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Cosmological perturbations from varying masses and couplings

Filippo Vernizzi*
Institut d’Astrophysique de Paris, GReCO, FRE 2435-CNRS, 98bis boulevard Arago, 75014 Paris, France

~Received 7 November 2003; published 29 April 2004!

We study the evolution of perturbations during the domination and decay of a massive particle species
whose mass and decay rate are allowed to depend on the expectation value of a light scalar field. We specialize
in the case where the light field is slow rolling, showing that during a phase of inhomogeneous mass domi-
nation and decay the isocurvature perturbation of the light field is converted into a curvature perturbation with
an efficiency which is nine times larger than when the mass is fixed. We derive a condition on the annihilation
cross section and on the decay rate for the domination of the massive particles and we show that standard
model particles cannot dominate the universe before nucleosynthesis. We also compare this mechanism with
the curvaton model. Finally, observational signatures are discussed. A cold dark matter isocurvature mode can
be generated if the dark matter is produced out of equilibrium by both the inflaton and the massive particle
species decay. Non-Gaussianities are present: they are chi-square deviations. However, they might be too small
to be observable.
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I. INTRODUCTION

Strongly supported by the recent observations of
Wilkinson Microwave Anisotropy Probe~WMAP! satellite
@1–5#, inflation @6# has now become the dominant contend
for generating adiabatic density perturbations with an alm
flat spectrum. In the standard picture, the observed la
scale density perturbations are due to the fluctuations of
inflaton field, which are created during a period of acce
ated expansion by amplification of quantum vacuum fluct
tions @7#.

Recently, alternative mechanisms for generating den
perturbations after inflation have been proposed. They
assume that the early Universe is filled with at least one li
scalar fieldf whose energy density is negligible during i
flation. Fluctuations in the field are amplified during the i
flationary phase with a quasi-scale-invariant spectrum
their amplitude fixed by the energy scale of inflation,df
;H* /2p, whereH* is the Hubble parameter at the horizo
crossing. If the vacuum expectation value~VEV! of the light
field f during inflation is small, its density perturbatio
drf /rf;df/f is larger than the perturbations generat
during inflation. However, since the light field is subdom
nant, its perturbation is initially of the isocurvature typ
Later, it can be converted into a curvature perturbation. F
successful conversion one of these two ingredients is ne
sary:~1! the fieldf must come~close! to dominate the Uni-
verse, or~2! it must induce fluctuations in a second comp
nent which eventually comes to dominate the Universe.

In case~1! the scalar fieldf is called curvaton. In the
curvaton scenario@8,9,11#, the isocurvature perturbatio
stored in the curvaton field is transformed into a curvat
perturbation during a phase in whichf oscillates at the bot-
tom of its potential behaving as a dustlike component a
thus dominating over the radiation.

Case~2! has been inspired by the idea that coupling co
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stants and masses of particles during the early Universe
depend on the VEV of some light scalar field. This idea
motivated by supersymmetric theories and theories insp
by superstrings where coupling ‘‘constants’’ and masses
particles are usually functions of the scalar fields of t
theory. An interesting proposal is that large scale pertur
tions could be generated from the fluctuations of the infla
coupling to ordinary matter@12,13#. These can be converte
into curvature perturbations during the reheating phase@14#
when the inflaton decays into radiation and reheats differ
patches of the universe with different temperatures and
ergy densities~see, however,@15#!. This mechanism of con-
version has been called inhomogeneous reheating in@12#. An
extension and generalization of this mechanism is that
masses of particles produced during the reheating are
lowed to vary @16#. If sufficiently long lived, the massive
particles can eventually dominate the universe. Due to
fluctuations in the masses the mass-domination process
comes inhomogeneous and can convert the density pertu
tion of f into a curvature perturbation.

Some authors@17–19# ~see also@20#! have studied the
evolution of large scale perturbations during the decay of
inflaton in the case of a fluctuating decay rate. Two of the
groups@17,18# make extensive use of the formalism intr
duced in Ref.@21# ~see, however, also@22,23#! for interacting
fluids. Indeed, on several occasions the light scalar field
be treated as a fluid and the formalism of Ref.@21# consis-
tently applied. In this paper we extend the analysis of@17,18#
and we include the case where the inhomogeneous rehe
is due to the decay of massive particles whose mass
decay rate depend on the VEV of a light field. In the limit
a constant mass the results of@17,18# are recovered.

We also derive the condition for the domination of th
massive particles. Since at early times they are in ther
equilibrium, their abundance depends on their annihilat
cross section. As we shall see the condition for the domi
tion does not depend on their mass but only on their ann
lation cross section and decay rate. Our results are then c
pared with those obtained for the curvaton model and so
©2004 The American Physical Society26-1
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of the observational consequences are discussed. If the i
tion and/or the massive particles decay out of equilibri
isocurvature perturbations can be generated. The inhom
neous inflaton decay and mass domination can also lea
non-Gaussianities in the adiabatic spectrum of perturbati
These can lead to observational signatures in the cosmic
crowave background~CMB! that can possibly be observed
future experiments.

The paper is organized as follows. In Sec. II we model
inhomogeneous mass-domination mechanism by wri
down the conservation laws for the radiation, the mass
particles, and the light field, and we derive the coupling
tween these species. In Sec. III we write the background
perturbation equations obtained from the conservation la
These equations are completely general. They can be
for the inhomogeneous inflaton decay as for the inhomo
neous mass-domination model. In Sec. IV we concentrate
the limit that the light field is in slow roll and we discuss th
efficiency of the inhomogeneous inflaton decay and ma
domination models. We also compare them to the curva
model. Finally, in Sec. V we discuss the observable sig
tures of the inhomogeneous mass domination i.e., the
sible presence of isocurvature perturbations and n
Gaussianities. In the final section we draw our conclusio

II. MODELING THE COUPLINGS

As mentioned in the Introduction, we want to derive a
of equations that, depending on the initial conditions, c
describe two different physical situations:~a! inhomoge-
neous inflaton decay or~b! inhomogeneous mass dominatio
and decay. In order to describe these two cases we consi
universe containing three components: a radiation fluidg, a
nonrelativistic fluidc, and a light scalar fieldf. According
to the different physical situations, we have the following

~a! Inhomogeneous inflaton decay. At the end of inflation
the Universe is dominated by the inflaton. This coheren
oscillates at the bottom of its potential behaving as a non
ativistic fluid c. The decay rate of the inflaton,G, depends on
f.

~b! Inhomogeneous mass domination. After inflation and
reheating, the universe is filled with radiationg and with a
speciesc of nonrelativistic massive particles, whose massM
and decay rateG depend onf.

As we shall see, the equations derived for case~b! can be
applied to case~a! in the limit thatM does not depend onf.
Therefore, in the following we concentrate on the inhom
geneous mass domination and decay.

The universe is initially dominated by a radiation bathg
with temperatureT and by a massive particle species w
massM*T, such that it can be described as a nonrelativis
fluid c. If the massive particles froze out at a temperat
such thatM /T was not much larger than 1, then the spec
can have a significant relic abundance and, if sufficien
long lived, can eventually dominate the universe before
caying. The condition for the domination can be obtained
requiring the decay rate to be smaller than the Hubble
rameter at the moment whenc decays. The latter corre
08352
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sponds approximately to;M2/MPl if we assume thatc
starts to dominate as soon as it becomes nonrelativisticT
;M . Thus we find@16#,

G,M2/MPl , ~1!

whereMPl[(8pG)21/2 is the reduced Planck mass. A mo
precise condition for the domination is derived in Sec. IV
and depends only on the annihilation cross section and de
rate of the massive particles. When thec particles decay into
g they release a considerable amount of entropy and re
the universe once again. During the inhomogeneous m
domination and reheating, fluctuations inM5M (f) and G
5G(f) can be converted into curvature perturbations.

Variations of masses and coupling constants can be ea
motivated in the context of string theory where compactifi
extra dimensions emerge as massless scalar fields, c
moduli, in the effective four-dimensional theory. The
moduli generally couple directly to matter leading to var
tions of masses and fundamental constants@24#. That the
mass of particles may depend on a light field has been
cussed in several places in the literature, especially in
context of interacting dark matter and dark energy~see, e.g.,
@25# for a review! and more recently in models with variatio
of the fine structure constant@26# and in the chameleon cos
mology @27#. A field-dependent mass leads to a nontriv
coupling between the field and the nonrelativistic fluid ma
of massive particles. The form of this coupling can be d
rived by considering the nonrelativistic fluid as a classi
gas of pointlike particles with massM (f) and actionS5
2*Mds @24#. In this section we derive the conservatio
equations of our three fluids system using the conservatio
the total energy.

Let Tmn
(g) , Tmn

(c) , and Tmn
(f) be the energy-momentum ten

sors of the three componentsg, c, andf. In particular we
write the energy-momentum tensor of the nonrelativis
massive species as

Tmn
~c!5rcumun5Mncumun , ~2!

whererc is the energy density andnc the number density of
c. From general covariance we require that the sum of
three energy-momentum tensors is conserved,

05¹m~Tn
~f!m1Tn

~g!m1Tn
~c!m! ~3!

5¹mTn
~f!m1¹mTn

~g!m1
]mM

M
Tn

~c!m

1M¹m~ncum!un1Mncum¹mun . ~4!

The last term of the right-hand side of this equation vanis
only if the massive particles follow a geodesic, which is n
the case if they interact with other fluid components. W
project Eq.~4! on the unit vectorun and we define the deca
rate ofc as the rate of change of the number ofc particles,

¹m~ncum!52Gnc . ~5!
6-2
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COSMOLOGICAL PERTURBATIONS FROM VARYING . . . PHYSICAL REVIEW D69, 083526 ~2004!
By assuming thatc decays only intog, from Eq. ~4! we
obtain three coupled conservation equations,

un¹mTn
~c!m52~CM]mfum2G!rc , ~6!

un¹mTn
~g!m52Grc , ~7!

un¹mTn
~f!m5CM]mfumrc , ~8!

where we have defined the mass coupling functionCM ,

CM~f![
] ln M

]f
. ~9!

For later convenience, we also define the decay rate coup
function CG ,

CG~f![
] ln G

]f
. ~10!

Equations~6!–~8! will be used to derive the background an
perturbation evolution equations describing the inhomo
neous mass domination. The perturbation equations for
coupled field-fluid system (G50) in the case of a linea
coupling (CM5const) have been also discussed in@28# in the
context of coupled quintessence. Finally, ifCM50, Eqs.~6!–
~8! describe the inhomogeneous inflaton decay, as discu
in @17,18#.

III. COSMOLOGICAL PERTURBATIONS

Here we write down and discuss the background and
turbation equations derived from Eqs.~6!–~8!.

A. Background equations

Consider a Friedmann-Lemaıˆtre universe, with metric
ds252dt21a2(t)dx2, governed by the Friedmann equ
tions,

H25
1

3MP1
2 r[

1

3MP1
2 ~rc1rg1rf!, ~11!

Ḣ52
1

2MP1
2 ~r1P!

[2
1

2MP1
2 S rc1

4

3
rg1ḟ2D , ~12!

wherer and P are the total energy density and pressure
the universe,rg andrf are the energy density of theg andf
species, respectively, andH is the Hubble parameter, define
asH[ȧ/a.

The evolution equation governing the total energy den
and ensuring the conservation of the total energy is

ṙ52H~3rc14rg13ḟ2!. ~13!

In particular we have three coupled conservation equat
which can be derived from Eqs.~6!–~8!. They read
08352
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ṙc52~3H2CMḟ1G!rc , ~14!

ṙg524Hrg1Grc , ~15!

ṙf523Hḟ22CMḟrc . ~16!

In order to solve forḟ we need the field evolution equation

f̈13Hḟ1V,f52CMrc , ~17!

where V,f is the derivative of the potential off, V
5V(f), with respect to the fieldf.

As first introduced in@22# we define the energy transfe
functionsQa ~with a5c,g,f) as

Qa[ṙa13H~ra1Pa!. ~18!

From Eqs.~14!–~16! we have

Qc5~CMḟ2G!rc , ~19!

Qg5Grc , ~20!

Qf52CMḟrc . ~21!

B. Perturbation equations

Here we discuss the perturbation equations derived fr
Eqs. ~6!–~8!. We describe scalar perturbations in the met
with the line element

ds252~112F!dt21a2~122C!d i j dxidxj , ~22!

whereF andC correspond to the Bardeen potentials in lo
gitudinal gauge. In the absence of anisotropic stress pe
bationF5C. In order to perturb the energy-momentum te
sor of the three componentsc, g, andf, we introduce the
energy density and pressure perturbations,dra anddPa .

For each fluid componenta one can introduce the gaug
invariant curvature perturbation on the uniforma-energy
density hypersurface defined as

za[2c2H
dra

ṙa
. ~23!

The za’s remain constant on large scales only for adiaba
perturbations and in any fluid whose energy-momentum t
sor is locally conserved:nnTn

(a)m50 @31#. In our caseQa

Þ0 and this is not the case. The total uniform curvatu
perturbation, introduced by Bardeen@29# and Bardeen, Stein
hardt, and Turner@30#, is given by a weighted sum of th
individual uniform curvature perturbations,

z[2C2H
dr

ṙ
5(

a

ṙa

ṙ
za , ~24!

and the relative entropy perturbation between two com
nentsa and b is given by the difference between the tw
uniform curvature perturbationsza andzb @21#,
6-3
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FILIPPO VERNIZZI PHYSICAL REVIEW D69, 083526 ~2004!
Sab[3~za2zb!. ~25!

According to Ref.@32#, at large scales~neglecting spatial
gradients! the time evolution of the curvature perturbatio
can be written as

ż52
H

r1P
dPnad, ~26!

wheredPnad is the total nonadiabatic pressure perturbati
given by the sum of the intrinsic nonadiabatic pressure p
turbation of each component and the relative nonadiab
pressure perturbation,

dPnad5(
a

dPintr,a1dPrel , ~27!

where the intrinsic nonadiabatic pressure perturbation of
speciesa is given as

dPintr,a[dPa2ca
2dra , ~28!

and the relative nonadiabatic pressure perturbation dep
on the uniform curvature perturbations,

dPrel[(
a

ṙaca
2

H
~z2za!52

1

6H ṙ (
a,b

ṙaṙb~ca
22cb

2 !Sab .

~29!

Hereca
2[ Ṗa / ṙa is the adiabatic speed of sound of the sp

ciesa. At large scales, the evolution equation for each in
vidual uniform curvature perturbationza is given by@21#

ża52
H~dQintr,a1dQrel,a23HdPintr,a!

ṙa
. ~30!

The za’s are sourced by three gauge invariant terms,
intrinsic and the relative nonadiabatic energy transfer fu
tions, and the intrinsic nonadiabatic pressure perturbatio

We now describe, one by one, the three terms on
right-hand side of Eq.~30!. The nonadiabatic pressure pe
turbationdPintr,a is defined in Eq.~28!. For a fluid whose
parameter of statewa[Pa /ra is constant,ca

25wa and
dPintr,a50. This is the case for the nonrelativistic speciesc
and for the radiationg,

dPint,c5dPintr,g50. ~31!

However, a scalar field generically has a nonvanishing no
diabatic pressure perturbation@22#,

dPintr,f52V,fḟS drf

ṙf

2
df

ḟ
D 522V,fS Qf1

ḟ

H
zfD ,

~32!

where we have defined the gauge invariant variable

Qf[df1
ḟ

H
C, ~33!
08352
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sometimes referred to as the Sasaki and Mukhanov vari
@33#. If the fieldf is the only—or the dominant—componen
of the universe, the intrinsic nonadiabatic pressure pertu
tion is negligible on large scales~see, e.g.,@34#!. However, in
our case thef contributes only to a small amount of the tot
energy anddPintr,f cannot in general be neglected.

The intrinsic nonadiabatic energy transfer function is d
fined as@21#

dQintr,a[dQa2
Q̇a

ṙa
dra , ~34!

wheredQa is the perturbation of the energy transfer functi
Qa of Eqs.~19!–~21!. It automatically vanishes if the energ
transfer functionQa is only a function of the local energy
densityra—when neither the decay rate nor the mass of
c particles depend on the light fieldf. For our three compo-
nentsc, g, andf, we have

dQintr,c5rcH S CM

f̈

ḟ
1ĊM2

Ġ

ḟ
D S Qf1

ḟ

H
zcD

1CMS Qf1
ḟ

H
zfD J , ~35!

dQintr,g52rcH 2
Ġ

ḟ
S Qf1

ḟ

H
zgD 1

G

3H

ṙc

rc

ScgJ ,

~36!

dQintr,f52rcH CM

ḟ

3H

ṙc

rc

Sfc

1S CM

V,f

ḟ
2ĊM D S Qf1

ḟ

H
zfD J . ~37!

The relative nonadiabatic energy transfer function is due
the presence of relative entropy perturbation and is given

dQrel,a[
Qaṙ

2Hr
~z2za!52

Qa

6Hr (
b

ṙbSab . ~38!

It vanishes if the background transfer functionQa50.
Now we have all the ingredients to write the evolutio

equation of the total curvature perturbationz on large scales,
which is obtained from Eq.~26!,

ż5
H

ṙ2 H 1

3
ṙcṙgScg1cf

2 ṙcṙfScf1S cf
2 2

1

3D ṙgṙfSgfJ
1

2HV,f

r1P
S Qf1

ḟ

H
zfD , ~39!

and the three large scale evolution equations of the unifo
curvature perturbationsza , which are derived from Eq.~30!,
6-4
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żc5H
rc

ṙc
H S 2CM

ḟ

3H
1

G

3H
D S ṙg

2r
Sgc1

ṙf

2r
SfcD

2S CM

f̈

ḟ
1ĊM2CGG D S Qf1

ḟ

H
zcD

1CM

ṙf

ḟ2
S Qf1

ḟ

H
zfD J , ~40!

żg5H
rc

ṙg
H G

3H F S ṙc

rc
2

ṙc

2r DScg1
ṙf

2r
SgfG

2CGGS Qf1
ḟ

H
zgD J , ~41!

żf5H
rc

ṙf
H 2

CMḟ

3H
F S ṙc

rc

2
ṙc

2r
D Scf1

ṙg

2r
SfgG

2S CM

V,f

ḟ
2ĊM D S Qf1

ḟ

H
zfD J

2
6H2V,f

ṙf
S Qf1

ḟ

H
zfD , ~42!

where we have usedĠ5CGGḟ. In order to close the system
we need the evolution equation for the Sasaki-Mukhan
variableQf on large scales, namely,

Q̇f5
Ḣ

H2
ḟz1

f̈

ḟ
Qf2

ṙf

ḟ2
S Qf1

ḟ

H
zfD . ~43!

Equations~39!–~43! are five coupled first order differentia
equations—one of them is redundant—which can be sol
in order to study the evolution of perturbations during t
inhomogeneous reheating. We did not make any assump
for the intrinsic nonadiabatic pressure perturbation of
field dPintr,f , which can be found fromQf andzf @see Eq.
~32!#, as well as for the coupling functionsCM andCG . Thus
these equations hold for any type of functional depende
of the decay rate and mass on the light field.

Some comments are in order here. The evolution eq
tions of the relative curvature perturbationszg and zf are
sourced by terms proportional torc , althoughzf has an
extra term proportional to its intrinsic nonadiabatic pressu
After the decay ofc, zg is constant whereasz andzf evolve
only due to the intrinsic entropy of the light field. If th
coupling functionCM vanishes, Eqs.~39!–~43! describe the
inhomogeneous inflaton decay, wherec represents the oscil
lating inflaton andg the radiation produced by the decay a
reheating.
08352
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IV. SLOW-ROLL LIMIT

As an application, we consider the limit where the sca
field f is slow rolling

ḟ/AV.0, f̈/~Hḟ !.0, ~44!

and we assume that these conditions are maintained du
all the period ofc domination and decay.

In the slow-roll limit the scalar field varies very slowly i
a flat potential and its energy density is always negligible.
this limit cf

2 .21 and its intrinsic nonadiabatic pressure pe
turbation vanishes from Eq.~32!,

zf.2
H

ḟ
Qf . ~45!

Although the variablezf diverges in this limit, the Sasaki
Mukhanov variable can still be used to discuss the sc
field perturbation. Equations~39!–~43! take a very simple
form,

ż5
H

ṙ
$ṙc~zc2z!14CMHrcQf%, ~46!

żc5G
rg

ṙc
H ṙg

2r
~zg2zc!1CGHQfJ , ~47!

żg5H
ṙc

ṙg
H G

H S ṙc

rc
2

ṙc

2r D ~zc2zg!J , ~48!

Q̇f50. ~49!

Also the background equations take a very simple for
In order to solve them numerically, it is convenient to wo
in terms of dimensionless quantities, the density parame
Va[ra /r, with Vc1Vg51 (Vf.0), and the dimension-
less reduced decay rate@21#,

g[
G

G1H
, ~50!

which varies monotonically from 0 to 1. In the slow-ro
limit of Eq. ~44! the background equations~14!–~16! can
then be written as an autonomous system of first order
ferential equations,

Vc85S Vg2
g

12gDVc , ~51!

Vg85S g

12g
2VgDVc , ~52!

g85
1

2
g~12g!~42Vc!, ~53!

where the prime denotes differentiation with respect to
number ofe-foldingsN[ ln a. Since these equations are su
ject to the constraintVc1Vg51 there are only two inde-
6-5
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pendent dynamical equations whose solutions follow tra
tories in the compact two-dimensional phase plane (g,Vc).
One can find a detailed analysis of this system, applied to
study of the curvaton model, in Ref.@21#, where it is shown
that close to the originVc.Ring

1/2, with

Rin[VcS H

G D 1/2U
in

, ~54!

where the initial conditions for this system are set att5t in
such thatg!1. The initial valueRin determines which tra-
jectory is followed in the two-dimensional phase plane. F
Rin*1, the massive speciesc comes to dominate the un
verse before decaying—compare with Fig. 2. Indeed,
physical interpretation ofRin is straightforward: If initially
G@HVc

2, the decay is almost instantaneous andc does not
have the time to dominate.

The perturbation equations, Eqs.~46!–~49!, can be written
in terms of the dimensionless background quantities defi
above and acquire a simple form

z85
Vc

42Vc
H S 322g

12g D ~zc2z!24CMQfJ , ~55!

zc85
g

322g H 1

2
~42Vc!~z2zc!2CGQfJ , ~56!

Qf8 50, ~57!

where we have eliminated the variablezg , which is redun-
dant. WhenCM50 we recover the equations studied in@18#
with c representing the inflaton during its coherent oscil
tion. When alsoCG50 we recover the equations studied
@21# with c representing the curvaton.

To calculate the final curvature perturbation on lar
scales, we start with initial conditions atg!1. By using the
slow-roll condition ~44!, from Eqs.~24! and ~14!–~16! the
initial total curvature perturbation is given by

z in5
1

42Vc
~3Vczc14Vgzg2CMVcQf!U

in

, ~58!

and in the two physical situations that we discuss in t
section it is negligible. Hence we shall consider vanish
initial perturbations,z in.zg, in.zc, in.0. Then we numeri-
cally solve the system of Eqs.~55!–~57! and we evaluate the
perturbation variables forg→1. The late time solutions ap
proach a fixed point attractor,

z5zg52r ~aGCG1aMCM !
Qf

f
[2raa

Qf

f
~59!

52r S aG

QG

G
1aM

QM

M D , ~60!

zc52r ~aG11/2!
QG

G
2raM

QM

M
, ~61!
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where r<1 is a function ofRin , whereasaG and aM are
constant which can be determined numerically. The te
aG11/2 in Eq. ~61! comes from the fixed pointzc850 for
Vc50, g51 in Eq. ~56!. An example of the evolution of
perturbations as a function ofg is given in Fig. 1.

The behavior ofr as a function ofRin is illustrated in Fig.
2 and it is obtained by solving numerically Eqs.~55!–~57!.
For largeRin , r 51 and the efficiency of the mechanism
conversion of the density perturbation off into a curvature
perturbation is simply given byaf . For smallRin , r !1 and
the efficiency is considerably reduced. In Fig. 2 the ma
mum value reached byVc before the decay is also shown
For largeRin one can approximater by this value. Note that

FIG. 1. Evolution ofz, zc , andzg normalized to the light field
perturbation2Qf /f, as a function ofg, for Rin510, where we
have taken the simplest case where the dependence ofG andM is
linear in the field,M}G}f. Although it is not visible on the
(zd ,g) plane, forg→1 the uniform-density perturbations approa
a fixed point attractor.

FIG. 2. The functionr, parametrizing the conversion from a
isocurvature to a curvature perturbation, as a function of the in
parameterRin ~solid line!. This is compared toVc,max ~dashed line!,
the maximum value reached byVc before decaying as a function o
Rin5Vc(H/G)1/2u in .
6-6
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COSMOLOGICAL PERTURBATIONS FROM VARYING . . . PHYSICAL REVIEW D69, 083526 ~2004!
r as defined here is the same as the one defined in@10# and
computed in@21# for the curvaton model. We numericall
checked that this is the case@46#.

We can represent the integration of Eqs.~55!–~57! as a
transfer matrix acting on the initial perturbations,

S z
Qf /f D

out
5S 1 2raf

0 1 D S z
Qf /f D

in
. ~62!

Since the energy density of the light fieldf is always negli-
gible, its perturbation represents an entropy perturba
which is converted into a curvature perturbation ifaf andr
are nonzero. Our task is now to estimate the efficiency
rametersaG andaM . Below we discuss two different phys
cal situations.

A. Inhomogeneous inflaton decay

Here we discuss case~a! as mentioned in Sec. II. Th
oscillating inflaton is described by the fluidc andCM50 is
used. Although fluctuating, the decay rate of the inflaton
time independent in the limit~44!. Initially, the inflaton
dominates the universe,Vc→1 for g→0, whereas the radia
tion is negligible; thus we takeRin@1 andr 51. The initial
condition of zc is given by the initial perturbation of the
inflaton field corresponding to vacuum fluctuations. Acco
ing to @12# we assume that the density perturbation of
inflaton field is negligible. Therefore we haveuQf /f* u
@uzc, inu5uz inu, where we have used Eq.~58! with CM50
andVg50 for the last equality, andf* is the VEV of f at
horizon crossing. Solving Eqs.~55!–~57! with Rin@1 ~infla-
ton domination! we find aG51/6. This leads to the resu
found in @12,17,18,20#,

z52
1

6

dG

G
, ~63!

valid on the spatially flat slicesC50.

B. Inhomogeneous mass domination and decay

Here we discuss case~b! as mentioned in Sec. II. Nowc
is the massive particle species and both the massM and
decay rateG depend onf. The radiationg is the product of
a previous reheating and it initially dominates the univer
Vg, in.1.

We start by discussing the condition for the massive p
ticles to dominate the universe before decaying. Assum
that the massive speciesc is subdominant when the initia
conditions are setup, the initial parameterRin can be written
as

Rin.S M2

MPlG
D 1/2

gr
1/4nc

s
, ~64!

wheregr is the number of relativistic degrees of freedom a
nc /s is the relic abundance of thec particles when they
freeze-out~s is the entropy density!. In order to derive Eq.
~64! we have used@35#
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r;rg5
p2

30
grT

4, s5
2p2

45
grT

3. ~65!

After freeze-out and whenG!H, nc /s is constant ifgr is
constant~which we shall consider throughout!. The massive
species has time to dominate the universe ifRin>1, which
translates into

G,
M2

MPl
gr

1/2S nc

s D 2

. ~66!

If nc /s is order unity Eq.~1! is recovered. However, it is
interesting to try to plug some numbers for the relic abu
dance in Eq.~66!. We make use of the analytic approxim
tion for the relic abundance of long-lived massive partic
derived in @36#. At high temperature (T@M ) nc}T3,
whereas at low temperature (T!M ) the c density is Boltz-
mann suppressed,nc}T3/2exp(2M/T) so that if the particles
freeze-out whenT*M then thec abundance becomes ver
small. The initial equilibrium abundance is maintained
annihilation of particles and antiparticles with cross sect
sA which we take to be independent of the energy of
particles. In this case the abundance at freeze-out is@36#

nc

s
.

100

MMPlgr
1/2^sAv&

, ~67!

where^sAv& is the thermal average of the total cross sect
times the relative velocityv. On using this relation, Eq.~64!
becomes independent of the massM,

Rin.
100

gr
1/4 S MPl

G
D 1/2 MPl

22

^sAv&
. ~68!

This relation holds if thec particles are subdominant at th
freeze-out. If a more detailed calculation is performed o
can see that the mass dependence enters only via a log
mic correction@36#. In Fig. 3 we show the values ofG and
^sAv& for which Rin51 and thec particles come to domi-

FIG. 3. Values ofG and ^sAv& for which Rin51. For values
below this line thec particles come to dominate the universe. W
have takengr.100.
6-7
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nate. On requiring that the massive particles decay be
nucleosynthesis, i.e.,G.(1 MeV)2/MPl , we find that only
for ^sAv&,(100/gr)

1/2(107 GeV)22 does c dominate the
universe. In this case, the initial thermal equilibrium by a
nihilation of particles and antiparticles must be maintain
by some gauge interaction much weaker than those of
standard model. This excludesc as being made by standar
model particles.

Let us now discuss the perturbations. The initial pertur
tion of the radiation is left over by inflation and it is negl
gible. The speciesc is initially in thermal equilibrium with
g, zc, in5zg, in , and Eq.~58! impliesQf /f* @zg, in5z in . For
the value ofaM we find numericallyaM54/3. Thus, in gen-
eral for af-dependent mass and decay rate

z52r S 1

6

QG

G
1

4

3

QM

M D . ~69!

If the massive particles dominate the universe before de
ing, i.e., if Rin@1, r 51. ForM5const we recover the resu
of the inhomogeneous inflaton decay discussed in the
ceding section. If the mass depends onf while G does not,
we find

z52
4

3

QM

M
. ~70!

Finally, if M}G we find

z52
3

2

QG

G
, ~71!

a result nine times larger than the one obtained in the c
where onlyG is fluctuating.

In Ref. @16# the perturbation generated by a varyin
mass is derived with an analytic argument which yie
z5(1/3)(QM /M ), a result different from the one of Eq
~70!. This difference is due to the fact that in our mod
specified by the conservation equations~6!–~8!, the entropy
perturbation stored in the light field is important. Indee
whenCMÞ0, ṙfÞ0 and the light field perturbation contrib
utes to the relative nonadiabatic pressuredPrel @see Eq.~29!#
and sources the evolution of the total curvature perturbat
as shown by Eq.~55!.

C. Comparison with the curvaton model

It is worth discussing here the curvaton model, a mec
nism of generation of perturbations which has very sim
properties as the model discussed here. The aim is to s
their similarities and compare their efficiency. The curvat
s is a scalar field which is practically free during inflatio
and starts oscillating after inflation~but before nucleosynthe
sis! during the radiation era whenG&H&ms , behaving as a
nonrelativistic fluid. If during the oscillations it come
~close! to dominate the universe before decaying, its per
bationzs is converted directly into curvature perturbation

z5r zs . ~72!
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We can write the parameterRin in terms of relevant quanti-
ties. If we choose the initial time when the curvaton starts
oscillate, atH;ms , on usingrs;ms

2s2 we have, from the
definition ~54!,

Rin.
s2

3MPl
2 S ms

G
D 1/2

. ~73!

If the decay rate is sufficiently smaller than the curvat
mass, the curvaton has the time to dominate the unive
before decaying. The conditions for the curvaton dominat
during its oscillations are

S G

ms
D 1/4

MPl&s&MPl , ~74!

where the last inequality ensures that the curvaton does
dominate before starting to oscillate.

Equations~55!–~57! describe the curvaton model if we s
CM5CG50 @21# in which casec represents the curvato
during its oscillating phase, withzc, in[zs, in@z in . By con-
sidering a massive curvaton we have@9#

2H
drs

ṙs
5

1

3

drs

rs
5

2

3

ds

s
. ~75!

For the last equality we have assumed that the field rem
overdamped until the Hubble parameter falls below the c
vaton mass, which is the case if Eq.~74! is satisfied. Thus,
from Eq. ~72! we obtain

z5r
2

3

Qs

s
[2ras

Qs

s
. ~76!

If we want to compare the efficiency of the inhomogeneo
reheating with that of the curvaton model we must comp
the efficiency parameteras52 2

3 to af in Eq. ~59!, which
varies according to the dependence of the mass and d
rate on the light fieldf. However, in the simplest case whe
G}M}f, af has opposite sign toas and it is nearly twice
as large.

We end this section with a comment. The physical situ
tions discussed in this section using Eqs.~55!–~57! assume
that the mass off must remain smaller than the Hubb
parameter during the whole process of inhomogeneous
heating. However, this relation may be violated during thec
domination if mf;G and f starts to oscillate during this
period. This leads to a mix situation of curvato
inhomogeneous reheating scenario, where the perturbatio
f is converted into a curvature perturbation via both t
curvaton mechanism~the curvaton beingf! and the inhomo-
geneous reheating. Since the sign of the efficiency par
etersa • can be different for the curvaton and inhomogeneo
reheating models this may lead to a compensation betw
them. An example of this situation is given in@18#. The full
calculation of the resulting curvature perturbation in the
homogeneous mass domination can be done starting f
Eqs.~39!–~43!.
6-8
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V. OBSERVATIONAL CONSTRAINT OF THE MODEL

Here we discuss the observational predictions of the in
mogeneous reheating models: isocurvature perturbations
non-Gaussianities.

A. Isocurvature perturbations in the mass-domination
mechanism

If the inflaton or thec particles decay into species out
equilibrium which remain decoupled from the radiation, w
expect isocurvature perturbations to be present into th
species. These can be correlated with the adiabatic pertu
tion. Here we consider the case where the perturbations
over from inflation are of the same order of magnitude as
perturbations produced during the inhomogeneous m
domination and decay. We define the parameterk to quantify
the relevance of the perturbations left over from inflation

k[raf

Qf /f

zx

5raf

V,x

3H2f
, ~77!

wherex is the inflaton,V,x is the derivative of the inflaton
potential, andH is the Hubble parameter, all evaluated
horizon crossing during inflation. Whenk is order unity or
smaller, perturbations from inflation are important. For ch
otic inflation we have

kchaotic[2raf

MPl
2

xf
. ~78!

Using an inflaton field which is;10MPl and an efficiency
raf;O(1) we obtainkchaotic;0.2MPl /f so that perturba-
tions from inflation are important if the VEV off is suffi-
ciently large,f;MPl .

The following analysis holds also for the curvaton mod
although the VEV of the curvaton during inflation shou
remain smaller than the Planck mass@see Eq.~74!# and gen-
erally k@1. Thus, in the curvaton scenario it is not like
that the inflaton and curvaton generated perturbations ar
the same order. The VEV of the light fieldf does not need to
satisfy this constraint. Indeed, as discussed in@16#, if one
wants to avoid that at high temperature the nonzero den
of the c particles generates a large thermal mass
f—which would makef too heavy and would spoil the
simplicity of the mechanism—we must requiref;MPl . We
are hence motivated to consider the possibility ofk being
small, at least for chaotic inflation. In this case perturbatio
from inflation may not be negligible with respect to pertu
bations from the light field and a mix of the two may surviv
Isocurvature perturbations in the curvaton model are
cussed in@10,37# and in@38#, although these groups consid
ered a more general set of possibilities than what is con
ered here and in@37,38# they performed a numerical analys
of the CMB data to constrain the curvaton model. Here ho
ever we consider a different possibility, i.e., that the co
dark matter~CDM! is a relic left over both from the inflaton
and thec decay.
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We write the x and f quantum perturbations asQ̂x

5(H /A2k3)âx andQ̂f5(H /A2k3)âf , where theâa’s are
independent normalized Gaussian random variables, obe
^âa(k)âb(k8)&5dabd(k2k8). After reheating, if the relic
product of the inflaton is decoupled from the product ofc, its
uniform curvature perturbation is conserved and given by

ẑproduct of x5
3H2

V,x
Q̂x5âxzx . ~79!

From Eq. ~62! the uniform curvature perturbation of th
product of thec decay can be written as

ẑproduct of c5
3H2

V,x
Q̂x2

raf

f
Q̂f5~ âx2kâf!zx , ~80!

where the first term in the right-hand side comes from
initial perturbation and the second from the fluctuations off.
Note thatk, according to its definition~77!, is scale depen-
dent. We can write it ask(k)5k0(k/k0)Dn/2 where k0 is
scale free andk0 is a reference pivot scale. The spectr
index of k, Dn, can be expressed in terms of the differen
between the spectral indexes ofzf and zx , Dn[nf2nx ,
but here it is considered as a free parameter.

To simplify the discussion we completely neglect t
baryons and we concentrate on the CDM isocurvature mo
which is due to the difference between the uniform curvat
perturbations of the CDM and radiation~e.g., photons and
neutrinos!. We start by assuming that both the inflaton a
thec particles may decay in CDM particles which are out
equilibrium at the temperature at which they are produc
We definef as the fraction of CDM, evaluated just befo
nucleosynthesis, which is left over from the decay ofc. The
rest of the CDM, 12 f , is a relic of the inflaton decay. Both
the inflaton and thec particles may decay into radiation. Th
fraction of radiation that decays fromc is proportional to the
value of Vf at the decay, which we assume to beVf,max
defined in Sec. IV B. We have seen there that this is v
close tor. If r !1, c remains negligible before decaying an
cannot be responsible for the radiation@47#. However,c can
generate part of the CDM leading to an uncorrelated isoc
vature mode. This is constrained by data: we havef k0
,0.28 at 95% confidence level. These bounds come from
numerical analysis of the WMAP data made in@40#, which
assumes 20.72<Dn<1.11 and k050.05 Mpc21. The
amount of CDM produced by the decay ofc can be impor-
tant only if thec generated perturbation is negligible. Mo
interestingly, whenr .1, c comes to dominate the univers
and the totality of the radiation comes from its decay pro
uct. In this case the adiabatic and CDM isocurvature per
bations are correlated. The intermediate case, that the ra
tion left over at nucleosynthesis is created both by
inflaton and thec, is not discussed here. Indeed, the radiat
thermalizes and it is difficult to express its final perturbati
in terms of primordial perturbations.

We thus concentrate on the caser .1. Making use of the
notation of @40# ~see also@41#!, the adiabatic mode is de
scribed by the comoving curvature perturbation in t
radiation-dominated era,Rrad[2zg , and the isocurvature
6-9
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mode bySrad[3(zc2zg), wherezg andzc are the uniform
curvature perturbations of the radiation~i.e., photons and
neutrinos! and of the CDM, respectively. Well in the radia
tion era they are both constant and can be written as

Rrad5~kâf2âx!zx , ~81!

Srad53~12 f !kâfzx . ~82!

According to@40# we define the dimensionless cross cor
lation as

cosD[
^RradSrad&

~^Rrad
2 &^Srad

2 &!1/2U
k5k0

5
uk0u

A11k0
2

, ~83!

and the entropy-to-adiabatic ratio as

f iso[S ^Srad
2 &

^Rrad
2 &

D 1/2U
k5k0

53~12 f !cosD. ~84!

These depend on two parameters,f andk0 . For large values
of k0 the adiabatic perturbation is dominated by the pert
bation of the light field and the modes are totally correla
(cosD51) as found in@37#. More generally the correlation i
positive but can be small if the inflaton perturbation becom
important.

The entropy-to-adiabatic ratio is constrained by data
cannot be too large. We can lower it by decreasing
amount of relic CDM left over from inflation~i.e., by send-
ing f to 1! or by decreasing the amplitude of the light fie
perturbation, i.e., the amplitude ofk0 . Since a full analysis
of the constraints imposed by the data on this model is w
beyond the scope of this paper, we just use the 95% co
dence level bounds on the isocurvature mode coefficientf iso
as a function of cosD for correlated perturbations as given
@40# ~Fig. 1 in this reference! and we show the bounds onf as
a function ofk0 in Fig. 4. Totally correlated perturbations a

FIG. 4. Bounds onf, the fraction of CDM created byc, as a
function ofk0[rafQf /(fzx) at 95% confidence level. The filled
region is excluded.
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allowed only if the CDM is almost completely created byc
( f 51). However, even fork@1, ;10% of CDM created by
the inflaton is allowed. The signature of a correlated CD
isocurvature mode in the data can be the signal that par
the CDM has been created before the decay ofc. These
constraints apply equally well to the curvaton model in t
situation discussed here.

B. Non-Gaussianities

Until now we have assumed that the density perturbat
of the light field f depends linearly onQf /f, which we
take to be a Gaussian variable. However, when the pertu
tion Qf is comparable to the average valuef—which is the
case for small values ofaf—the nonlinear term (Qf /f)2

can be important and lead to a non-Gaussianx2 contribution
in the spectrum of curvature perturbations@16,20#,

z52rafFQf

f
2

1

2 S Qf

f D 2G . ~85!

The level of non-Gaussianity is conventionally specifi
by the nonlinear parameterf NL @42,43#. We can write the
total uniform curvature perturbation as@44#

z5zg2
3

5
f NLzg

2, ~86!

where zg represents the Gaussian contribution toz. Using
Eq. ~85! the prediction for the inhomogeneous reheating

f NL52
5

6raf
, ~87!

which is the same as for the curvaton scenario once the
placementaf522/3 of Eq.~76! is used. However, Eq.~87!
has to be taken with caution: Indeed it is only valid wh
f NL*1. In order to precisely estimate the nonlinear para
eter f NL generated by these models one has to study
solve the second order perturbation equations as done in@45#
and find the second order correction to Eq.~69!.

If we use Eq. ~87! we see that less efficiency in th
mechanism of conversion of perturbations means more n
Gaussianities in the spectrum. If detected non-Gaussia
could be the smoking gun of models where perturbations
produced with an ‘‘inefficient’’ mechanism of conversion
The WMAP experiment has now put a limit onf NL corre-
sponding to258, f NL,134 at the 95% level@4#, which
already excludes models with20.006,af,0.014. Planck
will put a more sever constraint,u f NLu&5 @43#, correspond-
ing to uafu*1/6.

Going back to the inhomogeneous reheating, in which
mechanism of conversion of the density perturbation off
into a curvature perturbation is due to the fluctuations of
decay rate andG}f, we have raf<1/6 and the non-
Gaussianity can be large,25< f NL,0. In particular, if the
nonrelativistic speciesc completely dominates the univers
before decaying (r 51) f NL525 @16#, a value which is right
in the ball park of Planck observations. However, the inh
mogeneous mass domination can be much more efficien
6-10
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COSMOLOGICAL PERTURBATIONS FROM VARYING . . . PHYSICAL REVIEW D69, 083526 ~2004!
M}G}f, raf<3/2 and thus25/9< f NL,0. If the massive
species dominates completely the universe before deca
(r 51) we havef NL525/9, a much smaller value than th
one estimate in@16# and not observable by future planne
experiments.

VI. CONCLUSION

In this paper we have studied the evolution of pertur
tions during a phase dominated by massive particles wh
mass and decay rate can fluctuate in space and time. I
fluctuations are set by the VEV of a light scalar field ove
damped during inflation, the isocurvature perturbation in
scalar field can be converted into a curvature perturbat
and this can be the main mechanism of generation of la
scale perturbations for structure formation. We have deri
a set of perturbation equations that can be used in full g
erality for any kind of dependence of the mass and decay
on the light field. Making use of these perturbation equatio
we have recovered the results of@12,17,18# for the inhomo-
geneous reheating with varying decay rate. We have
discussed the condition for the massive particles to domin
the universe before decaying. This condition does not dep
on their mass, but depends on the annihilation cross sec
and decay rate. Standard model massive particles ca
dominate the universe. Furthermore, we have shown
when the mass of the massive particles is allowed to vary,
mechanism of conversion can be nine times more effici
The final total curvature perturbation isz52(1/6)dG/G
2(4/3)dM /M . This is our main result. Finally, we hav
compared this with the curvaton model discussing diff
ences and similarities.
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On the observational side we have discussed two poss
signatures of the mass-domination mechanism: correla
adiabatic and isocurvature perturbations and n
Gaussianities. If present, a cold dark matter isocurvature
turbation provides some important information on t
mechanism of generation of the dark matter and on
vacuum expectation values of the inflaton and light field d
ing inflation. There are non-Gaussianities generated by
mechanism, which arex2. In order to precisely compute
them one has to study the evolution of second order per
bations. In the limit wheref NL is large, by simply using Eq
~87! the nonlinear parameter isf NL525/(6raf). When
both the mass and the decay rate of the massive part
fluctuate, due to the high efficiency the non-Gaussiani
can be much smaller than what is possibly observable,f NL
!25.
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