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It has recently been proposed by Bastero-Gil, Mersini and co-workers that dark energy could be attributed to
the cosmological properties of a scalar field with a nonstandard dispersion relation that decreases exponentially
at wave numbers larger than the Planck scale (kphys.MPl). In this scenario, the energy density stored in the
modes of trans-Planckian wave numbers but sub-Hubble frequencies produced by amplification of the vacuum
quantum fluctuations would account naturally for the dark energy. The present paper examines this model in
detail and shows step by step that it does not work. In particular, we show that this model cannot make definite
predictions since there is no well-defined vacuum state in the region of wave numbers considered: hence, the
initial data cannot be specified unambiguously. We also show that for most choices of initial data this scenario
implies the production of a large amount of energy density~of order;MPl

4 ) for modes with momenta;MPl ,
far in excess of the background energy density. We evaluate the amount of fine tuning in the initial data
necessary to avoid this back-reaction problem and find it is of orderH/MPl . We also argue that the equation
of state of the trans-Planckian modes is not vacuumlike. Therefore this model does not provide a suitable
explanation for the dark energy.

DOI: 10.1103/PhysRevD.67.103520 PACS number~s!: 98.80.Cq
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I. INTRODUCTION

Recently, it has been claimed in a series of papers@1–3#
that the cosmic dark energy component could be explai
naturally by the trans-Planckian energy of a scalar field w
a suitable nonlinear dispersion relation in the trans-Planck
regime. Such dispersion relations, which relate the freque
vphys to the wave numberkphys of a scalar field wave packe
and which depart from the standard linear dispersion rela
in the trans-Planckian regime, are a way of modeling p
nomenologically the unknown physics for sub-Planck
wavelengths. They have been used extensively in the re
literature in the context of black-hole physics@4# and of the
inflationary trans-Planckian problem@5#.

In the particular case considered in Refs.@1–3#, the dis-
persion relation departs from its standard linear form a
approaches a decreasing exponential at large wave num
This type of dispersion relation could possibly emerge fr
string theory@2#. It has been argued that the energy dens
of the modes of sub-Planckian wavelengths and sub-Hu
frequencies~referred to as ‘‘tail’’ modes! is naturally of the
same order as the critical energy density today and has
same equation of state as a cosmological constant. Hen
could account, without fine tuning, for the dark energy. T
energy density contained in the tail today has been calcul
in Ref. @1# by solving for the time evolution of a test quan
tum scalar field evolving in the curved cosmological bac
ground, assuming that its initial state at the onset of inflat
is the vacuum. The equation of state of the tail modes
been calculated in Ref.@3# and its cosmological evolution
has been solved to argue that the cosmic coincidence p
lem ~why the dark energy dominates now! is solved.

In this paper we argue that this model does not and can
work for several reasons. We first argue that the energy d
0556-2821/2003/67~10!/103520~13!/$20.00 67 1035
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sity and equation of state of the ‘‘tail’’ modes depend direc
on the choice of initial data for the scalar field, and that t
latter cannot be specifiedunambiguouslysince there is no
preferred initial vacuum state~Sec. II!. This implies that any
derived cosmological consequence depends directly on
ad hocchoice of initial data~initial quantum state!. We then
show that the violation of the Wentzel-Kramers-Brillou
~WKB! approximation in the remote past for all comovin
wave numbers, which is inevitable in the present scena
implies the continuous productionat all times of a large
amount of quanta with a physical wave number;MPl ~Sec.
III !. This finding is in agreement with general argumen
given by Starobinsky@8# ~this latter work did not, however
study the present scenario!. We evaluate the amount of en
ergy density produced for modes of physical wave num
and frequency;MPl for various choices of initial data an
conclude that it is generically of orderMPl

4 . This process
takes place at all times, and since the energy density
duced is much larger than the background energy densit
implies that the semiclassical perturbative framework
which the model of Refs.@1–3# rests breaks down. In an
earlier study, devoted to constructing an effective stre
energy tensor for theories with nonlinear dispersion relati
@6#, we already criticized this model by arguing that it le
generically to the wrong equation of state. We revisit th
issue further in Sec. IV, where we prove that the effect
energy-momentum tensor we derived earlier is well behav
thus disproving an improper claim of Ref.@3# and confirming
our earlier criticisms. We provide a summary of our conc
sions in Sec. V.

II. INITIAL CONDITIONS FOR THE MODE EVOLUTION

References@1–3# consider a scalar field,f, with a non-
linear dispersion relation that is linear in the sub-Planck
©2003 The American Physical Society20-1
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LEMOINE, MARTIN, AND UZAN PHYSICAL REVIEW D 67, 103520 ~2003!
regime and approaches a decreasing exponential at t
Planckian wave numbers~i.e., for kphys*kc , kc;MPl a fun-
damental characteristic scale!. This dispersion relation is
shown in Fig. 1. This scalar field is assumed to describe
density ~scalar! perturbations and/or the primordial gravit
tional waves. The ‘‘tail’’ modes are thus interpreted as a b
of gravitons of super-Planckian wavelengths and sub-Hub
frequencies. This scalar field is treated as a test field~its back
reaction on the background is neglected! and is quantized on
the curved cosmological background. Assuming that
‘‘tail’’ modes of this field are initially in a well chosen
vacuum state ash→2` (h denoting conformal time!, the
occupation number at late times (h→1`) of quanta ex-
tracted out of the vacuum by the dynamical background
been calculated in Ref.@1#. This occupation number can the
be used to calculate the energy density stored today in
‘‘tail.’’ This is the thread of the calculation performed in Re
@1#, which we now follow in some detail. This discussio
will take us to the two main arguments that we bring forwa
against this model~given in this section and the following!.

The equation of motion of a scalar fieldf[m/a in a
Friedmann-Lemaıˆtre-Robertson-Walker~FLRW! space-time
with scale factora~h! reads

mk91Fv22~126j!
a9

a Gmk50, ~1!

wherej is a coupling parameter to gravity and a prime d
notes differentiation with respect to conformal time.k
5akphys is the comoving wave number andv5avphys is the
comoving frequency.j50 for tensor perturbations degree
of freedom andj51/6 for a conformally coupled field. The
scale factor is taken to be a power law in conformal tim
a5uh/hcu2b, and the following dispersion relation, param
etrized by two parameterse1 and e3 with e35422e1 in

FIG. 1. Dispersion relationvphys vs kphys. Region I ~hashed
area! corresponds to the ‘‘tail’’ modes for whichvphys<H @and
kphys>K~h!#. Region II corresponds to the subhorizon mod
(kphys>H) that are outside of the tail, while region III correspon
to the superhorizon modeskphys<H. The fundamental scalekc is
also indicated.
10352
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order to ensure that the dispersion relation is linear for sm
wave numbers, is introduced as

vphys
2 ~kphys!5kphys

2 F e1

11ex
1

e3ex

~11ex!2G , ~2!

with x[(kphys/kc)
1/b5Auhu with A[(k/kc)

1/b/uhcu. A prob-
lem with this dispersion relation is that it depends on t
power-law indexb of the scale factor. If taken literally, this
means that the dispersion relation, or the physical freque
of a given mode, changes as the scale factor power-law in
b changes between various cosmological eras~e.g., inflation/
radiation domination/matter domination!. More importantly
one easily sees that the above dispersion relation has a p
logical behavior in the radiation (b521) or matter (b5
22) dominated eras. In fact, forb,0, it implies
vphys/kphys→0 as kphys→0, whereas one should instea
reach the linear dispersion relation in that regime w
vphys/kphys→1. Since Ref.@1# focused on the case of d
Sitter space-time withb51, we setb51 in the above dis-
persion relation, i.e., the abovex should be understood asx
[kphys/kc . This reformulated dispersion relation thus coi
cides with that used in Ref.@1# for de Sitter space. However
in the matter dominated era, for instance, we havex
5kphys/kc}h22 and the general class of solutions to t
field equation obtained in Ref.@1# does not hold anymore
The linear dependence ofx on h is lost for background met-
rics other than de Sitter, but the linear dependence ofvphys
on kphys is preserved in the smallkphys limit for all metrics,
which is obviously an imperative. The field equation c
finally be rewritten as

mk91H k2F e1

11ex
1

e3ex

~11ex!2G2~126j!
b~b11!

h2 J mk50,

~3!

with, again, x(h)[kphys/kc5k/@a(h)kc#. The solution to
this equation depends on the value ofj andb. In Ref. @1#,
the contribution of thea9/a term is assumed to be negligibl
at early times. However the above equation shows that th
not the case; denoting byVk

2 the term in curly brackets in

Eq. ~3!, one hasVk
2.k2(e11e3)e2kuhub/(kcuhcu

b)2b(b11)
3(126j)/h2 ash→2` and the terma9/a}h22 is always
dominant in that limit ifjÞ1/6 (b>1, h→2`). Therefore,
in the limit jÞ1/6 andh→2` the two independent solu
tions to the field equation are power laws inh:

mk}S h

hc
D a6

, a65
1

2
6A1

4
1b~11b!~126j!. ~4!

This is an important point since it implies that the mo
function does not behave as a plane wave in the limith→
2` whenjÞ1/6. The solution to the field equation in th
limit is reminiscent of the mode freezing in inflationary the
ries for fields with linear dispersion relations andj50 when
the mode exits the horizon.
0-2
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It is also argued that the term ina9/a can be absorbed a
late times in a redefinition of the dispersion relation. Ho
ever this cannot be correct since by construction, the dis
sion relationvphys(kphys) depends only onkphys, i.e., time
only enters viakphys. Therefore, one can absorb a ter

a9/a}h22 into vphys
2 /a2 only if b51 ~de Sitter space-time!,

as inspection of Eq.~3! reveals. In effect, the curly bracket o
Eq. ~3! can then be rewritten asa22 times a function of
kh}kphys. But, in that particular case, the redefined modifi
dispersion relation does not have an exponential shape
more, sincevphys approaches a constant (;H) as kphys
→1`. However, this should not give the impression th
the corresponding solution is a plane wave since, eviden
the comoving frequencyv which enters Eq.~1! still behaves
as }h22. Moreover in the case of a matter or radiatio
dominated cosmology, one cannot absorb the scale fa
term in the dispersion relation.

Nevertheless one can also assumej51/6. In that case, it
is possible to find an exact solution to the equation of mot
in de Sitter space-time. Indeed, for a conformally coup
field, the terma9/a disappears from the field equation an
the equation becomes simpler. Note, however, that the sc
field cannot correspond to tensor perturbations degree
freedom since these are minimally coupled to the metric.
us considerj51/6 for the moment. A solution to the fiel
equation, given in Ref.@1#, reads1

mk
(in)~h!5C(in)~11e2x!d11/2

2F1S b1d1
1

2
,2b1d1

1

2
;2d

11;11e2xD , ~5!

where 2F1 is an hypergeometric function andb and d are
expressed in terms ofe1 ande3 as

b [ iAê1, d[A1

4
1 ê3, ê i[kc

2hc
2e i . ~6!

This solution is valid only for de Sitter spacetime withx
5kh/kchc (h,0, hc,0). As already mentioned, this is du
to the fact that, with the reformulated dispersion introduc
above, the linear dependence ofx in the conformal time is
lost for other scale factors. However similar solutions
other metrics can be obtained if the dispersion relation
tuned to the power-law evolution of the scale factor, i.e.
the parameterx remains linear inh ~possibly at the expens
of linearity of vphys in the small kphys limit, see above!.
Equation~3! has in fact two independent solutions~see be-
low! and the choice~5! represents only one branch of th
solution, which is moreover written on the branch cut of t
hypergeometric function2F1. At early times (h→2`, i.e.,

1Equation~25! in Ref. @1# contains a misprint that has been co
rected in the following equation.
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x→1`), this solution~5! does not oscillate and it blow
up.2

It is more convenient to write the general solution to t
field equation, withj51/6, asmk5C1mk

(1)1C2mk
(2) , where

mk
(1) andmk

(2) are two independent solutions given by

mk
(1)~h!5ebx~11ex!d11/2

2F1S b1d1
1

2
,b1d1

1

2
;2b11;

2exD ,

mk
(2)~h!5e2bx~11ex!d11/2

2F1S 2b1d1
1

2
,2b1d1

1

2
;

22b11;2exD . ~8!

Since b is purely imaginary, andd is real, one concludes
easily thatmk

(2)5mk
(1)* . The Wronskian of these two solu

tions is nonzero, and can be used to relate the coefficientC1
and C2 so as to obtain canonical commutation relations
the field operator and its adjoint. Since only one branch
the solution was given in Ref.@1#, the canonical commuta
tion relations for the field and its adjoint could not be sat
fied. More precisely, it can be checked that the solution giv
in Eq. ~5! is real. This is due to the fact that it involves
hypergeometric function of the form2F1(a,a* ;a1a* ;z)
with z5z* 511e2x and a[b1d11/2 in that case
and 2F1* (a,b;c;z)5 2F1* (b,a;c;z)5 2F1(a* ,b* ;c* ;z* ).
Therefore, one has 2F1* (a,a* ;a1a* ;11e2x)
5 2F1(a,a* ;a1a* ;11e2x) and the mode function is in
deed real. It follows that the Wronskian of the solution co
sidered in Ref.@1# vanishes:W(m,m* )[mkmk* 82mk8mk*
50. Using the properties of hypergeometric functions, o
can check that both independent solutionsmk

(1) andmk
(2) be-

have as}x}uhu in the limit h→2`, i.e., these mode func
tions blow up. This result is consistent with Eq.~7! since, in
the tail, the two branchesmk

(1) andmk
(2) are linear combina-

tions of the Bessel functionsJ0 andN0.
Therefore, we have shown that neither in the casej

Þ1/6 nor in the casej51/6 does the mode function behav
as a plane wave in the tail. Thus the initial state of the fi
cannot reduce to the Bunch-Davies adiabatic vacuum, c
trary to the following claim@1#: ‘‘ we show that there is no

2A hypergeometric function of the form2F1(a,b;a1b;z) is sin-
gular atz51. One can also solve Eq.~3! for j51/6 andb51 in
the limit h→2`. In this case, the equation reduces tomk91k2(e1

1e3)e2xmk50 and the solution can be written as

mk~h!5
1

A2k
@A1~k!J0~ey!1A2~k!N0~ey!#, ~7!

where J0 and N0 are Bessel functions and wherey[2x/2
1 ln@4k2(e11e3)/A

2#/2. The Neumann function diverges in the lim
h→2` (y→2`). In the tail, the corresponding behavior for th
scalar field itself is given byf}h andf}h2.
0-3
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ambiguity in the correct choice of the initial vacuum sta
The only initial vacuum is the adiabatic vacuum obtained
the solution to the mode equation.’’ The usual prescription to
remove the ambiguity regarding the choice of vacuum s
in curved space-time, i.e., for constructing a vacuum s
which is closest to the definition of vacuum in Minkowski,
indeed to rely on the WKB approximation to construct vac
of successively higher adiabatic order@7#. In this scenario
@1–3#, this construction cannot be performed for a simp
reason: the WKB approximation, which quantifies the ad
baticity of the quantum mode evolution is violated at
times for modes contained in the tail, i.e., modes withkphys
.kc andvphys,H. The WKB condition can be written in the
form uQ/Vk

2u!1 @7#, where Vk
2 denotes the term in curly

brackets in Eq. ~3! as before, and Q[Vk9/2Vk

2(3/4)Vk8
2/Vk

2 . In effect the WKB solution mWKB

[exp(6i*Vkdt)/A2Vk exactly verifies mWKB9 1(Vk
2

2Q)mWKB50. Therefore it is a good approximation to th
solution of the actual mode equationm91Vk

2m50 if the
above inequalityuQ/Vk

2u!1 is satisfied~see also Ref.@11#
for more details!.

The expression forQ/Vk
2 is cumbersome, but since w

are interested in the regimekphys@kc , we may use the lim-
iting form of the dispersion relation:

vphys . kphysAe11e3e2kphys/(2kc) ~kphys@kc!. ~9!

If j51/6, then Vk5avphys and uQ/Vk
2u

;kphys
2 H2/16kc

2vphys
2 . In order to understand the behavior

uQ/Vk
2u, it is convenient to introduce the physical wave nu

berK1.kc such thatvphys(K1)5A(11b)/bH @in the case
j50, one hasVk(K1)50]. This wave numberK1'K,
where K(h) is the physical wave number that gives t
lower limit of the tail, as indicated in Fig. 1. Using Eq.~9!,
one easily derives

K1. 2kclnFA~e11e3!b

11b

2kc

H G . ~10!

This formula is written to zeroth order in ln(kc /H)/(kc /H)
but can be expanded to arbitrary order in a straightforw
way. The meaning of the physical wave numberK1 is the
following ~see Fig. 1!. If kphys!K1 but kphys.kc ~i.e., within
region II!, the mode is outside of the tail withvphys@H. If,
however,kphys@K1 , the mode is in the tail withvphys!H
~region I of Fig. 1!. Thenkphys@K1 means thatvphys

2 !H2

which implies in turnuQ/Vk
2u@kphys

2 /(16kc
2)@1, hence the

WKB approximation is violated at all times in the tail. No
that outside of the tail, i.e., forkphys!K1 andkphys@kc ~re-
gion II of Fig. 1!, the WKB approximation becomes valid. I
effect kphys/vphys}exp(kphys/2kc)! ln(kc /H), henceuQ/Vk

2u
!1.

If jÞ1/6, then forvphys!H ~region I or the tail in Fig. 1!,
the dominant term is}a9/a in the expression ofVk

2 ,
namely, Vk

2;2(126j)(11b)a2H2/b, hence uQ/Vk
2u

;@4(126j)b(b11)#21, which for b51 ~de Sitter! and
j50 ~minimal coupling!, reduces to 1/8. In this case, it ca
be shown that the WKB approximation does not give
10352
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right behavior for the mode function even thoughuQ/Vk
2u is

smaller than unity@11#, and that the WKB approximation is
not valid either. Again, note that outside of the tail~region II
of Fig. 1! the WKB approximation is valid. The calculatio
is the same as in the previous paragraph, since forkphys

!K1 and kphys@kc , one hasVk
2;a2vphys

2 sincevphys@H.
Thus one findsuQ/Vk

2u!1 outside the tail even forjÞ1/6.
To summarize this discussion the WKB condition is vi

lated by the present dispersion relation in the tail~region I in
Fig. 1! at all times and an initial vacuum state cannot
constructed unambiguously. Outside of the tail~region II of
Fig. 1!, for vphys@H or kphys!K1 , the WKB approximation
is a good approximation. One can also verify that the c
struction of an initial vacuum state by minimization of th
energy content does not work in this case, see Ref.@6#. This
point is one major obstacle to the scenario proposed in R
@1#. Since there is no preferred initial vacuum state, all c
mological conclusions drawn depend directly on the parti
lar choice of the initial state, hence on the choice of init
data. At the very best, one has to fine tune the initial con
tions to obtain a given amount of energy in a given part
the spectrum.

The standard calculation of the amount of energy c
tained at late times in a given comoving wave-number mo
is done by decomposing the solution at late times~outside
the tail! in terms of positive and negative frequency pla
waves, as

mk
out5

ak

A2vk
out

e2 ivk
outh1

bk

A2vk
out

eivk
outh. ~11!

The squared modulus of the Bogoliubov coefficientbk then
will give the occupation number of quanta produced in t
mode of comoving wave numberk. Note that, in principle,
the coefficientsak andbk can be slowly varying functions o
time, and the above expression implicitly involves a WK
approximation to first order in which the time evolution
ak and bk is neglected. The corresponding vacuum is
adiabatic vacuum to first order.

In Ref. @1# bk is calculated in the limith→1` as vout

→Ae1k. However the limith→1` does not hold in an
inflationary Universe witha}uhu2b andb>1 sincea is sin-
gular ash→02. One needs to match the background evo
tion to a decelerated Universe ash→02. In effect, if one
wishes to calculate the contribution of the tail modes to
energy densitytoday, it is necessary to calculate the evol
tion of the modes from the inflationary era up to today. No
that the dynamical evolution of the tail modesa priori de-
pends strongly on the background scale factor dynamics

This calculation could not be performed in Ref.@1#, since
the solution given in terms of the hypergeometric function
not valid at late times in the radiation dominated or mat
dominated eras unless the parameterx of the dispersion re-
lation is tuned to the evolution of the scale factor, but t
dispersion relation would become pathological as we s
before forx5(kphys/kc)

1/b with b,0. Furthermore, as ex
plained above, the solution to the field equation given in R
@1# @see Eq.~5!# describes only one branch of the solutio
0-4
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Finally, one cannot computebk for modes still contained in
the ‘‘tail’’ at late times by matching the solution to plan
waves as done in Ref.@1# since for those modes, the WKB
approximation is never valid so that the out solution can
be decomposed in a sum of plane waves. Thus the calc
tion of the Bogoliubov coefficientbk performed in Ref.@1#
cannot apply to modes contained in the ‘‘tail’’ today.

III. THE TAIL ENERGY DENSITY

In this section we calculate the amount of energy den
created in quanta that redshift out of the ‘‘tail,’’ and sho
that it leads to a severe back-reaction problem. In Ref.@1# the
energy density contained in the tail is calculated as

^r tail&5
1

2p2EkH

1`

kphysdkphysE vphysdvphysubkphys
u2,

~12!

where kH is the physical wave number such thatvH
[vphys(kphys)5H0 today. This expression for̂r tail& is ill
defined due to the double integration element dkdv in the
absence of a Dirac function on the mass shell. The t
energy densitŷ r total& is defined analogously but the lowe
bound is extended tok50. Then, it is argued tha
^r tail&/^r total&.102122 during inflation. Note that ifr tail

.102122MPl
4 and^r tail& is constant~corresponding to a vacu

umlike equation of state as suggested! in order to account for
the dark energy then the above statement yieldsr total

;MPl
4 . If this holds during inflation, one faces a seve

back-reaction problem since the background energy den
during inflation is;10 orders of magnitude belowMPl

4 , and
the overall calculation framework~a test quantum scalar fiel
on a classical background! breaks down. As we argue in thi
section, it is actually a generic prediction of this model th
r total;MPl

4 at all times. This resultr total;MPl
4 is in agreement

with a recent work by Starobinsky@8#, which showed that
models with dispersion relations such that the WKB appro
mation is not valid in the far past when the physical wa
numberkphys@MPl

4 implies a very substantial amount of pa
ticle production.

In the following we calculate the amount of energy de
sity stored in modes with a physical wave numberkphys
;MPl . The calculation follows the line of thought indicate
in the previous section. Since in the rangeH!kphys!K1 the
WKB approximation is valid, one can decompose the so
tion to the field equation in terms of plane waves as in E
~11! when modes enter this regime. As long asuQ/Vk

2u!1
one can neglect the time evolution ofbk , and it is natural to
interpretubku2 as the occupation number of particles in mo
k. As argued earlier this decomposition in plane waves c
not be made for modes that are still contained in the tail

One can then calculate the amount of energy den
drv /d ln(kphys) stored in the log interval around the physic
wave numberkphys and the corresponding fractional dens
parameter dVv /d ln(kphys) in units of the background energ
density:
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dVv

d lnkphys
5

4

3p

kphys
3 vphys

H2MPl
2

ubku2, ~13!

using drv /d ln(kphys)5kphys
3 vphysubku2/2p2. The fractional

density parameter must be smaller than unityat all timesand
for all physical wave numbers, otherwise back reaction is
significant and all semiclassical first order calculations
unreliable. In the following we calculate this quanti
dVv /dln(kphys) for a physical wave numberkphys;kc , i.e.,
once the wavelength becomes larger than the fundame
scale. It can be expressedvia bk in terms of the constants
that parametrize the choice of initial data. Our goal here is
study the dependence of the amount of energy density
ated in modes of physical momenta;MPl on the initial data,
for which there is no definite prescription, as we argued
the previous section.

A. Conformal coupling: jÄ1Õ6

In the case of conformal coupling,j51/6, there exists an
exact solution to the field equation written in terms of t
two independent solutionsmk

(1) andmk
(2) in Eq. ~8!. One can

then calculate the Bogoliubov coefficient deep in the reg
where the WKB approximation is valid, for instance, arou
kphys;kc by decomposing this exact solution in plane wav
However the coefficients of the hypergeometric function
terms of which the exact solution is written~hencebk) are of
order of kc /H@1. For values of these coefficients that a
relevant for our cosmological applications~i.e., kc /H;106

during inflation!, the numerical calculation of the hyperge
metric function turns out to be too involved and we ha
been unable to calculatebk in a reasonable amount of tim
for kc /H*103. Therefore we take a different approach a
approximate the exact solution in the tailkphys.K1 by the
solution derived in terms of Bessel functions in Eq.~7!, and
that in the regionkc,kphys,K1 by the plane wave solution
The Bogoliubov coefficientbk of the plane wave solution is
obtained by matching the two solutions and their first deri
tives at the transition pointkphys5K1 . Of course, it gives an
approximation tobk , but as we show in the following the
deviation from the overall behavior ofbk away from its
minimum and on its behavior around its minimum is neg
gible. We thus proceed as follows: in the following sectio
we calculate the Bogoliubov coefficient denotedbk

(approx) by
solving for the Bessel functions in the remote past and p
forming the matching atK1 . In the subsequent section, w
calculate the Bogoliubov coefficientbk

(exact) analytically us-
ing the exact solution and demonstrate thatbk

(approx) is a good
approximation for values ofkc /H as high as.103. Finally
we examine the behavior ofbk

(approx)and evaluate the amoun
of energy density produced by the nonadiabatic evolution
modes in the ‘‘tail’’ for realistic values ofkc /H. This calcu-
lation is entirely analytical; only the verification of the acc
racy of the approximation is numerical.

1. Approximate calculation of the Bogoliubov coefficient

As already mentioned above, see Eq.~7!, the mode func-
tion in the tail can be approximatively expressed in terms
the Bessel and Neumann functionsJ0 andN0 as
0-5
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mk~h!.
1

A2k
@A1~k!J0~ey!1A2~k!N0~ey!#,

y[
H

2kc
kh1

1

2
lnF4kc

2~42e1!

H2 G . ~14!

This solution is valid if the scale factor is that of de Sitt
space-time:a(h)521/(Hh). The mode function must sat
isfy the relationW[mkmk* 82mkmk* 5 i . Using the above
equation, one finds that the Wronskian is equal toW5
2H(A2A1* 2A1A2* )/(2pkc). As a consequence, if one rep
resents the coefficientA2 in polar form,A2[reiF, one has
A152pkc /(Hr sinF), where we have chosenA1 to be real.
The parametersr andF will characterize the choice of initia
data in the following.

In the region in which the WKB approximation is valid
i.e., for vphys@H, one has

mk~h!.
ak

A2v~k,h!
e2 iV1

bk

A2v~k,h!
eiV, ~15!

whereV[*hdtv(k,t). In order to express the Bogoliubo
coefficient ubku in terms of the constants parametrizing t
choice of the initial data in the tail,A1(k) andA2(k), we use
the continuity of the mode functionmk and of its derivative
at the transition between the two regions aty5ym, for which
vphys(ym)5A2H. The result reads

bk
(approx)5

ie2 iV

A4kv~k,ym!
H A1~k!F2gk~ym!J0~eym!

1
H

2

k

kc
eymJ1~eym!G1A2~k!F2gkN0~eym!

1
H

2

k

kc
eymN1~eym!G J , ~16!

wheregk[v8/(2v)1 iv. Working out this last expression
one obtains

bk
(approx)5

ie2 iV

A4A2
S H

K1
D 1/2H A1~k!F2S K1

4kc

1 iA2D J0~eym!

1A2J1~eym!G1A2~k!F2S K1

4kc

1 iA2DN0~eym!

1A2N1~eym!G J . ~17!
10352
We are now in a position where we can computeubk
(approx)u2

using the parametrization of the coefficientsA1 and A2 in-
troduced above. The final result reads

ubk
(approx)u2~r,F!5

p2

4A2

J

r2 sin2 F
1

Nr2

4A2
2

pK

2A2
cotF2

1

2
,

~18!

where we have defined the rescaled variabler by r
[rAH/K1 and where the coefficientsJ, N, and K can be
expressed as

J5
1

16
J0

22
1

A2

kc

K1
J0J112

kc
2

K1
2 ~J0

21J1
2!,

N5
K1

2

16kc
2

N0
21

1

A2

K1

kc
N0N112~N0

21N1
2!, ~19!

K5
K1

16kc
J0N01

A2

4
~J0N11J1N0!12

kc

K1
~J0N01J1N1!.

~20!

The Bessel and Neumann functions are evaluated at
matching point, and their argument reads eym52A2kc /K1 .
A direct calculation shows thatJN2K252/p2. The Bogo-
liubov coefficient ubk

(approx)u2 can be viewed as a two
dimensional surface parametrized by the polar coordina
(r,F).

2. Test of the method of approximation

Before studying the above Bogoliubov coefficient
greater detail, one must check that the approximation is w
controlled. For this purpose, it is interesting to calculate
Bogoliubov coefficient using the exact solution expressed
terms of hypergeometric functions,

mk~h!5
1

A2k
@C1~k!mk

(1)~h!1C2~k!mk
(2)#, ~21!

where the functionsmk
(1) andmk

(2) have been defined in Eq
~8! above, and the~dimensionless! functions C1(k) and
C2(k) are related to each other by the Wronskian normali
tion condition@12#:

mkmk* 82mk8mk* 5@ uC1~k!u22uC2~k!u2#
e2ipb

2kcuh0u
F, ~22!
0-6
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with the numerical factorF written in terms of the param
etersb andd, as

F5

S b1d1
1

2D 2

2b11 2F1S b1d1
3

2
,b2d1

1

2
;2b12;

21D 2F1S 2b2d1
1

2
,2b1d1

1

2
;22b11;21D

12b 2F1S b1d1
1

2
,b2d1

1

2
;2b11;21D

3 2F1S 2b2d1
1

2
,2b1d1

1

2
;22b11;21D

1

S 2b1d1
1

2D 2

2b21 2F1S b1d1
1

2
,b2d1

1

2
;2b11;

21D 2F1S 2b2d1
1

2
,2b1d1

3

2
;22b12;21D .

~23!

This solution is valid at all times since it is an exact soluti
of the field equation. In this case, one can calculate the
goliubov coefficient at any time provided the WKB approx
mation is then valid, using

ubk
(exact)u5

1

A2v
Umk81S v8

2v
1 iv DmkU, ~24!

where, in the last expression,mk is given by Eq.~21!. Notice
that this procedure differs from the previous calculation
the Bogoliubov coefficient. Here, we do not perform
matching at the transition between the tail and the W
region but rather use the exact solution~21! all the way
through and calculate its ‘‘overlap’’ with the WKB solutio
deep in the WKB region. The initial conditions enter th
expression via the two constantsC1(k) andC2(k).

We need to compareubk
(exact)u with ubk

(approx)u for the same
initial conditions. Sinceubk

(approx)u is expressed in terms o
the constantsA1(k) andA2(k), one needs to reexpressA1(k)
andA2(k) in terms ofC1(k) andC2(k). This can be done by
matching the asymptotic behaviors of the two solutions d
in the tail, i.e., in the limith→2`. There, the approximate
solution given by Eq.~14! reduces to

mk~h!.
1

A2k
H A12A2

H

pkc
kuhu2

2A2

p
ln21

2A2

p
gE

1
A2

p
lnF4kc

2~42e1!

H2 G J , ~25!

where gE is the Euler constant,gE.0.5772. On the othe
hand, the exact solution of Eq.~21! can be written as
10352
o-

f

p

mk~h!.
1

A2k

H

kc
kuhu H ~GC11G* C2!

2GC1F2gE1CS b1d1
1

2D1CS b2d1
1

2D G
2G* C2F2gE1CS 2b1d1

1

2D
1CS 2b2d1

1

2D G J , ~26!

where the coefficientG is given in terms of the Euler bet
function as G51/B(b1d11/2,b2d11/2)5G(2b11)/
@G(b1d11/2)G(b2d11/2)#, and satisfies, sinceb is
purely imaginary andd is real,G* 5G(b↔2b). This rela-
tion stems from the asymptotic behavior of the hypergeom
ric functions for large values of their argument given by E
~15.3.13! of Ref. @9#. The digamma functionC(x) is defined
by C(x)[d lnG(x)/dx. If one identifies the constant term
and the linear term in conformal time of the two previo
relations, we obtain

A1~k!5GC1~k!H lnF kc
2~42e1!

H2 G2CS b1d1
1

2D
2CS b2d1

1

2D J 1G* C2~k!H lnF kc
2~42e1!

H2 G
2CS 2b1d1

1

2D2CS 2b2d1
1

2D J , ~27!

A2~k!52p@GC1~k!1G* C2~k!#. ~28!

Then, it is sufficient to use the above relations in Eq.~17! to
obtainubk

(approx)u in terms ofC1(k) andC2(k) and compare it
to ubk

(exact)u. In order to characterize the accuracy with whi
the Bogoliubov coefficient is calculated, we plot the follow
ing quantity:

A[2Uubk
(approx)u2ubk

(exact)u

ubk
(approx)u1ubk

(exact)u
U ~29!

for various values of the coefficientsC1(k) andC2(k). More
precisely, we use a polar representation and takeC2(k)
5Reiu while C1(k) is real and calculated in terms ofC2(k)
using the Wronskian relation Eq.~22!. In Fig. 2, we have
plottedA(R,u) for kc /H5102 andkc5MPl . We see that the
error for large values ofr is less than;40% and constant
i.e., the offset between the two Bogoliubov coefficients do
not depend onr andF in a first approximation. Forr;0,
the error increases to 1; this artifact is a result of the fact t
the minima at which the two Bogoliubov coefficients vani
are slightly offset one from the other. If one coefficient va
ishes while the other remains finite and nonzero, then
value ofA is pushed toward one,A→1. This error, however,
is of no consequence for what follows. Indeed we will not
0-7
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FIG. 2. Left panel: the functionA defined in Eq.~29!, which quantifies the deviation of the approximateubku with respect to its exact
form. A is depicted as a function of (R,u), which parametrizes the initial conditions (C1 ,C2) of the exact solution. Right panel: enlargeme
around the origin in order to unveil the two-peaks structure.
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interested in the location of the minimum but in the behav
of bk around the minimum and far from the minimum. As
obvious from Fig. 2, these behaviors match closely in b
cases and our approximation will be sufficient for our p
poses. We have checked that the functionA remains the same
for other values ofkc /H, which allow numerical calcula-
tions, i.e.,kc /HP@10,103#.

The situation is in fact very similar to the standard calc
lation of the power spectrum in an inflationary theory:
principle, one cannot match two different branches at
point at which the approximation breaks down~for standard
inflation this occurs at first horizon crossing!. However, since
the approximation is only violated in a small region o
expects the corresponding result to be correct at leading
der. This is indeed the case for inflation, for which the a
plitude of the spectrum is predicted up to a factor of ord
unity and the spectral slope is unchanged by the match
Here we also find thatubk

(approx)u5O(1)ubk
(exact)u.

3. Fine tuning of the initial conditions

Since we have demonstrated that the approximation
ubku is quite reasonable, we now study the behavior of
~18! for more realistic values of the ratiokc /H. The Bogo-
liubov coefficient possesses an absolute minimum withbk
50 located at

rmin
4 5

p2J2

JN2K2
, cosFmin5

K

AJN
, ~30!

using the notations defined previously. One should not
surprised to find a minimum withbk50 since one can ex
press the matching of the two branches of the solution
their first derivatives athm as two equations relating the co
efficientsA1(k) and A2(k) as a function ofak and bk and
find a solution withbk50. The Wronskian normalization
condition is always satisfied by both branches of the so
tion. This solution with initial conditions (rmin , Fmin) cor-
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responds to a choice of initial data such that at late tim
when modes have exited from the tail, their quantum stat
that of an adiabatic vacuum. Note therefore that there is
naturalness in choosing these initial conditions since
adiabatic vacuum is only a late time consequence of s
initial data. Furthermore one can show that for generic ini
data, the state of the quantum field at late times is not
adiabatic vacuum, hence quanta have been produced.

Indeed the behavior ofubku2 around this absolute mini
mum can easily be established. From a Taylor expansion,
obtains

ubku2.
N

A2
~r2rmin!

2, ubku2.
p4

16
J2N2~F2Fmin!

2.

~31!

For a crude order of magnitude estimate, one can develop
Bessel functions to first order in the small argument lim
eym52A2kc /K1!1 ~more exactly, for de Sitter inflation an
kc5MPl , one has kc /K1.0.06). This leads to
J.1/161O(kc

2/K1
2 ) and N. ln2(A2kc /K1)/(4p2)(K1

2 /kc
2)

1O(kc
0/K1

0 ). Thus in order to avoid a back-reaction pro
lem, the initial conditionsr andF must not differ too much
from rmin and Fmin , which lead tobk50 ~hence a zero
amount of energy density created!. More precisely, the en-
ergy density produced is of the order of the background
ergy density, i.e., dVv /dln(kphys)51, whenr or F, respec-
tively, depart from the minimum by amountsdr or dF given
by

dr.OF H

MPl
ln21S MPl

H D G , dF.OF H

MPl
ln22S MPl

H D G . ~32!

Here we assumedkc5MPl . Hence the corresponding fin
tuning of the initial conditions is of orderH/MPl ~if one
assumes a uniform measure inr andF in parameter space!.
0-8
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One should note that the above constraint is valid fo
given comoving wave numberk and has been calculated at
time at whichk/a5kc . Since the fractional density param
eter of quanta extracted out of the vacuum dVv /d ln(kphys)
must be smaller at all times during inflation, i.e., for a ran
of comoving wave numbersk sincek andh can be related by
the above constraintk/a5kc , the above constraint onrmin
andFmin rather applies to a continuum of values of como
ing wave numbers. In other words one does not have to
tune two parameters characterizing the initial data bu
whole continuum of parameters, i.e., the functionsrmin(k)
andFmin(k) themselves. The dependence ink of these func-
tions is hidden in the argument of the Bessel and Neum
functions eym, sinceym depends onk.

B. Nonconformal coupling: jÄ” 1Õ6

One can also perform a similar calculation of the Bog
liubov coefficient when the coupling is no longer conform
jÞ1/6. In this case the calculation can be performed ana
cally for all background scale factors. For the sake of s
plicity we choose minimal couplingj50 but this can be
trivially expanded to various choices of the coupling to gra
ity, and does not modify the conclusions we derive below

If j50, the evolution of the modes is dominated bya9/a
in the tail, i.e., whenvphys!H (kphys@kc), and the solution
can be written as

mk~h!5
1

A2k
FC1~k!

a~h!

ai
2C2~k!

ai

h i
a~h!E

h i

h dt

a2~t!
G ,

~33!

where C1(k) and C2(k) are two dimensionless
k-dependent constants, andh i is some initial conformal
time. One can check that this solution and the power la
given in Eq.~4! are the same. Here one cannot choose
time of matchinghm to the WKB solution, since the match
ing has to be done whenVk50, i.e., whenvk

25a9/a or
kphys5K1 . In the regionvphys@H, i.e., for h@hm, the
WKB approximation is valid as we have seen before, and
matching to the WKB form is justified ath5hm(k). For a
given wave numberk, we are free to seth i5hm, since this
amounts to a redefinition of the constantsC1(k) andC2(k)
by a function ofk. The matching athm then gives

ak5
i

A4kvk
FC1S gk* 1

a8

a D2
C2

hm
G ,

bk5
2 i

A4kvk
FC1S gk1

a8

a D2
C2

hm
G , ~34!

with the functiongk[(v8/2v)1 iv as above@see Eq.~16!#
and where all quantities in the above two equations are
derstood to be taken ath5hm(k). In particular, at timehm,
vk

25a9/a5(11b)am
2 Hm

2 /b. Sincekphys@kc at hm one can
use the limiting form ofvphys given in Eq.~9!, hence
10352
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gk1
a8

a
.amHmS K1

4kc
111 iA11b

b D . ~35!

The constantsC1(k) and C2(k) are related to one an
other by the normalization of the mode functions:mkmk* 8
2mk8mk* 5 i , which gives

C1~k!52b
K1

Hmr sinF
, ~36!

and as before we keepr[uC2(k)u and F5arg@C2(k)# as
the two independent parameters characterizing the choic
initial data. One finally derives the squared modulus of
Bogoliubov coefficientbk as

ubku25
1

r 2 sin2 F

b2

4
A b

b11

K1

Hm
F S 11

K1

4kc
D 2

1
11b

b G
1

r 2

4b2
A b

11b

Hm

K1
2

1

2
A b

11b

3S 11
K1

4kc
D cotF2

1

2
. ~37!

SinceK1 /Hm is a large number, in the following we use th
rescaled variabler[rAH/K1 instead ofr. Equation ~37!
above is particularly attractive because it has exactly
same functional shape as Eq.~18!. It allows us to understand
analytically the behavior of the amount of energy dens
produced in modes withkphys;kc as a function of the initial
data. The occupation numberubku2 has an absolute minimum
located at

rmin5ubuS b

11b D 1/4AS 11
K1

4kc
D 2

1
11b

b
,

cosFmin5
11K1 /~4kc!

A@11K1 /~4kc!#
21~11b!/b

. ~38!

As before the occupation number vanishes exactly at
minimum, but the back-reaction problem cannot be avoid
for generic initial conditions. In the present case it is n
possible to make a sensible contour plot of dVv /d ln(kphys)
since this function changes by many orders of magnitu
over very small intervals ofr,F. Therefore, we take a con
servative approach in which we calculateubk(r)u2 as a func-
tion of r for the values ofF that minimize this quantity at
eachr. We also evaluateubk(F)u2 as a function ofF for the
values ofr that minimize this quantity at eachF. In other
words, we solve]Fubku250 for F as a function ofr and
]rubku250 for r as a function ofF:

Fmin~r!5tan21H b2

r2

@11K1 /~4kc!#
21~11b!/b

11K1 /~4kc!
J ,

rmin
4 ~F!5

b4

sin2F
F S 11

K1

4kc
D 2

1
11b

b G , ~39!
0-9
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FIG. 3. Left panel: the solid line represents log10(ubku2/ubk
maxu2)[ log10@dVv /d ln(kphys)# plotted as a function of the rescaled variabler

characterizing the initial data. This plot corresponds to an inflationary era with a de Sitter metric, and Hubble parameter;1026MPl . The
other parameter of initial data isF5Fmin . Allowed regions correspond to log10(ubku2/ubk

maxu2),0, and are peaked around a particular val
of r. The minimum is in factubku250, corresponding to log10(ubku2/ubk

maxu2)52`, but it cannot be seen in the figure due to insufficie
resolution. The dotted line provides a continuation of the numerical result to the analytical value at that point. In most of paramet
the energy density is too large by;10 orders of magnitude. Right panel: same as left panel forH0;10261MPl in a matter dominated era
In nearly all of the parameter space the energy density is too large by;122 orders of magnitude.
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and plot dVv /d ln(kphys) for ubk@r,Fmin(r)#u2 in Fig. 3 and
ubk@rmin(F),F#u2 in Fig. 4 ~for, respectively, de Sitter infla
tion and today!. One clearly sees from these figures th
dVv /d ln(kphys);MPl

2 /H2 for most values ofF, which cor-
responds to our previous expectations, i.e., the amoun
energy density created in quanta withkphys;kc;MPl is of
orderMPl

4 . The behavior ofubku2 around the local minimum
can be studied in the same way as before and one obta

ubku2~r!.
1

b2 S b

11b D 1/2

~r2rmin!
2, ~r;rmin!, ~40!
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ubku2~F!.
1

4 S b

11b D 2F S 11
K1

4kc
D 2

1
11b

b G2

~F2Fmin!
2,

~F;Fmin!. ~41!

If we write the valueubkumax
2 such that dVv /d ln(kphys)51

~i.e., with a similar amount of energy created in quanta w
kphys;kc as in the background!, then this value is reached i
r andF depart fromrmin andFmin by an amountdr, dF,
with

dr;OS H

MPl
D , dF;OF H

MPl
ln22S MPl

H D G . ~42!
plot
of

nel
FIG. 4. Left panel: log10(ubku2/ubk
maxu2)[@dVv /d ln(kphys)# plotted as a function of the phase characterizing the initial data. This

corresponds to an inflationary era with a de Sitter metric, and Hubble parameter;1026MPl . As indicated in the text, the other parameter
initial data ~a modulus! has been eliminated for the phaseF by minimizing ubku2. Allowed regions correspond to log10(ubku2/ubk

maxu2)
,0, and are seen to be peaked around a particular value ofF. The plot is symmetric in the interchangeF↔F1p. Note that the ordinate
scale is in log10: in most of parameter space, the energy density is too large by;10 orders of magnitude. Right panel: same as left pa
for H0;10261MPl in a matter dominated era. In nearly all of parameter the space the energy density is too large by;122 orders of
magnitude, i.e., dVv /d ln(kphys);MPl

4 .
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In other words, the fine tuning necessary to avoid a b
reaction is of order;dF;dr;H/MPl ~neglecting the ln
term!. During inflation H/MPl;1026, and todayH/MPl
;10261. Although the fine tuning can be considered not t
severe during inflation, we see that, during the matter epo
it is as severe as the usual fine tuning of the cosmolog
constant problem. Therefore, the scenario of Refs.@1–3#
does not improve the situation.

At this point, it should be emphasized that the abo
problem is a generic feature of the dispersion relation use
Refs. @1–3#. In order for the trans-Planckian effects
modify the power spectrum of the fluctuations, the physi
modes of interest must spend some time in a region in wh
the WKB approximation is violated. As already mentione
this implies production of particles, and the energy dens
associated to these particles must not exceed the backgr
energy density. This implies some constraints on the occu
tion numberubku2. It has been shown in Ref.@8# that these
constraints are quite stringent if the production takes pl
today. Usually, these tight constraints can be avoided by
quiring that the violation only occur during inflation whe
the problem is less severe. This can be achieved if the
persion relation is such thatvphys@H for all trans-Planckian
wave numbers, withH the Hubble constant at some unspe
fied time after inflation. Such an example is provided in F
2 of Ref.@6#. Then as was argued in the discussion followi
Eq. ~9! the WKB approximation should be valid at all time
after inflation and adiabaticity are restored. Here, howe
sincevphys→0 askphys→1`, there is at all times a region
in which the WKB is violated. Therefore the class of disp
sion relations used in Refs.@1–3# suffers in a generic way
from the problem discussed in Ref.@8#.

Furthermore, we also note as previously that the ab
calculation of the fine tuning holds for a given comovin
wave numberk. Similar constraints apply for other wav
numbers but the values ofFmin andrmin are shifted from the
above@notably because of the choiceh i5hm(k)]. Therefore
one must not only pick one right value ofF to one part in
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;MPl /H, but a whole continuum of values ofF(k) such
that the back reaction is avoided for all of these values.

IV. EQUATION OF STATE

Up to now we have argued that~i! in the scenario pro-
posed in Refs.@1–3# there is no preferred initial vacuum
state, hence all conclusions drawn depend on thead hoc
choice of initial data;~ii ! for arbitrary values of the two
parameters characterizing this choice of initial data one fi
that energy in excess of the background energy densit
produced due to the nonadiabatic evolution of modes in
tail.

In a separate publication, we have constructed an effec
energy-momentum tensor for scalar field theories with n
linear dispersion relations, and we have shown that dis
sion relations of the form of that proposed in Refs.@1–3#
generically led to the wrong equation of state. This findi
has been challenged by Bastero-Gil and Mersini recen
who argued that the energy-momentum tensor we have
structed is ill defined as it~supposedly! is not divergenceless

Explicitly, in Ref. @6#, the vacuum expectation values fo
the energy density and pressure are given by

^r&5
1

4p2a4E dkk2Fa2US mk

a D 8U2

1v2~k!umku2G , ~43!

^p&5
1

4p2a4E dkk2Fa2US mk

a D 8U2

1S 2

3
k2

dv2

dk2

2v2D umku2G , ~44!

and the integrals extend from 0 to1`. The authors of Ref.
@3# claim that^r&13H^r1p&Þ0, with H[a8/a. However,
noting that the comoving frequencyv(k)5avphys(kphys), a
straightforward calculation gives
^r&85
1

4p2a4E dkk2H Fmk92Hmk81S H 22
a9

a DmkG~mk* 82Hmk* !1~mk82Hmk!Fmk* 92Hmk* 81S H 22
a9

a Dmk* G
24Humk82Hmku21v2~k!~mk8mk* 1mkmk* 8!22Hk2

dv2

dk2
umku222Hv2~k!umku2J

5
1

4p2a4E dkk2H S mk92
a9

a
mkD ~mk* 82Hmk* !1~mk82Hmk!S mk* 92

a9

a
mk* D26Humk82Hmku2

1v2~k!@mk~mk* 82Hmk* !1mk* ~mk82Hmk!#22Hk2
dv2

dk2
umku2J

5
1

4p2a4E dkk2S 26Humk82Hmku222Hk2
dv2

dk2
umku2D , ~45!
0-11
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where the field equationmk92(a9/a)mk52v2(k)mk has
been used in the last step. Since

3H^r1p&5
1

4p2a4E dkk2S 6Humk82Hmku2

12Hk2
dv2

dk2
umku2D , ~46!

the energy conservation condition̂r&813H^r1p&50 is
trivially satisfied.

We take advantage of this section to point out that
energy-momentum tensor we have constructed in a prev
publication @6# is well behaved and the construction is e
tirely consistent. In effect we constructed a generally cov
ant Lagrangian for a scalar field with a nonlinear dispers
relation. The breaking of the Lorentz invariance is confirm
by introducing a dynamical four-vectorum in the Lagrangian
whose role is to define the preferred rest frame while p
serving general covariance at the same time, following p
vious work by Jacobson and Mattingly@13# ~see also refer-
ences therein!. The energy-momentum tensor derived
varying the action with respect to the metric is the sum of
energy-momentum tensor of the scalar field and that ofum.
We have restricted ourselves to FLRW spacetimes by ch
ing um5(21,0,0,0). This approach is consistent sinceum

satisfies its field equation@see Eq.~15! in Ref. @6##, and the
scalar field also satisfies its field equation. In FRLW spa
time, the energy-momentum tensor of the four-vector~i.e.,
the part that depends only onum) vanishes sinceum is con-
stant @6#, hence the remainder is the scalar field ener
momentum tensor, which is conserved as shown above.
consider this scalar field as a test field, which we quantize
the curved background. The dynamics of the background
be specified by adding matter fields to the action with
modifying our approach. Indeed the matter field ener
momentum tensor will be separately conserved. There
our earlier criticisms on the equation of state of the tra
Planckian modes apply.

We also note that a recent paper by Frampton@10# argues
that by adding higher order terms of the formumD 2num in
the effective Lagrangian, one can obtain a correct equatio
state, i.e., one similar to that of the vacuum. HereD 2 denotes
a three-dimensional Laplacian expressed in a generally c
riant way on spacelike hypersurfaces~see Refs.@6,13# for
explicit definitions!. The choiceum5(21,0,0,0) then re-
duces this term to the usual three-dimensional Laplacian
constant time hypersurfaces for FLRW space-times. Ho
ever, as should be obvious, the only terms that can ente
energy-momentum tensorvia this new term always contain
derivatives of the formD 2num whenn>2. Those terms van
ish when one picksum to be constant as above. Forn51,
i.e., the lowest order term of the expansion, one can ch
that the variation ofD 2um with respect to the metric or its
first derivative always induces a term proportional to a
rivative of um that is either spatial or temporal. This calcul
tion can be found in Eqs.~B3! and ~B4! of Ref. @6# ~the
substitutionf→um in this calculation can be made withou
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changing the result since the equation is written in a gen
ally covariant way!. Therefore we conclude that the additio
of terms proposed by Frampton cannot lead to any differe
with respect to the energy-momentum tensor we propo
earlier. Hence such terms cannot account straightforwa
for a vacuumlike equation of state in this scenario.

The difference of the conclusion of Ref.@10# probably lies
in the choice of normalization ofum: Ref. @10# claims that, in
a cosmological context,umum2a2250 (a is the scale fac-
tor!. However,umum is a scalar, whilea22 is the component
of a rank two tensor so that this choice of normalization
manifestly not covariant. Of course, it can be made covar
at the expense of the introduction of a second vector field
this does not seem to be the case in Ref.@10#. This implies
that the Lagrangian proposed by Frampton is generally
covariant. Of course the correct normalization forum in a
cosmological context is alwaysumum2150 ~up to the sign
convention!, and um can be written as (21/a,0,0,0) if the
FRLW metric is written in terms of conformal time, o
~21,0,0,0! if the metric is written in terms of cosmic time.

To conclude, let us also note that it is claimed in Ref.@1#
that ‘‘the tail modes are still frozen at present . . . . Thus the
energy of the tail is a contribution to the dark energy of t
Universe: up to the present it has the equation of state o
cosmological constant term.’’ Here, the fact that the tail
modes are frozen means (mk /a)8;0, the solution to the
field equation when the terma9/a dominates~for j50). But
there is no logical relationship between these modes be
frozen and the equation of state being that of a cosmolog
constant. As a matter of fact the equation of state of
modes of wavelengths larger than the horizon size for a s
lar field with a linear dispersion relation takes the formp5
2r/3. The derivation of the equation of state requires
define correctly a stress-energy tensor when such nonli
dispersion relations are taken into account~and thus when
Lorentz invariance is broken! as we did in Ref.@6#. Note also
that there is a contradiction between the above claim of R
@1# and the whole content of the recent paper by Bastero
and Mersini@3#, who calculated the equation of state of th
trans-Planckian modes and found that it is not the equa
of state of the vacuum but that it is approached only at l
times.

V. CONCLUSIONS

In this paper, we have examined in detail the scena
proposed in Refs.@1–3# which attributes the dark energy t
the properties of a scalar field with a dispersion relation t
decreases exponentially with trans-Planckian wave num
kphys*kc;MPl . We have demonstrated that this mechani
does not work, mainly for two reasons.~i! The mode func-
tion of the scalar field does not behave as a plane wav
h→2` in the so-called ‘‘tail’’~i.e., the part of the nonlinea
dispersion relation at whichvphys!H andkphys@MPl). This
implies that there is no definite prescription for constructi
a well-defined initial vacuum state, hence the choice of i
tial data is entirely arbitrary. This situation is similar to th
problem of setting initial data for cosmological perturbatio
0-12
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in the absence of an accelerated expansion era~but with lin-
ear dispersion relations!, in which case the data would hav
to be specified on superhorizon scales at which the m
function does not oscillate and it is frozen by the expansi
In the scenario of Refs.@1–3# the WKB approximation is not
valid at all times for modes in the tail. This explains that t
notion of an adiabatic vacuum cannot be used to set up in
data and the initial state proposed in Ref.@1# is thusad hoc.
It also brings us to the second objection to this scenario:~ii !
since all modes originate in the tail of the dispersion relati
the breakdown of the WKB approximation for a given phy
cal wave number at early times implies the continuous p
duction of a substantial number of quanta with physical wa
numbers*kc . The breakdown of the WKB approximatio
can indeed be seen as the signal of a strongly nonadia
evolution which is generically associated with particle p
. D

. A

. D
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duction in expanding space-times. We have calculated
amount of energy density produced in modes of phys
wave numberkc as a function of the two parameters th
characterize the~arbitrary! choice of initial data. We have
shown that this energy density is generically of orderMPl

4 .
The production of energy density in quanta with wave nu
bers ;MPl in excess of the background energy dens
;H2MPl

2 implies the breakdown of the perturbative sem
classical framework used for the calculation, and renders
claims irrelevant. There is a small region of parameter sp
in which this energy density can be tuned down to zero,
the fine tuning in the choice of initial data is of orderH/MPl .
Such a fine tuning at the time of inflation is of order;1026

and is probably acceptable, but today, it is of the same o
as the celebrated fine tuning of the cosmological cons
problem.
l
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