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A new method for predicting inflationary cosmological perturbations, based on the Wentzel-Kramers-
Brillouin (WKB) approximation, is presented. A general expression for the WKB scalar and tensor power
spectra is derived. The main advantage of the new scheme of approximation is that it is valid even if the
slow-roll conditions are violated. The method is applied to power-law inflation, which allows a comparison
with an exact result. It is demonstrated that the WKB approximation predicts the spectral indices exactly and
the amplitude with an error lower than 10%, even in regimes far from scale invariance. The new method of
approximation is also applied to a situation where the slow-roll conditions hold. It is shown that the result
obtained bears close resemblance with the standard slow-roll calculation. Finally, some possible improvements
are briefly mentioned.
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[. INTRODUCTION where, in the cosmological context, the conformal time
plays the role of the radial variablein atomic physics. In
Observations of the inhomogeneities and anisotropies afeneral, this equation cannot be solved exactly unless very
the Universe’s large scale structure and of the cosmic microsimple potentiald) () are considered and one has to rely on
wave backgroundCMB) radiation are one of the keys to a method of approximation. However, we have inherited a
decipher the cosmic evolution. According to the favored cosvery powerful method to deal with more complicated poten-
mological scenario, fluctuations of matter and space-time artéials from the pioneers of quantum mechanics, namely the
generated during an early epoch of inflation. The ability toWentzel-Kramers-Brillouin(WKB) method of approxima-
predict the power spectra of cosmological perturbations for dion.
large variety of different inflationary models is of the utmost  In this article, we apply this method to the equation gov-
importance. So far, all predictions that come up to the levekrning the evolution of cosmological perturbations. It is quite
of accuracy needed for CMB experiments such as Archeopsistonishing that for more than twenty years since the discov-
the Microwave Anisotropy ProbéVIAP) or Planck, have to ery of cosmological inflation, to our knowledge, nobody has
rely on the slow-roll approximation, subject to an infinite been able to apply successfully the WKB approximation to
number of convergence conditions, or on numerical integrathe prediction of cosmological perturbations. This is prob-
tion [1]. In this paper we present a new method that overably related to the fact that the growth of the perturbations on
comes the mentioned restrictioflsut has its own, very dif- superhorizon scales, which is equivalent, in the quantum-
ferent ones Our method is applicable to models that cannotmechanical version of the theory, to particles creation, is of-
be described by the slow-roll approximati@ag. the “prob-  ten described in terms of the breakdown of the WKB ap-
lem of a large slow-roll parameterp” of some  proximation. In this article, we demonstrate that this is true
supersymmetry-inspired inflationary modeknd it can be only if the WKB approximation is used naively. In fact, the
applied to small scales that leave the horizon at times closproblem bears a close resemblance with the situation dis-
to the end of inflation, where the slow-roll approximation cussed by atomic physicists at the time quantum mechanics
necessarily has to break down. was born. We therefore make a historical digression to illus-
The study of scalar and tensor fluctuations can be reduceitiate the main point of the present article.
to the study of a single variable during inflation, usually = The subject debated by the atomic physicists at the begin-
denoted byu_ or u_ [2]. The corresponding equations of ning of the _twer_ltieth century was the applic_ation of the
motion are similar to the Schdinger equation for a one- YWKB approximation to the motion in a central field of force
dimensional system: and, more specifically, how the Balmer formula, for the en-
ergy levels of hydrogenic atoms, can be recovered within the
WKB approximation. The effective frequency for hydrogenic
atoms is given byobviously, in the atomic physics context,
(1) S : . . :
the wave equation is not a differential equation with respect
to time but to the radial coordinatg
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whereZeis the(attractive central charge and the quantum and, in addition, he suggests a method to circumvent this
number of angular momentum. The symi#oldenotes the difficulty. The method consists in changing the variables ac-
energy of the particle and is negative in the case of a boundording to

state. The calculation of the energy levels was first addressed 2

by Kramers[3] and by Young and Uhlenbecf4]. The r=e, up=ecu )

method employed was Sommerfeld's quantization rule  The resulting equation far has again the form of Eql) but
the effective frequency is now given by

1
n+§ , 3

éw(f)deZW 1\2
{H——) . (6)

w?(X)= ;—T(Eezva Ze’e) — 5

: . : . s demonstrated by Langer, the crucial point is that, now, the
{::Lj:ttﬁ(;)rlsg:\elggshere by an ellipse. The result obtained by thos KB approximation, applied to the Schiinger equation

for u(x), no longer breaks down. Therefore, it is now pos-
sible to utilize the WKB formalism and to use the usual
WKB approximation. Transforming back to the original vari-
ables the correct factor{¢+1/2)? appears, instead of the
wrong term[€(€+1)]¥2 This allows Langer to conclude
that his method'". . . is seen to amount formally to precisely
the replacement of (€ +1) by (£ + 1/2)%.”

where the integral must be calculated along the classical traé-z/

mZ2e*
2h°

-2
Ene= (n+%)+[€(€+1)]1’2] )

In addition, the WKB wave function for small values of

was found to behave asrl‘(*DI"**12 This last result Let us now come back to the theory of cosmological per-
follows straightforwardly if one retains only the last term in y,rpations. The analogy with the previous situation is that

Eqg. (2), i.e. w(r)_:i[€(€+l)]1’2/r, as required in the limit |39 values of r correspond to subhorizon scales
r—0. It was noticed by Young and Uhlenbeck thqt the two(k| 7|>1) whereas small values ofcorrespond to superho-
previous results are not satisfactory. Indeed, experimental rg;, o, scalesK| 7|<1). On subhorizon scales the mode func-
sults indicate that the factaf(¢+1) in Eq. (4) should be o oscillates p=k) and the WKB approximation can be
replaceq.by€+ 1/2)%: “ It is apparent 'that we dQ not obtain applied in this regime without any difficulty. On superhori-
the familiar Balmer formula except in the limit of large  zop scales the perturbations do not oscillate, but this is not a
values. If, however, we replac®(¢+1) by (€+1/2)* the  proplem in itself. The WKB approximation can be used in a
correct result is obtained A similar remark is made in Ref.  gjtyation where the potential energy dominates and leads to
[4] concerning the behavior of the wave function near theexponentially decaying or growing solutior(g.g. in the
origin: “The approximate solution based upon thlelznegatiquKB treatment of thea decay of a radioactive nucleus
exponential behaves for r very small liké/¢ V1" Y2 Nevertheless, difficulties arise if one tries to find the WKB
Again the replacement df(¢+1) by (£ + 1/2)? leads to an approximation to the mode equations of cosmological pertur-
agreement between the approximate and exact solutionsbations.
The solution advocated by Young and Uhlenbeck was there- On superhorizon scales a problem arises in the naive
fore to replace, by hand,(¢+ 1) by (¢ +1/2)? without fur- ~ WKB approach in the manner of Kramers, Uhlenbeck and
ther theoretical justifications. Young from the form of the effective potentidl( 7). It turns

In 1937 the problem was considered again by Laii§ér out to be the very same problem as encountered by atomic
In the section devoted to the radial wave equation, he noticgshysicists. The resemblance is most explicit in the particular
that the WKB approximation was applied to the Salinger  case of power-law inflation where the potentis( ) 72
equation(1) by Kramers, Young and Uhlenbeck only be- is exactly of the form given in Eq2). The usual conclusion
cause of its resemblance with the equation of an oscillatorthat the WKB approximation is violated for superhorizon
“Insofar as the writer is aware, the degree of this resem-cales is in fact not true, provided the cosmological version
blance has hitherto been regarded without exception as subf the transformatior{5) can be found. This opens the pos-
ficient for assuming the out-and-out applicability to the sibility to employ the WKB approximation to calculate the
equation (17) of the formulas deduced in the foregoing disspectrum of inflationary cosmological perturbations in the
cussion, especially of the formula (I4xhere Egs.(17) and  superhorizon limit. In the cosmological context, the WKB
(14) in Langer's paper correspond to Ed) and the WKB  approximation is a new method for computing the power
connection formula. He also remarks that no theoretical exspectra, different from the more traditional slow-roll approxi-
planation has been given to explain why the wrong factomation.
€(¢£+1) is obtained: This ‘failure’ of the WKB method, i.e. This article is organized as follows. In the next section,
to the extent that the change in question is requisite, hasve briefly recall the basic results of the inflationary cosmo-
been generally verified both in studies of attractive and redogical perturbations theory. In the third section, we show
pulsive fields. No explanation of it seems to have been giveow the WKB approximation can be applied to inflationary
though that can be done very simply to the following effectcosmological perturbations in the general case, i.e. for any
The fault lies not in the method but in the application df it inflaton potential. The only restriction is that we focus on
Then, Langer shows that the WKB approximation breakssingle inflaton field models. We demonstrate that the calcu-
down, at small, for an effective frequency given by E®) lation of the spectrum reduces to the calculation of a single
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2 2

quadrature. In the fourth section we apply the WKB approxi- K3 | u 2Kk3| u
mation to power-law inflation. This model is exactly solvable Pr=— . Ph=— L 9
so that we can compare the exact result with the WKB pre- 87| Zg T | %

diction and also with the standard calculation based on the o . ) )
slow-roll approximation. This allows us to study the preci- 1h€ spectral indices and their running are defined by the

sion of the WKB approximation in the cosmological context. co€fficients of Taylor expansions of the power spectra with
In particular, we demonstrate that, in the regime where théeSPect to Ik, evaluated at an arbitrary pivot sc&lg. To be
slow-roll approximation breaks dow(far from scale invari- more specific:
ance, the WKB approximation is still valid. This opens the

possibility to calculate the power spectra of more realistic n—1=
models violating the slow-roll conditions. In the fifth section, S

we apply the WKB approximation to the gene(titst-orde)

slow-roll situation. We compare the result with the standardare the spectral indices and the two following expressions
slow-roll calculation for the amplitudes and the spectral in-

dlnP§
dink

d InPh (lO)
1 n = L
o Todink|_,

* *

dices. We show that the spectral indices are very well pre- d?In P, dIn P,
dicted while the error in the amplitude is of the order 10%, = K2 %= K2 . 1Y
i.e. less accurate than the prediction of the slow-roll approxi- (dink) k=k, (dink) k=k,

mation for this quantity. Finally, in the sixth section, we give _ o o
our conclusions and indicate what the possible extensions tdefine the “running” of these indices. In principle, we could

the present work are. also define the running of the running and so on.
Il. GENERAL EXPRESSIONS FOR INFLATIONARY B. Inflationary parameters
PERTURBATIONS

In order to investigate the predictions of cosmological in-
A. Power spectra flation in a model-independent manner, it is useful to define a
set of functions that uniquely characterize the state of the
Universe at any given moment of time. It is useful to de-
scribe the evolution of the Universe by a set of flow equa-

The evolution of the cosmological perturbations in a
single field inflationary scenario is governed by the
Schrojmge_r-llk_e equatior(1). The effective f[lme-dependent tions[7,8]. In this article we make use of the set of horizon
frequency is given by the general expression flow functions, introduced in Refi8]. The zeroth horizon

7 flow function is defined byey=H(N;)/H(N), where H
w?(k,7)=k*— 7 (7)  =ala is the Hubble rate, a dot meaning derivative with re-
spect to cosmic time. In this expressidhjs the number of
where the primes denote a derivatives with respect to core-folds,N=In(a/a), after an arbitrary initial time. The hier-
formal time and wheraszam/a’ for scalar(density ~ archy of horizon flow functions is then defined according to

perturbations andT:a for tensor perturbationsi( ) is the din|e,|

scale factor of the Friedmann-Lemaitre-Robertson-Walker €n+1= TGN n=0. (12)
metric. For density perturbations, the quantityis given by

w=—2z, where{ is Bardeen’s hypersurface-independent|nfiation takes place foe;<1. It is interesting to establish
guantity [6], which for adiabatic perturbations is conservedthe link between the horizon flow functions and the so-called
on superhorizon scales. For tensor fluctuations, one simplglow-roll parameters, the first three being defined by

has '““T:ZTh’ where h is the amplitude of gravitational

“ol -1
waves. The equation of motion for the mode functigns =3¢;2 qj+v __H (13
should be solved with the following initial condition =35 |5Vl = H2’ )

47 e K= m) . }

im u (p)=F— ———, (tS) __ % __ €
K(aH)—+ o7 m, 2k " He 2He  © (14

wheren; is an arbitrary time at the beginning of inflation and o

m, is the Planck mass. This initial condition corresponds to _€=90 15
the fact that, initially, the modes are subhorizon and, there- &= H '’ (15)

fore, do not feel the curvature of space-time. As a conse-

guence, they are described by plane waves. If the initiaWhereg is the inflaton field and/(¢) is the inflaton poten-
quantum state is the vacuum state, then the statistical propial. The first two slow-roll parameters must be small during
erties of the perturbations are entirely characterized by théflation, as can be seen from their definition. The parameter
two-point correlation function, i.e. by the power spectrum.e is just the inflaton kinetic energy to inflaton total energy
The dimensionless power spectra of scalar and tensor flucatio, whereass is the acceleration to speed ratio. The set
tuations are calculated to read {€,8,&} is linked to the horizon flow functionse,} by
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1 1
€=€q, 5=el—§ez, §=§6263. (16)

Q

w2

Q

w2

1
:§+O(€1,62). (23)

The sef{e, 5,¢} or equivalently the sefteq, €5, €3} plays a _ _ ) ) )
special role, since the effective potentié{s)=z"/z of Eq.  The corrections, linear in the horizon flow functions, could

(1) can be expressed exactly in terms of these three functior@asily multiply thf term 1/80.125 by a factor 2. Therefore,
only. One finds the numberfQ/w?| is indeed not greater than 1 but, at the

same time, not very small with respect to 1. Thus, the WKB
3 1 1 1 approximation is not a good approximation in this regime. In
U=a’H%2— e+ = €,— z €165+ —e§+ = €63, order to have an effective potential that permits to use the
s 2 2 4 2 S ; .
(17) WKB approximation, we introduce the following transfor-
mation:
U_=a’H?(2—¢,). (18

. Ha
len<T), u=(1-e;)"%eu. (24)
Let us emphasize that these expressions are exact, no ap-

proximation has been used so far. This is the cosmological counterpart of Langer’s transforma-

tion given in the Introduction; see E¢b). However, let us
. WKB POWER SPECTRA remark that there exist differences, in particular the factor
(1- ;)2 in the definition of the function. It is also inter-
esting to notice that this transformation has already been
"nsidered in the literature in Rd®] for different reasons.
Then, for density perturbations, the equation of motion takes

We now turn to the derivation of the WKB inflationary
power spectra for scalar and tensor perturbations. We defi
the quantityu, by the expression

the form
K, n)= eiif”m(k,q')dq'_ 19
’uWKB( 77) a)llz(k,ﬂ) ( ) dZUS(X) e—2x _E(‘?’_El)z_ (3_261)62
. . dx? (1-e)® 4ll-e 2(1—€y)?
The mode functlomWKB represents the leading order term of
the semiclassical expansion. It satisfies the following differ- ~ (1-2e)epe5 (1-4e)) € U(0=0, (25
ential equation 2(1—¢€;)3 A(1—e)t ]| ® '

Hopg (K ) FL0? (K 7) = QK )1, (K, 7) =0, (20) whereas, for gravitational waves, we obtain

where the quantit@Q(k, ») is given by dzuT(x) e 2 1 ( 3— 61)2 €6
— = +
. 3(0)? o , dx? (1-€)? 4\l-e)  2(1-¢)2
Q( ,ﬂ)=z7—z- (21)

€1€9€3 (2+ 61)6163
)

3 2 x)=0. (26)
Therefore, the mode function , _(k,7) given in Eq.(19) is 2(1=e)”  A(l-e)

a good approximation of the actual mode functiofk, ), if

. o o In the following w? and w? denote the expressions in the
the following condition is satisfied: S T

square brackets of Eq&5) and(26). The WKB approxima-

tion can now be applied to these equations. In order to dem-
<1 (22) onstrate this, let us recalculate, on superhorizon scales, the
quantity| Q/ w?| for the two previous expressions. One finds
for density perturbations

Q

(O]

On subhorizon scalegy=k, which impliesQ=0 and there-

fore the condition is satisfied. On superhorizon scales, itis | Q
not possible to show that the previous condition is always ;
violated, since it depends on the shape of the effective po-
tential U(%). However, in the cosmological context, the (27)
problem discussed in the Introduction generally arises. We o

explicitly show this in the next section for the case of power-Whereas for gravitational waves, one has

law inflation. Here, we demonstrate the problem for the more

generic case of slow-roll inflation. Using the expression for Q
the effective frequency in terms of the horizon flow func- ;
tions, one has

2
€€z €9€3€y
(eleg—k 616263+T >

4
s 27
s

+0O(ed),

4 2 4
= 2—7(6162+ €16,63) T O(€)). (28

T
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E aV2x—x, |32

3

It is obvious that the quantityQ/w?| is now very small for o112 ;

any inflaton potential satisfying the slow-roll conditions, u (x)= |x—x*|1’A[(Bz—iBl)exp(

since this is a third-order quantity. As a consequence, the 2\m

WKB approximation is now also valid on superhorizon i i i

scales. +— +(Bz+iBl)exp(——a1’2|x—x*|3’2— —”
Let us apply the WKB approximation to Eg&5) and 4 3 4

(26). Let x, be the value of the variablex such that (34)

w?(x,)=0, i.e.x, is the classical turning point. We define

region | as the region such thaf(x)>0 and region Il the Wwhereas in region II, under the same conditions, the function

region wheran?(x)<0. Letx; be the initial “time” at which ~ U(X) can be expressed as

the normalization is performeg@le. corresponding tay;). At 1o

some pointx, deep in region |, the WKB approximation of U (X)= o (X=X )‘1’4(iexp{ B Eal/Z(X—X )3,2}

the functionu(x) can be written as I N * 2 *

, 29 + Bzex;{ga”z(x—x*)w“. (35)

A (X
ul(x): wlT(x)eX;{ *i Li w(y)dy

There is no factor 1/2 in front of the coefficieBt because
whereA is a constant of normalization. Deep in region |, we the expansion of the function Bi differs from the expansion
havew(y)=eY/(1—¢€;) and straightforward manipulations of Ai not only in the sign of the argument of the exponential
show that the corresponding () behaves as in Eq8),  but also by a factor 1/2. Now we evaluate in region I, the
provided that one chooses the minus sign in@2§) and that ~ approximate solutiori29) for the potential32). The integral
A is given by in the exponent can be written as

A:Imi\/gkm_ (30 Li w(y)dy= Liw(y)der L*w(y)dyz<1>+fx*w(y)dy-
Pl (36)

In region I, the effective frequency is complex and can beThe frequency(32) is used in the second integral only, as-
written asw(X) =i|w(Xx)|. Let x; be the final point at which suming thai is not too far away fronx,, . The quantity® is
we evaluate the solution deep in region Il. Then, at any poinjust a number and its calculation would require the knowl-

x in region Il, the WKB solution is given by edge ofw(x) in the whole region I. However, it does not
enter the final result and therefore we are not interested in its
C, Xt value. We find
u”(X):—l,zexr{+f Iw(y)ldy} _
|w(X)| X —1/4 —1/4 12 1/2 3/2 ;
u(x)=Aa x—x,| Mex 3@ X=X, [P°+id |,

, o (3) (37

from which we deduce

C_ Xf
+WGXF{ - L |w(y)|dy

whereC.. are constant. The goal is now to connect these two . . 16 (D — 4
constants with the constait At the turning pointx=x,, , B,=iB,, By=Ayma~ Y% ' (38)
the WKB approximation breaks down and one has to use th¢perefore, we have reached our first goal, i.e. connect the

usual WKB procedure and approximate the potential in thig,q coefficientsB, andB, to A. What remains to be done is
region by a straight line such that to establish the link betwee@d, , C_ andB;, B,. This can
5 be done by applying the very same reasoning in region Il.
@ (X)=—a(X=X,), (32 One introducesl, defined by

wherea= —[ dw?(x)/dx](x=x,)>0. The solutions of Egs. Xt
(25) and(26) are given in terms of Airy functions of first and V= J; lw(y)|dy, (39
second kinds *

. . and the WKB solution given in Eq31) reduces to the ex-
u(x)=BAi(s) +B;,Bi(s), (33 pression

wheres= a3 (x—x,).

The next move is to use the asymptotic behavior of the Y,
Airy functions to calculate the relation betwe8&; and B,
with A on one hand an€. on the other. In region I, for a iC ewex%zal,z(x_x )3/2H
value ofx not too far fromx, , Eq. (33) can be written as - 3 * '

2
(X) — a1/4(X_X*)1/4{ C+e\I’eXF{ _ §a1/2(X_X* )3/2}
(40)
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By comparison with Eq(35), the expressions fo€, and IV. APPLICATION TO POWER-LAW INFLATION

C. are obtained We first apply the formalism developed in the previous

section to power-law inflation. In this model, the scale factor

C. :iallee—qmw/z C = Eal’ﬁe‘l’ (41) is given by
5 , C_ .
" ym a(n)="to|n|**, (47)
Finally, putting everything together, we arrive at where=< —2. This scale factor is a solution of the Einstein

equations in the case where the inflaton potentialVis
exp/m ). The caseB=—2 is special, since it corre-
2o o 8 Tenct upy Pl/m,) asef=—2 is sp corl
R ' - m2 : sponds to the de Sitter space-time. The Hubble radius is then
Pl Pl constant and given by,. In the general case, the horizon

) ) ) flow functions parameters are easily calculated and read
If we only consider the growing mode given by the branch

proportional toC_, which is a good approximation fot 2+
>x, , one can deduce the power spectraxatx;. Using 51:_1+/3' en=0, n>1. (48)
Egs.(9), one obtains the dimensionless power spectra within
the WKB approximation: The exact power spectrum can be found and is given by
(10,17
oo M [k e w3 P
- 2\aH/ (1-e)]w]’ _ w1 28+4
memz | aH) (1=e)lo P g B (49
. 16H?( k \* &Yy 44 2 1g
" am2 laH] (I-epo |’ Po=— —f(B)K¥*4, (50)
| €0 ™

where all the quantities in the above expression are evaluateghere¢ _=m~ 1 is the Planck length and the functié(g) is
atx=x;. We know that in the absence of entropy perturba- heoo

: ; : : given by

tions and decaying modesg,is conserved on superhorizon

scales[6,11]. Similarly, h is conserved on superhorizon 1[r(-g-1/2 2

scales, if the decaying mode is absent. Thus we know that f(B)=— i (51
both spectra should be time-independent. However, within & 2

the WKB approximation one cannot see this from the abovqn the previous expressiol, denotes Euler’s integral of the
expressions. In the following sections we demonstrate this b P ' 9

property explicitly for power-law inflation and slow-roll in- >ccond kind. We havé(s=-2)=1. The casef=—2 is
flation. singular, sinces;=0 and the expression of the scalar power

spectrum blows up. This case should be considered sepa-

We see that the calculation of the spectrum for any infla- atelv and one can show that there are no densitv perturba-
ton potential has been reduced to the calculation of a quadra- y yp

ture, namelyW. We are also in a position to calculate the .'O(jr;ie:taﬁlclj 'rrl:nt:ii (:jsecasr:tflrs:?gc;\tlggﬁélt]é dT\?(Sr sgzgitlral One
spectral indices and their running. The spectral indices rea g y eastly.
mdsns— 1=n=2p+4 andasz a =0. Exact scale invari-

ance is obtained foB= —2, which is precisely the singular

av, av_
n-1=3+2—— . Nn.=3+2 , (45  case evoked above. o
s dink| _ " T dink|, _, Let us now apply the WKB approximation to the case
* * under consideration. First, suppose that we want to use it
. . before doing the transformatiai24). In this case, we have
and the runnings are given by w?(7)=k2— B(B+1)/7% In the limit whereky goes to
zero, it is easy to see that
d?w v
a =2 a_ =2 (46) 1
s Skl T Sk, Q. __* (52
* * w?| 4B(B+1)]

The general expressions for the WKB power spectra, spectrgh general the conditionQ/w?/<1 is not satisfied unless
indices and their runnings, constitute the main result of this_ g goes to infinity, an unrealistic situation. F8r= — 2, one

work. In order to discuss the power and potential of therecovers thaiQ/w?|=1/8. This is in agreement with the
WKB approximation, we now turn to two cases where theca|culation of|Q/w?| performed previously in the slow-roll
quadraturest _and ¥ can be calculated explicitly: power- approximation since this approximation is, very roughly
law and slow-roll inflation. speaking, an expansion around the scale-invariant solution.
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Equation(52) shows that the WKB approximation cannot be  The cure is to use the transformation given in Ezy).
applied to the usual equation of motion without first perform-After this, the effective frequency takes the form

ing the transformatiori24). This conclusion is reinforced by
the following argument. The solution on superhorizon scales

. 1 2
is exactly known and can be expressed as 200\ — 20y — 242X _ -
y p wS(X)—wT(X)—(l-i-,B) e “*—| g+ 2) . (54
<>C<>+C<)f"d7 (53
m (1) =C12(7n Z2(n )
n ! 2 Z2(7) In the superhorizon limitx—o, one now haf)Q—0, indi-

) _cating that the WKB solution gives a good approximation. In
where C, and C, are two arbitrary constants. The first aqgition, the mode function now has the correct time depen-

branch is the growing mode whereas the second one is thg, ¢ |ndeed sind§f|w|dy=|ﬁ+ 1/2|(x¢—X), returning to
decaying mode. For power-law inflation this gives a mode T : . 1 (B+112)
the dependence in conformal time givese|7| .

proportional to wx|7|1*# and one proportional tou e . .
x| 7| 2. One can wonder what the link between this solutionTaKing into aCCOli'fr‘t the link betweanand x, one finally
and the WKB solution is in region Il. On superhorizon arrives atu «|7| P or u,=|n|"* ie. the growing and
scales, we havéw|=[B(B8+1)]"%|7|. As a consequence, decaying modes of Eq53) in the case of power-law infla-
the mode function n _ has the form un tion. This means that, in this case, the superhorizon solution
is nothing but the WKB solution. However, this need not be
érue for more general models. A change of variables, which
allows us to come back from to the conformal timey,
shows that the quantity is given by

x| 5| Y21B(E+ 1Y% This is not the correct behavior given by
the previous exact solution. The correct solution is obtaine
by replacing the factoB(B+1) by (B+1/2)?, i.e. exactly
the remark made by Kramers, Young and Uhlenb@ee the
Introduction). The reason is very clear: the effective power-
law potential has exactly the same shape as the one describ- J‘kn* d(k7)

2

1
ing the motion in a central-force field, provided that the iden- V= “xn VO K2n?+| B+ AR (55
tification € — B is made. Let us also remark that the form of kg 7

Mo is the same as the wave function for snigllas ex-
pected from the previous considerations. This confirms thatvhere », can now be expressed &g, =8+ 1/2. This in-

the WKB approximation cannot be used naively on superhotegral can be performed exactly, for instance with the help of
rizon scales. formula (2.275.3 of Ref.[12]. One obtains

2

N 1 1| [1g+12— =K+ (p+1/2)2]
v= ‘\/ kz”f+(ﬁ+§ +§B+§"n |B+ 12+~ K2+ (B+1/2)? 0
1 [k 7]
Z—IB‘F E‘ 1+In —2|ﬂ+l/2| }, (57)

where in the last expression we have considered |thad predicted exactly by the WKB approximation. The amplitude
<1. Inserting this result in Eq$43) and(44), one finds is given by the functiom(B), whereas in the exact case, it is
given by the functionf(B); see Eq.(51). We haveg(B=

€5 1 2p+a 2,16 2p+4 —2)=18xe 3=0.896, a value that should be compared
Pézﬁw_él (B)KTT7, Ph:ﬁ ?g(,B)k , with f(B=—2)=1. In the limit where| 8| goes to infinity
0 0 we can use the Stirling formuld; (x)=27x*" Y% * to
pe2B+1 approximate f(8) and one finds that lipg, .. f(3)
9(B)= e _ (59) —g(B), i.e. the WKB approximation gives the exact result
(2B+1)%£*2 in this limit. It is interesting to notice that this limit corre-

sponds to going away from scale invariance, i.e. to “fast-

These expressions are the main result of this section. Thawll” inflationary models(the kinetic energy of the inflaton is
should be compared to the exact result given in E4@.and  of the same order as its potential engrgyherefore, the
(50). As expected, they are time-independent. power-law inflation with| 8|>2 is an explicit example of a

The first observation is that the shape of the power spectrmodel where the WKB approximation gives an accurate re-
is exactly reproduced by the WKB approximation. In par-sult in a regime where the slow-roll approximation cannot be
ticular, this means that the spectral indices and their runningssed to compute the power spectrum.
(as well as the runnings of the runnings, and s9 are Another remark is in order. The fact that the WKB ap-
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1.00 ' ' ' 1612
Pn(k)=
s

k
1-2(C+ 1)61—261|n(k—) +0(ed) |,
*

2
Pl

0.97
(60)

0.94
whereC= Yt In2—2=-0.7296, ¥.~=0.5772 being the Eu-

ler constant. All quantities are evaluatedsgt, which is the
moment of time wherk, =aH(N, ). The scalek, is called
the pivot scale. It has been shown in Ref4] that the cor-

g(8)/1(8)

0.91

0.887 | responding timezn, has a nice interpretation: it is nothing
but the time at which the matching between the region where
0.85 . . . . o L
14 11 8 5 5 aH=k and the superhorizon region is performed. It is im-

8 portant to realize that, according to the previous definition,
74 1S not a function ofk, i.e. is the same for all scales.
FIG. 1. Evolution of the ratiay(8)/f(8) with 8. In the limit ~ Changing the time of matching is therefore equivalent to
|Bl—, the ratio tends towards 1. This can only be guessed fronthanging the pivot scale. This means that the pivot scale
the figure because the convergence rate is slow. must be in the range of scales that are of astrophysical inter-
est today but otherwise can be chosen freely. It has been
proximation is better for large values §8| than for small demonstrated in Ref14] that the location of the pivot scale
values of| 8+ 2| (scale invariangemight seem to be in con- can be optimized to reduce the slow-roll error in the power
tradiction with Egs.(27) and (28), which indicate that spectrum.
|Q/w?| decreases as the slow-roll parameters approach zero From Egs.(59) and (60), we notice that close to the de
(scale invariance In fact, there is no contradiction because Sitter inflation the slow-roll approximation predicts the am-
the WKB criterion only measures the accuracy with whichplitude for both density and tensor perturbations very well.
the mode function is predicted at a given time, without tak-The accuracy of the slow-roll approximation improves as
ing into account the error coming from the matching proce-one approaches scale invariance, since this corresponds to
dure, while the error in the power spectrum is a combinatiore,—0 (for power-law inflation this corresponds t6—
of these two sources of error. —2). A priori, it gives an exact result for exact scale invari-
The conclusion is that the WKB amplitude of the spec-ance but then the linear approximation blows up, as can be
trum is always a good approximation, see Fig. 1, althougiseen from Eq(59), whene—0.
the precision of the prediction for the amplitudes in the case In contrast, the WKB approximation does not give an ex-
of almost scale-invariant inflation is not as good as in theact result for the amplitude in the scale-invariant lirtsee
slow-roll approximatiorj1,13—15. Contrary to the latter, the the discussion of the limi8— —2 above, but it is able to
spectral indices are predicted exactly by the WKB approxi-give a reasonable approximation in the regime where slow-
mation,n_—1=n_=2B+4. This is a big advantage if data roll is violated (e;—1). The spectral indices predicted by

nS—1:—261—62, nT=—261. (61)
V. APPLICATION TO SLOW-ROLL INFLATION
These estimates are not exact, contrary to the WKB result in
the case of power-law inflation, but provide good estimates
close to the scale-invariant situation.

Let us now compare the WKB approximation with the
(leading-order slow-roll approximation. A comment is in or-

der here on the meaning of the phrases “slow-roll condi- " ot 5 now evaluate the WKB power spectra for the situ-
tions™ and “slow-roll approximation.” If the slow-roll con-  44jon of slow-roll inflation. For that purpose we expand Egs.

ditions hold, all slow-roll parameters are small. This does N0{43) anq(44) at first order in the horizon flow functions and
specify the approximate scheme that one should use in Ord%mpare the result with Eq¢59) and (60). The effective
to calculate the power spectra; in particular it does not implyfrequencies read

that the slow-roll approximation has to be utilized in this

situation. In this section, we will determine the power spectra 9 3

computed with the help of the WKB approximation in a situ- wZ=k?n*— 2 t3eat 562) , (62)
ation where the slow-roll conditions are valid. Having clari-

fied this point, let us first quote the result of the slow-roll 9

approximation13,14: “’32 k2% — yha 3¢ |, (63)

H?2 k and the WKB power spectra become
,Pg(k):—z 1_2(C+1)61_062_(261+€2)|n T
7T€lm k*

Pl 2 2
sz > (—k 77f)3 a
. (59) e °

8 1
l_§€1_§€2) eZ\I,S, (64)

+0(ed)

083512-8



WKB APPROXIMATION FOR INFLATIONARY . .. PHYSICAL REVIEW D67, 083512 (2003

16H? 2 8 (aH)(N,)
= — 3211 = v In(—kn;)=In +In
Ph= oz (k) 3(1 361)6‘2 - (69 = @mm, | @Ry
Pl
k
where we have made use of the relatiof(1f €;)aH]= =In k_) —AN+- -, (73
—yg[1l+ (’)(eﬁ)]. The evaluation of the integrals in the argu- *
ment of the exponential functions gives where now the dots denote terms of ordgrand we have
. used the pivot scalk, =(aH)(N, ). Putting everything to-
V(95,7 ;k):j f|w(y;k)|dy gether we find that alAN cancel, and the result simply reads
X* H2
" 9 dr Pk)= 5(1867%)|1-2(D+1)e;—Der—(2¢4
== f 2P Eb(e s —,  (66) Tem,
() ¥4 T
k
with +e2>ln(k— +0(eh) |, (74
*
b_(€,)=3€;,+ §52, b_(e,)=3€;, (67) 16H2 k
s 2 T Pr(k)=——(18¢7%)|1-2(D+1)e;—2¢In R
*
Pl
(b)= 1\/9+b( ) (68)
T DTN g T e +0(ed) |, (75)

At first order, we may consider the horizon flow functions as hich b d with th diction f h
being constants. This is due to the fact that the derivatives o‘ﬂ 1€ (ilan how be corggare dvé'é the prediction from the
the horizon flow functions are quadratic in these parameter§. ow-roll power spectr&59) and (60).

The integration can be performed as for power-law inflation . It is seen immediately that the spectral indices coincide
in the previous section. The final result is with the slow-roll result(61). As already expected from the

discussion of power-law inflation above, the spectral indices

2 are predicted by the WKB approximation very well, the am-
P (k)= 5 (18 3)[1-2(D+1)e;—De, plitudes only at an accuracy of 10eéoming from the factor
UL 18e %). This is certainly not good enough for future experi-
) ments, but it is well known that WKB approximations can be
—(2e1t €)In(—ky) + O(ep) ], (69 systematically improved.
16H?2 _3 VI. CONCLUSIONS
Pr(k)= > (186 )[1-2(D+1)e;
Ty, A new method to predict inflationary power spectra has
) been presented, based on the WKB approximation. One of
—2€In(—kz)+O0(ep) ], (70 the main advantages of this new scheme of approximation is

that it can give a good approximation even if the slow-roll

: 1 e N t i
}’;’(';21 Daggveln A:\))II thg'musén?itirgssi?]n?ﬁée;é’g&gxgmﬁgzgabfarecond|t|ons are violated, whereas, up to now, all of the meth-

: q ) quat ods in the literature were subject to this limitatipts]. We
evaluated aty= ;. In order to compare this result with the

i ) have checked this fact explicitly on the example of power-
slow-roll expressiong59) and (60) we have to establish a . . o
link betweerH(N;) andH (N, ), €,(N;) ande;(N, ), and so law inflation. In addition, we have also tested the method for

, A . th f slow-roll inflation and find error low 10% for
on. At the level of a first-order expansion in the horizon flow © case of SIOW-ro ation and find errors below 10% fo

functi id de. to b tant all quantities considered. The prediction of the spectral indi-
urr:c lons, we tc_antﬁonf& t&rl an EZE 0 5‘; cc|>3ns fan EVeIY~  ces is exact in the case of the power-law inflation. Assuming
where, except in the 1ac or &/ in 9. (59). Performing a that the conclusions obtained from the power-law case are
linear expansion o&; aroundN, we find

also valid in a more general context, the WKB approxima-
1 1 tion appears as an efficient method, especially for predicting
=———[1—€(N, )AN+---]. (71)  the spectral indices. The main restriction comes from the
e1(Np)  e1(Ny) amplitude, which is not predicted with a similar accuracy as
the slow-roll approximation close to scale invariance.
A possible disadvantage of the method is that it is non-
H2(N) =H?(N,)[1—2€,(N, ) AN+ - - -]. (72) local in the sense that an integration is involved from the
time of horizon crossing until some time when all the modes
We eliminate— 7; in the logarithm by expressing it in terms of interest are on superhorizon scales. This means, in con-
of 1/(aH)(Nf). Corrections containing; inside the loga- trast to the slow-roll approximation, where a certain behavior
rithm can be omitted since they contribute at higher ordeiof the background is assumed, that one needs to know how
only. Finally, the logarithm can be written the Hubble flow functions evolve with time in principle. In

In a similar manner we find
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the example of slow-roll inflation it has been shown that one Note added While the present article was being com-
essential step in the WKB approximation is to link the pre-pleted, a new papefl8] appeared where the inflationary
dictions at some timey; to the parameters relevant at the power spectra are also calculated using a new method of
time of horizon crossing. approximation, namely the “uniform approximation” ac-
Many improvements of the results presented in this articlesording to the terminology used in that article. Some of the
are possible. As already mentioned above, the WKB expanequations obtained ifil8] bear a close resemblance to the
sion can be pushed further, e.g. by going beyond the lineglsylts obtained in the present work as revealed by a com-
approximation for the joining of the super- and subhorizon,arison of Eqgs.(43) and (44) with Eq. (14) of Ref. [18].
WKB solutions. This will reduce the error in the amplitude, afer having released the first version of this paper, we be-
therefore avoiding the main shortcoming of the new method.., .\« aware of an earlier attempt to use the WKB approxi-

AE?otheIr point IS tht‘?‘t _the slygnde}rd Srllow-trr?” alpprox:[natlonmation for cosmological perturbations by Nagasawa and
(Bessel approximations valid only when the slow-roll pa- r\\(gkoyama[lQ].

rameters are constant. Therefore, it cannot be pushed beyo
the first order. Recently, Stewart and Gofig] have pro-
posed a method, based on Green functions perturbative cal-

culations, which is free from this problem. They have calcu- ACKNOWLEDGMENTS

lated the inflationary power spectra up to the second order.

The WKB approximation is also free from the above limita- We thank F. Finelli, M. Nagasawa, C. Terrero-Escalante
tion and therefore allows a determination of the spectra beand G. Venturi for useful comments on the first version and
yond the leading order. All these questions are currently unwe acknowledge support from the bilateral Austrian-French
der investigatior 17]. AMADEE program.

[1] S.M. Leach, A.R. Liddle, J. Martin, and D.J. Schwarz, Phys. 414, 18 (1997.

Rev. D66, 023515(2002. [10] L.F. Abbott and M.B. Wise, Nucl. Phy®8244, 541 (1984.

[2] L.P. Grishchuk, Zh. Eksp. Teor. Fig7, 835(1974 [Sov. Phys.  [11] J. Martin and D.J. Schwarz, Phys. Rev5I3, 3302(1998.
JETP40, 409(1974]; V.F. Mukhanov, Pis'ma zZh. Eksp. Teor. [12]I. S. Gradshteyn and I. M. RyzhiKables of Integrals, Series
Fiz. 41, 402 (1985 [JETP Lett.41, 493 (1985]; zZh. Eksp. and ProductgAcademic, New York, 1981
Teor. Fiz.84, 1 (1988 [Sov. Phys. JETB7, 1297(1988]; V.F. [13] E.D. Stewart and D.H. Lyth, Phys. Lett. 82 171(1993.
Mukhanov, H.A. Feldman, and R.H. Brandenberger, Phys[14] J. Martin and D.J. Schwarz, Phys. Rev6R, 103520(2000);

Rep.215 203(1992. J. Martin, A. Riazuelo, and D.J. Schwarz, Astrophys. J. Lett.
[3] H.A. Kramers, Z. Phys39, 836(1926. 543 199 (2000.
[4] L.A. Young and G.E. Uhlenbeck, Phys. R&6, 1158(1930. [15] E.D. Stewart and J.0. Gong, Phys. Lett580, 1 (2001J).
[5] R.E. Langer, Phys. Re&1, 669 (1937). [16] Exceptions are the constant and growing horizon approxima-
[6] J. M. Bardeen, irParticle Physics and Cosmologgdited by tions of Ref[8]. These approximations relax the slow-roll con-
A. Zee (Gordon & Breach, New York, 1989 ditions by allowing that one of the horizon flow functions is
[7] M.B. Hoffman and M.S. Turner, Phys. Rev. &4, 023506 much larger than all the others, but still smaller than unity.
(2001. [17] J. Martin and D. J. Schwar@n preparation
[8] D.J. Schwarz, C.A. Terrero-Escalante, and A.A. Garcia, Phys[18] S. Habib, K. Heitmann, G. Jungman, and C. Molina-Paris,
Lett. B 517, 243(2001). Phys. Rev. Lett89, 281301(2002.

[9] L. Wang, V.F. Mukhanov, and P.J. Steinhardt, Phys. Lett. B[19] M. Nagasawa and J. Yokoyama, Nucl. Ph§870, 472(1992.

083512-10



