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WKB approximation for inflationary cosmological perturbations
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A new method for predicting inflationary cosmological perturbations, based on the Wentzel-Kramers-
Brillouin ~WKB! approximation, is presented. A general expression for the WKB scalar and tensor power
spectra is derived. The main advantage of the new scheme of approximation is that it is valid even if the
slow-roll conditions are violated. The method is applied to power-law inflation, which allows a comparison
with an exact result. It is demonstrated that the WKB approximation predicts the spectral indices exactly and
the amplitude with an error lower than 10%, even in regimes far from scale invariance. The new method of
approximation is also applied to a situation where the slow-roll conditions hold. It is shown that the result
obtained bears close resemblance with the standard slow-roll calculation. Finally, some possible improvements
are briefly mentioned.
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I. INTRODUCTION

Observations of the inhomogeneities and anisotropie
the Universe’s large scale structure and of the cosmic mi
wave background~CMB! radiation are one of the keys t
decipher the cosmic evolution. According to the favored c
mological scenario, fluctuations of matter and space-time
generated during an early epoch of inflation. The ability
predict the power spectra of cosmological perturbations fo
large variety of different inflationary models is of the utmo
importance. So far, all predictions that come up to the le
of accuracy needed for CMB experiments such as Arche
the Microwave Anisotropy Probe~MAP! or Planck, have to
rely on the slow-roll approximation, subject to an infini
number of convergence conditions, or on numerical integ
tion @1#. In this paper we present a new method that ov
comes the mentioned restrictions~but has its own, very dif-
ferent ones!. Our method is applicable to models that cann
be described by the slow-roll approximation~e.g. the ‘‘prob-
lem of a large slow-roll parameterh ’’ of some
supersymmetry-inspired inflationary models! and it can be
applied to small scales that leave the horizon at times c
to the end of inflation, where the slow-roll approximatio
necessarily has to break down.

The study of scalar and tensor fluctuations can be redu
to the study of a single variable during inflation, usua
denoted bym

S
or m

T
@2#. The corresponding equations o

motion are similar to the Schro¨dinger equation for a one
dimensional system:

d2

dh2
m1@k22U~h!#m5

d2

dh2
m1v2~h!m50, ~1!
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where, in the cosmological context, the conformal timeh
plays the role of the radial variabler in atomic physics. In
general, this equation cannot be solved exactly unless v
simple potentialsU(h) are considered and one has to rely
a method of approximation. However, we have inherited
very powerful method to deal with more complicated pote
tials from the pioneers of quantum mechanics, namely
Wentzel-Kramers-Brillouin~WKB! method of approxima-
tion.

In this article, we apply this method to the equation go
erning the evolution of cosmological perturbations. It is qu
astonishing that for more than twenty years since the disc
ery of cosmological inflation, to our knowledge, nobody h
been able to apply successfully the WKB approximation
the prediction of cosmological perturbations. This is pro
ably related to the fact that the growth of the perturbations
superhorizon scales, which is equivalent, in the quantu
mechanical version of the theory, to particles creation, is
ten described in terms of the breakdown of the WKB a
proximation. In this article, we demonstrate that this is tr
only if the WKB approximation is used naively. In fact, th
problem bears a close resemblance with the situation
cussed by atomic physicists at the time quantum mecha
was born. We therefore make a historical digression to ill
trate the main point of the present article.

The subject debated by the atomic physicists at the be
ning of the twentieth century was the application of t
WKB approximation to the motion in a central field of forc
and, more specifically, how the Balmer formula, for the e
ergy levels of hydrogenic atoms, can be recovered within
WKB approximation. The effective frequency for hydrogen
atoms is given by~obviously, in the atomic physics contex
the wave equation is not a differential equation with resp
to time but to the radial coordinater )

v2~r !5
2m

\2 S E1
Ze2

r D2
,~,11!

r 2
, ~2!
©2003 The American Physical Society12-1
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whereZe is the~attractive! central charge and, the quantum
number of angular momentum. The symbolE denotes the
energy of the particle and is negative in the case of a bo
state. The calculation of the energy levels was first addres
by Kramers @3# and by Young and Uhlenbeck@4#. The
method employed was Sommerfeld’s quantization rule

R v~r !dr 52pS n1
1

2D , ~3!

where the integral must be calculated along the classical
jectory given here by an ellipse. The result obtained by th
authors reads

En,,52
mZ2e4

2\2 H S n1
1

2D1@,~,11!#1/2J 22

. ~4!

In addition, the WKB wave function for small values ofr

was found to behave as.r [ ,(,11)]1/211/2. This last result
follows straightforwardly if one retains only the last term
Eq. ~2!, i.e. v(r ). i @,(,11)#1/2/r , as required in the limit
r→0. It was noticed by Young and Uhlenbeck that the tw
previous results are not satisfactory. Indeed, experimenta
sults indicate that the factor,(,11) in Eq. ~4! should be
replaced by (,11/2)2: ‘‘ It is apparent that we do not obtain
the familiar Balmer formula except in the limit of large,
values. If, however, we replace,(,11) by (,11/2)2 the
correct result is obtained.’’ A similar remark is made in Ref.
@4# concerning the behavior of the wave function near
origin: ‘‘ The approximate solution based upon the nega

exponential behaves for r very small like r[ ,(,11)]1/211/2.
Again the replacement of,(,11) by (,11/2)2 leads to an
agreement between the approximate and exact solutio.’’
The solution advocated by Young and Uhlenbeck was th
fore to replace, by hand,,(,11) by (,11/2)2 without fur-
ther theoretical justifications.

In 1937 the problem was considered again by Langer@5#.
In the section devoted to the radial wave equation, he not
that the WKB approximation was applied to the Schro¨dinger
equation~1! by Kramers, Young and Uhlenbeck only b
cause of its resemblance with the equation of an oscilla
‘‘ Insofar as the writer is aware, the degree of this rese
blance has hitherto been regarded without exception as
ficient for assuming the out-and-out applicability to th
equation (17) of the formulas deduced in the foregoing d
cussion, especially of the formula (14),’’ where Eqs.~17! and
~14! in Langer’s paper correspond to Eq.~1! and the WKB
connection formula. He also remarks that no theoretical
planation has been given to explain why the wrong fac
,(,11) is obtained: ‘‘This ‘failure’ of the WKB method, i.e
to the extent that the change in question is requisite,
been generally verified both in studies of attractive and
pulsive fields. No explanation of it seems to have been gi
though that can be done very simply to the following effe
The fault lies not in the method but in the application of i.’’
Then, Langer shows that the WKB approximation brea
down, at smallr, for an effective frequency given by Eq.~2!
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and, in addition, he suggests a method to circumvent
difficulty. The method consists in changing the variables
cording to

r 5ex, m5ex/2u. ~5!

The resulting equation foru has again the form of Eq.~1! but
the effective frequency is now given by

v2~x!5
2m

\2
~Ee2x1Ze2ex!2S ,1

1

2D 2

. ~6!

As demonstrated by Langer, the crucial point is that, now,
WKB approximation, applied to the Schro¨dinger equation
for u(x), no longer breaks down. Therefore, it is now po
sible to utilize the WKB formalism and to use the usu
WKB approximation. Transforming back to the original var
ables the correct factor (,11/2)2 appears, instead of th
wrong term @,(,11)#1/2. This allows Langer to conclude
that his method ‘‘ . . . is seen to amount formally to precise
the replacement of,(,11) by (,11/2)2.’’

Let us now come back to the theory of cosmological p
turbations. The analogy with the previous situation is th
large values of r correspond to subhorizon scale
(kuhu@1) whereas small values ofr correspond to superho
rizon scales (kuhu!1). On subhorizon scales the mode fun
tion oscillates (v.k) and the WKB approximation can b
applied in this regime without any difficulty. On superhor
zon scales the perturbations do not oscillate, but this is n
problem in itself. The WKB approximation can be used in
situation where the potential energy dominates and lead
exponentially decaying or growing solutions~e.g. in the
WKB treatment of thea decay of a radioactive nucleus!.
Nevertheless, difficulties arise if one tries to find the WK
approximation to the mode equations of cosmological per
bations.

On superhorizon scales a problem arises in the na
WKB approach in the manner of Kramers, Uhlenbeck a
Young from the form of the effective potentialU(h). It turns
out to be the very same problem as encountered by ato
physicists. The resemblance is most explicit in the particu
case of power-law inflation where the potentialU(h)}h22

is exactly of the form given in Eq.~2!. The usual conclusion
that the WKB approximation is violated for superhorizo
scales is in fact not true, provided the cosmological vers
of the transformation~5! can be found. This opens the po
sibility to employ the WKB approximation to calculate th
spectrum of inflationary cosmological perturbations in t
superhorizon limit. In the cosmological context, the WK
approximation is a new method for computing the pow
spectra, different from the more traditional slow-roll approx
mation.

This article is organized as follows. In the next sectio
we briefly recall the basic results of the inflationary cosm
logical perturbations theory. In the third section, we sh
how the WKB approximation can be applied to inflationa
cosmological perturbations in the general case, i.e. for
inflaton potential. The only restriction is that we focus o
single inflaton field models. We demonstrate that the cal
lation of the spectrum reduces to the calculation of a sin
2-2
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quadrature. In the fourth section we apply the WKB appro
mation to power-law inflation. This model is exactly solvab
so that we can compare the exact result with the WKB p
diction and also with the standard calculation based on
slow-roll approximation. This allows us to study the pre
sion of the WKB approximation in the cosmological conte
In particular, we demonstrate that, in the regime where
slow-roll approximation breaks down~far from scale invari-
ance!, the WKB approximation is still valid. This opens th
possibility to calculate the power spectra of more realis
models violating the slow-roll conditions. In the fifth sectio
we apply the WKB approximation to the general~first-order!
slow-roll situation. We compare the result with the stand
slow-roll calculation for the amplitudes and the spectral
dices. We show that the spectral indices are very well p
dicted while the error in the amplitude is of the order 10
i.e. less accurate than the prediction of the slow-roll appro
mation for this quantity. Finally, in the sixth section, we giv
our conclusions and indicate what the possible extension
the present work are.

II. GENERAL EXPRESSIONS FOR INFLATIONARY
PERTURBATIONS

A. Power spectra

The evolution of the cosmological perturbations in
single field inflationary scenario is governed by t
Schrödinger-like equation~1!. The effective time-dependen
frequency is given by the general expression

v2~k,h!5k22
z9

z
, ~7!

where the primes denote a derivatives with respect to c
formal time and wherez

S
5aA2aa9/a8 for scalar~density!

perturbations andz
T
5a for tensor perturbations;a(h) is the

scale factor of the Friedmann-Lemaitre-Robertson-Wal
metric. For density perturbations, the quantitym is given by
m

S
522z

S
z, wherez is Bardeen’s hypersurface-independe

quantity @6#, which for adiabatic perturbations is conserv
on superhorizon scales. For tensor fluctuations, one sim
has m

T
5z

T
h, where h is the amplitude of gravitationa

waves. The equation of motion for the mode functionsm
should be solved with the following initial condition

lim
k/(aH)→1`

m
S,T

~h!57
4Ap

m
Pl

e2 ik(h2h i)

A2k
, ~8!

whereh i is an arbitrary time at the beginning of inflation an
m

Pl
is the Planck mass. This initial condition corresponds

the fact that, initially, the modes are subhorizon and, the
fore, do not feel the curvature of space-time. As a con
quence, they are described by plane waves. If the in
quantum state is the vacuum state, then the statistical p
erties of the perturbations are entirely characterized by
two-point correlation function, i.e. by the power spectru
The dimensionless power spectra of scalar and tensor
tuations are calculated to read
08351
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k3

8p2UmS

z
S

U2

, Ph5
2k3

p2 UmT

z
T

U2

. ~9!

The spectral indices and their running are defined by
coefficients of Taylor expansions of the power spectra w
respect to lnk, evaluated at an arbitrary pivot scalek* . To be
more specific:

n
S
21[ Ud lnPz

d lnk U
k5k

*

, n
T
[

d lnPh

d lnk U
k5k

*

, ~10!

are the spectral indices and the two following expression

a
S
[

d2ln Pz

~d lnk!2U
k5k

*

, a
T
[

d2ln Ph

~d lnk!2U
k5k

*

, ~11!

define the ‘‘running’’ of these indices. In principle, we cou
also define the running of the running and so on.

B. Inflationary parameters

In order to investigate the predictions of cosmological
flation in a model-independent manner, it is useful to defin
set of functions that uniquely characterize the state of
Universe at any given moment of time. It is useful to d
scribe the evolution of the Universe by a set of flow equ
tions @7,8#. In this article we make use of the set of horizo
flow functions, introduced in Ref.@8#. The zeroth horizon
flow function is defined bye0[H(Ni) /H(N), where H

[ȧ/a is the Hubble rate, a dot meaning derivative with r
spect to cosmic time. In this expression,N is the number of
e-folds,N[ ln(a/ai) , after an arbitrary initial time. The hier
archy of horizon flow functions is then defined according

en11[
d lnuenu

dN
, n>0. ~12!

Inflation takes place fore1,1. It is interesting to establish
the link between the horizon flow functions and the so-cal
slow-roll parameters, the first three being defined by

e[3
ẇ2

2
F ẇ2

2
1V~w!G21

52
Ḣ

H2
, ~13!

d[2
ẅ

Hẇ
52

ė

2He
1e, ~14!

j[
ė2 ḋ

H
, ~15!

wherew is the inflaton field andV(w) is the inflaton poten-
tial. The first two slow-roll parameters must be small duri
inflation, as can be seen from their definition. The parame
e is just the inflaton kinetic energy to inflaton total ener
ratio, whereasd is the acceleration to speed ratio. The s
$e,d,j% is linked to the horizon flow functions$en% by
2-3
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e5e1 , d5e12
1

2
e2 , j5

1

2
e2e3 . ~16!

The set$e,d,j% or equivalently the set$e1 ,e2 ,e3% plays a
special role, since the effective potentialU(h)[z9/z of Eq.
~1! can be expressed exactly in terms of these three funct
only. One finds

U
S
5a2H2S 22e11

3

2
e22

1

2
e1e21

1

4
e2

21
1

2
e2e3D ,

~17!

U
T
5a2H2~22e1!. ~18!

Let us emphasize that these expressions are exact, no
proximation has been used so far.

III. WKB POWER SPECTRA

We now turn to the derivation of the WKB inflationar
power spectra for scalar and tensor perturbations. We de
the quantitym

WKB
by the expression

m
WKB

~k,h![
1

v1/2~k,h!
e6 i *hv(k,t)dt. ~19!

The mode functionm
WKB

represents the leading order term
the semiclassical expansion. It satisfies the following diff
ential equation

m
WKB
9 ~k,h!1@v2~k,h!2Q~k,h!#m

WKB
~k,h!50, ~20!

where the quantityQ(k,h) is given by

Q~k,h![
3

4

~v8!2

v2
2

v9

2v
. ~21!

Therefore, the mode functionm
WKB

(k,h) given in Eq.~19! is

a good approximation of the actual mode functionm(k,h), if
the following condition is satisfied:

U Q

v2U!1. ~22!

On subhorizon scales,v.k, which impliesQ.0 and there-
fore the condition is satisfied. On superhorizon scales,
not possible to show that the previous condition is alwa
violated, since it depends on the shape of the effective
tential U(h). However, in the cosmological context, th
problem discussed in the Introduction generally arises.
explicitly show this in the next section for the case of pow
law inflation. Here, we demonstrate the problem for the m
generic case of slow-roll inflation. Using the expression
the effective frequency in terms of the horizon flow fun
tions, one has
08351
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U Q

v2U
S

5U Q

v2U
T

5
1

8
1O~e1 ,e2!. ~23!

The corrections, linear in the horizon flow functions, cou
easily multiply the term 1/850.125 by a factor 2. Therefore
the numberuQ/v2u is indeed not greater than 1 but, at th
same time, not very small with respect to 1. Thus, the WK
approximation is not a good approximation in this regime.
order to have an effective potential that permits to use
WKB approximation, we introduce the following transfo
mation:

x[ lnS Ha

k D , u[~12e1!1/2ex/2m. ~24!

This is the cosmological counterpart of Langer’s transform
tion given in the Introduction; see Eq.~5!. However, let us
remark that there exist differences, in particular the fac
(12e1)1/2 in the definition of the functionu. It is also inter-
esting to notice that this transformation has already b
considered in the literature in Ref.@9# for different reasons.
Then, for density perturbations, the equation of motion ta
the form

d2u
S
~x!

dx2
1F e22x

~12e1!2
2

1

4 S 32e1

12e1
D 2

2
~322e1!e2

2~12e1!2

2
~122e1!e2e3

2~12e1!3
2

~124e1!e2
2

4~12e1!4 Gu
S
~x!50, ~25!

whereas, for gravitational waves, we obtain

d2u
T
~x!

dx2
1F e22x

~12e1!2
2

1

4 S 32e1

12e1
D 2

1
e1e2

2~12e1!2

1
e1e2e3

2~12e1!3
1

~21e1!e1e2
2

4~12e1!4 Gu
T
~x!50. ~26!

In the following v
S

2 and v
T

2 denote the expressions in th
square brackets of Eqs.~25! and~26!. The WKB approxima-
tion can now be applied to these equations. In order to d
onstrate this, let us recalculate, on superhorizon scales
quantity uQ/v2u for the two previous expressions. One fin
for density perturbations

U Q

v2U
S

5
4

27S e1e2
21e1e2e31

e2e3
2

2
1

e2e3e4

2 D 1O~en
4!,

~27!

whereas for gravitational waves, one has

U Q

v2U
T

5
4

27
~e1e2

21e1e2e3!1O~en
4!. ~28!
2-4
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It is obvious that the quantityuQ/v2u is now very small for
any inflaton potential satisfying the slow-roll condition
since this is a third-order quantity. As a consequence,
WKB approximation is now also valid on superhorizo
scales.

Let us apply the WKB approximation to Eqs.~25! and
~26!. Let x* be the value of the variablex such that
v2(x* )50, i.e. x* is the classical turning point. We defin
region I as the region such thatv2(x).0 and region II the
region wherev2(x),0. Letxi be the initial ‘‘time’’ at which
the normalization is performed~i.e. corresponding toh i) . At
some pointx, deep in region I, the WKB approximation o
the functionu(x) can be written as

u
I
~x!.

A

v1/2~x!
expF6 i E

xi

x

v~y!dyG , ~29!

whereA is a constant of normalization. Deep in region I, w
havev(y).e2y/(12e1) and straightforward manipulation
show that the correspondingm

I
(h) behaves as in Eq.~8!,

provided that one chooses the minus sign in Eq.~29! and that
A is given by

A57
4

m
Pl

Ap

2
k21/2. ~30!

In region II, the effective frequency is complex and can
written asv(x)5 i uv(x)u. Let xf be the final point at which
we evaluate the solution deep in region II. Then, at any po
x in region II, the WKB solution is given by

u
II
~x!.

C1

uv~x!u1/2
expF1E

x

xf
uv~y!udyG

1
C2

uv~x!u1/2
expF2E

x

xf
uv~y!udyG , ~31!

whereC6 are constant. The goal is now to connect these
constants with the constantA. At the turning pointx5x* ,
the WKB approximation breaks down and one has to use
usual WKB procedure and approximate the potential in t
region by a straight line such that

v2~x!.2a~x2x* !, ~32!

wherea[2@dv2(x)/dx#(x5x* ).0. The solutions of Eqs
~25! and~26! are given in terms of Airy functions of first an
second kinds

u~x!5B1Ai ~s!1B2Bi~s!, ~33!

wheres[a1/3(x2x* ).
The next move is to use the asymptotic behavior of

Airy functions to calculate the relation betweenB1 and B2
with A on one hand andC6 on the other. In region I, for a
value ofx not too far fromx* , Eq. ~33! can be written as
08351
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~x!.

a21/12

2Ap
ux2x* u21/4F ~B22 iB1!expS i2

3
a1/2ux2x* u3/2

1
ip

4 D1~B21 iB1!expS 2
i2

3
a1/2ux2x* u3/22

ip

4 D G ,
~34!

whereas in region II, under the same conditions, the func
u(x) can be expressed as

u
II
~x!.

a21/12

Ap
~x2x* !21/4H B1

2
expF2

2

3
a1/2~x2x* !3/2G

1B2expF2

3
a1/2~x2x* !3/2G J . ~35!

There is no factor 1/2 in front of the coefficientB2 because
the expansion of the function Bi differs from the expansi
of Ai not only in the sign of the argument of the exponent
but also by a factor 1/2. Now we evaluate in region I, t
approximate solution~29! for the potential~32!. The integral
in the exponent can be written as

E
xi

x
* v~y!dy5E

xi

x

v~y!dy1E
x
*

x

v~y!dy[F1E
x
*

x

v~y!dy.

~36!

The frequency~32! is used in the second integral only, a
suming thatx is not too far away fromx* . The quantityF is
just a number and its calculation would require the know
edge ofv(x) in the whole region I. However, it does no
enter the final result and therefore we are not interested in
value. We find

u
I
~x!5Aa21/4ux2x* u21/4expS i2

3
a1/2ux2x* u3/21 iF D ,

~37!

from which we deduce

B15 iB2 , B25AApa21/6ei (F2p/4). ~38!

Therefore, we have reached our first goal, i.e. connect
two coefficientsB1 andB2 to A. What remains to be done i
to establish the link betweenC1 , C2 andB1 , B2. This can
be done by applying the very same reasoning in region
One introducesC, defined by

C[E
x
*

xf
uv~y!udy, ~39!

and the WKB solution given in Eq.~31! reduces to the ex-
pression

u
II
~x!5a21/4~x2x* !21/4H C1eCexpF2

2

3
a1/2~x2x* !3/2G

1C2e2CexpF2

3
a1/2~x2x* !3/2G J . ~40!
2-5
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By comparison with Eq.~35!, the expressions forC1 and
C2 are obtained

C15
B2

2Ap
a1/6e2C1 ip/2, C25

B2

Ap
a1/6eC. ~41!

Finally, putting everything together, we arrive at

uC1u25
2p

m
Pl

2
e22Ck21, uC2u25

8p

m
Pl

2
e2Ck21. ~42!

If we only consider the growing mode given by the bran
proportional toC2 , which is a good approximation forx
@x* , one can deduce the power spectra atx5xf . Using
Eqs.~9!, one obtains the dimensionless power spectra wit
the WKB approximation:

Pz5
H2

pe1m
Pl

2 S k

aHD 3 e2C
S

~12e1!uv
S
u
, ~43!

Ph5
16H2

pm
Pl

2 S k

aHD 3 e2C
T

~12e1!uv
T
u
, ~44!

where all the quantities in the above expression are evalu
at x5xf . We know that in the absence of entropy perturb
tions and decaying modes,z is conserved on superhorizo
scales @6,11#. Similarly, h is conserved on superhorizo
scales, if the decaying mode is absent. Thus we know
both spectra should be time-independent. However, wi
the WKB approximation one cannot see this from the ab
expressions. In the following sections we demonstrate
property explicitly for power-law inflation and slow-roll in
flation.

We see that the calculation of the spectrum for any in
ton potential has been reduced to the calculation of a qua
ture, namelyC. We are also in a position to calculate th
spectral indices and their running. The spectral indices r

n
S
215312

dC
S

d lnk
U

k5k
*

, n
T
5312

dC
T

d lnk
U

k5k
*

, ~45!

and the runnings are given by

a
S
52

d2C
S

~d lnk!2U
k5k

*

, a
T
52

d2C
T

~d lnk!2U
k5k

*

. ~46!

The general expressions for the WKB power spectra, spe
indices and their runnings, constitute the main result of t
work. In order to discuss the power and potential of t
WKB approximation, we now turn to two cases where t
quadraturesC

S
andC

T
can be calculated explicitly: power

law and slow-roll inflation.
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IV. APPLICATION TO POWER-LAW INFLATION

We first apply the formalism developed in the previo
section to power-law inflation. In this model, the scale fac
is given by

a~h!5,0uhu11b, ~47!

whereb<22. This scale factor is a solution of the Einste
equations in the case where the inflaton potential isV
}exp(w/m

Pl
). The caseb522 is special, since it corre

sponds to the de Sitter space-time. The Hubble radius is
constant and given by,0. In the general case, the horizo
flow functions parameters are easily calculated and read

e15
21b

11b
, en50, n.1. ~48!

The exact power spectrum can be found and is given
@10,11#

Pz5
,

Pl

2

,0
2

1

pe1
f ~b!k2b14, ~49!

Ph5
,

Pl

2

,0
2

16

p
f ~b!k2b14, ~50!

where,
Pl

5m
Pl

21 is the Planck length and the functionf (b) is
given by

f ~b![
1

p FG~2b21/2!

2b11 G 2

. ~51!

In the previous expression,G denotes Euler’s integral of the
second kind. We havef (b522)51. The caseb522 is
singular, sincee150 and the expression of the scalar pow
spectrum blows up. This case should be considered s
rately and one can show that there are no density pertu
tions at all in the de Sitter space-time@11#. The spectral
indices and runnings can also be calculated very easily.
findsn

S
215n

T
52b14 anda

S
5a

T
50. Exact scale invari-

ance is obtained forb522, which is precisely the singula
case evoked above.

Let us now apply the WKB approximation to the ca
under consideration. First, suppose that we want to us
before doing the transformation~24!. In this case, we have
v2(h)5k22b(b11)/h2. In the limit wherekh goes to
zero, it is easy to see that

U Q

v2U5
1

4ub~b11!u
. ~52!

In general the conditionuQ/v2u!1 is not satisfied unless
2b goes to infinity, an unrealistic situation. Forb522, one
recovers thatuQ/v2u51/8. This is in agreement with the
calculation ofuQ/v2u performed previously in the slow-rol
approximation since this approximation is, very rough
speaking, an expansion around the scale-invariant solu
2-6
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Equation~52! shows that the WKB approximation cannot b
applied to the usual equation of motion without first perfor
ing the transformation~24!. This conclusion is reinforced by
the following argument. The solution on superhorizon sca
is exactly known and can be expressed as

m
II
~h!5C1z~h!1C2z~h!Eh dt

z2~t!
, ~53!

where C1 and C2 are two arbitrary constants. The fir
branch is the growing mode whereas the second one is
decaying mode. For power-law inflation this gives a mo
proportional to m}uhu11b and one proportional tom
}uhu2b. One can wonder what the link between this soluti
and the WKB solution is in region II. On superhorizo
scales, we haveuvu.@b(b11)#1/2/uhu. As a consequence
the mode function m

WKB
has the form m

WKB

}uhu1/26[b(b11)]1/2
. This is not the correct behavior given b

the previous exact solution. The correct solution is obtain
by replacing the factorb(b11) by (b11/2)2, i.e. exactly
the remark made by Kramers, Young and Uhlenbeck~see the
Introduction!. The reason is very clear: the effective powe
law potential has exactly the same shape as the one des
ing the motion in a central-force field, provided that the ide
tification ,↔b is made. Let us also remark that the form
m

WKB
is the same as the wave function for smallr, as ex-

pected from the previous considerations. This confirms
the WKB approximation cannot be used naively on super
rizon scales.
h

ct
r

in
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The cure is to use the transformation given in Eq.~24!.
After this, the effective frequency takes the form

v
S

2~x!5v
T

2~x!5~11b!2e22x2S b1
1

2D 2

. ~54!

In the superhorizon limit,x→`, one now hasQ→0, indi-
cating that the WKB solution gives a good approximation.
addition, the mode function now has the correct time dep
dence. Indeed, since*x

xfuvudy5ub11/2u(xf2x), returning to
the dependence in conformal time givesu

II
}uhu6(b11/2).

Taking into account the link betweenu and m, one finally
arrives atm

II
}uhu11b or m

II
}uhu2b, i.e. the growing and

decaying modes of Eq.~53! in the case of power-law infla
tion. This means that, in this case, the superhorizon solu
is nothing but the WKB solution. However, this need not
true for more general models. A change of variables, wh
allows us to come back fromx to the conformal timeh,
shows that the quantityC is given by

C52E
kh f

kh
* d~kh!

kh
A2k2h21S b1

1

2D 2

, ~55!

whereh* can now be expressed askh* 5b11/2. This in-
tegral can be performed exactly, for instance with the help
formula ~2.275.3! of Ref. @12#. One obtains
C52HA2k2h f
21S b1

1

2D 2

1
1

2 Ub1
1

2U lnF ub11/2u2A2k2h f
21~b11/2!2

ub11/2u1A2k2h f
21~b11/2!2G J ~56!

.2Ub1
1

2UF11 lnS ukh fu
2ub11/2u D G , ~57!
de
is

ed

lt
-
st-

re-
be

p-
where in the last expression we have considered thatukh fu
!1. Inserting this result in Eqs.~43! and ~44!, one finds

Pz5
,Pl

2

,0
2

1

pe1
g~b!k2b14, Ph5

,Pl
2

,0
2

16

p
g~b!k2b14,

g~b![
2e2b11

~2b11!2b12
. ~58!

These expressions are the main result of this section. T
should be compared to the exact result given in Eqs.~49! and
~50!. As expected, they are time-independent.

The first observation is that the shape of the power spe
is exactly reproduced by the WKB approximation. In pa
ticular, this means that the spectral indices and their runn
~as well as the runnings of the runnings, and so on! are
ey

ra
-
gs

predicted exactly by the WKB approximation. The amplitu
is given by the functiong(b), whereas in the exact case, it
given by the functionf (b); see Eq.~51!. We haveg(b5
22)5183e23.0.896, a value that should be compar
with f (b522)51. In the limit whereubu goes to infinity
we can use the Stirling formula,G(x).A2pxx21/2e2x to
approximate f (b) and one finds that limb→2` f (b)
→g(b), i.e. the WKB approximation gives the exact resu
in this limit. It is interesting to notice that this limit corre
sponds to going away from scale invariance, i.e. to ‘‘fa
roll’’ inflationary models~the kinetic energy of the inflaton is
of the same order as its potential energy!. Therefore, the
power-law inflation withubu@2 is an explicit example of a
model where the WKB approximation gives an accurate
sult in a regime where the slow-roll approximation cannot
used to compute the power spectrum.

Another remark is in order. The fact that the WKB a
2-7
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J. MARTIN AND D. J. SCHWARZ PHYSICAL REVIEW D67, 083512 ~2003!
proximation is better for large values ofubu than for small
values ofub12u ~scale invariance! might seem to be in con
tradiction with Eqs. ~27! and ~28!, which indicate that
uQ/v2u decreases as the slow-roll parameters approach
~scale invariance!. In fact, there is no contradiction becau
the WKB criterion only measures the accuracy with whi
the mode function is predicted at a given time, without ta
ing into account the error coming from the matching pro
dure, while the error in the power spectrum is a combinat
of these two sources of error.

The conclusion is that the WKB amplitude of the spe
trum is always a good approximation, see Fig. 1, althou
the precision of the prediction for the amplitudes in the c
of almost scale-invariant inflation is not as good as in
slow-roll approximation@1,13–15#. Contrary to the latter, the
spectral indices are predicted exactly by the WKB appro
mation,n

S
215n

T
52b14. This is a big advantage if dat

sets of large dynamic ranges are investigated.

V. APPLICATION TO SLOW-ROLL INFLATION

Let us now compare the WKB approximation with th
~leading-order! slow-roll approximation. A comment is in or
der here on the meaning of the phrases ‘‘slow-roll con
tions’’ and ‘‘slow-roll approximation.’’ If the slow-roll con-
ditions hold, all slow-roll parameters are small. This does
specify the approximate scheme that one should use in o
to calculate the power spectra; in particular it does not im
that the slow-roll approximation has to be utilized in th
situation. In this section, we will determine the power spec
computed with the help of the WKB approximation in a sit
ation where the slow-roll conditions are valid. Having cla
fied this point, let us first quote the result of the slow-r
approximation@13,14#:

Pz~k!5
H2

pe1m
Pl

2 F122~C11!e12Ce22~2e11e2!lnS k

k*
D

1O~en
2!G , ~59!

FIG. 1. Evolution of the ratiog(b)/ f (b) with b. In the limit
ubu→`, the ratio tends towards 1. This can only be guessed f
the figure because the convergence rate is slow.
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Ph~k!5
16H2

pm
Pl

2 F122~C11!e122e1lnS k

k*
D1O~en

2!G ,
~60!

whereC[g
E
1 ln 222.20.7296,g

E
.0.5772 being the Eu-

ler constant. All quantities are evaluated ath* , which is the
moment of time whenk* 5aH(N* ). The scalek* is called
the pivot scale. It has been shown in Ref.@14# that the cor-
responding timeh* has a nice interpretation: it is nothin
but the time at which the matching between the region wh
aH.k and the superhorizon region is performed. It is im
portant to realize that, according to the previous definiti
h* is not a function ofk, i.e. is the same for all scales
Changing the time of matching is therefore equivalent
changing the pivot scale. This means that the pivot sc
must be in the range of scales that are of astrophysical in
est today but otherwise can be chosen freely. It has b
demonstrated in Ref.@14# that the location of the pivot scal
can be optimized to reduce the slow-roll error in the pow
spectrum.

From Eqs.~59! and ~60!, we notice that close to the d
Sitter inflation the slow-roll approximation predicts the am
plitude for both density and tensor perturbations very w
The accuracy of the slow-roll approximation improves
one approaches scale invariance, since this correspond
en→0 ~for power-law inflation this corresponds tob→
22). A priori, it gives an exact result for exact scale inva
ance but then the linear approximation blows up, as can
seen from Eq.~59!, whene→0.

In contrast, the WKB approximation does not give an e
act result for the amplitude in the scale-invariant limit~see
the discussion of the limitb→22 above!, but it is able to
give a reasonable approximation in the regime where sl
roll is violated (e1→1). The spectral indices predicted b
the slow-roll approximation at first order are

n
S
21522e12e2 , n

T
522e1 . ~61!

These estimates are not exact, contrary to the WKB resu
the case of power-law inflation, but provide good estima
close to the scale-invariant situation.

Let us now evaluate the WKB power spectra for the si
ation of slow-roll inflation. For that purpose we expand Eq
~43! and~44! at first order in the horizon flow functions an
compare the result with Eqs.~59! and ~60!. The effective
frequencies read

v
S

25k2h22S 9

4
13e11

3

2
e2D , ~62!

v
T

25k2h22S 9

4
13e1D , ~63!

and the WKB power spectra become

Pz5
H2

pe1m
Pl

2
~2kh f!

3
2

3 S 12
8

3
e12

1

3
e2De2C

S, ~64!

m

2-8
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Ph5
16H2

pm
Pl

2
~2kh f!

3
2

3 S 12
8

3
e1De2C

T, ~65!

where we have made use of the relation 1/@(12e1)aH#5
2h@11O(en

2)#. The evaluation of the integrals in the arg
ment of the exponential functions gives

C~h f ,h* ;k!5E
x
*

xf
uv~y;k!udy

52E
h
*

(b)

h f A9

4
2k2t21b~e,d,j!

dt

t
, ~66!

with

b
S
~en![3e11

3

2
e2 , b

T
~en![3e1 , ~67!

h* ~b!52
1

k
A9

4
1b~en!. ~68!

At first order, we may consider the horizon flow functions
being constants. This is due to the fact that the derivative
the horizon flow functions are quadratic in these paramet
The integration can be performed as for power-law inflat
in the previous section. The final result is

Pz~k!5
H2

pe1m
Pl

2
~18e23!@122~D11!e12De2

2~2e11e2!ln~2kh f!1O~en
2!#, ~69!

Ph~k!5
16H2

pm
Pl

2
~18e23!@122~D11!e1

22e1ln~2kh f!1O~en
2!#, ~70!

with D[ 1
3 2 ln 3'20.765, a reasonable approximation ofC

from above. All the quantities in the above equation a
evaluated ath5h f . In order to compare this result with th
slow-roll expressions~59! and ~60! we have to establish a
link betweenH(Nf) andH(N* ), e1(Nf) ande1(N* ), and so
on. At the level of a first-order expansion in the horizon flo
functions, we can considere1 and e2 to be constant every
where, except in the factor 1/e1 in Eq. ~59!. Performing a
linear expansion ofe1 aroundN* we find

1

e1~Nf!
5

1

e1~N* !
@12e2~N* !DN1•••#. ~71!

In a similar manner we find

H2~Nf!5H2~N* !@122e1~N* !DN1•••#. ~72!

We eliminate2h f in the logarithm by expressing it in term
of 1/(aH)(Nf). Corrections containinge1 inside the loga-
rithm can be omitted since they contribute at higher or
only. Finally, the logarithm can be written
08351
s
of
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e

r

ln~2kh f!5 lnF k

~aH!~N* !G1 lnF ~aH!~N* !

~aH!~Nf!
G1•••

5 lnS k

k*
D2DN1•••, ~73!

where now the dots denote terms of ordere1 and we have
used the pivot scalek* 5(aH)(N* ). Putting everything to-
gether we find that allDN cancel, and the result simply read

Pz~k!5
H2

pe1m
Pl

2
~18e23!F122~D11!e12De22~2e1

1e2!lnS k

k*
D1O~en

2!G , ~74!

Ph~k!5
16H2

pm
Pl

2
~18e23!F122~D11!e122e1lnS k

k*
D

1O~en
2!G , ~75!

which can now be compared with the prediction from t
slow-roll power spectra~59! and ~60!.

It is seen immediately that the spectral indices coinc
with the slow-roll result~61!. As already expected from th
discussion of power-law inflation above, the spectral indic
are predicted by the WKB approximation very well, the am
plitudes only at an accuracy of 10%~coming from the factor
18e23). This is certainly not good enough for future expe
ments, but it is well known that WKB approximations can
systematically improved.

VI. CONCLUSIONS

A new method to predict inflationary power spectra h
been presented, based on the WKB approximation. On
the main advantages of this new scheme of approximatio
that it can give a good approximation even if the slow-r
conditions are violated, whereas, up to now, all of the me
ods in the literature were subject to this limitation@16#. We
have checked this fact explicitly on the example of pow
law inflation. In addition, we have also tested the method
the case of slow-roll inflation and find errors below 10% f
all quantities considered. The prediction of the spectral in
ces is exact in the case of the power-law inflation. Assum
that the conclusions obtained from the power-law case
also valid in a more general context, the WKB approxim
tion appears as an efficient method, especially for predic
the spectral indices. The main restriction comes from
amplitude, which is not predicted with a similar accuracy
the slow-roll approximation close to scale invariance.

A possible disadvantage of the method is that it is no
local in the sense that an integration is involved from t
time of horizon crossing until some time when all the mod
of interest are on superhorizon scales. This means, in c
trast to the slow-roll approximation, where a certain behav
of the background is assumed, that one needs to know
the Hubble flow functions evolve with time in principle. I
2-9
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the example of slow-roll inflation it has been shown that o
essential step in the WKB approximation is to link the p
dictions at some timeh f to the parameters relevant at th
time of horizon crossing.

Many improvements of the results presented in this art
are possible. As already mentioned above, the WKB exp
sion can be pushed further, e.g. by going beyond the lin
approximation for the joining of the super- and subhoriz
WKB solutions. This will reduce the error in the amplitud
therefore avoiding the main shortcoming of the new meth
Another point is that the standard slow-roll approximati
~Bessel approximation! is valid only when the slow-roll pa-
rameters are constant. Therefore, it cannot be pushed be
the first order. Recently, Stewart and Gong@15# have pro-
posed a method, based on Green functions perturbative
culations, which is free from this problem. They have calc
lated the inflationary power spectra up to the second or
The WKB approximation is also free from the above limit
tion and therefore allows a determination of the spectra
yond the leading order. All these questions are currently
der investigation@17#.
ys
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Note added. While the present article was being com
pleted, a new paper@18# appeared where the inflationar
power spectra are also calculated using a new method
approximation, namely the ‘‘uniform approximation’’ ac
cording to the terminology used in that article. Some of t
equations obtained in@18# bear a close resemblance to th
results obtained in the present work as revealed by a c
parison of Eqs.~43! and ~44! with Eq. ~14! of Ref. @18#.
After having released the first version of this paper, we
came aware of an earlier attempt to use the WKB appro
mation for cosmological perturbations by Nagasawa a
Yokoyama@19#.
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