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Cosmological perturbations from varying masses and couplings
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(Received 7 November 2003; published 29 April 2D04

We study the evolution of perturbations during the domination and decay of a massive particle species
whose mass and decay rate are allowed to depend on the expectation value of a light scalar field. We specialize
in the case where the light field is slow rolling, showing that during a phase of inhomogeneous mass domi-
nation and decay the isocurvature perturbation of the light field is converted into a curvature perturbation with
an efficiency which is nine times larger than when the mass is fixed. We derive a condition on the annihilation
cross section and on the decay rate for the domination of the massive particles and we show that standard
model particles cannot dominate the universe before nucleosynthesis. We also compare this mechanism with
the curvaton model. Finally, observational signatures are discussed. A cold dark matter isocurvature mode can
be generated if the dark matter is produced out of equilibrium by both the inflaton and the massive particle
species decay. Non-Gaussianities are present: they are chi-square deviations. However, they might be too small
to be observable.
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I. INTRODUCTION stants and masses of particles during the early Universe may
depend on the VEV of some light scalar field. This idea is
Strongly supported by the recent observations of themotivated by supersymmetric theories and theories inspired
Wilkinson Microwave Anisotropy Prob€ WMAP) satellite by superstrings where coupling “constants” and masses of
[1-5], inflation [6] has now become the dominant contenderparticles are usually functions of the scalar fields of the
for generating adiabatic density perturbations with an almostheory. An interesting proposal is that large scale perturba-
flat spectrum. In the standard picture, the observed larggons could be generated from the fluctuations of the inflaton
scale density perturbations are due to the fluctuations of theoupling to ordinary mattef12,13. These can be converted
inflaton field, which are created during a period of accelerinto curvature perturbations during the reheating pHagg
ated expansion by amplification of quantum vacuum fluctuawhen the inflaton decays into radiation and reheats different
tions[7]. patches of the universe with different temperatures and en-
Recently, alternative mechanisms for generating densitgrgy densitiegsee, howevef,15]). This mechanism of con-
perturbations after inflation have been proposed. They alNersion has been called inhomogeneous reheatifit An
assume that the early Universe is filled with at least one lightxtension and generalization of this mechanism is that the
scalar field¢ whose energy density is negligible during in- masses of particles produced during the reheating are al-
flation. Fluctuations in the field are amplified during the in- lowed to vary[16]. If sufficiently long lived, the massive
flationary phase with a quasi-scale-invariant spectrum angarticles can eventually dominate the universe. Due to the
their amplitude fixed by the energy scale of inflatiafy  fluctuations in the masses the mass-domination process be-
~H, /27, whereH, is the Hubble parameter at the horizon comes inhomogeneous and can convert the density perturba-
crossing. If the vacuum expectation valdEV) of the light  tion of ¢ into a curvature perturbation.
field ¢ during inflation is small, its density perturbation  Some authorg17-19 (see also[20]) have studied the
opglpy~ ¢l ¢ is larger than the perturbations generatedevolution of large scale perturbations during the decay of the
during inflation. However, since the light field is subdomi- inflaton in the case of a fluctuating decay rate. Two of these
nant, its perturbation is initially of the isocurvature type. groups[17,18 make extensive use of the formalism intro-
Later, it can be converted into a curvature perturbation. For @uced in Ref[21] (see, however, ald@2,23) for interacting
successful conversion one of these two ingredients is necefiuids. Indeed, on several occasions the light scalar field can
sary: (1) the field ¢ must come(close to dominate the Uni-  be treated as a fluid and the formalism of R&fl] consis-
verse, or(2) it must induce fluctuations in a second compo-tently applied. In this paper we extend the analysiglaf18§]
nent which eventually comes to dominate the Universe.  and we include the case where the inhomogeneous reheating
In case(l) the scalar fieldy is called curvaton. In the is due to the decay of massive particles whose mass and
curvaton scenarid8,9,11], the isocurvature perturbation decay rate depend on the VEV of a light field. In the limit of
stored in the curvaton field is transformed into a curvaturea constant mass the results[&f7,18 are recovered.

perturbation during a phase in whighoscillates at the bot- We also derive the condition for the domination of the
tom of its potential behaving as a dustlike component andnassive particles. Since at early times they are in thermal
thus dominating over the radiation. equilibrium, their abundance depends on their annihilation

Case(2) has been inspired by the idea that coupling con-cross section. As we shall see the condition for the domina-
tion does not depend on their mass but only on their annihi-
lation cross section and decay rate. Our results are then com-

*Electronic address: vernizzi@iap.fr pared with those obtained for the curvaton model and some

0556-2821/2004/68)/08352612)/$22.50 69 083526-1 ©2004 The American Physical Society



FILIPPO VERNIZZI PHYSICAL REVIEW D69, 083526 (2004

of the observational consequences are discussed. If the inflaponds approximately te-M?/Mp, if we assume that)

tion and/or the massive particles decay out of equilibriumstarts to dominate as soon as it becomes nonrelativibtic,
isocurvature perturbations can be generated. The inhomoge-M. Thus we find 16],

neous inflaton decay and mass domination can also lead to
non-Gaussianities in the adiabatic spectrum of perturbations. I <M%Mp, (1)
These can lead to observational signatures in the cosmic mi-

crowave backgroun@CMB) that can possibly be observed in whereM p=(87G) 2 is the reduced Planck mass. A more

future experiments. precise condition for the domination is derived in Sec. IVB

. The paper is organized as follows. In Sec. Il we model théynq gepends only on the annihilation cross section and decay
inhomogeneous mass-domination mechanism by writingae of the massive particles. When thearticles decay into
down the conservation laws for the radiation, the Massive, hey release a considerable amount of entropy and reheat

particles, and the light field, and we derive the coupling beyhe yniverse once again. During the inhomogeneous mass
tween these species. In Sec. Ill we write the background angymination and reheating, fluctuations =M (#) andT
perturbation equations obtained from the conservation Iaws:r(¢) can be converted ’into curvature perturbations.

These equations are completely general. They can be used \/jations of masses and coupling constants can be easily

for the inhomogeneous inflaton decay as for the inhomoges, iy ated in the context of string theory where compactified
neous mass-domination model. In Sec. |V we concentrate o

2 . SR . Bxtra dimensions emerge as massless scalar fields, called
the limit that the light field is in slow roll and we discuss the moduli, in the effective four-dimensional theory. These

efficiency of the inhomogeneous inflaton decay and masssoqyji generally couple directly to matter leading to varia-
domination models. We also compare them to the curvatof s of masses and fundamental const4@®. That the
model. Finally, in Sec. V we discuss the observable signaq,,ss of particles may depend on a light field has been dis-

tures of the inhomogeneous mass domination i.e., the POgyssed in several places in the literature, especially in the

sible presence of isocurvature perturbations and NONzyhiaxt of interacting dark matter and dark enefsge, e.g.,

Gaussianities. In the final section we draw our conclusions[25] for a review and more recently in models with variation
of the fine structure constaf®26] and in the chameleon cos-
Il. MODELING THE COUPLINGS mology [27]. A field-de_pendent mass Ieads_ to a n(_)ntrivial
coupling between the field and the nonrelativistic fluid made
As mentioned in the Introduction, we want to derive a setof massive particles. The form of this coupling can be de-
of equations that, depending on the initial conditions, carrived by considering the nonrelativistic fluid as a classical
describe two different physical situationga) inhomoge- gas of pointlike particles with masél(¢) and actionS=
neous inflaton decay @b) inhomogeneous mass domination — fMds [24]. In this section we derive the conservation
and decay. In order to describe these two cases we consideeguations of our three fluids system using the conservation of
universe containing three components: a radiation fiyid  the total energy.
nonrelativistic fluidy, and a light scalar fields. According Let T(VV), T(lffv), and T(‘f,) be the energy-momentum ten-
to the different physical situations, we have the following. gqgrs of tﬂhe thlrLee compgnerrts , and ¢. In particular we

(a) Inhomogeneous inflaton decadt the end of inflation  Write the energy-momentum tensor of the nonrelativistic
the Universe is dominated by the inflaton. This coherentlyMaSSIVE Species as
oscillates at the bottom of its potential behaving as a nonrel-
ativistic fluid ¢. The decay rate of the inflatoR, depends on TL@:WUMUV: Mnyu,u,, 2

(b) Inhomogeneous mass dominatiéxter inflation and ~ wherep,, is the energy density an, the number density of
reheating, the universe is filled with radiatignand with a . From general covariance we require that the sum of the
species) of nonrelativistic massive particles, whose mitss three energy-momentum tensors is conserved,
and decay raté& depend onp.

= (P)u (Vm (P
As we shall see, the equations derived for cdgean be 0=V (T, + T, 74+ T,75) (3)

applied to caséa) in the limit thatM does not depend odh.
Therefore, in the following we concentrate on the inhomo-
geneous mass domination and decay.

The universe is initially dominated by a radiation bath
with temperaturel and by a massive particle species with +MV,(n,u“)u,+Mn,u*v,u,. 4
massM =T, such that it can be described as a nonrelativistic
fluid . If the massive particles froze out at a temperaturelhe last term of the right-hand side of this equation vanishes
such thatM/T was not much larger than 1, then the speciesnly if the massive particles follow a geodesic, which is not
can have a significant relic abundance and, if sufficientlythe case if they interact with other fluid components. We
long lived, can eventually dominate the universe before deproject Eq.(4) on the unit vectou” and we define the decay
caying. The condition for the domination can be obtained byrate of ¢ as the rate of change of the numberyoparticles,
requiring the decay rate to be smaller than the Hubble pa-
rameter at the moment whe#p decays. The latter corre- V.(nyu#)=—=Tn,. (5)

J,M
— (#) () R ()
=V, T4V, T4 =T
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By assuming thaty decays only intoy, fr_om Eq. (4) we b¢=—(3H—Cm¢+F)P¢, (14)
obtain three coupled conservation equations,
uuVMT(VtJI)Mz_(CMaud)u,u_r)pw, (6) Py:_4HPy+FP¢, (15
UVVMTS;V)M:_FPM/: 7) b¢=—3H(Z)2—CM(-f)p¢. (16)
Uy, T =Cya,bup,, (8)  Inorder to solve forp we need the field evolution equation,
where we have defined the mass coupling functqp, ¢+ 3H ¢+V,¢: —Cmpy, 17
dlnM where V 4 is the derivative of the potential ofp, V
Cu()= : 9 _ 3 .
M ad =V(¢), with respect to the fieldb.

As first introduced in22] we define the energy transfer
For later convenience, we also define the decay rate couplin@ginctionsQ,, (with a= i, y,$) as
functionCr,

Qa=pat3H(pa+P,). (18)
alnT
Cr(¢)= 06 (10 From Egs.(14—(16) we have
Equationg6)—(8) will be used to derive the background and Qu=(Cnod—T)py, (19
perturbation evolution equations describing the inhomoge-
neous mass domination. The perturbation equations for the Q,=Ipy,, (20
coupled field-fluid systemI{=0) in the case of a linear
coupling (Cy, = const) have been also discusse{i?8] in the Qyp=— Cm¢P¢- (22)

context of coupled quintessence. FinallyCify=0, Eqs.(6)—

(8) describe the inhomogeneous inflaton decay, as discussed . .
in [17.18. B. Perturbation equations

Here we discuss the perturbation equations derived from
ll. COSMOLOGICAL PERTURBATIONS Egs. (6)—(8). We describe scalar perturbations in the metric

_ _ with the line element
Here we write down and discuss the background and per-

turbation equations derived from Ed$)—(8). ds?=—(1+2d)dt*+a%(1-2¥)5;dxdx, (22

whered and ¥ correspond to the Bardeen potentials in lon-
. } . ) . ~gitudinal gauge. In the absence of anisotropic stress pertur-
ConS|d2er s; Frlegmann-LemIm universe, with metric  pationd =W In order to perturb the energy-momentum ten-
ds’=—dt*+a*(t)dx*, governed by the Friedmann equa- sor of the three components v, and &, we introduce the
tions, energy density and pressure perturbatiafs, and 5P, .
1 1 For each fluid component one can introduce the gauge

A. Background equations

2_ = (p,tp.tpy), 11 invariant curvature perturbation on the uniformenergy
3M§,1p SME,l(p‘/’ Pytpy) 1y density hypersurface defined as
: 1 3P
H=— +P {o=—¥—H—. (23
1 4 The £,’s remain constant on large scales only for adiabatic

, (12 perturbations and in any fluid whose energy-momentum ten-
sor is locally conservedn*T{®*=0 [31]. In our caseQ,

#0 and this is not the case. The total uniform curvature

wherep and P are the total energy density and pressure of . . -
the uni[\)/ersepy andp,, are the engr{)y densxilty of trgeand¢ perturbation, introduced by Bardef29] and Bardeen, Stein-

species, respectively, amtlis the Hubble parameter, defined _har.dF, and Tgrnef30], Is given by a v_velghted sum of the
individual uniform curvature perturbations,

- o+ —po+ P
M2, Pt 3Py ¢

asH=ala.
The evolution equation governing the total energy density Sp o
and ensuring the conservation of the total energy is (=—V-H-—=> —2¢., (24)
p a P

p=—H(3p,+4p,+34?). 13

P (3py+4p,+36%) 13 and the relative entropy perturbation between two compo-
In particular we have three coupled conservation equationsentsa and 3 is given by the difference between the two
which can be derived from Eq§6)—(8). They read uniform curvature perturbationg, and ¢ [21],
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Sup=3(La—Lp). (25) sometimes referred to as the Sasaki and Mukhanov variable
[33]. If the field ¢ is the only—or the dominant—component
According to Ref[32], at large scalegneglecting spatial of the universe, the intrinsic nonadiabatic pressure perturba-
gradient$ the time evolution of the curvature perturbation tion is negligible on large scalésee, e.g.,34]). However, in
can be written as our case thep contributes only to a small amount of the total
energy andP;y, , cannot in general be neglected.

r=— H 5P 26) The intrinsic nonadiabatic energy transfer function is de-
p+p° nad fined as[21]
where 5P ,,q is the total nonadiabatic pressure perturbation, Q
given by the sum of the intrinsic nonadiabatic pressure per- OQintr.a=0Qu— —— pa, (34)
turbation of each component and the relative nonadiabatic Pa

pressure perturbation, wheresQ,, is the perturbation of the energy transfer function

Q, of Egs.(19—(21). It automatically vanishes if the energy
OPnac= 2 OPingat OPrel, (270 transfer functionQ, is only a function of the local energy
“ densityp ,—when neither the decay rate nor the mass of the

where the intrinsic nonadiabatic pressure perturbation of th& p?rticles deé)end onhthe light fietdl For our three compo-
speciesx is given as nentsy, v, and ¢, we have

SPinr,o=OP s — C40p,,, (28) s . T '
t é\Qintr,w:pw[ (CM.i)'FCM_._) ( Qqs"’fglp)
¢ ¢ H

and the relative nonadiabatic pressure perturbation depends
on the uniform curvature perturbations,

¢
Pac? 1 o +CM<Q¢+—§¢,>}, (35
OPe=2 i (£ 60 =~ Gy 2, PaPs(Co CE)Sap- H
(29)
Herec2=P,/p, is the adiabatic speed of sound of the spe- OQintr,y = _pw[ B -_( Qpt ﬁ§7) + 3H p_SW ’
cies a. At large scales, the evolution equation for each indi- ¢ v (36)
vidual uniform curvature perturbatiof), is given by[21]
H(0Qintr ot 9Qrel = 3H OPintr o Dy
= ( antr, Qrel, intr, ) (30) 5Qimr,¢:_P¢,[ CMi P_(/Sd)w
Pa 3H p,
The ¢,’s are sourced by three gauge invariant terms, the .
intrinsic and the relative nonadiabatic energy transfer func- + CMﬂ_CM Qut f£¢) ] _ (37)
tions, and the intrinsic nonadiabatic pressure perturbation. P H

We now describe, one by one, the three terms on the

right-hand side of Eq(30). The nonadiabatic pressure per- The relative nonadiabatic energy transfer function is due to
turbation 5Py, is defined in Eq.(28). For a fluid whose  the presence of relative entropy perturbation and is given by
parameter of statev,=P,/p, is constant,ci=wa and

6P o=0. This is the case for the nonrelativistic speajes _ Qup Q. )
and for the radiationy, 0Qrel,a= m(é— {o)=— m% PpSap- (38
OPint, 4= OPinir = 0. Byt vanishes if the background transfer functiqn,= 0.

However, a scalar field generically has a nonvanishing nona- 'NOW we have all the ingredients to write the evolution
diabatic pressure perturbati§22], equation of the total curvature perturbatipon large scales,

which is obtained from Eq(26),

Py s=2V 58| P22 = oy | 0,4 24 . H[1 2. o 1.
S T MERANTRA ¢= ?(gpwpy‘swﬁ CoPyPySysT| Co™ §>P7P¢5w/>]
(32) .
2HV , ¢
where we have defined the gauge invariant variable + TP Qut ﬁ§¢ : (39
Q,=5p+ fq, (33) and the three large scale evolution equations of the uniform
¢ H ' curvature perturbations,, which are derived from Eq30),
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. . . IV. SLOW-ROLL LIMIT
Py ¢ T |[py Py
G=H= | —Cug gt o5 | 5 Swt 5 S As an application, we consider the limit where the scalar
Py 3H 3H/\2p 2p . . .
field ¢ is slow rolling
—(CM__¢+CM_CFF)(Q¢+§§¢) ¢/\/v:0’ ¢/(H$)=0, (44
¢ and we assume that these conditions are maintained during
. : all the period ofyy domination and decay.
+Cmﬁ Q,+ f§¢ ’ (40) In the sloyv—roll Iimit the scalar fi_eld.varies very slquly in
#? H a flat potential and its energy density is always negligible. In
this limit cfﬁz —1 and its intrinsic nonadiabatic pressure per-
turbation vanishes from Eq32),
- Py U [Py Py Py
nte o o), e H
py3H[\py 2p 2p (p=——0Q,. (45)
<'j> ¢
—Crl| Qo g 7) J 4D Although the variablez,, diverges in this limit, the Sasaki-
Mukhanov variable can still be used to discuss the scalar
_ field perturbation. Equation&39)—(43) take a very simple
Py Cue| [Py py Py form,
{p=H—=) —— = (___ Syot 5" Say
Py 3H [\p, 2p 2p . H
) = ;{Plp(f;z;_ §)+4CMHP./,Q¢}, (46)
Vi ¢
- CM; Cm|| Q¢+ =0y o (b
' =r.—y{—7 —-{)+C HQ], 4
| Li=T 0 | 2p by )+ CrHO, (47)
V(o 2, ) w o
T e e » _ Py (Pwpw) ]
H =H-——{—|— 7 - , 48
where we have useld=CI'¢. In order to close the system, Q¢=0. (49
we need the evolution equation for the Sasaki-Mukhanov
Variab|eQ¢ on large scales, namely, Also the background equations take a very simple form.
In order to solve them numerically, it is convenient to work
. ) _ in terms of dimensionless quantities, the density parameters
. H . b P b Q,=p,lp, with Q,+Q,=1 (Q,4=0), and the dimension-
Qp=—75P{+ Q= | Lot Ly (43 |ess reduced decay ra[lél],
H & ¢2 H
_ ! (50)
Equations(39)—(43) are five coupled first order differential 9= r+H’

equations—one of them is redundant—which can be solved ] ]
in order to study the evolution of perturbations during theWhich varies monotonically from 0 to 1. In the slow-roll
inhomogeneous reheating. We did not make any assumptidinit of Ed. (44) the background equatiorid4)—(16) can
for the intrinsic nonadiabatic pressure perturbation of thghen be written as an autonomous system of first order dif-
field 5Py, 4, Which can be found fron@, and{,, [see Eq. ferential equations,
(32)], as well as for the coupling functio®,, andCy. Thus
these equations hold for any type of functional dependency Q;:(Qy_ )Ql/” (52)
of the decay rate and mass on the light field. 1-g

Some comments are in order here. The evolution equa-
tions of the relative curvature perturbatiotis and ¢, are Q,:(L_Q )Qwv (52)
sourced by terms proportional f@,, although{, has an 4 v
extra term proportional to its intrinsic nonadiabatic pressure.
After the decay ofy, ¢, is constant whereasand{ , evolve , 1
only due to the intrigsic entropy of the light fi¢eld. If the 9 =§g(1—g)(4—9¢), (53
coupling functionC,, vanishes, Eqs.39)—(43) describe the
inhomogeneous inflaton decay, whereepresents the oscil- where the prime denotes differentiation with respect to the
lating inflaton andy the radiation produced by the decay and number ofe-foldingsN=In a. Since these equations are sub-
reheating. ject to the constrainf),,+( =1 there are only two inde-
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pendent dynamical equations whose solutions follow trajec-5———————71 1+ 7
tories in the compact two-dimensional phase plagg)(,). | RO Q0 |1
One can find a detailed analysis of this system, applied to the T ¢
study of the curvaton model, in Rd21], where it is shown B 5/(Q/0)
that close to the origi ,~R;,g"? with LS -—= £ JQ |
H\ 12 3F -
Rinzw( f) : (54) ' : |
in
28 -
where the initial conditions for this system are setat;, //_
such thatg<1. The initial valueR;, determines which tra- : e
jectory is followed in the two-dimensional phase plane. For 1 ’,,/’ .
Ri,=1, the massive specieg comes to dominate the uni- e i
verse before decaying—compare with Fig. 2. Indeed, the _.———1—””’7—— | |
physical interpretation oR,, is straightforward: If initially %=z "0z " 06 oz 1

F>HQ§,, the decay is almost instantaneous andoes not g
have the time to dominate.

The perturbation equations, E¢46)—(49), can be written
in terms of the dimensionless background quantities defineg
above and acquire a simple form

=0, || =g |60 —4Cu Q)

FIG. 1. Evolution of¢, {,,, and{, normalized to the light field
erturbation— 9, /¢, as a function ofg, for Rj;=10, where we
ave taken the simplest case where the dependenteanfiM is
linear in the field,MxI"«¢. Although it is not visible on the
({e,9) plane, forg—1 the uniform-density perturbations approach
a fixed point attractor.

{'=

(59)

wherer<1 is a function ofR;,, whereasar and a),, are
constant which can be determined numerically. The term
ar+1/2 in Eqg.(61) comes from the fixed poingl’ﬁo for
Q,=0,9g=1 in Eqg. (56). An example of the evolution of
perturbations as a function gfis given in Fig. 1.

The behavior of as a function oR;, is illustrated in Fig.
where we have eliminated the variahje, which is redun- 2 and it is obtained by solving numerically Eq§5)—(57).
dant. WhenC,,=0 we recover the equations studied 18] For largeR;,, r=1 and the efficiency of the mechanism of
with ¢ representing the inflaton during its coherent oscilla-conversion of the density perturbation ¢finto a curvature
tion. When alsaC-=0 we recover the equations studied in perturbation is simply given by, . For smallR;,, r<1 and
[21] with ¢ representing the curvaton. the efficiency is considerably reduced. In Fig. 2 the maxi-

To calculate the final curvature perturbation on largemum value reached b@, before the decay is also shown.
scales, we start with initial conditions gt<1. By using the  For largeR;, one can approximateby this value. Note that
slow-roll condition (44), from Egs.(24) and (14)—(16) the
initial total curvature perturbation is given by 10°¢

g

1
§;=m{§(4—9./,)(§—§./,)—cr9¢], (56)

Q,=0, (57)

1
fn=g=g, Bulut40,0,-CutyQy)| . (69

n
10"
and in the two physical situations that we discuss in this
section it is negligible. Hence we shall consider vanishing -
initial perturbations,fi,={, in={y,i»=0. Then we numeri-
cally solve the system of Eq&5)—(57) and we evaluate the 102k
perturbation variables fog— 1. The late time solutions ap- E

proach a fixed point attractor,

Qs

{= §y=—r(apCp+aMCM)%E—ra (59 10°

¢ ¢

—
<

Or Qu
=-r ar?+amv ) (60) FIG. 2. The functionr, parametrizing the conversion from an
isocurvature to a curvature perturbation, as a function of the initial
0 0 parameteR;, (solid ling). This is compared t6) ;, . (dashed ling
— r M the maximum value reached Ky, before decaying as a function of
=-r +1/2) ——ray——, 61 v
gz// (aF ) T a\ M ( ) Rin:QI/;(H/F)llzhn-
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r as defined here is the same as the one defin¢tihand s ' '
computed in[21] for the curvaton model. We numerically 1077 I
checked that this is the caf46].
We can represent the integration of E¢85)—(57) as a o oMk |
transfer matrix acting on the initial perturbations, > 0
[
l 1 r l g 21
—ra . i
) :( ¢ ( N R
Q¢/¢ out 0 1 Q¢/¢ in @]
\Y
24 _|
Since the energy density of the light fiedilis always negli- 10
gible, its perturbation represents an entropy perturbation
which is converted into a curvature perturbationyf andr 107 L L ! !
are nonzero. Our task is now to estimate the efficiency pa- 107 10 10" 10" 10” 10°
rametersae anday, . Below we discuss two different physi- I'GeV]

cal situations. .
FIG. 3. Values ofl' and (o av) for which R;,=1. For values

below this line they particles come to dominate the universe. We

A. Inhomogeneous inflaton decay have takery, = 100.

Here we discuss cas@) as mentioned in Sec. Il. The
oscillating inflaton is described by the fluidandCy =0 is L 27,
used. Although fluctuating, the decay rate of the inflaton is P=Py=35% T S= 75 0T (65)
time independent in the limit44). Initially, the inflaton
dominates the univers€) ,— 1 for g—0, whereas the radia- After freeze-out and wheli<H, n,/s is constant ifg, is
tion is negligible; thus we tak®;,>1 andr=1. The initial  constantwhich we shall consider throughguirhe massive
condition of £, is given by the initial perturbation of the species has time to dominate the univers&jf=1, which
inflaton field corresponding to vacuum fluctuations. Accord-translates into
ing to [12] we assume that the density perturbation of the

inflaton field is negligible. Therefore we hav@,/, | M2 oy

>yl =|Zinl, Where we have used E€8) with Cy=0 lﬂ<|\/|_P|gr Y (66)

and{},=0 for the last equality, ang, is the VEV of ¢ at

horizon crossing. Solving Eq§55)—(57) with R;;>1 (infla- If n,/s is order unity Eq(1) is recovered. However, it is

ton domination we find a;-=1/6. This leads to the result interesting to try to plug some numbers for the relic abun-

found in[12,17,18,20) dance in Eq(66). We make use of the analytic approxima-

tion for the relic abundance of long-lived massive particles
[=— }ﬁ 63) derived in [36]. At high temperature {>M) n‘/,ocT3,

6T whereas at low temperatur@ €M) the ¢ density is Boltz-

mann suppressed,, T32exp(—M/T) so that if the particles
valid on the spatially flat sliced =0. freeze-out wherm =M then they abundance becomes very
small. The initial equilibrium abundance is maintained by
annihilation of particles and antiparticles with cross section
o Which we take to be independent of the energy of the

~ Here we discuss casb) as mentioned in Sec. Il. Now  particles. In this case the abundance at freeze-di@6k
is the massive particle species and both the nidsand

B. Inhomogeneous mass domination and decay

decay ratd” depend ong. The radiationy is the product of ny 100
a previous reheating and it initially dominates the universe, = (67)
Q=1 S  MMpg; {oav)

We start by discussing the condition for the massive par- . )
ticles to dominate the universe before decaying. Assuming/here(ov) is the thermal average of the total cross section
that the massive speciesis subdominant when the initial times the relative velocity. On using this relation, Eq64)
conditions are setup, the initial parameRey can be written ~ 0ecomes independent of the mags

as _
100( M P,) 12\ 52

Rin=—=%
r1/4i//’ (64) " grl/4 r
S

12

g

Rinz(Mplr (oav)

This relation holds if the) particles are subdominant at the
whereg, is the number of relativistic degrees of freedom andfreeze-out. If a more detailed calculation is performed one
n,/s is the relic abundance of th¢ particles when they can see that the mass dependence enters only via a logarith-
freeze-out(s is the entropy densily In order to derive Eq. mic correction[36]. In Fig. 3 we show the values df and
(64) we have used35] (opav) for which R;,=1 and they particles come to domi-
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nate. On requiring that the massive particles decay beforé/e can write the paramet&;, in terms of relevant quanti-
nucleosynthesis, i.el;>(1 MeV)?/Mp,, we find that only ties. If we choose the initial time when the curvaton starts to
for (oav)<(100h,)*%(10" GeV) 2 does ¢ dominate the oscillate, atH~m, , on usingp,~mZ2o? we have, from the
universe. In this case, the initial thermal equilibrium by an-definition (54),

nihilation of particles and antiparticles must be maintained

by some gauge interaction much weaker than those of the o [m,\?
standard model. This excludgsas being made by standard Rin= —2(

model particles. 3Mp,

Let us now discuss the perturbations. The initial perturba—lf the d rate i fficiently smaller than th rvaton
tion of the radiation is left over by inflation and it is negli- € decay rate Is sufficiently smatler tha e curvato

. e : . . mass, the curvaton has the time to dominate the universe
glbgle' T_hge Spe;r']edg/Elg(?;I?#]);)Iligsthge”/n;l ;%umti"zm \[’:vg:] before decaying. The conditions for the curvaton domination
v Sy,inT Sy,ins : o' Px y,in— Sin -+

the value ofay,, we find numericallyay,=4/3. Thus, in gen- during its oscillations are
eral for a¢-dependent mass and decay rate ( r

T (73

1/4
Mpi=o=Mp, (74

m

(o

B 19r 409y
5“%5?*§Rr

. (69
where the last inequality ensures that the curvaton does not
If the massive particles dominate the universe before deca flominate before starting to oscillate.
P Equationg55)—(57) describe the curvaton model if we set

ing, i.e., IfR,>1,r=1. ForM = const we recover the result . : :
of the inhomogeneous inflaton decay discussed in the prec—:M Cr=0 [21] in which casey represents the curvaton

ceding section. If the mass depends ®mvhile T' does not, during its oscillating phase, witliy,in={,,in> {in- By con-
: sidering a massive curvaton we hg@s
we find
5p0_ 1 5p0_ 2 do

(70 by 3p, 30 (79

u~
Il
|
w| b
z|§©

For the last equality we have assumed that the field remains

overdamped until the Hubble parameter falls below the cur-

vaton mass, which is the case if Eq4) is satisfied. Thus,
(7  from Eq.(72) we obtain

Finally, if Mo«I" we find

©

3 0r
=72

5

a result nine times larger than the one obtained in the case =r E—raUg (76)
where onlyI" is fluctuating.

In Ref. [16] the perturbation generated by a varying
mass is derived with an analytic argument which yields
{=(1/13)(Qu /M), a result different from the one of Eq.
(70). This difference is due to the fact that in our model,
specified by the conservation equatiafs—(8), the entropy
perturbation stored in the light field is important. Indeed,
whenCy #0, p,#0 and the light field perturbation contrib-
utes to the relative nonadiabatic pressoRg, [see Eq(29)]
and sources the evolution of the total curvature perturbation[1 o

as shown by Eq(55).

9,
g

Wl N

o
o .

If we want to compare the efficiency of the inhomogeneous
reheating with that of the curvaton model we must compare
the efficiency parametex,=—3 to a4 in Eq. (59), which
varies according to the dependence of the mass and decay
rate on the light fieldp. However, in the simplest case where
F«Mx¢, a4 has opposite sign te,, and it is nearly twice

as large.

We end this section with a comment. The physical situa-
ns discussed in this section using E¢s5)—(57) assume
that the mass ofp must remain smaller than the Hubble
parameter during the whole process of inhomogeneous re-
C. Comparison with the curvaton model heating. However, this relation may be violated during ¢he

It is worth discussing here the curvaton model, a mechadomination if m,~1I" and ¢ starts to oscillate during this
nism of generation of perturbations which has very similarP€riod. This leads to a mix situation of curvaton/
properties as the model discussed here. The aim is to stre§10mogeneous reheating scenario, where the perturbation of
their similarities and compare their efficiency. The curvaton® IS converted into a curvature perturbation via both the
o is a scalar field which is practically free during inflation curvaton mechanisrithe curvaton being) and the inhomo-

and starts oscillating after inflatigibut before nucleosynthe- 9eneous reheating. Since the sign of the efficiency param-
sig) during the radiation era whdh<H=<m, , behaving as a €térsa. can be different for the curvaton and inhomogeneous

nonrelativistic fluid. If during the oscillations it comes 'eheating models this may lead to a compensation between

(close to dominate the universe before decaying, its perturfhem. An example of this situation is given ih8]. The full

bation ¢, is converted directly into curvature perturbations, calculation of the resulting curvature perturbation in .the in-
homogeneous mass domination can be done starting from

{=ri,. (72 Egs.(39)—(43).
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V. OBSERVATIONAL CONSTRAINT OF THE MODEL We write the y and ¢ quantum perturbations aéx

Here we discuss the observational predictions of the inho= (H /2k%)a, and Q= (H/+2k%)a,, where thed,'s are
mogeneous reheating models: isocurvature perturbations afiegdependent normalized Gaussian random variables, obeying
non-Gaussianities. (au(k)ag(k"))=0,50(k—k"). After reheating, if the relic

product of the inflaton is decoupled from the productpits

. I uniform curvature perturbation is conserved and given by
A. Isocurvature perturbations in the mass-domination

mechanism . 3H2
If the inflaton or they particles decay into species out of product XV, Q=aly (79
equilibrium which remain decoupled from the radiation, we
expect isocurvature perturbations to be present into thederom Eqg. (62) the uniform curvature perturbation of the
species. These can be correlated with the adiabatic perturbBroduct of they decay can be written as
tion. Here we consider the case where the perturbations left
over from inflation are of the same order of magnitude as the
perturbations produced during the inhomogeneous mass
domination and decay. We define the paramettr quantify

the relevance of the perturbations left over from inflation, Where the first term in the right-hand side comes from the
initial perturbation and the second from the fluctuationgof

Qul ¢ V., Note thatx, according to its definitior{77), is scale depen-

. =ra¢3H2¢, (77 dent. We can write it asc(k)= xq(k/ko)*"? where , is

X scale free and, is a reference pivot scale. The spectral
index of k, An, can be expressed in terms of the difference
where y is the inflaton,V , is the derivative of the inflaton between the spectral indexes of and{,, An=ng—n,,
potential, andH is the Hubble parameter, all evaluated atbut here it is considered as a free parameter.

~ 3H2 ~ ra'¢ ~ n n
gproduct of y = Vi QX_ ) Qlf):(aX_Kazf))g)(l (80)
X

KErC((z,

horizon crossing during inflation. Whem is order unity or To simplify the discussion we completely neglect the
smaller, perturbations from inflation are important. For cha-haryons and we concentrate on the CDM isocurvature mode,
otic inflation we have which is due to the difference between the uniform curvature
perturbations of the CDM and radiatiqe.g., photons and
M2, neutrinos._ We start by assuming that _both the_z inflaton and
K chaotic= 2ra¢ﬁ, (79 the ¢ particles may decay in CDM particles which are out of

equilibrium at the temperature at which they are produced.

We definef as the fraction of CDM, evaluated just before
Using an inflaton field which is~10Mp, and an efficiency nucleosynthesis, which is left over from the decay/ofThe
ra,~0O(1) we obtainkcaic~0.2Mp/ ¢ so that perturba- rest of the CDM, k-, is a relic of the inflaton decay. Both
tions from inflation are important if the VEV o is suffi-  the inflaton and the/ particles may decay into radiation. The
ciently large,¢p~Mp,. fraction of radiation that decays froghis proportional to the

The following analysis holds also for the curvaton model,value of (), at the decay, which we assume to 8¢,

although the VEV of the curvaton during inflation should defined in Sec. IV B. We have seen there that this is very
remain smaller than the Planck masse Eq(74)] and gen-  close tor. If r <1, s remains negligible before decaying and
erally k>1. Thus, in the curvaton scenario it is not likely cannot be responsible for the radiatiety]. However,y can
that the inflaton and curvaton generated perturbations are gfenerate part of the CDM leading to an uncorrelated isocur-
the same order. The VEV of the light fieltldoes not need to vature mode. This is constrained by data: we hdwg
satisfy this constraint. Indeed, as discussed1i@], if one = <0.28 at 95% confidence level. These bounds come from the
wants to avoid that at high temperature the nonzero densitpumerical analysis of the WMAP data made[#0], which
of the ¢ particles generates a large thermal mass foassumes —0.72<An<1.11 and k,=0.05Mpc!. The
¢—which would make¢ too heavy and would spoil the amount of CDM produced by the decay @fcan be impor-
simplicity of the mechanism—we must requife-Mp,. We  tant only if they generated perturbation is negligible. More
are hence motivated to consider the possibilityxobeing  interestingly, wherr=1, s comes to dominate the universe
small, at least for chaotic inflation. In this case perturbationsind the totality of the radiation comes from its decay prod-
from inflation may not be negligible with respect to pertur- uct. In this case the adiabatic and CDM isocurvature pertur-
bations from the light field and a mix of the two may survive. bations are correlated. The intermediate case, that the radia-
Isocurvature perturbations in the curvaton model are distion left over at nucleosynthesis is created both by the
cussed if 10,37 and in[38], although these groups consid- inflaton and they, is not discussed here. Indeed, the radiation
ered a more general set of possibilities than what is considthermalizes and it is difficult to express its final perturbation
ered here and if37,38 they performed a numerical analysis in terms of primordial perturbations.
of the CMB data to constrain the curvaton model. Here how- We thus concentrate on the casel. Making use of the
ever we consider a different possibility, i.e., that the coldnotation of[40] (see alsd41]), the adiabatic mode is de-
dark mattefCDM) is a relic left over both from the inflaton scribed by the comoving curvature perturbation in the
and they decay. radiation-dominated eraR,=—¢,, and the isocurvature
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1 - . - allowed only if the CDM is almost completely created #y
(f=1). However, even fok>1, ~10% of CDM created by
0.95¢ 1 the inflaton is allowed. The signature of a correlated CDM
isocurvature mode in the data can be the signal that part of
0.9¢ i the CDM has been created before the decayyofThese
constraints apply equally well to the curvaton model in the
0.85) | situation discussed here.
-
038 B. Non-Gaussianities
0.75¢ T Until now we have assumed that the density perturbation
of the light field ¢ depends linearly orQ,/¢#, which we
0.7} 1 take to be a Gaussian variable. However, when the perturba-
tion Q, is comparable to the average valge-which is the
0.65¢ , , , ] case for small values ok ,—the nonlinear term @,/ ¢)?
0 1 2 3 4 can be important and lead to a non-Gausgiarontribution
K, in the spectrum of curvature perturbatidi$,20,
FIG. 4. Bounds orf, the fraction of CDM created by, as a Qs 1(Q,
function of ko=r a,Q,/(4¢,) at 95% confidence level. The filled {=—ray, % 2078 (89

region is excluded.

The level of non-Gaussianity is conventionally specified
mode byS,.=3({c—¢,), where{, and{. are the uniform  py the nonlinear parametdy, [42,43. We can write the
curvature perturbations of the radiatighne., photons and total uniform curvature perturbation §44]
neutrinog and of the CDM, respectively. Well in the radia-

tion era they are both constant and can be written as 3
Y {=tg— s tull (86)
Rrad: (Ké'(ﬁ_ é')() g)(! (81)
N where {, represents the Gaussian contribution{toUsing
Srad=3(1—f) a4l . (82) Eq. (85) the prediction for the inhomogeneous reheating is
According to[40] we define the dimensionless cross corre- 5
lation as fae=— 6ray’ (87)
SA= (RradSrad _ | ol (83) which is the same as for the curvaton scenario once the re-
(Read(Sad) ¥ V1+43 placement,= — 2/3 of Eq.(76) is used. However, E¢87)

has to be taken with caution: Indeed it is only valid when
fau=1. In order to precisely estimate the nonlinear param-

and the entropy-to-adiabatic ratio as
eter fy, generated by these models one has to study and

(82, 12 solve the second order perturbation equations as doj#s]n
fisoc=| 3+ =3(1—f)cosA. (84) and find the second order correction to E8P).
(Ria K=k, If we use EqQ.(87) we see that less efficiency in the

mechanism of conversion of perturbations means more non-

These depend on two parametdrand «. For large values Gaussianities in the spectrum. If detected non-Gaussianity
of kg the adiabatic perturbation is dominated by the perturcould be the smoking gun of models where perturbations are
bation of the light field and the modes are totally correlatedoroduced with an “inefficient” mechanism of conversion.
(cosA=1) as found i 37]. More generally the correlationis The WMAP experiment has now put a limit diy, corre-
positive but can be small if the inflaton perturbation becomesponding to—58<f,, <134 at the 95% leve[4], which
important. already excludes models with 0.006< «,<0.014. Planck

The entropy-to-adiabatic ratio is constrained by data anavill put a more sever constraintf, | <5 [43], correspond-
cannot be too large. We can lower it by decreasing théng to|a,|=1/6.
amount of relic CDM left over from inflatiorti.e., by send- Going back to the inhomogeneous reheating, in which the
ing f to 1) or by decreasing the amplitude of the light field mechanism of conversion of the density perturbationgof
perturbation, i.e., the amplitude af,. Since a full analysis into a curvature perturbation is due to the fluctuations of the
of the constraints imposed by the data on this model is weltlecay rate and’=¢, we havera,<1/6 and the non-
beyond the scope of this paper, we just use the 95% conficaussianity can be large; 5<fy, <O0. In particular, if the
dence level bounds on the isocurvature mode coeffidight nonrelativistic speciegr completely dominates the universe
as a function of coA for correlated perturbations as given in before decayingr(=1) fy, = —5 [16], a value which is right
[40] (Fig. 1 in this referengeand we show the bounds éas in the ball park of Planck observations. However, the inho-
a function ofx in Fig. 4. Totally correlated perturbations are mogeneous mass domination can be much more efficient. If
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MaxI o, rayz=<3/2 and thus-5/9<fy <O0. If the massive On the observational side we have discussed two possible

species dominates completely the universe before decayirgignatures of the mass-domination mechanism: correlated
(r=1) we havefy, =—5/9, a much smaller value than the adiabatic and isocurvature perturbations and non-
one estimate if16] and not observable by future planned Gaussianities. If present, a cold dark matter isocurvature per-
experiments. turbation provides some important information on the
mechanism of generation of the dark matter and on the
vacuum expectation values of the inflaton and light field dur-
ing inflation. There are non-Gaussianities generated by this
In this paper we have studied the evolution of perturbamechanism, which arg?. In order to precisely compute
tions during a phase dominated by massive particles whos@em one has to study the evolution of second order pertur-
mass a_nd decay rate can fluctuate in space and_tlme. If theations. In the limit wherd, is large, by simply using Eq.
fluctuations are set by the VEV of a light scalar field over-(87) the nonlinear parameter iy, = —5/(6ray). When
dampEd dUring inﬂation, the isocurvature perturbation in th%oth the mass and the decay rate of the massive partides
scalar field can be converted into a curvature perturbatiofjyctuate, due to the high efficiency the non-Gaussianities

and this can be the main mechanism of generation of larggan be much smaller than what is possibly observah|g,
scale perturbations for structure formation. We have deriveds — 5

a set of perturbation equations that can be used in full gen-
erality for any kind of dependence of the mass and decay rate
on the light field. Making use of these perturbation equations
we have recovered the results[a2,17,1§ for the inhomo-
geneous reheating with varying decay rate. We have also It is a pleasure to thank Roberto Trotta for very fruitful
discussed the condition for the massive particles to dominatdiscussions and suggestions. | also acknowledge Ruth Dur-
the universe before decaying. This condition does not depener, David Langlois, Karim Malik, and Jean-Philippe Uzan
on their mass, but depends on the annihilation cross sectidior very helpful suggestions and comments, Robert Branden-
and decay rate. Standard model massive particles cannberger for carefully reading the manuscript, and Nicola Bar-
dominate the universe. Furthermore, we have shown thablo, Antonio Riotto and Sabino Matarrese for drawing my
when the mass of the massive particles is allowed to vary, thattention on the importance of the evolution of second order
mechanism of conversion can be nine times more efficientperturbations. Part of this work was done at the Kavli Insti-
The final total curvature perturbation &= —(1/6)6I'/T"  tute of Theoretic Physics. This research was supported in
—(4/3)6M/M. This is our main result. Finally, we have part by the National Science Foundation under Grant No.
compared this with the curvaton model discussing differ-PHY99-07949 and by the Swiss National Science Founda-
ences and similarities. tion.

VI. CONCLUSION
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