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The behavior of the quintessence field is studied during inflation. In order to have a satisfactory model
of dark energy, the quintessence field value today should be as insensible to the initial conditions as
possible. Usually, only the dependence on the initial conditions specified at the end of inflation or,
equivalently, at the beginning of the radiation dominated era, is considered. Provided the quintessence
field is initially within a large but, crucially, finite interval, its present value becomes independent of the
initial value it started from. The question as to whether inflation naturally drives the quintessence field to
the above-mentioned interval is addressed. Since the quantum effects turn out to be important, the
formalism of stochastic inflation is used in order to calculate the evolution of the quintessence field.
Moreover, the quantum effects originating from the inflaton field are also taken into account and are
proved to be subdominant in most cases. Finally, the requirement that the quintessence field is on tracks
today is shown to imply quite tight constraints on the initial values of the quintessence and inflaton fields
at the beginning of inflation. In particular, the initial value of the inflaton field cannot be too large which
indicates that the quintessential scenario seems to be compatible with inflation only if the total number of
e-folds is quite small.

DOI: 10.1103/PhysRevD.71.063514 PACS numbers: 98.80.Cq, 98.70.Vc
I. INTRODUCTION

The observations suggesting that our Universe is pres-
ently undergoing a phase of accelerated expansion have
recently accumulated [1–4]. If really confirmed, this dis-
covery is certainly a breakthrough for cosmology but, at
the same time, represents a big challenge since finding a
convincing explanation for such a phenomenon is clearly a
difficult task.

From a theoretical point of view, the presence of a non-
vanishing cosmological constant whose energy density
would be of the order of the critical energy density today
seems to be the most natural solution. In addition, the
currently available data on the equation of state are, so
far, compatible with this assumption. But it is well known
that the theoretical preferred value of the cosmological
constant corresponds to an energy density much larger
than the critical energy density and there exists, at the
moment, no convincing arguments which would explain
this difference [5].

This situation has led the physicists to seek for alter-
natives. Among the solutions proposed, the quintessence
scenario has recently attracted a lot of attention [6–14]. It
consists in postulating that the acceleration of the expan-
sion is caused by a scalar field, the quintessence field Q,
evolving in a potential the typical shape of which is given
by W�Q� � M4��Q��, where M is an energy scale and
�> 0 a free parameter [6]. The main advantage of this
address: jmartin@iap.fr
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scenario is that the coincidence problem can be solved
because the equations of motion possess a solution which
is an attractor. Therefore, the present evolution of the
quintessence field is independent from the choice of the
initial conditions. Moreover, when the field is on tracks, Q
is typically of the order of the Planck mass and hence, for
not too small values of �, the scale M can be large. As a
result, the fine-tuning is less severe than in other scenarios
because it is possible to explain the presence of a very
small scale (the vacuum energy density today) by means of
a theory which, on the contrary, is characterized by a large
scale M. This is due to the inverse power-law shape of the
potential and is reminiscent of the ‘‘see-saw’’ mechanism
in particle physics. This has also the advantage that model
building can be considered in the realm of high-energy
physics [9–14].

So far most of the studies have been devoted to under-
standing how the quintessence field evolves from the be-
ginning of the radiation era until now. Another important
(related) question, in view of its observational implica-
tions, has been to estimate the value of the equation of
state today. In this paper, we address a new question,
namely, that of the behavior of Q during (chaotic) inflation
assuming, for simplicity, that the quintessence field and the
inflaton are not coupled. This is an important problem
since it is crucial to check that Q is, at the end of inflation
(or at the beginning of the radiation dominated epoch), in
the range of values which are such that the field is on tracks
today.

However, the problem does not only boil down to solv-
ing the Klein-Gordon equation in an inflationary back-
-1  2005 The American Physical Society
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ground. Indeed, in Ref. [15] (see also Refs. [16]), it has
been suggested that the quantum effects could play an
important role. In this case, the techniques of stochastic
inflation [17,18] can be used to describe the evolution of
the quintessence field. This was done for the first time in
Ref. [15]. The method utilized in that article was to solve
the Fokker-Planck equation in order to follow the evolution
of the probability distribution of the quintessence field. It
was then shown that, typically, the attractor is joined at
relatively small redshifts.

In the present paper, we consider the above-mentioned
question again but from a different perspective. One of our
main purposes is to calculate the probability distribution
function of the quintessence field at the end of inflation (or
at the beginning of the radiation dominated era) in order to
estimate whether it is likely that the value of Q is such that
the attractor is joined today. Moreover, requiring that the
corresponding probability is significant can be used to
constrain the space of the initial conditions, i.e., the initial
value of the inflaton (or, equivalently, the total number of e-
folds) and quintessence fields. In addition, we demonstrate
that this also puts constraints on the power index � char-
acterizing the shape of the quintessence potential, namely,
small values of � are disfavored.

Another goal of the present work is to include the
inflaton fluctuations, to study under which circumstances
their effect can be important and, when it is the case (and
when it is possible), to calculate the corresponding correc-
tion to the behavior of the quintessence field. Indeed, in
Ref. [15], since the inflaton was treated as a classical field,
the quantum effects were only sourced by the quintessence
noise. However, the inflaton itself is also influenced by the
quantum effects and, therefore, a priori the inflaton noise
also affects the evolution of the quintessence field. In fact,
the variance of the quintessence field can be written as

�2�t� �
1

4	2

Z t

tin
H3�’����d�; (1)

where H is the Hubble parameter. Roughly speaking, tak-
ing into account the inflaton noise amounts to put the
coarse-grained inflaton in the above equation rather that
its classical counterpart. If the expression calculated in this
way differs significantly from the expression obtained by
inserting the classical inflaton, then the inflaton noise plays
indeed a non-negligible role.

Another difference from Ref. [15] is that we directly
solve the Langevin equation rather than the Fokker-Planck
equation. Obviously, this is only a technical difference
since the two approaches are equivalent. In a first time,
the Langevin equation is solved by means of a perturbative
expansion. In this regime, we show that the influence of the
inflaton noise is always negligible. Then, in a second time,
we try to solve the Langevin equation in the nonperturba-
tive regime (for the quintessence field) by modeling the
effect of the classical force with a wall.
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This article is organized as follows. In the next section,
we quickly review the basic principles and equations of the
stochastic approach. Then, in Sec. III, we present the
perturbative method used to solve the Langevin equation.
We apply this method to inflation, compare the results
obtained with those already known in the literature and
demonstrate that they are equivalent. In Sec. IV, we apply
the perturbative approach to the Langevin equation for the
quintessence field and explicitly calculate the quintessen-
tial quantum effects. In this regime, we show that the
contribution coming from the inflaton noise is negligible.
Then, we present a model with a reflecting wall which
allows us to explore a region where the perturbative ap-
proach breaks down. We study the constraints on the initial
conditions of the inflaton and quintessence fields that exist
in order for the coincidence problem to still be solved. We
prove that these constraints are quite stringent. Finally, in
Sec. V, we discuss the results obtained in this article and
present our conclusions.

II. BASIC EQUATIONS

In the Friedman-Lemaı̂tre-Robertson-Walker (FLRW)
Universe, the metric of which can be written as ds2 �
�dt2 � a2�t��ijdx

idxj (we assume flat spacelike sections),
the evolution of a scalar field ��t;x� is described by the
Klein-Gordon equation

	�� 3H _��
r2�

a2
�

dV���

d�
� 0; (2)

where a dot denotes the derivation with respect to the
cosmic time t.

In the stochastic formalism [18], one is interested in the
dynamics of a ‘‘coarse-grained’’ field ’�t;x�. This coarse-
grained field is defined to be the average of the ordinary
field � over a physical volume whose size is somewhat
larger than the Hubble radius H�1 	 a= _a. Therefore,
’�t;x� basically contains the long-wavelength Fourier
modes (with wave number k < aH) only. Technically,
one writes

��t;x� � ’�t;x� �
1

�2	�3=2

Z
dkW�k� �aH�


 �ck�k�t�e
ik�x � cyk�



k�t�e

�ik�x�; (3)

where W�z� is the so-called window function. In the case of
a white noise, the window function is the step function. In a
more realistic situation, the window function should be
taken as a smoothed version of the step function [19].
This corresponds to the case of a colored noise and the
problem is generally technically more complicated in this
situation. In this article, for simplicity, we restrict ourselves
to the case of a white noise. It should also be noticed that,
in Eq. (3), the mode functions �k�t� are, by definition, the
free mode functions, i.e., obey the equation 	�k � 3H _�k �
�k2=a2��k � 0. Finally, � is a parameter smaller than 1,
-2
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introduced in order to allow some level of arbitrariness in
the choice of the smoothing scale.

The evolution of the coarse-grained field is still de-
scribed by the Klein-Gordon Eq. (2) but a suitable random
noise field ��t�, acting as a classical stochastic source term,
should be added to the right-hand side in order to mimic the
quantum fluctuations. In the slow-roll approximation 	’ is
negligible compared to 3H _’ and, since we are dealing with
super-Hubble scales, the gradient term can also be
dropped. The coarse-grained field is thus governed by a
first order Langevin-like differential equation which can be
put in the form

d’
dt

�
1

3H
dV
d’

�
H3=2

2	
��t�; (4)

where the noise field � is defined in such a way that its
correlation function simply reads

h��t���t0�i � ��t� t0�; (5)

where ��z� is the Dirac function. The normalization of the
correlation function is chosen in order to reproduce, for a
free field, the ordinary de Sitter result h’2i � H3t=�4	2�.

At this point, two situations are possible, leading to very
different technical problems. The first possibility corre-
sponds to the case where the scalar field is a test field in
a fixed background. This means that the factors H which
appear into the Langevin equation (at the denominator in
the second term and at the numerator in the third term)
must be considered as functions of time but not as func-
tions of the coarse-grained field. This is obviously an
important simplification and, in this case, the noise is
said to be nonmultiplicative. In such a situation, the deri-
vation of the Langevin equation is unambiguous and on a
firm basis. In order to see how the formalism works, let us
quickly consider the case where H is constant in time (i.e.,
de Sitter background) and V��� � m2�2=2. Then, the
solution of the Langevin equation can be found explicitly
yielding

’�t� � e�m2�t�tin�=�3H�




"
’in �

H3=2

2	

Z t

tin
d� em

2���tin�=�3H�����

#
; (6)

where ’in is the initial value of the field. Then, we can
easily deduce the two-point function and we obtain

h’2�t�i �
3H4

8	2m2 �

�
’2

in �
3H4

8	2m2

�
e�2m2�t�tin�=�3H�: (7)

After a transitory regime, one sees that the two-point
correlation function goes to h’2�t�i ! 3H4=�8	2m2�.
This well-known result has already been obtained, for
instance in Ref. [20] by solving the Fokker-Planck equa-
tion. Let us notice that we could have also found the
solution and computed the correlation function in the
case of a colored noise.
063514
The second situation corresponds to the situation where
one takes into account the backreaction of the coarse-
grained field on the geometry. Technically, this means
that the Hubble parameter in Eq. (4) becomes a function
of the coarse-grained field itself. In other words, the noise
becomes multiplicative. In this case, it is necessary to have
one more equation and one naturally assumes that the
Friedman equation (in the slow-roll approximation) holds
for the coarse-grained quantities, namely

H2�’� ’
8	

3m2
Pl

V�’� 	
�
3
V�’�: (8)

This case if of course the most interesting since it corre-
sponds to the case of inflation. The coarse-grained field
becomes the coarse-grained inflaton which drives the evo-
lution of the background.

Unfortunately, as is well-known in the case of a multi-
plicative noise, the derivation of the Langevin equation
becomes also more problematic, see for instance
Refs. [21]. Roughly speaking, this is due to the following.
When we promote the field ’ to a stochastic quantity, there
is some arbitrariness in defining the term H3=2� in the
Langevin equation. Indeed, the quantity H3=2 originates
from two contributions. The first one comes from the term
H present in the damping term of the Klein-Gordon equa-
tion which, according to the rule outlined above, should be
promoted to a stochastic quantity. The second one comes
from the normalization of the noise correlation function
which is an ordinary function. Therefore, the problem
arises because one could choose to promote a different
power of the Hubble constant to a stochastic quantity, say
H3=2�x and put the remaining term, Hx, into the normal-
ization of the noise. In this case, the Langevin equation
would lead to different results. In the present paper, we
consider H3=2 as a stochastic quantity. Finally, we notice
that there is also the ambiguity in the choice of the calcu-
lus. Here, we work with the Stratonovitch calculus.
III. INFLATION

A. Classical Evolution

Having specified what our basic setup is, we now turn to
the application of this formalism to inflation. For simplic-
ity, in the following, we restrict ourselves to single-field
‘‘chaotic’’ inflation models [22]. It turns out useful to
parametrize the potential in term of the dimensionless
scalar field ’=mPl. Explicitly, we take (with n � 2)

V�’� � V0

�
’
mPl

�
n
: (9)

The Cosmic Microwave Background Radiation (CMBR)
anisotropy observations constrain the value of V0. For
small ‘, the multipole moments are given by
-3
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C‘ �
2H2

25"m2
Pl

1

‘�‘� 1�
(10)

and what has been actually measured by the COsmic
Background Explorer (COBE) [23] and the Wilkinson
Microwave Anisotropy Probe (WMAP) [2] satellites is
Q2

rms�PS=T
2 � 5C2=�4	� ’ 18
 10�6=�2:7� ’ 6
 10�6.

The quantity " is the first slow-roll parameter [24] and for
chaotic models, it reads " ’ n=�4N
 � n� where N
 ’ 60 is
the number of e-folds between Hubble radius exit and the
end of inflation. Putting everything together, we find that
V0 is given by

V0

m4
Pl

’
90

�4N
 � n�n=2�1

�
16

n

�
n=2 Q2

rms�PS

T2 : (11)

From an observational point of view, all the models such
that n > 5 are now excluded by the WMAP data, the
quartic case being on the border line, see Ref. [25].

For the simple potentials considered here, the slow-roll
equations can be integrated exactly. For this purpose, it is
convenient to express everything in terms of the total
number of e-folds defined by

N 	 ln
�
a
ain

�
; (12)

such that, initially, one has N � 0. Then, the classical field,
i.e., the solution to the slow-roll equations of motion
without the noise, reads

’cl

mPl
�

���������������������������������
’in

mPl

�
2
�

n
4	

N

s
; (13)

where ’cl�N � 0� � ’in. The model remains under con-
trol only if the energy density is below the Planck energy
density. This amounts to the following constraint on the
initial conditions ’in=mPl & �m4

Pl=V0�
1=n. Inflation stops

when the slow-roll parameter " is equal to unity corre-
sponding to ’end=mPl � n=�4

����
	

p
�. As a consequence, one

can easily check that the argument of the square root in
Eq. (13) remains always positive. Finally, the total number
of e-folds during inflation is simply given by NT �
4	�’in=mPl�

2=n� n=4. This number can be huge if the
initial energy density of the inflaton field is close to the
Planck energy density.

B. Perturbative Solutions

In general, the Langevin equation cannot be solved
analytically even for the simple potentials given by
Eq. (9). Therefore, we use perturbative techniques. We
consider the coarse-grained field ’ as a perturbation of
the solution ’cl of the classical equation, i.e., we write

’�t� � ’cl�t� � �’1�t� � �’2�t� � � � � ; (14)

where the term �’i�t� depends on the noise at the power i.
Clearly, this expansion is valid as long as �’2 < �’1 <
063514
’cl. Expanding up to second order in the equation of
motion, we get two linear differential equations for �’1

and �’2, namely

d�’1

dt
�

2

�
H00�’cl��’1 �

H3=2�’cl�

2	
��t� (15)

and

d�’2

dt
�

2

�
H00�’cl��’2 � �

H000�’cl�

�
�’2

1

�
3

4	
H1=2�’cl�H0�’cl��’1��t�;

(16)

where a prime denotes a derivative with respect to the field.
These equations can be solved by varying the integration
constant. Let us first consider the equation for �’1. If the
initial conditions are such that �’1�t � tin� � 0, then the
solution reads

�’1�t� �
Z t

tin
d�

H3=2�’cl�

2	
exp

"
�
Z t

�
d�

2H00�’cl�

�

#
����:

(17)

This expression can be further simplified. If we use the
classical equation of motion, then one can write the ex-
ponential term as

exp

 
�
Z t

�
d�

2H00

�

!
� exp

"Z ’cl�t�

’cl���
d’

H00

H0

#
�

H0�’�t��
H0�’����

:

(18)

Inserting the above expression into Eq. (17), one finally
arrives at

�’1�t� �
H0�’cl�t��

2	

Z t

tin
d�

H3=2�’cl����
H0�’cl����

����: (19)

We are now in a position where the various correlation
functions can be calculated exactly. Since �’1 is linear in
the noise �, the mean value obviously vanishes

h�’1i � 0: (20)

Let us now evaluate the two-point correlation function
calculated at the same time, i.e., the variance. Making
use of Eq. (5), one obtains

h�’2
1i �

�
2

�
H0

2	

�
2 Z ’in

’cl

d’
�
H
H0

�
3
: (21)

So far, the expressions presented above are general and do
not rely on a particular shape of the inflaton potential. If we
now specify the calculation to the chaotic potential given
by Eq. (9), then the variance takes the form

h�’2
1i

m2
Pl

� �
4

3n
V�’cl�

m4
Pl

�
’cl

mPl

�
�2

�

’cl

mPl

�
4
�

�
’in

mPl

�
4
�
:

(22)

Since ’cl is always smaller than ’in (because the field rolls
-4



FIG. 1 (color online). Evolution of h�’2
1i=’

2
cl versus the num-

ber of e-folds during inflation for three different chaotic poten-
tials characterized by n � 2, 4, 6. The initial values of the
inflaton field correspond to an initial energy density of Vin �
0:5m4

Pl and imply that the total number of e-folds during inflation
is not the same for the three models under consideration. This is
also the reason why the curves do not stop at the same place. For
the n � 2 model, h�’2

1i always increases and, at some point, the
perturbative scheme used to calculate it breaks down. For n � 4,
h�’2

1i=’
2
cl tends to a constant that is difficult to visualize because

of the e-folds logarithmic scale. For n � 6, h�’2
1i possesses a

maximum during inflation and then decreases.

FIG. 2 (color online). Evolution of h�’2i=’cl with the number
of e-folds during inflation for three different potentials. The
initial values of the scalar field always correspond to an initial
energy density of Vin � 0:5m4

Pl. As a consequence, the total
number of e-folds during inflation is not the same in these three
models and this explains why the three curves stop at different N.
A value of h�’2i=’cl greater than 1 signals a breakdown of the
perturbative approach. For instance, this is the case for the n � 2
model at the end of inflation.
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down its potential), the above quantity is increasing with
time and always positive as required.

We now turn to the equation of motion for the second
order perturbation �’2. It can be solved by following
exactly the steps that were described before. Then, the
solution can be written as

�’2�t� � �
H0

�

Z t

tin
d�

H000

H0
�’2

1��� �
3H0

4	



Z t

tin
d�H1=2�’1�������: (23)

As expected the second order perturbation is quadratic in
the noise. One can now easily evaluate the mean value of
�’2�t�, taking into account a factor 1=2 which originates
from the fact that the Dirac �-function appearing in the
noise correlation function is centered on an integration
limit. One obtains

h�’2i

mPl
� �

n� 2

3n
V�’cl�

m4
Pl

�
’cl

mPl

�
�n=2�1





�
’cl

mPl

�
n=2�2

�

�
’in

mPl

�
n=2�2

�

�
n� 2

3n
V�’cl�

m4
Pl

�
’in

mPl

�
4
�
’cl

mPl

�
�n=2�1





�
’cl

mPl

�
n=2�2

�

�
’in

mPl

�
n=2�2

�
: (24)

The quantities h�’2
1i=’

2
cl and h�’2i=’cl are represented in

Figs. 1 and 2 for different potentials, i.e., for different
values of the power index n. We find that for n > 4 both
063514
quantities reach a maximum after an increasing phase, and
then decrease to zero at late times, always remaining
smaller than unity for any choice of the initial conditions
(thus fully validating the perturbative treatment). Con-
versely, we see that their late time behavior is constant
for n � 4 or rapidly increasing for n < 4, and appears in
both cases to violate the validity of the perturbative ap-
proach for the extreme choice of an initial condition cor-
responding to an energy density near the Planck scale.

C. Classicalization

Let us study the late time behavior of h�’2i, as given by
Eq. (24), in more details. In this regime, one has ’cl �
’in. Then, it follows that

h�’2i

mPl

/

�
’cl

mPl

�
n=2�1

: (25)

From the above equation, one deduces that we have exact
classicalization for the cases n � 2 or n � 4. Indeed, in
this case, we have h’i ’ ’cl � h�’2i / ’cl which is, by
definition, what we mean by classicalization. For n > 4,
the situation is slightly different. In this case, h’i is not
exactly proportional to ’cl but the extra contribution h�’2i
decays faster than ’cl and, hence, becomes negligible as
can also be checked in Fig. 2. In this way, we also recover a
classical behavior.

Let us now see what happens to a trajectory which is far
from the mean value. From Eq. (22), it is easy to check that,

at late times, we also have
�������������
h�’2

1i
q

=mPl / �’cl=mPl�
n=2�1

(a quantity which gives an estimate of the amplitude of the
probability distribution). It follows that not only the mean
value of the distribution but also its width evolves accord-
ing to the classical solution.
-5
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Finally, the following remark is in order. The fact that
the quantum effects are negligible does not mean that, at
late times, the value of the inflaton field h’i is the same as
the corresponding classical field value calculated with the
same initial conditions. Since the quantum effects could
have accumulated in the early phase of evolution causing a
deviation from the classical trajectory, this actually means
that the late time value of h’i can only be viewed as ’cl but
calculated with different initial conditions.

D. Comparison with Other Methods

In this section, we compare the results of the previous
section with some known results of the literature.

In Refs. [26,27], it has been shown that there is a case
where the Langevin equation can be solved exactly. In
order to permit a more direct comparison with those stud-
ies, we write the constant V0 which appears in the expres-
sion of the potential (9) as V0=m

4
Pl � 3%n=�8	�, i.e., in

terms of the coupling constant %n. Then, the reasoning
goes as follows. The Langevin equation can be written as

d

dt

�
’
mPl

�
�

n
������
%n

p

8	
mPl

�
’
mPl

�
n=2�1

�
%3=4
n

2	
m1=2

Pl

�
’
mPl

�
3n=4

��t�:

(26)

There is an exact solution if n � 4 because, in this case, the
Langevin equation takes the form of a Bernoulli equation.
The simplification comes from the fact that the equation
can be put under the form of a linear equation for some
power of the field (in the present context, this power is �2
hence the form of the next equation). Let us also notice that
the choice n � 4=3 would also lead to a Bernoulli equation
but this case looks less interesting since the power index of
the potential is no longer an integer. The Bernoulli equa-
tion can be solved exactly because it may be brought into a
linear form by a change of variable. The solution can be
written as

�
’
mPl

�
�2

� e
����
%4

p
mPl�t�tin�=	

"�
’in

mPl

�
�2

�
%3=4
4

	
m1=2

Pl



Z t

tin
d� e

����
%4

p
mPl���tin�=	����

#
: (27)

Taking the inverse square root of the general solution one
then obtains

’�t� � ’cl�t��1���t���1=2; (28)

where ’cl�t� is the classical solution that can be expressed
explicitly in terms of cosmic time

’cl�t� � ’in exp


�

������
%4

p
mPl

2	
�t� tin�

�
; (29)

while the quantity ��t� is defined by
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��t� 	
%3=4
4

	
m1=2

Pl

Z t

tin
d�


’cl���
mPl

�
2
����: (30)

This function can be treated as a new dimensionless
Gaussian noise with vanishing mean value and whose
variance reads

h�2�t�i �
%4

2	


�
’in

mPl

�
4
�

�
’cl

mPl

�
4
�
: (31)

We are now in a position where the various correlation
functions of the scalar field can be computed. Here, we
compute the two-point correlation function. Using
Eq. (28), one gets
�

’
mPl

�
2
�
�

�
’cl

mPl

�
2 X�1

k�0

h�ki: (32)

Let us notice that we could have also computed any (i.e.,
n-point) correlation function of the field (including, of
course, the mean value) using the same technique. Since
we have to deal with a Gaussian process, only the even
correlation functions are nonvanishing. In addition, for a
Gaussian process we have h�2ki � �2k� 1�!!h�2ik.
Therefore, we obtain a series the general term of which
can be written as 2k��k� 1=2�h�2ik=

����
	

p
, where we have

used Eq. (8.339.2) of Ref. [28]. At this point two remarks
are in order. Firstly, it is easy to convince oneself that the
series (32) is in fact divergent. The interpretation of this
fact is of course a little bit problematic but, on the other
hand, it is well known that perfectly well-defined distribu-
tion functions can have no moments. Below, we also give
another interpretation of this fact. Secondly, looking at the
expression of the new Gaussian noise �, we see that the
series is in fact an expansion in the coupling constant %4.
Since this one is in fact tiny, one can try to work with the
first term of the series only. Then, one obtains

’
mPl

’
’cl

mPl



1�

1

2
��t� �

3

8
�2�t� �O�%9=4

4 �

�
: (33)

This expression is in fact exactly similar to the one ob-
tained previously for ’cl�t� � �’1�t� � �’2�t� and there-
fore leads to the same correlation functions as before. It is
easy to show that the expansion in the coupling constant is
nothing but the expansion in the noise used before. Our
method is more general because it is not restricted to the
case n � 4. This is because the expansion is directly
performed in the Langevin equation rather than in its
solution. The drawback of this last method is clearly that
it is first necessary to find a solution of the Langevin
equation, which is not an easy task, before the expansion
can be taken. Let us emphasize again that, even if an exact
solution is known, an expansion is still necessary because
only some power of the field is generally obtained (in the
present case ’�2) and, in order to find the expression of the
stochastic field itself, one should then compute the root of
the solution.
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The same conclusions can be obtained by means of a
model where the random walk of the field is modified by
the presence of a reflecting barrier. This model is explored
in Appendix A.

Another possibility studied in the literature is the use of
the so-called scaling solutions, see Ref. [29]. Let us
quickly review the method. The first step consists in ren-
dering the stochastic process nonmultiplicative. This can
be done by means of the transformation x � 16

33=4	4

R’
�1 V�3=4�&�d& which reduces the Langevin

equation to dx=dt � �d ~V=dx� ��t� where ~V �

�3
 �4	2�5=V�’�x��. Explicitly, one has �d ~V=dx �

g
 �x=mPl�
�n�4�=�3n�4� where g is a constant which de-

pends on V0 and n. The next step is to consider the time-
dependent nonlinear transformation

(�x; t� � F�1�e�*�t�tin�F�x��; (34)

where the function F is defined by, see Ref. [29]

F�x� �
xin
mPl

exp
�
*�3n� 4�

2g�n� 4�


�
x
mPl

�
2�n�4�=�3n�4�

�

�
xin
mPl

�
2�n�4�=�3n�4�

��
; (35)

with * 	 g�xin=mPl�
2�4�n�=�3n�4�. Then, it is straightfor-

ward to show that the new stochastic process ( obeys the
following equation

d(
dt

�



1� 2g

n� 4

3n� 4
�t� tin�


 (2�4�n�=�3n�4�

�
��n�4�=�2�n�4��

��t�: (36)

So far, everything is exact. However, the above Langevin
equation cannot be solved exactly. The so-called scaling
solutions correspond to replacing ( by (cl in the right-
hand side of Eq. (36). Then, clearly, the Langevin equation
can be integrated in this approximation. Therefore, the
scaling solutions are nothing but the result of an expansion
in the noise and, again, are similar to the solutions found at
the beginning of this section. We notice, as shown in
Ref. [29], that the quantity (cl is in fact a constant. This
is consistent with the fact that this is the zeroth order
solution (i.e., for which the noise term is simply neglected)
of the above-mentioned expansion for which the Langevin
equation simply reads d(=dt � 0. Finally, in Ref. [29], a
saddle point approximation is used in order to calculate the
effective dispersion. The result found is, see Eq. (28) of
Ref. [29]

h’2ieff / H2�’cl� sinh�lnH
�4=n�’cl�� (37)

� ’n�’2 � ’�2�; (38)

which is exactly the result obtained in Eq. (22). This
reinforces the result that the scaling solutions are very
063514
similar or even identical to the solutions exhibited here
by means of the expansion in the noise term.

In conclusion, the solutions obtained previously for the
stochastic inflaton are explicit and consistent with those
already found in the literature. In the sequel, we use them
as a description of the background in which the quintes-
sence field lives.
IV. QUINTESSENCE

A. Classical Evolution

In order to explain the accelerated expansion of the
Universe, one postulates the presence of the quintessence
field Q. This field is a test field during almost all the cosmic
evolution and becomes dominant only recently when it
drives the accelerated expansion. As is well known for a
scalar field, the equation of state !Q � pQ=-Q is time-
dependent and, crucially, can be negative. The detailed
evolution of !Q clearly depends on the shape of the
quintessence potential W�Q�. An interesting choice is the
inverse power-law potential (with �> 0) which was first
studied by Ratra and Peebles in Ref. [6]

W�Q� � W0

�
Q
mPl

�
��

: (39)

During the radiation dominated era, it is possible to find an
exact solution of the corresponding Klein-Gordon equation
for which Q / a4=���2� or -Q / a�4�=���2�. This is also
possible for the matter dominated era for which one has
Q / a3=���2� or -Q / a�3�=���2�. The two solutions we
have just mentioned can also be expressed by means of
the following equation [8]

d2W�Q�

dQ2
�

9

2

�� 1

�
�1�!2

Q�H
2; (40)

this expression being valid both during the radiation and
matter dominated epochs. We can rewrite the parameter
!Q as !Q � ��!B � 2�=��� 2� where !B is the equation
of state of the background, i.e., either 1=3 or 0. Since -Q

redshifts slower than the background energy density, the
scalar field contribution will eventually become dominant.
From the above equation, it is easy to see that, when the
quintessence field is about to dominate, its value is in fact
of the order of the Planck mass. Then, the value of W0 is
constrained by the fact that the quintessence energy density
is almost the critical energy density today. This gives

W0

m4
Pl

’
3

8	
H2

0

m2
Pl

; (41)

where H0 is the Hubble parameter today, i.e., H0 ’
10�61mPl. Equipped with this relation, one can also esti-
mate the ratio W0=V0 and one gets
-7
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W0

V0
’
�4N
 � n�n=2�1

240	

�
n

16	

�
n=2 H2

0

m2
Pl

�
Qrms�PS

T

�
�2
: (42)

This number is obviously extremely small, ’ O�10�110�.
The main property of the solutions described before is

that they are attractors [6]. This means that there is no need
to fine-tune the initial conditions and that the solution will
be on track today for a large range of initial conditions. Let
us be more precise about this particular point. Usually, one
fixes the initial conditions at the end of inflation, at a
redshift of z � 1028. Then, the allowed initial values for
the energy density are approximatively such that [8,10,11]:
10�37 GeV4 � -Q � 1061 GeV4 where 10�37 GeV4 is the
background energy density at equality whereas 1061 GeV4

represents the background energy density (i.e., the radia-
tion energy density) at the initial redshift. If, for instance,
� � 6 and if the scalar field starts at rest, this means that
the initial values of the field are such that 10�18mPl �
Qin � 10�2mPl just after inflation. If Qin is large initially,
then the attractor is joined quite recently. Of course, the
range of allowed initial conditions, when expressed in
terms of the initial field, depends on the value of the
parameter �.

The values of � are constrained by the measurement of
the equation of state today. The larger � is, the larger the
equation of state parameter !Q is today. Since it is known
that !Q cannot be too different from �1, this means that �
cannot be too large. In fact, this conclusion rests on the
particular shape of the Ratra-Peebles potential. From a
model building point of view, it is more natural to consider
the supergravity inspired (SUGRA) potential given by
[10–13]

W�Q� � W0 e
4	Q2=m2

Pl

�
Q
mPl

�
��

: (43)

Then, the equation of state parameter today is modified.
Since, today, the value of the field is of the order of the
Planck mass, the supergravity exponential factor plays an
important role in this regime. This has two consequences.
Firstly, the equation of state is pushed toward the value �1
because the exponential factor increases the importance of
the potential energy with respect to the kinetic energy.
Secondly, the value of !Q becomes almost independent
of � because, again, the exponential factor dominates. As a
consequence the constraint on � can be relaxed and any
value is in fact a priori possible. Moreover, in the very
early Universe, one has Q � mPl and, this time, the ex-
ponential factor becomes one. In this case, the SUGRA
potential has the same shape as the Ratra-Peebles potential.
In summary, if we have the SUGRA model in mind (which
is, from a high-energy point of view, well-motivated), then,
in the early Universe, we can safely work with the Ratra-
Peebles as an effective model (which is simpler, techni-
cally speaking) but without the usual restrictions on the
parameter �. Let us also notice in passing that another
063514
advantage of considering the SUGRA potential is that it
can be trusted up to energy scales typical of inflation. On
the contrary, the only known realization of the Ratra-
Peebles potential in the context of supersymmetric
Quantum Chromo-Dynamics [30] is not valid for energy
scales higher than the confinement scale, as it could easily
be the case in the present context.

We have seen that the initial conditions are usually fixed
just after inflation, at the beginning of the radiation domi-
nated era. In this paper, we study the behavior of the
quintessence field during the phase of inflation itself. One
of our main goals is to check whether the behavior of Q
during inflation is compatible with the allowed initial con-
ditions (in fact, ‘‘final’’ conditions from the point of view
of the present study) described before. Clearly, if the final
value of Q (at the end of inflation) is not in the allowed
range, then the quintessential scenario is in trouble. In fact,
in order to avoid the above-mentioned situation, our study
rather helps us to put constraints on the initial conditions,
not at the beginning of the radiation dominated era as
before, but at the beginning of the inflationary phase.

We start with a study of the classical evolution of the
quintessence field (i.e., without the quantum effects). The
classical quintessence field obeys the usual equation of
motion for a scalar field in a FLRW background with the
Hubble parameter depending on the classical inflaton field
’cl, namely

	Q cl � 3H�’cl� _Qcl �W0�Qcl� � 0: (44)

Whenever the friction term is large, one can neglect the
double derivative term, obtaining the standard slow-roll
equation

dQcl

dt
�

W0�Qcl�

3H�’cl�
� 0: (45)

The consistency of this assumption can be directly
checked. Taking the time derivative of the last equation
one can actually show that

	Qcl

H�’cl� _Qcl

� �
W00�Qcl�

3H2�’cl�
� "; (46)

where " � � _H=H2 is the usual inflaton slow-roll parame-
ter which is by assumption much smaller than 1. Therefore,
the slow-roll approximation can be applied to the equations
describing the motion of the quintessence field whenever
the following condition is satisfied

W00�Qcl�

3H2�’cl�
� 1: (47)

If one applies this condition to the Ratra-Peebles potential,
one arrives at �

Qcl

mPl

�
��2

�
���� 1�W0

8	V�’cl�
: (48)
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Let us now turn to the solution of Eq. (45). For the Ratra-
Peebles potential given by Eq. (39), the solution to this
slow-roll equation can be expressed as

Qcl

mPl
�

"�
Qin

mPl

�
��2

�
���� 2�W0

m2
Pl

Z ’in

’cl�t�

d.
V 0�.�

#
1=���2�

:

(49)

Using the chaotic inflationary potential (9) we get for any
value of the power index such that n > 2

Qcl

mPl
�

��
Qin

mPl

�
��2

�
���� 2�

n�2� n�
W0

V0





�
’in

mPl

�
2�n

�

�
’cl

mPl

�
2�n

��
1=���2�

; (50)

while, for n � 2, the result reads

Qcl

mPl
�


�
Qin

mPl

�
��2

�
���� 2�

2

W0

V0
ln

’in

’cl�t�

�
1=���2�

:

(51)

These results are consistent with those obtained in
Ref. [15]. The evolution of the quintessence field in the
slow-roll regime for different initial values is plotted in
Fig. 3. Let us quickly discuss these solutions. One can
obtain a more compact expression if one notices that ’cl ’
’in�1� N=�2NT�� where NT is the total number of e-folds
during inflation. This expression is valid provided that N <
4	�’in=mPl�

2=n � NT � n=4 ’ NT. Then, one has
FIG. 3 (color online). Classical evolution of the quintessence
field for different initial conditions. A massive chaotic inflaton
potential (i.e., n � 2) has been assumed and the parameter � in
the Ratra-Peebles potential has been taken to be equal to 6. The
initial condition for the inflaton field is such that ’in � 2:5

106mPl corresponding to an initial energy density of Vin �
0:1m4

Pl. The dotted-dashed line signals the limit of the slow-
roll approximation. Below this line, the slow-roll approximation
is no longer valid.

063514
Qcl

mPl
’
Qin

mPl



1�

���� 2�W0

2nV0

�
’in

mPl

�
2�n




�
Qin

mPl

�
���2 N

NT

�
1=���2�

: (52)

If the initial value is large enough, then the dynamical term
will remain negligible and the field is frozen until inflation
ends. As a matter of fact, for any value of n we obtain that
Qcl�t� ’ Qin at all times if the initial value satisfies the
constraint �

Qin

mPl

�
��2

*

�
W0

V0

��
’in

mPl

�
2�n

: (53)

If the above condition is satisfied at initial time, then,
obviously, the condition given by Eq. (48) is also satisfied.
There is also an intermediate regime for which the condi-
tion (53) is not satisfied but (48) is. In this case, the field is
not frozen, even at initial times. Finally, if Qin is suffi-
ciently small so that the condition (48) is violated, then we
expect the quintessence dynamics to rapidly bring back the
field to the slow-roll regime, where the previous consid-
erations apply.

B. Perturbative Solutions

As mentioned at the beginning of this article, in order to
study the evolution of the quintessence field, it is not
sufficient to integrate the classical equation of motion since
the quantum effects can play an important role and modify
the classical evolution. We now analyze the stochastic
behavior of the quintessence field, in the case where the
total energy density is still dominated by the vacuum
energy of the inflaton field. The stochastic evolution of
the quintessence field Q is controlled by a Langevin equa-
tion which, in the slow-roll approximation, reads

dQ
dt

�
W0�Q�

3H�’�
�

H3=2�’�
2	

�Q�t�; (54)

where �Q is another white-noise field such that

h�Q�t��Q�t0�i � ��t� t0�; h�Q�t���t0�i � 0: (55)

The solution of the Langevin equation (54) depends ex-
plicitly on �Q but also on the inflaton noise � through the
coarse-grained field ’.

In order to find an approximate solution to Eq. (54), one
may try to use the same perturbative technique as the one
used before for the inflaton field. Therefore, we expand the
quintessence field about the classical slow-roll solution
(49) and write

Q�t� � Qcl�t� � �Q1 � �Q2 � � � � : (56)

Then, it is easy to establish that the equations of motion for
the perturbed quantities �Q1 and �Q2 are given by the
following expressions
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d�Q1

dt
�

W00�Qcl�

3H�’cl�
�Q1 �

W0�Qcl�H0�’cl�

3H2�’cl�
�’1 �

H3=2�’cl�

2	
�Q; (57)

d�Q2

dt
�

W00�Qcl�

3H�’cl�
�Q2 �

W0�Qcl�H
0�’cl�

3H2�’cl�
�’2 �

W0�Qcl�H
00�’cl�

6H2�’cl�
�’2

1 �
W0�Qcl�H

02�’cl�

3H3�’cl�
�’2

1

�
W00�Qcl�H0�’cl�

3H2�’cl�
�’1�Q1 �

W000�Qcl�

6H�’cl�
�Q2

1 �
3H1=2�’cl�H0�’cl�

4	
�’1�Q: (58)
Although these equations look quite complicated, they can
be solved easily because (by definition) they are linear. The
solution for �Q1 reads

�Q1�t� � W0�Qcl�
Z t

tin



H0�’cl�

3H2�’cl�
�’1���

�
H3=2�’cl�

2	W0�Qcl�
�Q���

�
d�; (59)
and, as required, is linear both in the quintessence noise �Q
and (through �’1) in the inflaton noise �. As a conse-
quence, �Q1 has a vanishing mean value

h�Q1i � 0; (60)
but a nonvanishing variance given by the sum of two
contributions originating from the inflaton and quintes-
sence noise variances, namely

h�Q2
1i �

W02�Qcl�

9

Z t

tin

Z t

tin

H0���

H2���

H0�(�

H2�(�


 h�’1����’1�(�id�d(�
W02�Qcl�

4	2



Z t

tin

Z t

tin

H3=2���
W0���

H3=2�(�
W0�(�

h�Q����Q�(�id�d(

(61)
	 h�Q2
1ij�’

� h�Q2
1ij�Q : (62)
Let us notice that there is no mixed contribution since the
cross-correlation h��Qi � 0. The detailed calculation of
h�Q2

1i, in particular, its explicit expression in terms of the
inflaton field and/or the number of e-folds N, is rather
lengthy and is carried out in Appendix B.

Let us now turn to the second order correction. The
solution for �Q2 can be written as
063514
�Q2�t� � W0�Qcl�
Z t

tin

�
H0�’cl�

3H2�’cl�
�’2���

�



H00�’cl�

6H2�’cl�
�

H02�’cl�

3H3�’cl�

�
�’2

1���

�
W00�Qcl�H0�’cl�

3W0�Qcl�H2�’cl�
�’1����Q1���

�
W000�Qcl�

6W0�Qcl�H�’cl�
�Q2

1���

�
3

4	
H1=2�’cl�H

0�’cl�

W0�Qcl�
�’1����Q

�
d�: (63)

As expected, one sees that �Q2 is quadratic in the noises.
From the above expression, one deduces that the mean
value of �Q2 is nonvanishing and is the sum of various
terms

h�Q2i � h�Q2ij�’2
� h�Q2ij�’2

1
� h�Q2ij�’1�Q1

� h�Q2ij�Q2
1��Q�

� h�Q2ij�Q2
1��’�

; (64)

where the last term in Eq. (63) does not contribute because

h�’1�Qi � 0: (65)

If we had not taken into account the stochastic behavior of
the inflaton, only the term h�Q2ij�Q2

1��Q�
would have con-

tributed. Again, the explicit expressions of each term are
given in Appendix B.

Let us now quickly present what the outcome of the
perturbative approach applied to the evolution of the quin-
tessence field is. The main result is that when the classical
evolution of the quintessence field is negligible, i.e., when
the condition (53) holds, the variance reads

h�Q2
1ij�Q

�
16mPl

3n�n� 2�

V0

m4
Pl


�
’in

mPl

�
n�2

�

�
’cl

mPl

�
n�2

�
;

(66)

which is the same result already obtained in Ref. [15] that
we recover here with a different method.

Another general result that is established in details in
Appendix B is that, when the perturbative approach is
valid, the contribution coming from the inflaton noise is
completely negligible.

Unfortunately, this is not a very strong argument because
it is possible to see that the perturbative treatment is well
-10
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under control only in a very small region of the parameter
space. Indeed, one must check that the conditions

h�Q2
1i

Q2
cl

� 1;
h�Q2i

Qcl
� 1 (67)

are fulfilled if one wants the perturbative approach to be
valid. This leads to several constraints that are summarized
in Fig. 4. More precisely, from Eq. (62), one sees that the
first condition leads to two constraints while, looking at
Eq. (64), one notices that the second one leads to fives
constraints. As is apparent from Fig. 4, the most stringent
constraint comes from the fact that the variance originating
from the quintessence noise must be small in comparison
with Q2

cl. Explicitly, working out this condition, it boils
down to

Qin

mPl
*

������
V0

p

m2
Pl

�
’in

mPl

�
n=2�1

: (68)

Let us also notice that this condition is a much more
stringent condition than (53), see Fig. 4. For most values
FIG. 4 (color online). Constraints coming from the require-
ment that the perturbative approach is valid for the case n � 2
and � � 6. The values of the initial conditions ’in and Qin are
chosen such that the corresponding energy density is never
Planckian, i.e., V�’in�<m4

Pl and V�Qin�<m4
Pl. Each line cor-

responds to a condition specified in the figure and that we
describe below. By convention, the allowed region is always
the region above the corresponding line. The solid black line
indicates the regime where Qcl can be considered as constant, see
Eq. (53). The dot-dashed line corresponds to the region where
h�Q2

1i=Q
2
cl < 1, originating from the quintessence noise, is

small, see Eq. (68). The dotted line corresponds to the same
condition except that the variance now comes from the inflaton
noise. Finally, the dashed line corresponds to the condition
h�Q2i=Qcl < 1 where the mean value originates from the quin-
tessence noise. As we have seen before, see Eq. (64), there are
four other contributions but one can easily show that they do not
lead to new constraints and this is the reason why they are not
represented in this figure. As discussed in the text, the most
stringent constraint comes from the requirement h�Q2

1i=Q
2
cl < 1.
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of Qin and ’in, we rapidly get that h�Q2
1i=Q

2
cl � 1, mean-

ing that a large part of the initial condition space cannot be
described by means of the perturbative approach.
Therefore, there is the need for a different approach.

C. The Reflecting Wall

The failure of the perturbative treatment is a signal of the
fact that the classical evolution is not a good zeroth order
solution for the perturbative expansion. The reason is that
the equation of motion is dominated by the diffusive term
due to the noise while the classical drift is in fact subdo-
minant. It is therefore natural to neglect the classical term
and to solve the approximate equation

dQ
dt

�
H3=2�’�

2	
�: (69)

The solution to this equation can be written as

Q � Qin �
Z t

tin
d�

H3=2�’�
2	

����: (70)

As a first step, we also neglect the inflaton fluctuations and
take ’ to be the classical field ’cl. As a consequence, Q has
a Gaussian probability distribution the mean of which is
given by hQi � Qin with a variance �2

Q 	 hQ2i � hQi2

which can be expressed as

�2
Q � �2

0�t� 	
Z t

tin
d�

H3�’cl�

4	2

�
16m2

Pl

3n�n� 2�

V0

m4
Pl


�
’in

mPl

�
n�2

�

�
’cl

mPl

�
n�2

�
: (71)

One recognizes Eq. (66), first obtained in Ref. [15], and
that we have rederived in the preceding subsection by
means of the perturbative approach. Here, we have shown
that Eq. (66) can be valid even when the perturbative
approach breaks down.

At this point a remark on the notation is in order. In the
following �2

Q always denotes the variance of the quintes-
sence field while �2

0 is just a function defined by the above
expression which turns out to be equal to �2

Q in the
situation where the classical drift and the inflaton noise
are neglected.

The above model is in fact too simple for the following
reason. The function �0�t� increases with time and, at some
point, is larger than Qin. In this case, there is a finite
probability (tending to 50% at late times) that the quintes-
sence field becomes negative. Clearly, this is not possible
because, in this case, the classical term in the Langevin
equation becomes dominant and prevents Q to become
negative. In other words, in this regime, the classical drift
cannot be neglected. So, it seems that we are in fact back to
the original problem which consists in solving exactly the
full Langevin equation. However, there is a simple way out.
Indeed, we can model the effect of the classical term by
-11
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considering that there is a perfectly reflecting wall at Q �
0 the purpose of which is of course to prevent the quintes-
sence field to become negative. As discussed in Ref. [31],
the probability distribution of a random walk is modified
by a reflecting barrier in a way that is easy to estimate. Let
us assume that we start with a normalized probability
distribution for the variable x,

R
�1
�1 P�x�dx � 1. Then, let

us put a reflecting wall at x � a such that only the values
x > a are allowed. Then, Ref. [31] tells us that the new
probability distribution is P�x� � P�2a� x� and it is easy
to check by mean of a simple change of variable that it is
indeed normalized, i.e.,

R
�1
a �P�x� � P�2a� x��dx � 1. In

the present context, we have a � 0 and, hence, the result-
ing probability distribution becomes, for Q> 0,

P�Q; t� �
e��Q�Qin�

2=�2�2
0� � e��Q�Qin�

2=�2�2
0��������

2	
p

�0�t�
; (72)

where �0 is given by Eq. (71) which means that, for the
moment, the contribution coming from the inflaton noise is
still neglected.

As mentioned before, the advantage of the reflecting
wall model is that it permits simple analytical estimates
of the relevant physical quantities. However, there is one
feature of the model that is worth stressing here. The
classical drift term which prevents the field to become
negative depends on the parameter � but the wall, which
is supposed to model this term, does not. Therefore, one
limitation of the reflecting wall model is that we have lost
the �-dependence of the result. Concretely, in the follow-
ing, we will see that the mean value and/or the variance of
Q are �-independent. Only an exact solution (or a numeri-
cal calculation) could allow us to test the accuracy of this
assumption.

With the help of this probability distribution we can now
calculate the mean and the variance of the quintessence
field. For the mean, one obtains the following analytical
expression

hQi � �0


 ����
2

	

s
e�Q2

in=2�
2
0 �

Qin

�0
Erf

�
Qin���
2

p
�0

��
; (73)

where Erf�z� is the error function defined by Erf�z� 	
�2=

����
	

p
�
Rz
0 dte

�t2 . To our knowledge, this explicit formula
is new and has not been given elsewhere. In the same
manner, one has hQ2i � �2

0 �Q2
in and, therefore, one has

�2
Q � �2

0 �Q2
in � hQi2; (74)

where hQi is given by Eq. (73). One notices the variance of
the quintessence field �2

Q is now different from the func-
tion �2

0, �
2
Q � �2

0. Let us emphasize again that the above
results are not subject to the limitations of the perturbative
approach. In particular, the difference between the classi-
cal value and the quantum (or stochastic) average needs not
to be small.
063514
If we insert Eq. (71) into Eqs. (73) and (74), one obtains
the mean value hQi and the variance �2

Q as functions of the
inflaton and/or the number of e-folds. At initial time, one
has �0 ! 0 and therefore hQi ! Qin, where we have used
the fact that Erf�z� ! 1 when z ! �1. For the variance,
one has in the same regime (i.e., initially for ’ ! ’in and
�0�t� � Qin)

�2
Q ! �2

0�t�; (75)

where we have used Eq. (74) and the behavior of the mean
at initial times. This means that, in this regime, we recover
the previous results obtained by means of the perturbative
approach.

One can also study what happens at late times when
�0�t� � Qin. In this case, one has

hQi !

����
2

	

s
�0�t�: (76)

The situation is reminiscent to the behavior of quintessence
in the more traditional situation where the background
evolution is dominated either by radiation or matter.
Indeed, as is the case in this well-studied context and as
explained before, the late time evolution of hQi is inde-
pendent on the initial conditions, i.e., on Qin. In other
words, there is an attractor for hQi given by Eq. (76). In
this situation, the final value of the quintessence field only
depends on the initial value of the inflaton field (and, of
course, on which kind of potential is responsible for in-
flation: in the present context, it only depends on n).
However, this conclusion should be toned down because
we will see in the following that another quantity of
interest, namely, the probability that the quintessence field
be on track today (or, equivalently, that its value at the end
of inflation be in a given range) does depend on Qin (and, in
fact, also on ’in).

Using the above expression, the variance of the quintes-
sence field at late times can also be estimated. It is given by

�2
Q !

�
1�

2

	

�
�2

0�t�: (77)

We see that, as �0�t� increases and as the probability that
the random-walking field is reflected by the wall becomes
non-negligible, the mean value hQi is shifted toward higher
values while its variance slightly shrinks.

We are now in a position where we can come back to one
of our starting questions, namely, the influence of the
inflaton noise. In particular, we study whether including
the inflaton fluctuations can cause significant deviations
from the above results and, if so, under which physical
conditions this is the case. In order to take into account this
effect, we restart from Eq. (70). In this formula, the argu-
ment of the Hubble parameter is no longer the classical
inflaton but the stochastic process studied in the previous
section. Then, one can use the perturbative treatment
-12
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studied before but, and this is of course the crucial point,
only for the inflaton field. Indeed, we have seen before that
this perturbative treatment (contrary to the perturbative
treatment for the quintessence field) is almost always
reliable. Performing a Taylor expansion of Eq. (70), one
obtains

Q � Qin �
1

2	

Z t

tin
d�
�
H3=2�’cl�

�
3

2
H0�’cl�H1=2�’cl��’1���

�
3

2
H0�’cl�H1=2�’cl��’2��� �

1

2






3

2
H00�’cl�H

1=2�’cl�

�
3

4
H02�’cl�H

�1=2�’cl�

�
�’2

1��� � � � �

�
����: (78)

Equipped with this solution, one can now reintroduce the
reflecting wall and recalculate the various moments.
Clearly, since the solution is still linear in the quintessence
noise, the probability function of the quintessence field,
taking into account the wall, is still given by Eq. (72) but, in
the expression of P�Q; t�, �0 should now be replaced by
another function (of the classical inflaton noise or of the
number of e-folds) that, in the following, we simply denote
by � (not to be confused with �Q). The replacement of �0

by � is the only change needed. Otherwise the expression
of the new P�Q; t� is similar to the one given by Eq. (72).
Let us now determine � explicitly. As before, � is simply
given by the variance deduced from Eq. (78) using the fact
that we have white noises. Equation (78) implies that �2 is
given by

�2�t� �
Z t

tin
d�

hH3�’�i

4	2 ; (79)

where the mean value in the integral can be expressed
through a power expansion of H3�’� up to second order
about its classical value yielding

hH3�’�i � H3�’cl� � 3H2H0h�’2i

� 3


H�H0�2 �

H2H00

2

�
h�’2

1i; (80)

that can now be easily integrated. The final result is

�2�t� � �2
0�t� �

16m2
Pl

3n
V2
0

m8
Pl

�
4

3n

�
’in

mPl

�
n=2�2





�
’in

mPl

�
3n=2

�

�
’cl

mPl

�
3n=2

�

�

�
’in

mPl

�
4

�

’in

mPl

�
2n�2

�

�
’cl

mPl

�
2n�2

�

�
n

n� 1


�
’in

mPl

�
2n�2

�

�
’cl

mPl

�
2n�2

��
: (81)
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Let us now compare the function ��N� with the function
�0�N�. At early times, i.e., when ’cl�t� � ’in, a lineariza-
tion is sufficient in order to obtain a good approximation
(and this is in fact the case for a large part of inflation). A
striking feature of the above result is that the extra term
coming from the inflaton quantum fluctuations cancel out,
the first nonvanishing contribution being of order
O��N=NT�

2�, where we remind that NT is the total number
of e-folds. Therefore, for the main part of the inflationary
era we can safely consider that ��t� ’ �0�t�. Again, we
reach the conclusion that the effects originating from the
inflaton noise do not play a crucial role. Conversely, at late
times, when ’cl�t� � ’in, the above expression yields

�2�t� � �2
0�t�



1�

�n� 2��7n� 4�

3n�n� 1�

Vin

m4
Pl

�
; (82)

meaning that, as could be expected, the contribution of the
inflaton quantum fluctuations is significant only when in-
flation starts near the Planck scale, while it becomes neg-
ligible for smaller values of the initial energy density.

We are now in a position where one can compute the
new mean and variance exactly. As already mentioned, the
new probability function is given by Eq. (72) with �0

replaced by �. This immediately means that hQi and �2
Q

are given by Eqs. (73) and (74) with �0 replaced by �. The
evolution of hQi versus the number of e-folds is displayed
in Fig. 5. At initial times, one has hQi ’ Qin and �2

Q ’

�2 ’ �2
0, the last approximate equality coming from the

property established before Eq. (82). On the other hand, the
mean value and the variance of the quintessence field at
late times read (if the initial condition for the inflaton field
is large enough in order to reach the regime where � �
Qin)

hQi �

����
2

	

s
�; �Q �

�������������
1�

2

	

s
�; (83)

where in the above equations � is the ��t� calculated at the
end of inflation, which is given by

� � ’in

���������������������������������������������������������������������������������������
16

3n�n� 2�

Vin

m4
Pl



1�

�n� 2��7n� 4�

3n�n� 1�

Vin

m4
Pl

�s
;

(84)

where we have used Eq. (82) and an approximation for �0

valid at late times. One notices that the two quantities of
Eq. (83) are growing functions of ’in. This can be checked
explicitly in Fig. 6 where the final values of hQi versus ’in

are represented.
There is another important consequence that can be

deduced from what has been discussed so far. As already
mentioned, the energy density of the quintessence field at
the beginning of the radiation era (i.e., at the end of
inflation) must be such that 10�113m4

Pl < -Q < 10�9m4
Pl

if one wants Q to be on track today. Assuming for sim-
plicity that the field starts at rest, this implies
-13



FIG. 5 (color online). Evolution of hQi (solid black line)
calculated from Eq. (73) (but with the inflaton noise taken into
account) and compared with the corresponding classical evolu-
tion (dotted-dashed line) Qcl. The dashed area represents the
zone �� around the mean value where � has been obtained with
the help of Eq. (81). The difference between hQi and Qcl at the
end of inflation can be many orders of magnitude (and is, in the
present case, of about 8 orders of magnitude) demonstrating that
it is crucial to take into account the quantum effects during
inflation. The curves have been obtained for a massive chaotic
model, i.e., n � 2 and for the Ratra-Peebles potential with � �
6. The initial value of the inflaton is ’in � 5:4
 106mPl corre-
sponding to an initial energy density of Vin � 0:5
m4

Pl. The
initial value of the quintessence field is Qin � 10�4mPl corre-
sponding to Win � 1:25
 10�99m4

Pl.

FIG. 6 (color online). The quantity hQi at the end of inflation
versus the initial value of the inflaton field calculated according
to Eq. (83) for two chaotic models, n � 2 and n � 4. As noticed
in the text, hQi at the end of inflation does not depend on the
initial value of the quintessence field because there is an attractor
solution given by Eq. (76). The fact that the final value does not
depend on the parameter � is due to the description of the
classical drift term by means of the reflecting wall. The two
curves start and stop at different values of the initial inflaton field
because the minimal value (defined to be the one which leads to
at least 60 e-folds) and the maximal value (defined to be the one
which corresponds to Vin � m4

Pl) are not the same according to
the model (i.e., n) under considerations (for instance, ’in �
3:1mPl for n � 2 while ’in � 4:4mPl for n � 4). The horizontal
lines represent the maximal values of Q (for different values of
the index �) at the end of inflation such that the attractor is
joined today. These values are computed by means of Eq. (85).
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Qmin

mPl
	 10�107=� <

Q
mPl

< 10�9=� 	
Qmax

mPl
: (85)

Since, during inflation, Q is a stochastic quantity, one can
study the probability for a given model (that is to say for a
given choice of the power indices and of the initial con-
ditions Qin and ’in) that the field is in the appropriate
range. This probability allows us to evaluate the likelihood
of the various models under considerations, rejecting those
for which this quantity is small. In this way, we can thus
constrain the value of the initial conditions for the fields
and exclude a portion of the parameter space. Two remarks
are in order here. Firstly, as is clear from Eq. (72), the
probability will depend on Qin. Therefore, although the late
time evolution of hQi is independent of Qin, this depen-
dence is reintroduced via the calculation of the probabil-
ities. Secondly, the result will also depend on ’in. As a
consequence, for a fixed value of n and �, one can hope to
derive constraints on the initial value of the quintessence
field but also on the total number of e-folds during
inflation.

A given model will be accepted if a large part of its
probability distribution calculated at the end of inflation is
contained within the allowed range. A rough estimate of
this constraint can be obtained by simply requiring that the
mean value of the distribution falls in this range within one
square root of the variance. Using the previous results of
this section, one finds that imposing that hQi � �Q falls
063514
between Qmin and Qmax yields

Qmin <
� ����

2

	

s
�

�������������
1�

2

	

s �
�<Qmax: (86)

Therefore, in order to obtain a probability of order one
must have that � & Qmax. This implies an upper bound on
’in that can be roughly estimated to (neglecting the con-
tribution from inflaton fluctuations)

’in

mPl
&

�
m2

Pl������
V0

p
Qmax

mPl

�
2=�n�2�

� 1010���2�=���n�2��: (87)

It is easy to see from the above formula that this constraint
is quite stringent. Let us also notice that this is also a
constraint on the total number of e-folds during inflation,
very roughly speaking NT & 1020���2�=���n�2��.

More precisely, if one uses the probability density func-
tion given by Eq. (72) (with, as already discussed at length,
�0 replaced by � if one wants to take into account the
inflaton noise at the end of inflation), one can calculate the
exact probability for the quintessence to be on track today.
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One arrives at

P�Qmin <Q<QmaxjQin; �; �in; n�

�
1

2



Erf

�
Qmax �Qin���

2
p

�

�
� Erf

�
Qmin �Qin���

2
p

�

�

� Erf
�
Qmax �Qin���

2
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�

�
� Erf

�
Qmin �Qin���

2
p

�

��
: (88)

The detailed behavior of this probability as a function of
the initial conditions ’in and Qin is shown in Fig. 7 for n �
2 and different power indices �. We see that a large portion
of the parameter space can be excluded. Actually, for
n � 2, the largest allowed initial condition is ’in ’ 7:6
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FIG. 7 (color online). Probability computed from Eq. (88) that the q
and different power indices � (from top to bottom, � � 2, 6, 11). For
of the initial inflaton is ’in � 7:6
 105mPl (coming from the fact th
27mPl, 1:3
 103mPl, and 3:0
 103mPl, respectively, (corresponding
and 1:5
 10�5m4

Pl) are excluded at 99% CL. One also notices that,
large values of the power index � are statistically preferred.

063514
105mPl, corresponding to the Planck energy density.
However, at 99% of confidence level, initial values larger
than 27mPl (� � 2), 1:3
 103mPl (� � 6), or 3:0

103mPl (� � 11) are excluded. This also shows that, since
the confidence region enlarges with the power index �,
large values of � are statistically more favored than small
values.
V. DISCUSSION AND CONCLUSIONS

In this section, we briefly discuss other aspects of the
question studied in this article and present our conclusions.

In the preceding sections, we have calculated the evolu-
tion of the quintessence field during inflation taking into
uintessence field is on track today for various models with n � 2
all the models under consideration, the maximum allowed value

at Vin <m4
Pl). From the plots, one notices that values larger than

to an initial energy density Vin of 1:3
 10�9m4
Pl, 2:9
 10�6m4

Pl,
since the confidence region enlarges for increasing values of �,
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account the quantum effects. What about these quantum
effects in the subsequent cosmological eras? After the
reheating, during the radiation and matter dominated
phases, it is easy to show that the quintessence field evolves
classically starting from the value reached at the end of
inflation and determined by its random walk during infla-
tion. Indeed, since the noise in the Langevin equation is
controlled by the quantum fluctuations of the modes leav-
ing the horizon, it rapidly becomes negligible as the accel-
erated expansion stops and the modes start to reenter the
horizon.

However, a new phase of accelerated expansion driven
by the quintessence field is now taking place and, clearly,
the above argument does not apply in this case. Therefore,
one may wonder whether the influence of the quantum
effects should not be taken into account when one com-
putes the evolution of Q at present time. This could have
important observational consequences, in particular, if the
stochastic behavior of Q modifies the value of the equation
of state. However, it is easy to demonstrate that this is not
so. The problem is in fact very similar to calculating the
evolution of the inflaton field during inflation since, at
present time, the quintessence field is no longer a test field
but actually determines the evolution of the background.
Therefore, even though the slow-roll approximation might
not be so satisfactory in this case, we can at least estimate
the relevance of these late stochastic fluctuations by simply
setting n � �� into Eq. (22) (since, in some sense, the
Ratra-Peebles potential is nothing but an inflationary cha-
otic potential with a negative index). This equation, pro-
vided one substitutes ’cl with Qcl and V�’cl� with W�Qcl�,
should be a reasonable estimate of h�Q2i=Q2. Since the
quintessence field is now on the attractor, its value must be
of the order of the Planck mass. In addition, it is slowly
rolling down its potential toward higher values. As a con-
sequence, from Eq. (22), one gets the following rough
estimate

h�Q2i

Q2

��������now
&

W�Qnow�

m4
Pl

’ 10�123; (89)

meaning that any stochastic deviation from the classical
trajectory is completely negligible at present time.

Let us now end this work by reviewing what are the main
conclusions of our study. The main result is that taking into
account the quantum effects during inflation is important
since the stochastic diffusion term dominates over the
classical drift term and that, as a consequence, the value
of hQi can differ from Qcl by several orders of magnitude.
For the first time to our knowledge, we have given an
analytical estimate describing the evolution of hQi during
inflation, see Eq. (73).

Another new result is the fact that requiring the quintes-
sence field to have a large probability to be on track today
allows us to put quite stringent constraints on the initial
conditions Qin and ’in. Typically, the quintessence field
063514
must start from small values. We have also established that
large values of � are favored (we notice in passing that, if
we consider the Ratra-Peebles potential only and not the
SUGRA one, the same conclusion is reached from the
constraints that exist on the equation of state today).
Another interesting result is that the inflaton field must
also start from quite small values. This implies that the
total number of e-folds during inflation is also limited. On
the other hand, we have remarked the existence of an
attractor for hQi, see Eq. (76), due to the fact that the final
value of hQi is independent of Qin. However, a dependence
in the initial conditions is reintroduced in the calculation of
the probability which has allowed us to put the constraints
mentioned just before.

One of the main purposes of our paper was also to study
the influence of the inflaton noise on the evolution of the
quintessence field. The approximation consisting in ne-
glecting the inflaton fluctuations has been shown to be
justified in most cases, basically because the corresponding
contributions to the mean value and/or to the variance are
proportional to Vin=m

4
Pl, see for instance Eq. (83). Even in

the extreme case of Planckian initial conditions for the
inflaton field (i.e., Vin �m4

Pl), the inflaton noise is unlikely
to modify hQi; mPl by more than 1 order of magnitude
compared to what is obtained taking into account the
quintessence noise only.

It is also interesting to compare these results to those
obtained in the paper [15] which was the first to take into
account the quantum effects in the calculation of the
evolution of hQi. Basically, our findings confirm and/or
justify the results of Ref. [15] and somewhat extend their
validity. We have recovered the same equation for the
variance and our new Eq. (73) for the mean value of Q
confirms the conclusions that can be drawn from the fig-
ures of Ref. [15], namely, that the quantum effects can play
an important role during inflation. In Ref. [15], the inflaton
noise has not been considered and, as mentioned above, we
have demonstrated that this is, in most cases, a good
approximation.

Finally, let us describe some questions that are left
unanswered and some possible improvements to the
present study. In order to be able to find analytical solu-
tions, we have modeled the classical drift term with a
reflecting wall. The price to pay is that we have lost the
dependence in the parameter �. The drift term acts differ-
ently for different Ratra-Peebles potentials while the wall
repels the field regardless to �. Although we do not expect
a strong dependence, it would be interesting to quantify
this effect. The problem is that, if one includes the exact
classical term, then the Langevin equation is no longer
analytically solvable. The only way out seems to numeri-
cally integrate this equation. However, even this solution
could be difficult because a term like Q�� can rapidly
become very large and, hence, problematic from the nu-
merical point of view.
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Another interesting question would be to study what
happens when one considers the case of a colored noise
since it is clear that a white noise is not, physically, the
most relevant case. Concretely, this amounts to replace the
Heaviside function in the expansion of the field by a
smooth function and, in principle, this could affect the
evolution of the quintessence field during inflation
although, again, we do not expect a very important effect.

For the moment, we postpone the study of all the issues
to future works.
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APPENDIX A: REFLECTING WALL FOR THE
INFLATON

Another way to look at the quantum evolution of the
inflaton is the following. From Eq. (31), it is clear that the
variance of ��t� is a growing function of time. However, in
order for the solution of Eq. (28) to be defined we need to
impose the condition ��t�< 1. Otherwise, this equation is
clearly meaningless and, of course, if this condition is not
satisfied, the series of Eq. (33) is not convergent. This is
probably the reason for the problems encountered before.
The above condition can be thought of as constraining the
random walk of � with a reflecting wall. As explained in
the preceding section, see also Ref. [31], the resulting
probability distribution for � with the wall located at � �
1 is given by

P��; t� �
e��2=�2h�2i� � e����2�2=�2h�2i����������������������

2	h�2�t�i
p ; (A1)

and the corresponding probability distribution for ’, ob-
tained via the relation P�’; t� � P���’�; t�jd�=d’j, be-
comes

P�’; t� � P���’��
2

’cl

�
’cl

’

�
3
: (A2)

This probability distribution has a finite mean value that
can be expressed as [this equation can also be obtained by
063514
using the link between � and ’ given by Eq. (28) and the
probability distribution of � given by Eq. (A1)]

h’i � ’cl
e�1=�4h�2i�����������

h�2i
p ����

	
2

r
I�1=4

�
1

4h�2i

�
; (A3)

where I1�x� is the modified Bessel function of the first
kind. For small values of h�2i, the mean value reads

h’i � ’cl



1�

3

8
h�2i �O�h�2i2�

�
; (A4)

yielding therefore the same results as (33). Let us also
notice that all higher moments are divergent in accordance
with the discussion presented in the section on the evolu-
tion of the inflaton field.
APPENDIX B: PERTURBATIVE SOLUTION FOR
THE QUINTESSENCE FIELD

1. Solution at First Order

In this appendix, we present the explicit expressions (as
a function of the classical inflaton field and/or of the
number of e-folds) of h�Q2

1i given by Eqs. (61) and (62)
and of h�Q2i given by Eq. (64). We start with Eq. (62)
which is the sum of two terms. In order to evaluate the first
term coming from the inflaton noise, i.e., h�Q2

1ij�’
, one

must calculate the two-point correlation function of �’1.
Using the solution of Eq. (19), one obtains

h�’1����’1�(�i �
1

4	2 H
0���H0�(�


Z (

tin

H3���

H02���
d�

�(�(� ��
Z �

(

H3���

H02���
d�
�
:

(B1)

In the above expression, (�z� is the Heaviside function,
i.e., is zero if z < 0 and one otherwise. Then, using the link
between the cosmic time and the classical inflaton field in
the slow-roll approximation, the remaining integrations
can be easily performed since they just boil down to
integrating power-law functions. One obtains
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The evolution of h�Q2
1ij�’

as a function of the number of e-folds is displayed in Fig. 8. The main feature of this formula is
-17



FIG. 8 (color online). Left panel: evolution of h�Q2
1i=Q

2
cl calculated in the perturbative regime for two different set of initial

conditions (i.e., two different values of ’in and Qin) and for a model with n � 2 and � � 6. For each set of initial conditions specified
explicitly in the figure, the contribution coming from the quintessence noise and the contribution originating from the inflaton noise are
represented. The perturbative treatment is under control only in the case ’in � 221mPl and Qin � 0:06mPl corresponding to initial
energy densities given by Vin � 3:7
 10�8m4

Pl and Win � 2:8
 10�114m4
Pl (since all the corresponding curves lie in the region

h�Q2
1i=Q

2
cl < 1). The plot demonstrates clearly that, in the perturbative regime, the inflaton noise is totally negligible. Right panel:

evolution of h�Q2i=Qcl for the initial conditions ’in � 221mPl and Qin � 0:06mPl. The five curves correspond to the five contributions
of Eq. (64). Again, it is obvious that the four contributions originating from the inflaton noise are unimportant.
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that it is proportional to �W0=V0� 
 �W0=m
4
Pl� which is, as discussed before, very small. This is confirmed by the plot, see

the left panel in Fig. 8.
Let us now turn to the term sourced only by the quintessence noise. Using the fact that the quintessence noise is white the

second term of Eq. (61) becomes

h�Q2
1ij�Q

�
W02�Qcl�

4	2

Z t

tin
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W02�Qcl�
: (B3)

Then, using the expression of the inflaton and quintessence potentials, straightforward calculations lead to the following
formula in terms of hypergeometric functions
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where we have used the definitions
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n� 2
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mPl
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�
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; (B5)
and where we have assumed that n � 2. The number � is
always positive for n � 6 which is the case we are mostly
interested in and the number 1 is, on the contrary, always
negative. The evolution of h�Q2

1ij�Q
is represented in

Fig. 8. The presence of the hypergeometric functions is
linked to the fact that the classical quintessence field is not
totally frozen. Looking at Eq. (50), one sees that the term
responsible for the slight evolution of Qcl is in fact pro-
portional to ). Indeed, in the limit ) ! 0, or equivalently
063514
* ! 0, the classical quintessence field becomes Q � Qin,
i.e., is actually frozen. In this case, one has

2F1
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and Eq. (B4) reads
-18
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which is exactly the expression derived in Ref. [15]. This
term is proportional to the factor V0=m

4
Pl which is much

larger than �W0=V0� 
 �W0=m4
Pl�. As a result, we expect

the term originating from the quintessence noise to domi-
nate over the term originating from the inflaton noise and,
as already mentioned, this conclusion is confirmed by the
plots in Fig. 8. A priori this conclusion is valid only in the
regime where the above expressions have been established,
i.e., in the perturbative regime.

We have noticed before that the solution expressed in
terms of the hypergeometric function is valid provided n �

2. The case n � 2, for which the evolution of the classical
quintessence field is given by Eq. (51), requires a special
treatment. In this case, one finds
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where *�2; x� is the incomplete gamma function defined
by

*�2; x� 	
Z x

0
e�tt2�1dt: (B9)

In the limit * ! 0, using the formula *�2; x� ’ ��2� �
x2�1e�x when x ! 0, one obtains
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which is again the expression found in Ref. [15], speci-
alized to the case n � 2. The previous conclusion, namely,
that this term dominates the contribution coming from the
inflaton noise, is not modified in this particular case.

STOCHASTIC QUINTESSENCE
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2. Solution at Second Order

We now turn to the calculation of the mean value of �Q2

given by the sum of five contributions as can be seen in
Eq. (64). In principle, the calculations of these five terms
can be performed in the general case, where the classical
quintessence field is given either by Eq. (50) or Eq. (51).
However, for simplicity, we give only the expressions
corresponding to the case where Qcl is frozen, i.e., to the
limit * ! 0. In this case, all the integrations become trivial
since they only involve integrals of power-law functions.
The first term, h�Q2ij�’2

, originates from the term �’2

only. It is given by
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The main feature of the above term is the presence of the
overall factor W0=m4

Pl 
 �Qin=mPl�
���1 (of course, the

powers of the inflaton field can also play a role but for a
crude order of magnitude estimate, one can ignore them).
The second term participating to the expression of h�Q2i
comes from �’2

1. It is given by
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We see that this term also scales as W0=m4
Pl 


�Qin=mPl�
���1. Therefore, we expect the previous contri-

bution and this term to be of the same order of magnitude.
This can be checked explicitly in Fig. 8. The third term
comes from �’1�Q1 where it should be understood that, in
�Q1, only the term proportional to the inflaton noise
matters. One obtains
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In comparison with the two previous terms, we see that there is an extra overall factor equal to W0=V0 
 �Qin=mPl�
���2.

As a consequence, this term is expected to be subdominant with respect to the two previous contributions and, again, this
can be checked explicitly in Fig. 8. Of course, one could try to compensate the smallness of W0=V0 by a large value of
-19
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�Qin=mPl�
���2, i.e., by a large value of the index � but this would lead to very artificial, hence unphysical, models. Then,

the fourth term, originating from the term �Q2
1��Q�, can be written as
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If we compare this term with the two first contributions, we see that there is an extra overall factor equal to �Qin=mPl�
�2.

Since Qin=mPl is small one expects the previous contribution to be dominant. In Fig. 8, this contribution is represented by
the solid black line which is indeed the most important one. Finally, the last term coming, from �Q2

1���, reads
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This term is proportional to �W0=V0�
2 which is a tiny factor. Therefore, the above contribution is expected to be the smallest

contribution to h�Q2i and, in fact, to be totally negligible. This is confirmed in Fig. 8.
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