trigonometric functions can
be written in terms of the configuration (�1, �2, �3), and the rel-
evant integrals computed in terms of hypergeometric functions
(see Zaldarriaga & Scoccimarro 2003, for description of the in-
tegration procedure). We refer the reader to Appendix A for
details.

The reader is reminded that the computation we exposed
here is only valid for three-point functions, and is not applica-
ble to two-points function of the shear, as the integral will then
diverge for the singular isothermal model.

3.2. Results

Figures 2−4 present our basic results for the isothermal profile
case (n = 2), for fixed ratios of sides (�2/�3 = 1, 2, 3), as a
function of angle ψ1 as defined in Fig. 1. Due to the scaling
in Eq. (32) a choice of sides ratio completely describes other
triangles with different overall scale up to a normalization con-
stant. Figure 2 shows γµνρ, whereas Figs. 3 and 4 show Γi. A
comparison between different values of the power-law index n is
presented in Figs. 5 for�(Γ0) and �(Γ2) when �2 = �3.

Figures 2 and 3 show results in two different projection con-
ventions. To go from the orthocenter to the center of mass pro-
jection convention it is necessary to compute the angles ηi be-
tween the line joining the center of mass with the ith vertex and
the �i (see Fig. 1) and use the relations given by Eqs. (19)−(22).
Comparing both projections is useful to disentangle geometrical
properties from projection-dependent behavior. Comparing top
and bottom panels in Figs. 2 and 3 we see that, qualitatively, the
orthocenter projection leads to “wigglier” correlation functions.

Parity related features in the three-point functions for isoce-
les triangles are evident: γ×+× = γ××+, γ++× = −γ+×+ and γ××× =
γ×++ = 0 in Fig. 2 and Γ2 = Γ

∗
3 and �(Γ0) = �(Γ1) = 0 in Fig. 3.

Furthermore, for equilateral triangles γ+×× = γ×+× = γ×++ and
γ×++ = γ+×+ = γ++× = 0. Other features that these figures show
appear more difficult to predict; for example, the local extrema

Fig. 2. The top (bottom) panel shows the positive (γ⊕µνρ) and nega-
tive (γ⊗µνρ) parity three-point functions for the center of mass (ortho-
center) projection convention. We have assumed an isothermal sphere
profile (n = 2) and a fixed ratio (�2/�3 = 1) and plotted as a function of
the angle ψ1 (see Fig. 1 for a definition). Line styles for parity positive
three-point functions are γ+++ (solid), γ+××(long-dashed), γ×+× (dotted)
and γ××+ (dashed) whereas for negative parity γ××× (solid),γ×++ (long-
dashed), γ+×+ (dotted) and γ++× (dashed).

of γ+++ for configurations close to equilateral triangles are not
exactly located at 2π/3 and depend on the projection convention
(after all, the average over the position of the halo does depend
on projection convention). In addition, points where some γµνρ
are equal to each other change location (and can disappear or
appear) as projection convention is changed.

Figure 4 shows what happens as we consider triangles other
than isosceles. Note that now all the parity-negative three-point
functions are non-zero. The fact that Γ1 ∼ −Γ∗2 (and accord-
ingly that Γ0 ∼ Γ3) can be understood as follows. Indeed,
when cos(π − ψ1) = 1/4 (1/6 for bottom panel) the configu-
ration is isoceles in θ3, thus ensuring that Γ1 = Γ

∗
2 by parity.

Around this angle, it follows from parity that Γ2(ψ1 + ε, �2, �3) ∼
Γ∗1(ψ1 − ε, �2, �3) for ε  �2/�3. In addition, as �2/�3 increases,
the product γ1γ2 will start to dominate the three-point function,
and thus parity properties become essentially those of the two-
point function, insuring that Γ1 ∼ −Γ∗2. These arguments explain
why as �2/�3 increases (compare top and bottom panels in Fig. 4)
Γ1 gets closer to −Γ∗2 and Γ0 to Γ3.

Figure 5 shows how the correlation function �(Γ0)
and �(Γ2) depend on the slope of the profile n. The zero cross-
ing of �(Γ2) at 2π/3 can be explained by parity; however, the
other zero crossings (and the number of them) depend on the
profile slope n. For �(Γ0) there is a zero crossing at ψ1 ∼ 50◦,
which appears robust to changes in n, but we found no simple
explanation for this.
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Fig. 3. Same as Fig. 2 but for the real (positive-parity) and imaginary
(negative parity) parts of Γi. Line styles are as follows: Γ0 (solid),
Γ1 (long-dashed), Γ2 (dashed), Γ3 (dotted).

Fig. 4. Same as Fig. 3 but only in the center of mass projection, for sides
ratio �2/�3 = 2 (top panel) and �2/�3 = 3 (bottom panel).

Fig. 5. The real part of Γ0 (top) and the imaginary part of Γ2 (bottom)
for different values of the profile index of the halo n and �2 = �3. Line
styles are n = 1.2 (long-dashed), n = 2 (solid), n = 2.1 (dotted), n = 2.5
(dot-dashed).

We now consider again the question raised at the end of
Sect. 2.3 regarding the existence of a preferred projection, in the
context of our simple model. The condition in Eq. (23) can be
rewritten as

� = Γ0 (Γ1Γ2Γ3)∗ ε R. (35)

Figure 6 shows �(�) and �(�) for triangle with �2/�3 = 2. We
see from the bottom panel that the imaginary part does not van-
ish, thus it is not possible to find a preferred projection where all
negative-parity three-point functions vanish (but of course we
can make three of them vanish by using Eqs. (19)−(22)). Note
however, that the relation in Eq. (35) is close to being satisfied,
at least approximately, for almost all ψ1.

4. The shear three-point functions in numerical
simulations

We now describe the results of measuring the shear three-point
function in N-Body simulation. For details about the simula-
tions and the procedure we followed to make the measurements
see Appendix B. Basically, we created shear maps with three
different resolutions that cover a large range of scales (roughly
from 4 arcsec up to 1, 10 and 40 arcmin). In practice, we mea-
sured the γµνρ in the center of mass projection convention, and
then transformed to the Γi.
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Fig. 6. The real (top) and imaginary part of � for the �2/�3 = 2 case
as a function of ψ1. The non-zero imaginary part shows that there is
no preferred projection convention where all negative-parity three-point
functions vanish.

4.1. Results

We start by comparing the scaling of the three-point functions to
see, using Eq. (32), whether the effective value of the profile in-
dex is reasonable compared to expectations based on dark matter
halo profiles such as Eq. (28). Figure 7 shows results from the
medium resolution measurements, where we have scaled�(Γ1)
assuming an n = 2 profile. More precisely, given an isosceles
triangle where two sides are equal to �, we have fitted for Γ̄1
and α(�) so that

�(Γ1(ψ1, �, �)) ∼ Γ̄1(�)(1 + α(�)ψ1), (36)

where α(�) incorporates the dependence on the angle between
the two equal sides. In practice we found that variations of α
with � are small, thus they have been neglected. To avoid artifi-
cial deviations from scaling due to our binning (see discussion
below), we have kept our triangles far enough from being col-
lapsed, i.e. we restrict π/9 ≤ ψ1 ≤ 8π/9. The results in Fig. 7
show that the scaling between 1 and 3 arcmin is consistent with
that of an isothermal sphere, whereas for larger angular scales
�Γ̄1(�) ∼ �−1 and thus the effective profile index increases to-
ward n = 7/3 ∼ 2.3 (see Eq. (32)). This is consistent with the
hypothesis that we are only sensitive to the index of halos that
contribute the most at the scale we are probing. Indeed, at the
maximum of the lensing window function, z ∼ 0.4, masses in the
range 1013 M� to 1015 M� have r0 (where neff = 2, see Eq. (28))
of the order of a few arc-minutes.

Given the results in Fig. 7, we can now compare the n =
2 model to our measurements in simulations at arc minute scales
to check whether they agree (up to an arbitrary constant that our
model does not predict). Figure 8 shows the comparison between
the n = 2 model (with amplitude fixed by maximizing agreement
with Γ2) and simulations for triangles with �2 = �3 = 2.25 ar-
cmin. We see that by adjusting a single amplitude, all other
Γi show good agreement as well, giving support to our simple
model. This result is not surprising given that an isothermal pro-
file was shown to agree with a calculation based on the halo
model in Zaldarriaga & Scoccimarro (2003), and the latter was
found to be in good agreement with measurements in numerical
simulations in Takada & Jain (2003a,c).

It is apparent from Fig. 8 that as the triangle becomes col-
lapsed (ψ1 → 0◦, 180◦) the agreement with the model is not as
good, particularly in the parity positive case. This can be under-
stood as a result of the effect of binning in the simulation mea-
surements, where many configurations contribute to each bin.

Fig. 7. Scaling test for �0 = 1.125′. The points with error bars represent
S = ¯�Γ1(�)/(�0Γ̄1(�0)). The solid line is S = 1 (n = 2), whereas the dot-
ted line denotes to which according to Eq. (32) correspond to n ≈ 2.3.

Fig. 8. Predictions from our n = 2 model compared against measure-
ments in simulations for isosceles triangles with � = 2.25 arcmin. The
top (bottom) panel shows the real (imaginary) part of Γ1, and the model
arbitrary amplitude has been adjusted to match Γ2.

In the case we are considering here, it amounts to an error of
order 10% on the length of �2 and �3 and about 2% on the an-
gle ψ1. On can estimate the effect of binning by computing in
our model Γ̃i defined as instead

Γ̃i =
Γi(ψ1, (1 + ε)�, �) + Γi(ψ1, �, (1 + ε)�)

2
, (37)

with ε = ∆�/� ∼ 0.1. This prediction is compared to the
same measurements in Fig. 9. The results show that the be-
havior near collapsed triangles, such as the sharp divergence
of�(Γ1), can be explained by the discreteness error due to bin-
ning. Generically, our model shows that the effect of a small
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Fig. 9. Same as previous figure, but modifying the model prediction
to mimic the effect of binning in the simulations, approximately, as in
Eq. (37).

error in the determination of the length of the triangle sides
can translate into significant corrections to the three-point func-
tions for nearly collapsed triangles. Another noticeable discrep-
ancy between our model and the numerical simulations are the
slightly displaced zeros of �(Γ2) and �(Γ3) and their amplitudes
for ψ1 < 60◦. The former can be improved by slightly chang-
ing the profile index, as shown in Fig. 5 the first zero in these
three-point functions is very sensitive to small variations in the
profile index. The difference in amplitude can also be seen in
similar plots in Takada & Jain (2003a) when using the full halo
model; this suggests perhaps that such deviations could be due
to the assumption of spherical halos (see Ho & White 2004, for
a discussion). It is worth exploring this issues further as they
may provide a novel way of testing dark matter halo profiles and
shapes. Some steps in this direction have been already taken in
Takada & Jain (2003c), where the two- and three-point function
of the convergence field were used to constrain parameters of
halos such as concentration and inner profile slope.

Finally, we present results from simulations for isosceles and
non-isosceles configurations, from our high resolution measure-
ments, at �2 = 0.42′ (Fig. 10) and middle resolution one at
�2 = 2.8′ (Fig. 11). These should be compared with the top panel
in Fig. 3 for the isosceles case, and Fig. 4 for non-isosceles tri-
angles. We can see that for �2 = 2.8′ the agreement with Figs. 3
and 4, as expected from the scaling test that suggests that the ef-
fective index is close to n = 2. However, for �2 = 0.42′ we see
that there are significant differences, the three-point functions
changed as expected from the results of our analytical model in
Fig. 5 when the profile index becomes smaller than n = 2.

We have also made measurements in lower resolution sets
(not presented here) that allows us to probe larger scales. Again

Fig. 10. Γi measured for �2 = 0.42′. In each panel top (bottom) part
shows positive (negative) parity three-point functions. Panels corre-
spond to isoceles triangles (top), �2 = 2�3 (middle) and �2 = 3�3 (bot-
tom). Symbols are as follows Γ0 (plus), Γ1 (cross), Γ2 (star) and Γ3 (box).

we see consistent results with those expected from Fig. 5 for in-
dices n > 2, in particular regarding the dependence of number
of zeros as the scale is changed. However, one cannot extend
this study to significantly larger scales, as contributions from
more than a single halo become important and our simple model
breaks down.

5. Estimators of cosmic shear three-point functions

We now turn to the problem of building a simpler estimator of
the shear three-point function. One obvious solution is to com-
bine them to reconstruct the weak lensing convergence bispec-
trum (Schneider et al. 2005). However, equations involved into
the computation of the bispectrum from the shear three-point
functions are very difficult to compute numerically. They corre-
spond to the inversion of a non-local equation; a task that usually
cannot be fulfilled from real data without some regularization of
the problem.
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Fig. 11. Same as previous figure for �2 = 2.8′.

The so-called Map statistic filters provide such regulariza-
tion. They have been used successfully to reconstruct the filtered
convergence two-point function from measurement of the shear
two-point functions (Schneider et al. 2002). Another great ad-
vantage of these family of compensated filters is that, to some
extent, they can be custom designed to have a finite real space
support (or at least exponentially small wings), allowing for rela-
tively quick data analysis. A problem of those method, however,
is that one can expect a degraded signal to noise from the initial
data, due to the use of compensated filters that impose cancella-
tion of part of the signal. This have not been an important issue
for two-point functions.

The Map approach has been also applied to three point func-
tions (Jarvis et al. 2004; Pen et al. 2003; Schneider et al. 2005).
It has been showed that one can exhibit a summation procedure
for measured data that results into an estimation of the Map fil-
tered bispectrum of the convergence field. Measurements on real
data have been performed. The quality of data being low and the
degradation of the signal-to-noise ratio inherent to Map statis-
tics results in very large error-bars (Jarvis et al. 2004; Pen et al.
2003).

Owing to its simple relation with the convergence bispec-
trum and thus to the matter distribution bispectrum, the Map ap-
proach is certainly a very appealing estimator of the weak lens-
ing three-point function. However, as it seems to require a high
quality dataset, the need for a simple and robust estimator of
the weak-lensing three-point function remains. The shear three-
point functions Γi can provide such tool, but they still have a
complicated dependency on the configuration. Our goal in this
section, is to use our analytical prescription in order to propose
a way to build an estimator with simpler properties, yet avoiding
as much as possible cancellations to preserve the signal-to-noise
ratio.

5.1. Previous estimators

Bernardeau, van Waerbeke and Mellier (Bernardeau et al. 2003,
hereafter BvWM) proposed a simple estimator that exhibits
some of the properties discussed above. They studied the pseudo
vector field F
F (�1, �2, �3) = 〈γ1 (γ2 · γ3)〉 , (38)

where all pseudo vectors γ are projected along the direction
given by �1. In such case, symmetry does not imply that F van-
ishes. BvWM were able to evaluate F for special configurations
of the three points. They also computed it in the framework of
the hierarchical ansatz and measured it in N-body simulations.
From their results, it seemed that the parity-negative part of F
was negligible and that the parity-positive part was not changing
sign in a small region around θ2θ3. They empirically fitted the
shape of this region by an ellipse of focal points θ2, θ3. In light
of this, they proposed to use the averaging on the ellipse of the
parity positive component of F as their estimator of the shear
three point function.

The pseudo-vector F can be re-expressed as a combination
of the Γi. Let us place ourselves in the projection convention de-
fined by the direction of θ2θ3 (this choice of projection is pecu-
liar in the sense that it artificially breaks the symmetry properties
by distinguishing one of the points). With this choice, the scalar
product (γ2 · γ3) reads

(γ2 · γ3) = γ(2)+γ(3)+ + γ(2)×γ(3)×. (39)

Multiplying the previous equation by γ1 leads to the expression
of F

F =
(
γ+++ + γ+××
γ×++ + γ×××

)
, (40)

which can be written in terms of the Γi

F = 1
2

(Γ2 + Γ3) . (41)

Remember that the last equation holds only for the θ2θ3 projec-
tion convention; Eqs. (19)−(22) can be used to rotate the expres-
sion into some other projection convention.

Figure 12 presents theF pseudo-vector in the top right quad-
ran of the plane, computed from our analytic model, with index
n = 2. The base of triangle (θ2θ3) spans the range [−1/2, 1/2]
on the x axis. Figure 12 partly reproduce the result from
(Bernardeau et al. 2003). In particular, even if the parity-negative
part of the pseudo-vector F is smaller than the parity positive
component, it is not negligible. We also explore the region where
the parity positive component keeps the same sign. Contour plots
on the left panels of Fig. 12 shows that its shape is richer than
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Fig. 12. Predictions for the F estimator. Left panel presents the
real/parity positive (top) and imaginary/parity negative (bottom) parts.
Right panel shows the resulting pattern. The points θ2 and θ3 are fixed to
(0,−1/2) and (0, 1/2). The coordinate gives the position of θ1. We only
shows one fourth of the plane. The rest of it can be determined from
parity properties. F× goes go to zero on the x and y axis.

that of an ellipse. Changing the profile index n modifies slightly
the properties of F . The overall shape shown Fig. 12 is con-
served. Modifications are concentrated around the x axis, when
the configuration is nearly flat; in particular, the number of con-
stant sign region along yθ1 = 0 changes as can be expected from
Fig. 5. Finally, the amplitude of the parity-negative component
decreases slightly when the value of the profile index increases.
This explains the apparent discrepancy between BvWM results
and ours. They are averaging their measurement in numerical
simulations on scales bigger that the one probing the region
where the halo profile is well described by n = 2. Moreover,
the binning procedure can average out the parity negative part.

Although ignoring the parity negative part and summing the
parity positive part over an ellipse is a good starting point,
the BvWM estimator can be improved by using the prediction
of the expected shear pattern as we now discuss.

5.2. A new estimator: projecting measurements
onto shear pattern templates

An approach to avoid signal to noise cancellation due to positive
and negative contributions when combining different three-point
functions is to “project” the measurements of the Γi directly
onto the expected result (template) from analytic predictions and
build an estimator such as

D0 ≡
∑

i

Γ̃iΓ
∗
i , (42)

Γ̃i being the analytical predictions, the star denoting the complex
conjugate. Note that D0 now depends on our choice of profile
index n. One can do even better, assuming that the covariance of
the Γi is known, by building a “minimum variance” estimator of
the three-point function

D1 ≡
∑
i, j

Γ̃i

〈
ΓiΓ
∗
j

〉−1
Γ∗j, (43)

where
〈
ΓiΓ
∗
j

〉−1
denotes the inverse of the covariance matrix.

D1 is only a minimum variance estimator to the extent that its
distribution can be approximated to be Gaussian.

It has been shown that to a good approximation, the covari-
ance of the three-point function of the weak lensing shear can

be evaluated by restricting the computation to the Gaussian con-
tribution (Takada & Jain 2003c). However, even if we restrict
ourselves to the Gaussian contribution, the covariance matrix is
difficult to compute analytically. Indeed, as discussed above the
geometrical properties of the shear complicate the calculation of
the three-point functions, and the situation is even worse here,
as we have to integrate over all possible orientations and posi-
tions of two identical triangles. To avoid such complication, we
evaluate the covariance matrix by measuring it in our numerical
simulations (using 40 realizations, see Appendix B). Even in this
case the resulting evaluation of the covariance matrix is quite
noisy, which somewhat reduces the reliability of D1, but nev-
ertheless provides an estimation of the expected signal-to-noise
improvement that can be expected from a better determination
of the covariance of the Γi.

The D0 and D1 estimators depend on the configuration of
the three points. We reduce this dependence by summing the
estimators over a set of configurations. This sum is similar to
the approach taken by BvWM, where they integrated over all
observed configurations in a small ellipse. In our case there is
no particular choice of summation region, as we are guaranteed
to avoid cancellations as long as the effective profile index is
close to the one of our template (n = 2, our fiducial choice). To
simplify the process of summation, we take advantage of the fact
that our measurements are already binned by length and opening
angle, thus we sum configurations along the opening angle of the
triangle, ψ1, for a given ratio of lengths �2/�3. The overall length
of the triangle should be absorbed into the scaling relation (32)
when it holds. Thus we define

I0(�, �2/�3) =
∫

dψ1D0(ψ1, �, � × �2/�3), (44)

and the corresponding I1, for the estimator D1. When the
effective profile index is close to n = 2, Eq. (32) implies
that I0(�, �2/�3) obeys the following relation

I0(λ�, �2/�3) =
1
λ2
I0(�, �2/�3). (45)

In other words, we expect the estimators to behave like power
laws. Figures 13 and 14 present the measurements of I0 and I1
with the template profile index n = 2. Error bars correspond to
the variance among different realizations. The integral over the
opening angle has been cut-off at ψ1 < π/9 and ψ1 > 8π/9
to avoid errors arising from binning. The measurements are
compared with analytic predictions obtained by mimicking the
measurement procedure, i.e. the integrals of Dth

0 =
∑

i Γ̃iΓ̃i
∗

(resp.Dth
1 =

∑
i, j Γ̃i

〈
ΓiΓ
∗
j

〉−1
Γ̃∗j) are computed with the same cut-

off on ψ1 and using the same sampling in ψ1 resulting from the
binning of our dataset. This explains the slight departure from
a power-law in the theoretical curves in Fig. 13. The normal-
ization free parameter in the theoretical model has been set so
as to maximize the agreement between the measured Γ2 and its
analytic estimation for isoceles configuration at 1 arcmin. The
large difference in normalizations between I0 and I1 is due to
the fact that we did not normalize the covariance matrix; it ac-
counts for the inverse of the covariance matrix determinant. The
estimators I0 and I1 have been measured for isoceles triangles,
as well as for some elongated configurations �2/�3 = 2, 3 and 4.
Due to our data analysis strategy only a few elongated configu-
rations are available (see discussion in Appendix B). Figure 13
shows the results for all our dataset, whereas Fig. 14 focuses only
on the medium scale dataset, where the effective profile index is
expected to be close to n = 2.
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Fig. 13. I0 measured in our three datasets. Results for all datasets are
combined into this composite figure. In the top panel, top to bottom set
of points corresponds to measurement for �2 = r�3 for r = 1, 2, 3, 4. The
corresponding theoretical prediction for n = 2 are shown on top of the
points for r = 1 (solid line), r = 2 (long dashed), r = 3 (dashed) and
r = 4 (dotted). Bottom panel shows the ratio between the measurement
and theoretical prediction for r = 1.

Fig. 14. I1 measured in our medium resolution dataset. The solid line is
a power law proportional to 1/�2 and shows the expected scaling. Other
curves are semi analytical results (the covariance matrix has been eval-
uated from the simulations). They correspond to r = 1 (long dashed),
r = 2 (dashed), 3 (dotted), r = 4 (dot-dashed). Measurements partially
agree with the semi-analytical predictions

As expected, I0 is very close to its theoretical estimation be-
tween 1′ and 4′ where the effective profile index is close to n = 2.
The agreement is very good for isoceles triangles as well as for
the elongated configurations. The agreement between the theo-
retical and measured I1 is not as good. Note that Fig. 14 seems
nevertheless to indicate a behavior similar to a power law, corre-
sponding to neff = 2. Clearly, here we are sensitive to the noise in
our estimation of the covariance matrix. Even with our cut in ψ1,
D1 still gets a significant contribution from flattened configura-
tions, where the covariance matrix terms are large. The discreet-
ness errors induced by the data binning are also responsible for
part of the discrepancy. Measurements for elongated configura-
tions (�2/�3 > 1), where discreetness effects are less important
by construction, show a better agreement with the analytic esti-
mations. For scales out of the 1−4 arcmin ranges, the theoretical
pattern is no longer valid, and the projections D0 and D1 de-
crease. We can see this behavior in Fig. 13.

We now estimate the improvement of signal to noise in our
estimator compared to the one proposed by BvWM. More pre-
cisely, we measure the pseudo-vector F , as a function of the

Fig. 15. Same as Fig. 13 for our improved version of the BvWM
estimator.

Fig. 16. Signal to noise forI0 (solid line),I1 (dashed) and our improved
version of the BvWM estimator (dotted). Only isoceles configurations
have been taken into account. Data are projected on the n = 2 model
predictions. Only the medium resolution datasets are used.

configuration, project it on our analytical model and sum it along
the opening angle of the triangle, in a similar way to what we
have done for I0 and I1. Note that this is an enhancement
of BvWM method since we are using both components of the
pseudo vector F . Indeed, since we are projecting on analytical
predictions, the parity-negative part will no longer average to
zero. Figure 15 presents the measurements in the simulation as
well as the theoretical prediction and can be directly compared
with Fig. 13.

Finally, Fig. 16 shows the signal to noise ratio for the differ-
ent estimators, evaluated in our simulations. We do not take into
account experimental noise such as the distribution of intrinsic
ellipticity of the galaxies or the uneven distribution of sources.
Our estimation is thus dominated by the cosmic variance. The
shot noise term due to the intrinsic orientation of the galaxies
will mainly contribute as a non correlated source of noise at
small scales. For the simplified case of the convergence three-
point function of equilateral triangles, it has been shown that
this term contributes at scales smaller than 1 arcmin (Takada &
Jain 2003c). As expected, I1 has the best S/N ratio, nearly twice
better than I0. This however degrades quickly as the effective
profile index leaves the neff ∼ 2 region. The S/N ratio of I0 is
about 30% better than for our improved BvWM estimator. This
is not unexpected, Eqs. (41) shows that F can be computed with
only two of the Γi, whereas I0 uses all four of them. If Γi are
uncorrelated, this should correspond to a

√
2 degradation of the

signal-to noise ratio, which is close to the 30% we measure here.



432 K. Benabed and R. Scoccimarro: The cosmic shear three-point functions

Recall that our improved BvWM estimator uses the full F
pseudo-vector. Using only the parity positive coordinate will fur-
ther reduce the signal to noise by another factor

√
2 if its two

components are uncorrelated.

6. Conclusion and discussion

We have described a simplified analytic model that can be used
to compute the three-point functions of the shear. This model is
inspired by halo models, and only considers the one-halo con-
tribution of a spherical potential of power law profile. The free
parameters of our models are the profile index n and a normal-
ization. We have used this model to investigate some geometri-
cal properties of the shear three-point function. In particular, we
have shown that there is no preferred projection choice that will
reduce the number of independent three-point functions.

We have compared the predictions of this model with results
from N-body simulations. The predicted and measured three-
point functions of the shear where shown to be in good agree-
ment. In particular, we have shown that the approximation made
on the profile index is sufficient to predict the shear three points
function in a reasonable range of scales. The isothermal pro-
file case, n = 2, corresponding to scales from 1′ to 4′. These
scales correspond indeed to the scales where the dominant ha-
los at redshift z = 0.4 are seen with a local profile index n = 2.
As expected, the smaller scales exhibited a behavior compati-
ble with an index n < 2, while larger scales where compatible
with n > 2. Our model allows for computations with a modified
profile index, and it can thus be used at smaller or larger scales.
However, at scales bigger than 4′, the one-halo dominant contri-
bution model will break down, and one should take into account
two and three halo terms (Takada & Jain 2003b).

Using the agreement between our model and synthetic data,
we proposed an optimized measurement of the cosmic shear
three-point function. Our method trades the easier cosmological
analysis allowed by Map reconstructions methods for a better sig-
nal to noise of the measurement by avoiding cancellations. We
use the model predictions to compute “optimal” weighted sums
of the eight three-point functions. Contrarily to the Map statistic,
this kind of estimator is local and is not affected by the shape of
the survey. These methods can be seen as a refined version of the
one proposed by BvWM (Bernardeau et al. 2003).

We computed two such estimators, the first a simple projec-
tion on our theoretical model, the other taking into account an
estimation of the covariance matrix of the shear three-point func-
tions. We compared them with an improved version of the esti-
mator implemented by BvWM. Our estimators perform much
better than the improved BvWM. The minimal variance estima-
tor lets us expect more than a factor of two gain in the signal to
noise in the best case.

With future space-based experiments, the quality of cosmic
shear data will greatly increase and the loss of signal to noise in-
herent to compensated filters will be a not too high a price to pay
for accessing to the filtered three-point function of the conver-
gence. In the meantime, we believe that methods using projec-
tions of data onto theoretical predictions, as the one we proposed
here, will be an interesting alternative. Improvement to what we
proposed here will be doubtless needed. In our analysis, we first
measured the three-point functions and then projected them on
analytic templates, increasing the errors due to discreteness of
the binning. We saw that this error has a significant impact on
elongated isoceles configurations. Projecting the data as they are
measured can solve this problem. Using a simple projection al-
ready improves the situation compared to what has been done

before. The minimal variance estimator promises an even better
ability to detect the shear three-point functions. Results from this
estimator are yet difficult to forecast as our evaluation of the co-
variance matrix is somewhat noisy. More numerical simulations
will be needed to quantify this better.

Improving the choice of effective halo profile index will also
result in a net improvement, since by restricting the index to that
of an isothermal sphere, n = 2, we were only able to improve the
efficiency of the three point function estimator around 1−4 ar-
cmin. This is not a restriction of the model, since it can be easily
extended to any other index profile. More generally, given any
model for the three-point functions one can compute the “opti-
mal” estimators we define here.

Finally, we have not investigated how our method can be
used to obtain information on the underlying cosmological
model. With our simple model, all the cosmological information
is encoded in the free normalization parameter. Further work,
comparing our simple model, with a full halo model will be
needed to investigate this point.
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Appendix A: Projection onto the opposite side

Here we describe the computations of the trigµ(2φi) factor for
the opposite side projection described in Sect. 3.1. Remember
that the angles φi are defined by

cos(φi) ≡ (u − θi) · �i
|u − θi| �i

·

The computation of trig+(2φi) = cos(2φi) is the simplest.
Defining di ≡ θi − u, one gets

cos(φi) =
θi · �i − 1

2

(
θ2

i+1 − d2
i+1 − θ2

i+2 + d2
i+2

)
di�i

,

which, using the identity

2θi · �i − θ2
i+1 + θ

2
i+2 = �

2
i+1 − �2

i+2

reduces to

cos(φi) =
d2

i+1 − d2
i+2 + �

2
i+1 − �2

i+2

2di�i
·

The last step needed to obtain cos(2φi) is straightforward, using
cos(2φi) = 2 cos(φi)2−1, one gets the final expression of cos(2φi)
as a polynomial of the 4th degree in di+1 and di+2 and second
degree in di, divided by d2

i �
2
i

trig+(2φ1) =
1

2d2
i �

2
i

[
d4

i+1 + d4
i+2 − 2d2

i+1d2
i+2 − 2d2

i �
2
i .

+2
(
d2

i+1 + d2
i+2

) (
�2

i+1 − �2
i+2

)
+

(
�2

i+1 − �2
i+2

)2
]
.

The parity negative terms require a little more work. One can use
the identity sin(2φi) = 2 cos(φi) sin(φi). The difficulties lie in the
computation of sin(φi). One can use the fact that

sin(φi) =
(u − θi) ∧ �i
|u − θi| �i

· z, (A.1)

and re-express the unit vector z as

z =
�i+2 ∧ �i

�i+2�i sin(ψi+1)
· (A.2)

Finally, a careful invocation of the identity

(A ∧ B) · (C ∧ D) + (B · B) (C · D) = (A.3)
(A ∧ C) · (B ∧ D) + (A · C) (B · D)

allows us to re-express Eq. (A.1) as

sin(φi) =
1

di�
2
i �i+2 sin(ψi+1)

{− (u − θi) · �i �i · �i+2

+ [(u − θi+2) + (θi+2 − θi)] · �i+2 �
2
i

}
(A.4)

which can be written as a function of cos(φi+2) and cos(φi) and a
term that only depends on the configuration

sin(φi) =
1

di�
2
i �i+2 sin(ψi+1)

(
cos(φi+2)di+2�i+2 �

2
i

+ cos(φi)di�i �i · �i+2 + �i+1 · �i+2�
2
i

)
. (A.5)

This last expression can be expressed only in terms of � j=1,2,3
and d j=1,2,3 as the ratio between a 4th degree polynomial in

the d j=1,2,3 divided by di, the coefficient being functions of the
� j=1,2,3. After simplifications, the final result for trig×(2φi) =
sin(2φi) reads

trig×(2φi) =

(
d2

i+1 − d2
i+2 + �

2
i+1 − �2

i+2

)
2d2

i �
2
i

√
4�2

i+1�
2
i+2 −

(
�2

i − �2
i+1 − �2

i+2

)2

×
[
−2d2

i �
2
i + d2

i+1

(
�2

i + �
2
i+1 − �2

i+2

)
+d2

i+2

(
�2

i − �2
i+1 + �

2
i+2

)
+ �4

i+1 + �
4
i+2

−�2
i

(
�2

i+1 + �
2
i+2

)
+ 2�2

i+1�
2
i+2

]
. (A.6)

Appendix B: Numerical simulations

We used the GADGET (Springel et al. 2001) code to evolve
24 realizations of the large scale structure in a small section of a
FRLW universe with parameters Ωm = 0.3, ΩΛ = 0.7 h = 0.7.
The initial conditions were imposed at redshift z = 50 us-
ing second-order Lagrangian perturbation theory (Scoccimarro
1998). The initial power spectrum used was obtained using the
B&E (Bond & Efstathiou 1984) fitting formula and normalized
to σ8 = 0.9 at z = 0 in linear theory. The boxes we consid-
ered are cubes of (100 Mpc/h)3 containing 2003 particles. This
choice has been made has a trade-off between speed and accu-
racy. The simulation were run on 24 nodes of our cluster. For
each realization, we took a snapshot of the large scale structures
every 100 Mpc/h.

B.1. Building the light-cone

We use these snapshots to compute the weak lensing effect at a
redshift of unity on a square light cone. At z = 1 the sides of the
boxes represent 2.47 degrees. We will only produce 2.42 square-
degrees patches of the sky.

The line of sight to the sources, is built by tilling 17 snap-
shots at different redshifts. We use this construction to create
more pseudo realizations of the lensing effect that we have dif-
ferent realizations of the density field. We follow a very similar
method to the one exposed by White & Hu (2000).

While building each line of sight, we will make sure that
each N-body realization is only used once. To increase the ran-
domness of our lensing pseudo-realization, we translate each
snapshot by a random vector, taking advantage of the periodic
boundary condition of the boxes. Moreover, we trace the path of
the photon along a random direction in the box, and not along
the axis direction. Note however that all rotation angles are not
allowed if one wants to avoid tracing twice the same structures
in a given box. We take this problem into account when picking
the ray-tracing direction.

The projected mass density is then built as follows. For each
of our 17 snapshots, after translation and rotation, we build a
list of particles belonging to the light cone. This list of parti-
cles is flattened onto a 2D density map, using a Cloud-in-Cell
algorithm. This 2D map is then multiplied by the efficiency win-
dow function of the lensing effect to provide a map of the con-
vergence κ. These κ slices are added to produce the final lens
effect on the source plane. The shear field γ on each of these
synthetic κ maps is obtained by numerically solving Eq. (3) with
a FFT (Van Waerbeke et al. 2001).

Note that in our computation of the lens effect we neglected
some secondary effects. For example our ray-tracing scheme is
strictly restricted to the Born approximation. We thus assume
here that the lens effect computed along the unperturbed path of
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Fig. B.1. Power spectrum of κ measured on the 40 lensing pseudo-
realization. Lines are the predicted power spectrum using the PD
(Peacock & Dodds 1996) (dashed) or halofit (Smith et al. 2003) (solid)
prescription for the small scales. Points are the measurements in the
simulations, without smoothing (crosses), and with smoothing (xs) to
remove the Poisson noise (see text). Bottom panel shows the ratio be-
tween the smoothed measured power spectrum and the two predictions
using PD (xs) and halofit (crosses).

the photon gives a good evaluation of the effect. This as been
tested in numerous work before (Van Waerbeke et al. 2001; Jain
et al. 2000). Doing this, we neglect the lens lens-coupling which
is known to produce non-zero corrections to the three-point func-
tion of the convergence field. This correction is expected to be
small (Van Waerbeke et al. 2001), and we will neglect it here as
our goal is mainly to evaluate the validity of our simplified halo
model.

The number of slices of our light-cone is more of a concern.
A naive evaluation of the impact of this choice can be made by
comparing a step summation of the filtered lensing power spec-
trum with its full integration. For an Einstein-deSitter universe,
assuming a power law matter density fluctuation, we thus have
to compare step summation and integration of the function

R(t) = x4−n(x − 1)2. (B.1)

For the spectral index n ∼ − 3
2 , the difference between the sum-

mation and integration falls below one percent as soon as the
number of slices is bigger than 5. Vale & White (2004) re-
cently performed a less naive evaluation of the same effect using
N-body simulations. They showed that with simulations com-
parable to ours (300 Mpc and 5123 particles) one can expect
about 5% discrepancy on the power spectrum between a com-
putation with a slice every ∆s = 125 Mpc (we are slicing ev-
ery 100 Mpc) and one with ∆s = 25 Mpc.

B.2. Resolution

During the Cloud-in-Cell remapping of the particle list, the in-
terpolation was done on a 20482 grid. The maximum resolution
of our simulation is thus 4.21 arcsec. However, at this scale we
expect to probe the region where shot noise starts to dominate
(see Eq. (24) from Jain et al. 2000). To reduce shot noise con-
tributions we smooth the κ maps by a 2 pixel wide Gaussian
window.

The average over our 40 realizations of the κ power spectrum
is presented Fig. B.1 and compared with the theoretical one ob-
tained by two ansatz of the non-linear density power spectrum.
The power spectrum is somewhat higher than the analytical pre-

Table B.1. Description of the three datasets. Max is the best resolution
dataset, min the worst one. Thorough this article, we will mainly use
the medium resolution.

Max Medium Min
∆� 4.22′′ 16.9′′ 1.125′
�max 67.5′′ 9.0′ 36′

dictions in the non-linear regime. A similar behavior can be seen
in the 3D power spectrum of our simulations.

B.3. Measurement strategy

The measurement of two and three point functions in real space
requires significant computing time. These operations scale re-
spectively as N2 and N3 where N = 20482 in our case. To reduce
the time needed to perform the computation, we will only probe
configurations up to a cut-off scale. This reduces the amount of
computer time needed to perform the measurement, but prevents
us to access to a broad range of scales.

To reduce the computation cost yet preserving the ability to
measure the three-point functions over a large range of scales,
we measure the two- and three-point functions at large scales on
degraded resolution maps obtained by top-hat filtering and re-
gridding the synthetic shear fields. For each field, we produced
three datasets; one with the nominal resolution of 20482 pixels
representing of 4.222 arcsec2, one with a four time degraded res-
olution (5122 pixels, 16.92 arcsec2) and the last with a sixteen
time degraded resolution (1282 pixels, 1.1252 arcmin2). For the
two-point functions, the computation cost is lower and we are
able, for the two last resolution sets to measure it without cut-
off scale; we apply a cut-off only for the biggest map and only
consider scales smaller than a 32th of the map size.

For the three-point functions we only explore a small region
of the three points configuration space. Table B.1 presents the
scales probed by each of our datasets.

The cut-off scales have been chosen so as to have each mea-
surement to require about ten days of computation time of one
node of the our cluster.

We take into account the cut-off scale we added to optimize
the measurement. Since the data are gridded, we can precom-
pute for any given point all the positions of the couples of points
which will create a valid configuration. By valid configuration
we mean any triangle that fits the requirement of the cut-off
scale, whose three point function measured with a given pro-
jection convention has a meaningful result (i.e. for the center of
mass projection, we throw out configurations where the center
of mass is one of the vertices of the triangle) and is such that
a given configuration is only seen once when varying the initial
position. This last requirement can be fulfilled by requiring that
for any couple of points

x1 ≥ xi, x2 ≥ x1 y1 > yi if x1 = xi,

y > y1 if x2 = x1, (B.2)

provided that the initial point will go through the grid increasing
its yi position first.

We build a table containing for each of such configuration,
the offset of the points positions, as well as the projector vectors
on the+ and× direction for each point of the triangle. Populating
this table is an expensive task as it goes as l4 in time and mem-
ory, where l is our cut-off scale. Once this initialization done,
however, we just have to traverse the shear map and apply for
each point the rules contained in the initialization table.
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Fig. B.2. The shear two-point functions in the simulations. Lines are
the predicted power spectrum, taking into account the survey size and
resolution. Solid line is ξ+, dashed, ξ−. Points show the measurements
in the 40 realizations, for our three different datasets. The open circle
(resp. plain squares, open squares) shows ξ− and regular pluses (resp
crosses,dashed pluses) ξ+, measured in the max (resp medium, min)
resolution datasets.

B.4. Shear two-point functions

We measured the two point functions of the shear ξ±

ξ±(θ) = 〈γ+γ+(θ)〉 ± 〈γ×γ×(θ)〉 , (B.3)

where the shear pseudo-vector is projected to the + and × direc-
tions defined by the vector linking the two points and the same
vector rotated by π/4 (see Sect. 2.2). The relation between the
shear two-point functions and the power spectrum of the conver-
gence is well known (Kaiser 1992)

ξ±(θ) =
∫

dl l Pκ(l) J0,4(lθ). (B.4)

Figure B.2 presents the measurement of ξ± in our simulations as
well as analytical predictions. It can be surprising to see that at
a scale corresponding to only a fourth of the box scale, the two
point shear correlations, and especially the ξ+ one, differ greatly
from the usual analytical prediction. This corresponds to the
effect of the finite survey size. Even at a scale four times smaller
than our survey size, we are already suffering from the lack of
large-scale correlations. We can reproduce it in our analytical
prediction as follows: we are filtering the convergence power
spectrum by a Bessel J0 or J4 function. J0 and J4 are maxgv
imum when their argument is small. This means that when the
angular scale is large, the filter overweights the small l in P(l).

This is more severe for J0 as its envelope decrease more quickly
than the one of J4. Even though l P(l) quickly decrease when l
goes to 0, it amounts to a difference that can be observed in
the comparison between analytical computations and measure-
ments. If we artificially cut the analytical power spectrum in
our computation to reproduce the absence of scale larger than√

2 × 2.4 arcmin in our simulation, we obtain a far better agree-
ment with our measurement.

Similarly, the small scale behavior of ξ± is modified by the
filtering we applied to our synthetic field by downgrading their
resolution. The analytic predictions, once this filtering is in-
cluded, are in good agreement with our numerical results.

We are thus quite confident than our implementation of the
measurement is sound and that the resolution degradation proce-
dure gives meaningful results.


