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ABSTRACT

We predict the redshift distribution of long gamma-ray bursts (GRBs) with Monte Carlo
simulations. Our improved analysis constrains free parameters with three kinds of observation:
(i) the log N − log P diagram of Burst and Transient Source Experiment (BATSE) bursts; (ii) the
peak energy distribution of bright BATSE bursts and (iii) the High Energy Transient Explorer
(HETE2) fraction of X-ray rich GRBs and X-ray flashes. The statistical analysis of the Monte
Carlo simulation results allows us to carefully study the impact of the uncertainties in the GRB
intrinsic properties on the redshift distribution. The comparison with Swift data then leads to
the following conclusions. The Amati relation should be intrinsic, if observationally confirmed
by Swift. The progenitor and/or the GRB properties have to evolve to reproduce the high mean
redshift of Swift bursts. Our results favour an evolution of the efficiency of GRB production by
massive stars, that would be nearly six to seven times higher at z ∼ 7 than at z ∼ 2. We finally
predict around 10 GRBs detected by Swift at redshift z > 6 for a 3-yr mission. These may be
sufficient to open a new observational window over the high redshift Universe.

Key words: stars: formation – cosmology: observations – gamma-rays: bursts.

1 I N T RO D U C T I O N

Gamma-ray bursts (hereafter GRBs) are powerful flashes of high-
energy photons that travel undisturbed from cosmological distances
to Earth, where they can be easily detected. Therefore, indepen-
dently of their physical origin, GRBs can be used to probe the distant
Universe (Wijers et al. 1998; Totani 1999; Blain & Natarajan 2000;
Lamb & Reichart 2000). In addition, there has recently been grow-
ing observational evidence that long GRBs occur in star-forming
regions (Bloom, Djorgovski & Kulkarni 2001) and that some of
them are associated with peculiar Type Ic supernova explosions, i.e.
with massive progenitors (e.g. Galama et al. 1998; Hjorth et al. 2003;
Stanek et al. 2003; Malesani et al. 2004). The possible detection of
GRBs at cosmological distance and their association with massive
stars motivate two questions. (i) How is the long GRB rate related
to the star formation rate (SFR)? (ii) What is the expected detec-
tion rate of long GRBs at high redshift? On the one hand, a better
understanding of the first issue is a necessary step to be able to use
GRBs to directly trace the star formation history in the Universe.
Observations give strong indications in favour of an association of
long GRBs with massive stars. However, the actual physical condi-
tions (e.g. mass, metallicity, rotation, binarity) for a star to trigger

�E-mail: daigne@iap.fr
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a burst are not currently known. Thus, the GRB and star formation
rates may be related in a non-trivial way. On the other hand, GRBs
could be produced in the Universe in association with first stars and
are thus expected up to very high redshifts (e.g. Bromm & Loeb
2005). Therefore, they are potentially important tools of investiga-
tion of the cosmic evolution; they are probably unique direct probe
at z � 6.5. First, the afterglow emission may be used to study the
ionization and metal enrichment histories of the intervening inter-
galactic medium (e.g. Chen, Prochaska & Bloom 2006). Then, they
can give insight into galaxy formation and evolution: they allow us
to detect very faint galaxies at high redshift, that otherwise would
have eluded detection (e.g. Berger et al. 2006). In turn, the detec-
tion of high redshift galaxies can better constrain the SFR where
current results are most uncertain. Finally, they might be important
to constrain the small-scale power spectrum of primordial density
fluctuations (Mesinger, Perna & Haiman 2005).

The standard approach to investigate such questions is to as-
sume a GRB comoving rate, luminosity function and spectrum (e.g.
Porciani & Madau 2001, hereafter PM01) and to constrain the free
parameters of the model by observed data, especially the GRB
log N − log P diagram (Schmidt 1999). We follow this approach,
by means of Monte Carlo simulations. Such an approach allows a
realistic parametrization of the intrinsic GRB properties, a more ac-
curate treatment of detection criteria for several instruments and
a study of the impact of the uncertainties in the GRB physics
on the predicted GRB rate. Compared to previous studies (Lamb
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The redshift distribution of Swift GRBs 1035

& Reichart 2000; PM01;s Firmani et al. 2004; Guetta, Piran &
Waxman 2005; Natarajan et al. 2005), we add two more obser-
vational constraints that allow us to better determine the model pa-
rameters: the observed peak energy distribution of bright Burst and
Transient Source Experiment (BATSE) bursts and the fraction of
X-ray rich GRBs (hereafter XRRs) and X-ray flashes (hereafter
XRFs) in the High Energy Transient Explorer (HETE2) GRB sam-
ple. Together with the data obtained during Swift first year, this
method allows us to address the two questions that motivated this
work.

The paper is organized as follows. In Section 2, we describe
our assumptions on the GRB intrinsic properties (comoving rate,
luminosity and spectrum). Then, we describe our Monte Carlo sim-
ulations in Section 3. We especially detail our detection criteria for
several instruments (BATSE, HETE2 and Swift) and the observa-
tions we use to constraint the free parameters of the model. Our
results are discussed in Section 4, and Section 5 is the conclusion.

2 G R B I N T R I N S I C P RO P E RT I E S

Our Monte Carlo simulations are necessarily based on some as-
sumptions regarding the GRB intrinsic properties. In some cases,
the large uncertainties in these properties lead us to consider several
scenarios. In this way, we can study the impact of this poor physical
understanding of the GRB phenomenon on our predictions, espe-
cially on the GRB redshift distribution.

2.1 Comoving rate

Searching for high redshift galaxies has extended the number of
rest frame ultraviolet (UV)-bright systems over the interval 0 � z �
10 (e.g. Giavalisco et al. 2004; Bouwens et al. 2005). These data
have been used to probe the redshift evolution of the SFR. It seems
established that the SFR density grows by an order of magnitude
from z = 0 to z ∼ 1 and levels off around z � 2 [see Hopkins (2004)
and Fig. 1, for a recent collection of data]. The shape of the star
formation history is more uncertain for z > 3. Recent investigations
of photometric dropouts at z � 6 suggest a strong decline of more
than an order of magnitude from z = 3 to z ∼ 10 (Bouwens et al.
2003, 2005; Fontana et al. 2003; Stanway et al. 2004). However, the

Figure 1. The three star formation rates considered in this paper. Observed
data are taken from Hopkins (2004).

assessment of this result is subject to the poorly constrained dust
obscuration at such high redshifts.

Since long GRBs are very likely related to the death of massive
stars, the most simple assumption is to adopt a GRB rate proportional
to the SFR. Following PM01, we take

RGRB = k × RSN, (1)

where RGRB is the GRB comoving rate and RSN is the Type II
supernova comoving rate. We assume the same initial mass function
(IMF) as in PM01. As this IMF is constant with time, the supernova
rate is proportional to the SFR :

RSN = 0.0122 M−1� × SFR, (2)

the lifetime of massive stars being neglected. We first considered
for the SFR a simple fit of observed data up to z ∼ 6 (Hopkins
2004). This case is thereafter called SFR 1. As the true evolution of
the SFR above z ∼ 2–3 is still uncertain, we have also considered
two alternative rates: SFR2, where the SFR is constant above z ∼
2 and SFR3, where the SFR still increases above z ∼ 2. In this
last case, we arbitrarily cut the GRB rate at zmax = 20. These three
SFRs are plotted in Fig. 1. They are in fact very close to those
adopted by PM01. Lamb & Reichart (2000) considered two cases,
one being close to SFR1 and the other being close to SFR2 with an
additional very intense component at z � 6–7. The preferred SFR
in the results by Natarajan et al. (2005) is close to our SFR3 up
to z ∼ 6–7. Finally, Firmani et al. (2004) adopted a rather different
approach. The SFR in their study is a three free parameters function.
It is adjusted together with the luminosity function under the joined
constraint of the BATSE log N − log P diagram and the ‘observed’
GRB redshift distribution provided by the luminosity–variability
relation (Fenimore & Ramirez-Ruiz 2000).

The ratio of GRB explosions to Type II supernovae, k, is a free
parameter of the model. Here, RGRB has to be understood as the
comoving rate of GRBs pointing towards us. The true GRB rate
in the Universe (as well as the true GRB/SN ratio) is obtained by
multiplying this rate by a correcting factor for the beaming, which
is of the order of 〈(�/4π)−1〉 ∼ 500–1000 (Frail et al. 2001).

2.2 Luminosity function

The GRB luminosity function is currently quite uncertain. We as-
sume a power-law distribution, which does not vary with redshift:

p(L) ∝ L−δ for Lmin � L � Lmax. (3)

Note that p(L) is the distribution of the isotropic equivalent lumi-
nosity of GRBs that would be obtained by a perfect (no threshold)
detector on Earth. This is, of course, different from the true distri-
bution of L for all GRBs in the Universe, which could be obtained
from p(L) after correction for viewing selection effects. With p(L),
there are three more model parameters: the slope δ and the min-
imum and maximum luminosities Lmin and Lmax. Previous studies
also used such a power-law luminosity function (Lamb & Reichart
2000) or a Schechter luminosity function (PM01; Natarajan et al.
2005). This latter is very close to a single power-law extending to
Lmax = +∞ with an additional low-luminosity tail below Lmin that
does not contribute much due to an exponential cut-off. Firmani
et al. (2004) also used a power-law distribution, but including the
additional possibility that the typical GRB luminosity scales with
(1 + z)ν with ν ∼ 0.8–1.2. We also briefly tested such evolutionary
effect (see Section 4.1).
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1036 F. Daigne, E. M. Rossi and R. Mochkovitch

2.3 Spectrum

The intrinsic photon spectrum is assumed to be a broken power law
with a break at energy Ep (Band et al. 1993) and a low (respectively,
high) energy slope −α (respectively, −β). We checked that a more
realistic spectrum shape, the so-called ‘GRB’ function (Band et al.
1993), has only a small impact on our results and does not affect
our conclusions. The probability distributions of the low- and high-
energy slopes follow the observed distribution of α and β in a set of
long bright GRBs (Preece et al. 2000). We have checked a posteriori
that the simulated distributions of the ‘observed’ low- and high-
energy slopes in long bright GRBs were very close to the intrinsic
distributions.

As the observed peak energy distribution of these same bright
burst is close to lognormal (Preece et al. 2000), the most simple
assumption is to adopt an intrinsic lognormal distribution for Ep,
with a dispersion σ and a mean value Ep,0. This is our first scenario
(hereafter ‘lognormal Ep distribution’). We assume σ = 0.3 dex (we
checked that our results do not depend too much on this assump-
tion) and we keep Ep,0 as a free parameter. On the other hand, there
are some evidences that the intrinsic peak energy could be corre-
lated with the intrinsic luminosity. Therefore, we have considered a
second scenario (hereafter ‘Amati-like relation’), where

Ep = 380 keV

(
L

1.6 × 1052 erg s−1

)0.43

, (4)

with a normal dispersion σ = 0.2 dex, in agreement with the ob-
served relation [Yonetoku et al. 2004; Ghirlanda et al. 2005; see,
however, Nakar & Piran (2005) Band & Preece (2005) who tested
this relation against BATSE data and concluded that selection ef-
fects were dominant]. In this second scenario, no free parameter is
introduced for the spectrum.

Note that the treatment of the spectrum in this work is improved
compared to previous studies: Lamb & Reichart (2000) adopted a
single power-law spectrum of slope α = −1 which is, of course,
a very poor approximation for high redshift GRBs. Other studies
(PM01; Firmani et al. 2004; Natarajan et al. 2005) adopt a standard
GRB spectrum with fixed slopes α = −1 and β = −2.25 and a
constant break energy Eb in the GRB rest frame which is a priori
fixed to 511 keV [Ep = Eb × (2 + α)/(α − β) ∼ 410 keV in the
GRB rest frame], without any a posteriori check that the simulated
observed Ep distribution is in agreement with BATSE data. Firmani
et al. (2004) also consider a case including an intrinsic Amati-like
relation of slope 0.5, but without any dispersion.

3 M O N T E C A R L O S I M U L AT I O N S

In our Monte Carlo simulations, each generated GRB is given a
redshift, a luminosity and a spectrum, according to the specific in-
trinsic distributions that have been described above. Then, observed
properties (observed peak energy, peak flux) can be computed and
compared to the sensitivity of different instruments. In this study,
we focus on BATSE, HETE2 and Swift. Our detection criteria are
specified in Section 3.1. This allows us to derive the expected dis-
tributions of observed redshifts, peak fluxes and peak energies for
these instruments, for comparison with real data. It also allows to
reconstruct the source frame properties (e.g. luminosity, peak en-
ergy) of detected bursts. In a second step, the free parameters of the
model are adjusted to fit several observational constraints. This is
explained in Section 3.2.

3.1 Detection criteria

We consider the detection by three instruments: BATSE, HETE2
and Swift. For BATSE, we apply the detection efficiency as a
function of the peak flux, ε(P), given by Kommers et al. (2000),
so that we can compare our results with the log N − log P diagram
published by these authors. We also compare our simulated bursts
with the log N − log P diagram published by Stern et al. (2000) and
Stern, Atteia & Hurley (2002). Their sample goes farther towards
low flux bursts and therefore puts more constraints on the GRB rate
at high redshift. Their published diagram is already corrected for
detection efficiency. In addition, we apply a threshold P50−300 keV >

5 ph cm−2 s−1 defining a subsample of ‘bright BATSE bursts’, to
compare our simulated GRBs with the results of the BATSE spec-
troscopic catalogue (Preece et al. 2000). In our simulations, this
threshold typically corresponds to 5–10 per cent of BATSE bursts, in
agreement with observations. For HETE2, we adopt the same thresh-
old of 1 ph cm−2 s−1 both for the wide field X-ray monitor (WXM;
2–10 keV) and for the French gamma-ray telescope (FREGATE;
30–400 keV) (J. L. Atteia, private communication).

Swift uses two detection modes: one based on a flux threshold and
the other on fluence threshold (image mode). The post-launch analy-
sis can be found in Band (2006). We use his results to define a detec-
tion probability at peak flux P15−150 keV, based on the observed GRB
duration distribution. The mean flux threshold is ∼0.2 ph cm−2 s−1.
We also defined a subsample of ‘bright Swift bursts’ by selecting
bursts with peak flux P15−150 keV > 1 ph cm−2 s−1.

3.2 Observational constraints

Depending on the assumption for the intrinsic peak energy distribu-
tion, our model has four (Amati-like relation) or five (lognormal Ep

distribution) free parameters. These parameters can be constrained
by the following observations: (i) the log N − log P diagram of
BATSE bursts (Kommers et al. 2000; Stern et al. 2000, 2002), (ii)
the observed peak energy distribution of long bright GRBs (Preece
et al. 2000) and (iii) the observed fraction of XRRs and XRFs in the
sample of GRBs detected by HETE2. We adopt the same definitions
as the HETE2 team for these subclasses, as well as their published
observed ratio (Sakamoto et al. 2005).

Combining those three observations, we get 41 data points, so that
our model has 37 (respectively, 36) degrees of freedom in the Amati-
like relation scenario (respectively, the lognormal Ep distribution
scenario). We find the best-fitting parameters and their dispersion
by χ 2 minimization, as detailed below.

3.3 Parameter determination

We consider the six cases corresponding to our three assumed SFRs
and our two possible spectral scenarios. In each case, we are able
to find a good fit to the data. The search for the best fit is made
by randomly choosing Lmin (respectively, Lmax) in the interval 1046–
1052 erg s−1 (respectively, 1051–1056 erg s−1), δ in the range 0.5–3
and by adjusting the normalization k to minimize the χ2. More
than 105 sets of parameters are tried for each of the six scenarios,
and more than 105 GRBs are simulated in the Monte Carlo run for
each of these sets. For each case, we define ‘best models’ as mod-
els that fit the three observational constraints at the 1σ level, i.e.
models for which χ2

min � χ2 � χ2
min + �χ2, with �χ 2 = 40.5

(respectively, 39.5) for 37 degrees of freedom (respectively, 36).
We can then compute the mean value and the dispersion of the best
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The redshift distribution of Swift GRBs 1037

Figure 2. Parameter space (SFR3, Amati-like relation). We plot the location in the parameter space of the best models (see Section 3.3). Top left: models
that fit the BATSE log N − log P diagram (Stern et al. 2000, 2002). Top right: models that fit the peak energy distribution of bright BATSE bursts (Preece
et al. 2000). Bottom left: models that fit the fraction of XRFs and XRRs observed by HETE2 (Sakamoto et al. 2005). Bottom right: models that fit the three
constraints.

model parameters, as well as of any function of these parameters,
such as the predicted Swift GRB redshift distribution. An exam-
ple is given in Fig. 2 in the case SFR3 + Amati-like relation. Very
similar plots are obtained in all the other considered cases. In the
top left panel of Fig. 2, we show the location of the best mod-
els in the parameter space Lmin − Lmax − δ, using the log N −
log P constraint only. It clearly appears that this constraint can
fix the slope δ of the luminosity function but leaves a degen-
eracy on Lmin and Lmax. Adding the two other constraints im-
proves the parameter determination (top right, bottom left panels
in Fig. 2). Indeed, it can be seen that Lmax is better constrained
using the peak energy distribution of bright BATSE bursts. The
uncertainty on Lmin is slightly reduced using the third constraint.

Finally, the comparison between the top left panel (log N −
log P only) and the bottom right panel (three constraints together)
shows improvement in the parameter determination given by our
method.

In all considered cases, we always find a clear minimum for χ2.
As expected, we also find that for each physical quantity, the mean
value for the best models defined as above is very close to the value
for the minimum χ 2 model. The quality of the best fit can be seen in
Fig. 3. Finally, the results are shown in Table 1, where we indicate
for each case the mean value and the dispersion of the best model
parameters. The obtained error bars confirm that the slope of the
luminosity function remains better determined than the minimum
and maximum luminosities.
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1038 F. Daigne, E. M. Rossi and R. Mochkovitch

Figure 3. Best model (SFR3, Amati-like relation). Left-hand side: the simulated log N − log P diagram of BATSE bursts is plotted as well as BATSE data
(Stern et al. 2000, 2002); right-hand side: the simulated peak energy distribution of bright BATSE bursts is plotted as well as the observed distribution (Preece
et al. 2000).

Table 1. Best models: parameters.

SFR log Lmin log Lmax δ log k

Amati-like relation Ep ∝ L0.43

1 49.9 ± 0.5 53.7 ± 0.4 1.70 ± 0.08 −5.4 ± 0.3
2 50.0 ± 0.5 53.7 ± 0.5 1.68 ± 0.10 −5.5 ± 0.3
3 50.3 ± 0.7 53.5 ± 0.4 1.54 ± 0.18 −6.0 ± 0.2

Lognormal distribution peak energy distribution

1 50.2 ± 0.9 53.6 ± 0.8 1.62 ± 0.18 −5.6 ± 0.3
2 50.2 ± 1.1 53.6 ± 0.9 1.62 ± 0.27 −5.7 ± 0.3
3 50.5 ± 1.3 53.7 ± 0.9 1.52 ± 0.48 −6.2 ± 0.2

SFR log Ep,0

Lognormal distribution peak energy distribution

1 2.74 ± 0.08
2 2.73 ± 0.08
3 2.79 ± 0.08

4 R E S U LT S A N D D I S C U S S I O N

4.1 Redshift distribution

For each scenario, we report in Table 2 the mean redshift we ob-
tain for all GRBs (intrinsic mean redshift), all GRBs detected by
Swift and bright GRBs detected by Swift. The corresponding red-
shift distributions are plotted in Fig. 4, along with the observed
distribution for Swift bursts (Jakobsson et al. 2006). Each simulated
redshift distribution is computed averaging over the ‘best models’.
The computed dispersion around this mean is the hatched region in
Fig. 4.

The observed redshift distribution of Swift bursts is plagued by
selection effects, difficult to account for. For example, the deficiency
of low redshift (z ∼ 1) events, with respect to pre-Swift bursts (see

Table 2. Best models: mean redshift.

Rate All Swift Bright Swift

Amati-like relation Ep ∝ L0.43

SFR1 3.1 1.6 1.3
SFR2 8.0 1.9 1.5
SFR3 10.5 3.3 2.1

Lognormal peak energy distribution

SFR1 3.1 1.9 1.6
SFR2 8.0 2.4 1.8
SFR3 10.5 4.8 2.7

fig. 3 in Jakobsson et al. 2006), is not yet understood. For this reason,
we do not attempt a formal fit of the data. However, we expect the
observed distribution to be located between the simulated distribu-
tions of all Swift bursts (thin hatched region in fig. 4) and of ‘bright’
Swift bursts, with peak flux above 1 ph cm−2 s1 in the 15–150 keV
band (thick hatched region).

Fig. 4 clearly shows that the expected redshift distribution
strongly depends on the assumption made on the GRB comoving
rate, so that Swift data can already put severe constraints on this rate.
The case SFR1 illustrates the effect of instrument thresholds: with
a mean redshift 〈z〉 ∼ 1.3–1.9; the simulated redshift distribution of
bursts detected by Swift is very far from the observed one (〈z〉 ∼ 2.8;
Jakobsson et al. 2006), despite an intrinsic distribution of all GRBs
that is much closer. Similarly, SFR2 gives a lower mean redshift
(〈z〉 ∼ 1.5 − 2.4; see Table 2) than the observed one. Conversely,
SFR 3 gives a much better agreement with data (〈z〉 ∼ 2.1 − 4.8).
The observed Swift distribution lies just between the simulated red-
shift distribution of all Swift bursts and that of bright Swift bursts, as
expected. This is qualitatively in agreement with the analysis per-
formed by Jakobsson et al. (2006) who found that Swift data were
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The redshift distribution of Swift GRBs 1039

Figure 4. Best models: redshift distribution. Each diagram shows for the six considered cases (i) the observed distribution of Swift bursts with measured
redshifts (thick line); (ii) the redshift distribution of all simulated bursts (thin dotted line); (iii) the redshift distribution of simulated bursts that are detected by
Swift (thin hatched region) and (iv) the redshift distribution of bright Swift bursts (thick hatched region).

Table 3. Best models: predicted fraction of all and bright Swift GRBs above z = 6 and 7. The
reported values are averaged over all ‘best models’. The uncertainty in each case can be estimated
from Fig. 4.

Swift Bright Swift
Rate Per cent (z > 6) Per cent (z > 7) Per cent (z > 6) Per cent (z > 7)

Amati-like relation Ep ∝ L0.43

SFR1 0.7 0.4 0.3 0.1
SFR2 2.5 1.6 0.8 0.4
SFR3 15 12 2.0 1.8

Lognormal peak energy distribution

SFR1 1.4 0.7 0.6 0.3
SFR2 4.5 2.9 1.6 1.0
SFR3 21 17 6.2 4.5

better reproduced using model II of Natarajan et al. (2005), which
corresponds to a SFR still rising up to z ∼ 7, i.e. close to our SFR3.
Our results seem rather independent of the details of the intrinsic
GRB properties, as the Amati-like relation and the lognormal Ep

give very similar distributions.

In addition, in Table 3 we provide the predicted fraction of all and
bright Swift bursts above z = 6 and 7. We find that this fraction is less
than 1 per cent for SFR1. Assuming 100 Swift GRBs per year, we
expect less than 5 GRBs per year above z = 6 for SFR2 (respectively,
less than 2 bright GRBs per year). In this case, most high redshift
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1040 F. Daigne, E. M. Rossi and R. Mochkovitch

GRBs will be located around z = 6–7. In the SFR3 case, we expect
15–20 Swift GRBs per year above z = 6, including 2–6 bright GRBs.
In this case, a non-negligible fraction of GRBs is predicted above z
= 7. Clearly, the detection of GRB 050904 at z = 6.29 during the
first year of Swift (Kawai et al. 2006) is very unlikely with SFR1,
marginally compatible with SFR2 and more easily explained with
SFR3.

The fact that SFR3 seems preferred by data is quite surprising, as
this SFR is probably unrealistic: such a high rate of star formation
at large redshift would result in an intense production of metals that
would lead to much higher metallicities in the structures and in the
IGM than observed (see e.g. Daigne et al. 2004, 2006a). Therefore,
our results provide strong evidence that the properties of GRBs
or/and GRB-progenitors are redshift dependent.

One possibility is that the efficiency of GRB production by stars
decreases with time. The ratio k of GRBs over Type II supernovae
would thus increase with redshift. If the true cosmic SFR in the
Universe is more similar to SFR1 (respectively, SFR2), then our
results show that this efficiency at z ∼ 6–7 is ∼6–9 (respectively,
∼2–3) higher than at z ∼ 2 (see Fig. 1). There is indeed increasing
observational evidence that the GRB rate does not directly trace
the SFR (Le Floc’h et al. 2006). Such an evolution could be re-
lated to many factors : metallicity, mass, rotation, or binarity of the
progenitors.

On the other hand, there could be an evolution of GRB intrinsic
properties with time (e.g. more luminous GRBs at large redshift).
We tested the impact of a GRB luminosity evolution by considering
a model where Lmin and Lmax scale as (1 + z)ν , the slope of the
luminosity function being kept constant. We found that it is possible
to reconcile SFR1 with Swift data but this would imply a very strong
evolution (ν > 2), probably unrealistic. However, it is unlikely that
progenitor characteristics would evolve without any change in the
GRB properties. Therefore, we suspect that both evolutionary effects
are, in fact, present but that our results are mostly due to the former.

Figure 5. Amati-like relation in the best model (SFR3). GRB density contours are plotted in the luminosity-intrinsic peak energy plane for Swift bursts. The
slope is indicated in solid line, as well as the observed slope in dotted line (Ghirlanda et al. 2005). Left-hand side: simulation using an intrinsic Amati-like
relation; right-hand side: simulation where the intrinsic peak energy follows a lognormal distribution.

4.2 Luminosity function and peak energy distribution

The Amati-like relation scenario and the lognormal Ep distribu-
tion scenario lead to rather similar redshift distribution but differ
strongly in some other aspects: (i) as can be seen in Fig. 5 (right-hand
panel), selection effects only cannot create an apparent Amati-like
correlation between the luminosity and the intrinsic peak energy
when it is not originally present. On the other hand, when an in-
trinsic correlation is assumed, detection thresholds do not modify
the observed slope (left-hand panel). This means that if the Amati
relation is confirmed, it should have an intrinsic origin that should
be explained by GRB models. (ii) Fig. 6 shows that the intrinsic
peak energy distribution is very different in the two scenarios. If an
Amati-like relation is present, the intrinsic peak energy distribution
is centred at about a few keV (4.5 keV for SFR3), since dim bursts
are more numerous. Thus, the observed peak energy distribution
in the subsample of bright BATSE GRBs (Preece et al. 2000) is
not the representative of the whole GRB population, which is larg-
ely dominated by low Ep events. On the other hand, if the peak energy
distribution is not correlated with luminosity and has a lognormal
distribution, then the observed distribution is close to the intrinsic
distribution, centred at ∼100 keV. Note that in both the cases, the
mean observed peak energy by HETE2 and Swift is smaller than
by BATSE. This effect has also consequences on the luminosity
function. As can be seen in Fig. 7, the intrinsic Amati-like relation
favours the detection of low-luminosity bursts, as they have a smaller
peak energy and therefore more photons in the 15–150 keV band.
In this scenario, the lower energy threshold (15 versus 25 keV) of
Swift compared to BATSE allows Swift to be more efficient in sam-
pling the luminosity function. In the lognormal Ep distribution sce-
nario, the luminosity function of Swift and BATSE bursts is very
similar. Note that in both scenarios, the observed luminosity func-
tion is far from the intrinsic distribution, due to the small detec-
tion efficiency for the dimmest (most numerous) GRBs. Finally,
note that in the lognormal distribution case, the intrinsic mean peak
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The redshift distribution of Swift GRBs 1041

Figure 6. Observed peak energy distribution in the best model (SFR3). The peak energy distribution of all simulated GRBs, and of simulated GRBs that are
detected by BATSE, HETE2 and Swift, is plotted, insets showing the regions of interest with more details. Left-hand side: simulation using an Amati-like
relation; right-hand side: simulation where the peak energy follows a lognormal distribution.

Figure 7. Luminosity function in the best model (SFR3). The intrinsic luminosity function, as well as the luminosity distribution of bursts detected by BATSE,
HETE2 and Swift, is plotted. Left-hand side: simulation using an intrinsic Amati-like relation; right-hand side: simulation where the intrinsic peak energy
follows a lognormal distribution.

energy is found to be larger than the constant value assumed by
PM01.

To check the dependence of our results on the assumed shape
of the luminosity function, we also made a few simulations using
broken power laws:

L ∝
{

L−0.5 for Lmin � L � L∗
L−δ for L∗ � L � Lmax

.

The low-luminosity slope has been fixed to avoid an additional free
parameter. The value −0.5 is a prediction of the internal shock model
(Daigne, Mochkovitch & Zitouni 2006b). It happens that the low-
luminosity branch remains mostly undetected so that the best-fitting
parameters are very close to those obtained with a single power law

(L∗ adjusting itself to the previous value of Lmin). Therefore, current
data do not allow us to distinguish between single and broken power
laws for the GRB luminosity function.

5 C O N C L U S I O N

Using Monte Carlo simulations of the long GRB population under
the assumptions that (i) the GRB rate follows the SFR; (ii) the GRB
luminosity function is a power law; (iii) the peak energy is deter-
mined either by an Amati-like intrinsic relation or by a lognormal
distribution, we obtained the following results.

(i) Luminosity function: the slope of the power law is well
constrained, δ ∼ 1.5 − 1.7, while the minimum and maximum
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luminosities are not so well determined : Lmin ∼ 0.8 − 3 ×
1050 erg s−1 and Lmax ∼ 3 − 5 × 1053 erg s−1. The observed distri-
bution is very biased as most low-luminosity GRBs are not detected
by current instruments.

(ii) Intrinsic peak energy distribution: if the observed Amati re-
lation is confirmed, the relation needs to be intrinsic. A consequence
of the relation is that the observed peak energy distribution is not
representative of the whole GRB population, which has a lower
mean value of a few keV. Therefore, there should be many unde-
tected XRRs and XRFs. On the other hand, a lognormal peak energy
distribution can also be in very good agreement with all the obser-
vational constraints, but selection effects alone cannot produce an
observed Amati relation. In this case, the mean peak energy of the
whole GRB population is close to 100 keV and the observed distri-
bution is much more representative.

(iii) GRB comoving rate: in agreement with PM01, we find that
one GRB pointing towards us is produced every 105 to 106 super-
novae in the Universe. This rate should be corrected for beaming
to get the true GRB rate in the Universe. This would require to
assume a distribution of beaming angle or to derive it using the ob-
served correlation with the isotropic luminosity (Frail et al. 2001;
Ghirlanda, Ghisellini & Lazzati 2004). The present redshift distri-
bution of Swift bursts strongly favours SFR3, which still increases
above z ∼ 2. However, SFR3 is probably unrealistic, as so many stars
at high redshift would overproduce metals. This leads to conclude
that some GRBs or/and GRB progenitor properties evolve with red-
shift. Our analysis suggests that the main evolutionary effect could
be the redshift dependence of the efficiency of GRB production by
stars, so that the GRB comoving rate still increases above z ∼ 2,
even if the SFR flattens or decreases. Thus, GRBs would not directly
trace the SFR, as also suggested by recent studies on the properties
of GRB host galaxies (see e.g. Le Floc’h et al. 2006). To reconcile
our results with a more plausible SFR such as SFR1 or even SFR2,
this efficiency should be about six to seven times larger at z = 7 than
at z = 2.

(iv) Detection rate of high redshift GRBs: based on a yearly rate
of ∼100 Swift GRBs, we predict ∼2–6 (respectively, ∼1–5) bright
Swift bursts per year above z = 6 (respectively, z = 7).
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