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Trans-Planckian dark energy?
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It has recently been proposed by Bastero-Gil, Mersini and co-workers that dark energy could be attributed to
the cosmological properties of a scalar field with a nonstandard dispersion relation that decreases exponentially
at wave numbers larger than the Planck scéjg > Mp). In this scenario, the energy density stored in the
modes of trans-Planckian wave numbers but sub-Hubble frequencies produced by amplification of the vacuum
guantum fluctuations would account naturally for the dark energy. The present paper examines this model in
detail and shows step by step that it does not work. In particular, we show that this model cannot make definite
predictions since there is no well-defined vacuum state in the region of wave numbers considered: hence, the
initial data cannot be specified unambiguously. We also show that for most choices of initial data this scenario
implies the production of a large amount of energy der(sjt}ordervaéQ for modes with momenta- Mp,,
far in excess of the background energy density. We evaluate the amount of fine tuning in the initial data
necessary to avoid this back-reaction problem and find it is of did&tp. We also argue that the equation
of state of the trans-Planckian modes is not vacuumlike. Therefore this model does not provide a suitable
explanation for the dark energy.

DOI: 10.1103/PhysRevD.67.103520 PACS nunifer98.80.Cq

[. INTRODUCTION sity and equation of state of the “tail” modes depend directly
Recently, it has been claimed in a series of papgrs3]  on the choice of initial data for the scalar field, and that the
that the cosmic dark energy component could be explainelthtter cannot be specifiednambiguouslysince there is no
naturally by the trans-Planckian energy of a scalar field withPreferred initial vacuum stateSec. 1. This implies that any
a suitable nonlinear dispersion relation in the trans—PIanckiaHS”ﬁ’ed r‘l:o_smotf)g'.‘;all ((:jor';\s_eq:gelnce d?peno:stdl\rﬁct![)r/] on the
regime. Such dispersion relations, which relate the frequenc occhoice of iniial da dinitial quantum state We en.
to the wave numbek.... of a scalar field wave packet how that the violation of the Wentzel-Kramers-Brillouin
‘”P(hjys hich d  from th Phy;:‘ dard li di - P i \WKB) approximation in the remote past for all comoving
and which depart irom the standard linear dispersion relaliofy e nympers, which is inevitable in the present scenario,
in the trans-Planckian regime, are a way of modeling phe

logically th K hvsics f b-Plancki implies the continuous productioat all times of a large
nomenologically the unknown physics for sub-Planckianymaynt of quanta with a physical wave numbeM p, (Sec.

wavelengths. They have been used extensively in the receflj) Thjs finding is in agreement with general arguments
literature in the context of black-hole physiet and of the  given by Starobinsky8] (this latter work did not, however,
inflationary trans-Planckian problefs]. study the present scenaridVe evaluate the amount of en-
In the particular case considered in Refb=3], the dis-  ergy density produced for modes of physical wave number
persion relation departs from its standard linear form andand frequency~ M p, for various choices of initial data and
approaches a decreasing exponential at large wave numbeggnclude that it is generically of ordevi3,. This process
This type of dispersion relation could possibly emerge fromiakes place at all times, and since the energy density pro-
string theory[2]. It has been argued that the energy densityduced is much larger than the background energy density, it
of the modes of sub-Planckian wavelengths and sub-Hubblignplies that the semiclassical perturbative framework on
frequenciegreferred to as “tail” modeyis naturally of the  which the model of Refs[1-3] rests breaks down. In an
same order as the critical energy density today and has thearlier study, devoted to constructing an effective stress-
same equation of state as a cosmological constant. Hence gbergy tensor for theories with nonlinear dispersion relations
could account, without fine tuning, for the dark energy. Thel6], we already criticized this model by arguing that it led
energy density contained in the tail today has been calculategenerically to the wrong equation of state. We revisit this
in Ref.[1] by solving for the time evolution of a test quan- issue further in Sec. 1V, where we prove that the effective
tum scalar field evolving in the curved cosmological back-€nergy-momentum tensor we derived earlier is well behaved,
ground, assuming that its initial state at the onset of inflatiorfhus disproving an improper claim of R¢8] and confirming
is the vacuum. The equation of state of the tail modes haQU" €arlier criticisms. We provide a summary of our conclu-

been calculated in Ref3] and its cosmological evolution SIONS IN Sec. V.
has been solved to argue that_ the cosmic coincidence prho_ INITIAL CONDITIONS EOR THE MODE EVOLUTION
lem (why the dark energy dominates npis solved.
In this paper we argue that this model does not and cannot Reference$1—3] consider a scalar fieldp, with a non-
work for several reasons. We first argue that the energy derinear dispersion relation that is linear in the sub-Planckian
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/ : order to ensure that the dispersion relation is linear for small

/ . , wave numbers, is introduced as
Region II i Region I

Region III

€1 636?(

1+e?‘+(1+e?‘)2 ' @

/ s
J ; 2 _ 1,2
! wphys( kphys) = kphyﬁ{

“phys

/ with X= (Kphys/Ko) VB=A| 5| with A= (k/ko)Yl| 5. A prob-
y lem with this dispersion relation is that it depends on the
: : power-law indexB of the scale factor. If taken literally, this
H(m) | _i ________________________ L means that the dispersion relation, or the physical frequency
: : of a given mode, changes as the scale factor power-law index
0 : B changes between various cosmological éeag., inflation/
0 K, K(n) radiation domination/matter dominatiprMore importantly
one easily sees that the above dispersion relation has a patho-
logical behavior in the radiationd= —1) or matter 3=
FIG. 1. Dispersion relationvpn,s Vs Konys. Region | (hashed —2) dominated eras. In fact, for3<<0, it implies
area corresponds to the “tail” modes for whickvyn,<H [and  wppys/Kpnys—0 as kpnys—0, whereas one should instead
konys=K(7)]. Region Il corresponds to the subhorizon modesreach the linear dispersion relation in that regime with
(Kpnys=H) that are outside of the tail, while region Il corresponds wphys/Kphys— 1. Since Ref[1] focused on the case of de
to the superhorizon modég,,<<H. The fundamental scalk is Sitter space-time witlB=1, we set8=1 in the above dis-
also indicated. persion relation, i.e., the aboveshould be understood as
=Kpnys/Kc. This reformulated dispersion relation thus coin-
regime and approaches a decreasing exponential at transides with that used in Ref1] for de Sitter space. However,
Planckian wave numbefge., forky, =K, Ke~Mpja fun-  in the matter dominated era, for instance, we have
damental characteristic scaleThis dispersion relation is =kp,,s/k.7 2 and the general class of solutions to the
shown in Fig. 1. This scalar field is assumed to describe théield equation obtained in Refl] does not hold anymore.
density (scalaj perturbations and/or the primordial gravita- The linear dependence &fon % is lost for background met-
tional waves. The “tail” modes are thus interpreted as a bathrics other than de Sitter, but the linear dependence ffs
of gravitons of super-Planckian wavelengths and sub-Hubblen k., s is preserved in the small,qs limit for all metrics,
frequencies. This scalar field is treated as a test fitddack  which is obviously an imperative. The field equation can
reaction on the background is negleqtadd is quantized on finally be rewritten as
the curved cosmological background. Assuming that the

“tail” modes of this field are initially in a well chosen c 6" B(B+1)

vacuum state ag— — (» denoting conformal time the ,u[(’+{k2 L% |_(1-68) —} 1 =0,
occupation number at late times){s +%) of quanta ex- 1+e (1+e9)? s

tracted out of the vacuum by the dynamical background has 3

been calculated in Reffl]. This occupation number can then
be used to calculate the energy density stored today in theith, again, x(7)=Kkgns/k.=k/[a(7)k:]. The solution to
“tail.” This is the thread of the calculation performed in Ref. this equation depends on the valueéénd 8. In Ref.[1],
[1], which we now follow in some detail. This discussion the contribution of the&”/a term is assumed to be negligible
will take us to the two main arguments that we bring forwardat early times. However the above equation shows that this is
against this mode(given in this section and the followifg  not the case; denoting b2 the term in curly brackets in

_The equatiorl of motion of a scalar field=u/a in_ a  Eq. (3), one hastzkz(elJreg)e—klnlﬁl(kc\nc\ﬂ)_B(B+1)
Fr_ledmann-Lemane-Robertson-WaIke(FLRV\l) space-time X(1—6£)/ 7% asp— — = and the terma”/a= 7 2 is always
with scale factora(7) reads dominant in that limit ifé+# 1/6 (8=1, n— —»). Therefore,

in the limit £+1/6 and »— —o0 the two independent solu-

, ) " tions to the field equation are power lawssjn
pict | 07— (1-68) — | m=0, (1)
7’)M L L paepa-en. @
ol — y, =75 T > - .
where¢ is a coupling parameter to gravity and a prime de- “\ -2 4

notes differentiation with respect to conformal timk.

=akpnysis the comoving wave number ang=awpnysis the  This is an important point since it implies that the mode
comoving frequencyé=0 for tensor perturbations degrees function does not behave as a plane wave in the lipmit

of freedom andt=1/6 for a conformally coupled field. The —c when ¢+ 1/6. The solution to the field equation in this
scale factor is taken to be a power law in conformal time limit is reminiscent of the mode freezing in inflationary theo-
a=|n/nJ/ #, and the following dispersion relation, param- ries for fields with linear dispersion relations aéi¢ 0 when
etrized by two parameters; and e; with e3=4—2¢; in  the mode exits the horizon.
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It is also argued that the term af'/a can be absorbed at x— +), this solution(5) does not oscillate and it blows
late times in a redefinition of the dispersion relation. How-up?
ever this cannot be correct since by construction, the disper- It is more convenient to write the general solution to the
sion relationwppyd Konyd depends only orkpnys, i.€., time  field equation, withé=1/6, asu,=Cu{+ Coul?), where
only enters viakp,s. Therefore, one can absorb a term ,u(kl) and /_L(kz) are two independent solutions given by
a’laxn~? into w5, Ja” only if B=1 (de Sitter space-time
as inspection of Eq3) reveals. In effect, the curly bracket of
Eq. (3) can then be rewritten aa~ 2 times a function of
knKpnys. But, in that particular case, the redefined modified
dispersion relation does not have an exponential shape any- _ex)
more, Sincewpnys approaches a constant-H) as Kppys ’
— +o0. However, this should not give the impression that
the corresponding solution is a plane wave since, evidently, () -\ bx di 1 1
the comoving frequency which enters Eq(1) still behaves — #k (7)=e " (1+¢) 2Fa| —b+d+ 5'_b+d+ 2
as x5 2. Moreover in the case of a matter or radiation
dominated cosmology, one cannot absorb the scale factor
term in the dispersion relation.

Nevertheless one can also assufsel/6. In that case, it
is possible to find an exact solution to the equation of motiorSince b is purely imaginary, andl is real, one concludes
in de Sitter space-time. Indeed, for a conformally coupledeasily thatu(?= u{* . The Wronskian of these two solu-
field, the terma”/a disappears from the field equation and tions is nonzero, and can be used to relate the coefficients
the equation becomes simpler. Note, however, that the scalahd C, so as to obtain canonical commutation relations for
field cannot correspond to tensor perturbations degrees @fie field operator and its adjoint. Since only one branch of
freedom since these are minimally coupled to the metric. Lethe solution was given in Refl], the canonical commuta-
us consideré=1/6 for the moment. A solution to the field tion relations for the field and its adjoint could not be satis-
equation, given in Ref1], reads fied. More precisely, it can be checked that the solution given

in Eq. (5) is real. This is due to the fact that it involves a
hypergeometric function of the formF,(a,a*;a+ a*;2)

b+d+ 5,—b+d+ E;Zd with z=z*=1+e* and a=b+d+1/2 in that case
and ,F}(a,b;c;z)=,F7(b,a;c;2)=,F,(a*,b*;c*;z*).
Therefore, one has ,Fi(a,a*;a+a*;1+€7%)
=,Fi(a,a*;a+a*;1+e*) and the mode function is in-
deed real. It follows that the Wronskian of the solution con-
sidered in Ref.[1] vanishes:W(u,u*)=mui ' — ppmi
=0. Using the properties of hypergeometric functions, one
can check that both independent solutier®’ and «{*) be-

have asxxx| 7| in the limit »— —, i.e., these mode func-

b = ive, d= /EJF;& =k . 6) tions k?low up. This result i(sl,)consisg?t With =(cf) since,- in
the tail, the two brancheg™” and u,”’ are linear combina-
tions of the Bessel functionk, andN,.

This solution is valid only for de Sitter spacetime with Therefore, we have shown that neither in the cdse
=kylkene (7<0, 7.<0). As already mentioned, this is due #1/6 nor in the cas¢=1/6 does the mode function behave
to the fact that, with the reformulated dispersion introduced®s a plane wave in the tail. Thus the initial state of the field
above, the linear dependence»ofn the conformal time is cannot reduce to the Bunch-Davies adiabatic vacuum, con-
lost for other scale factors. However similar solutions fortrary to the following claim[1]: *we show that there is no
other metrics can be obtained if the dispersion relation is

tuned to the power-law evolution of the scale factor, i.e., if

the parametex remains linear iny (possibly at the expense A hypergeometric function of the forF (o, B;a+ ;2) is sin-

of linearity of wpnys in the smallkypys limit, see above  gular atz=1. One can also solve E(3) for £=1/6 andp=1 in
Equation(3) has in fact two independent solutiofeee be-  the limit 7——o. In this case, the equation reducesutp+k*(e;
low) and the choicg5) represents only one branch of the T €3)€ “u=0 and the solution can be written as

solution, which is moreover written on the branch cut of the 1

hypergeometric functionF,. At early times (p— — =, i.e., Mk(ﬂ):ﬁ[Al(k)Jo(ey)+A2(k)N0<ey)]v @

bdlbd1'2b1'
+d+ 5 btd+ 520+ 1;

p () =X (14912 R,

—2b+1;—e?‘>. (8)

Mf(in)( 7)=ClN(14eX)d+V2F,

+1;1+e %], (5)

where ,F; is an hypergeometric function arldand d are
expressed in terms af, and e; as

where J, and N, are Bessel functions and wheng=—x/2
+In[4k¥(e,+ €5)/A%]/2. The Neumann function diverges in the limit
!Equation(25) in Ref.[1] contains a misprint that has been cor- 7— —% (y— —). In the tail, the corresponding behavior for the
rected in the following equation. scalar field itself is given bypec 7 and ¢poc 2.
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ambiguity in the correct choice of the initial vacuum state.right behavior for the mode function even thoug Q2| is
The only initial vacuum is the adiabatic vacuum obtained bysmaller than unity11], and that the WKB approximation is
the solution to the mode equatiéifhe usual prescription to  not valid either. Again, note that outside of the taégion II
remove the ambiguity regarding the choice of vacuum statef Fig. 1) the WKB approximation is valid. The calculation
in curved space-time, i.e., for constructing a vacuum stat¢s the same as in the previous paragraph, sincekfgys
which is closest to the definition of vacuum in Minkowski, is <K, and Kpnys>Ke, one hasﬁﬁfvazwzhys since wppy>H.
indeed to rely on the WKB approximation to construct vacuarhys one find$Q/ Q7| <1 outside the tail even fof+ 1/6.
of successively higher adiabatic ordét]. In this scenario 1o symmarize this discussion the WKB condition is vio-
[1-3], this construction cannot be performed for a simplejateq by the present dispersion relation in the tatjion 1 in
reason: the WKB approximation, which quantifies the adiaig. 1) at all times and an initial vacuum state cannot be
baticity of the quantum mode evolution is violated at all constructed unambiguously. Outside of the tadigion Il of
times for modes contained in the_ Fall, ie., mod(_as vkl_gl;l]s Fig. 1), for wpn,eH or kyne<K ., , the WKB approximation
>Keandwpyys<H. The WKB condition can be written inthe s 3 good approximation. One can also verify that the con-
form [Q/QF[<1 [7], where O denotes the term in curly struction of an initial vacuum state by minimization of the
brackets in Eq. (3) as before, and Q=Q/2Qy  energy content does not work in this case, see R&fThis
— (31402102, In effect the WKB solution uwg  point is one major obstacle to the scenario proposed in Ref.
=exp(*i kadr)/\/Z_Qk exactly verifies M(}\,KBJr(Qﬁ [1]. Since there is no preferred initial vacuum state, all cos-
—Q)uwke=0. Therefore it is a good approximation to the mological conclusions drawn depend directly on the particu-
solution of the actual mode equatiqe’+QZu=0 if the lar choice of the initial state, hence on the choice of initial
above inequalityQ/Q2|<1 is satisfied(see also Ref{11] ~ data. At the very best, one has to fine tune the initial condi-
for more details tions to obtain a given amount of energy in a given part of
The expression foQ/Q2 is cumbersome, but since we the SPectrum.

are interested in the reginmgp,e>k,, we may use the lim- .Thde st;amda.rd callculan.on of the amount of enebrgy Co(rj]_
iting form of the dispersion relation: tained at late times In a given comoving wave-number mode

is done by decomposing the solution at late tinfestside
Wphys = Kphysy €1+ €38 ¥ons/ 2k (ko ko). (9) the tai) in terms of positive and negative frequency plane
waves, as
If  &=1/6, then Qu=awyys and |Q/Qf

~k3, H?/16k2w?, .. In order to understand the behavior of e ow Bk . ou
|Q/?;%I itis c(i)n?/hg;ient to introduce the physical wave num e T ek, 1D
kls pny ZwEUt ngut

berK >k such thatw,n,{K )= v(1+ 8)/BH [in the case
£=0, one hasQ),(K,.)=0]. This wave numbeiK  ~K,
where K(#) is the physical wave number that gives the
lower limit of the tail, as indicated in Fig. 1. Using E(}),
one easily derives

The squared modulus of the Bogoliubov coefficightthen
will give the occupation number of quanta produced in the
mode of comoving wave numbdr Note that, in principle,
the coefficientsy, and 8y can be slowly varying functions of
(€1t €3) B 2K time, and the above expression implicitly involves a WKB
N /i_c}. (100  approximation to first order in which the time evolution of
1+p H ay and By is neglected. The corresponding vacuum is an
adiabatic vacuum to first order.
In Ref.[1] By is calculated in the limity— +% as w°"
Je.k. However the limit— +o does not hold in an
inflationary Universe witrax|»|~# andg=1 sincea is sin-
gular asp— 0. One needs to match the background evolu-
tion to a decelerated Universe as—~0". In effect, if one
wishes to calculate the contribution of the tail modes to the
oo Y mws 2 energy densitytoday, it is necessary to calculate the evolu-
which implies in _tum|Q/_Qk|>kphys/(1§kc)>_1’ hence the  iqn of the modes from the inflationary era up to today. Note
WKB approxmatlon is \_/|olated at all times in the tail. Note {4t the dynamical evolution of the tail modaspriori de-
that outside of the tail, i.e., fdkyns<K . andkpne>ke (re-  hends strongly on the background scale factor dynamics.
gion Il of Fig. 1), the WKB approximation becomes vahtzj. N This calculation could not be performed in REF], since
effect Konys/ @phys* €Xplonyd2Ko) <In(ke/H), hence|Q/Q4|  the solution given in terms of the hypergeometric function is

Ky= 2kn

This formula is written to zeroth order in k(/H)/(k./H)
but can be expanded to arbitrary order in a straightforward_>
way. The meaning of the physical wave numiser is the
following (see Fig. L If kp,s<K butkpy, &K (i.e., within
region ll), the mode is outside of the tail witt,,,>H. If,
however,kyn,>K ., the mode is in the tail withop, «<H
(region | of Fig. 3. Thenk,n,K, means thah)ghys<H2

<1. _ o not valid at late times in the radiation dominated or matter
If £+ 1/6, then forwpn,<<H (region | or the tail in Flg-zl dominated eras unless the parametef the dispersion re-
the dominant term isxa”/a in the expression of()i, |ation is tuned to the evolution of the scale factor, but the

namely, Q§~—(1—6§)(1+ﬂ)aZHZ/B, hence |Q/Q§| dispersion relation would become pathological as we saw
~[4(1-6£&)B(B+1)]"*, which for =1 (de Sittey and  before forx=(kpnys/ke)? with B<0. Furthermore, as ex-
£=0 (minimal coupling, reduces to 1/8. In this case, it can plained above, the solution to the field equation given in Ref.
be shown that the WKB approximation does not give the[1] [see Eq.(5)] describes only one branch of the solution.

103520-4
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Finally, one cannot computg, for modes still contained in do 4 K3 Do
the “tail” at late times by matching the solution to plane —“’=—phy2—p2ys|,3k|2, (13)
waves as done in Refl] since for those modes, the WKB dinkpnys 37 H Mg,

approximation is never valid so that the out solution cannot . _ 13 21n 2 :

be decomposed in a sum of plane waves. Thus the calcul sing ¢, /dIn(kyny9 Kohyswpnyd Bi| 72", The fractional

tion of the Bogoliubov coefficienB, performed in Ref[1] ensity parameter must be smaller than uaityll timesand
k for all physical wave numberstherwise back reaction is

cannot apply to modes contained in the “tail” today. significant and all semiclassical first order calculations are
unreliable. In the following we calculate this quantity

IIl. THE TAIL ENERGY DENSITY de/dln(kphys) for a phySicaI wave numbd(phys~ kC! i.e.,
once the wavelength becomes larger than the fundamental

In this section we calculate the amount of energy densitycale. It can be expresseth By in terms of the constants
created in quanta that redshift out of the “tail,” and show that parametrize the choice of initial data. Our goal here is to
that it leads to a severe back-reaction problem. In Réthe  study the dependence of the amount of energy density cre-
energy density contained in the tail is calculated as ated in modes of physical momentaMp, on the initial data,

for which there is no definite prescription, as we argued in
the previous section.

1 (+=
_ 2
{peai) = 2772ka kphysdkphVSJ wphygwphygﬂkphyJ ' A. Conformal coupling: £é=1/6

(12 In the case of conformal coupling=1/6, there exists an
exact solution to the field equation written in terms of the

where k,, is the physical wave number such that, two independent solutions(") andu{?’ in Eq.(8). One can
= wpnyd Kpnyd =Ho today. This expression fotpe) is ill then calculate the Bogqliub_ov qoeffic;ient d_eep in the region
defined due to the double integration elemekétlal in the ~ where the WKB approximation is valid, for instance, around
absence of a Dirac function on the mass shell. The totapnys™~ K by decomposing this exact solution in plane waves.
energy density pi) is defined analogously but the lower However the coefficients of the hypergeometric function in
bound is extended tok=0. Then, it is argued that terms of which the exact solution is writt¢henceg,) are of
{pwid!{prota)=10"122 during inflation. Note that ifp,,  order ofkc/H>1. For values of these coefficients that are
~10"122\m éu and(p;) is constan{corresponding to a vacu- relevant for our cosmological applicatiofise., k./H~10°
umlike equation of state as SuggeStEdorder to account for du”ng inﬂati-or), the numerical Calcul.ation of the hypergeo-
the dark energy then the above statement vyieids, Metric function turns out to be too involved and we have
~M%,. If this holds during inflation, one faces a severe been unable to calculag, in a reason_able amount of time
back-reaction problem since the background energy densitP" kc/H2103- Therefore we take a different approach and
during inflation is~ 10 orders of magnitude beloM?,, and ~ &Pproximate the exact solution in the thj,,s>K.. by the
the overall calculation frameworla test quantum scalar field Solution derived in terms of Bessel functions in Ef), and
on a classical backgroupdreaks down. As we argue in this that in the regiork.<Kpn,<<K.. by the plane wave solution.
section, it is actually a generic prediction of this model that!Ne Bogoliubov coefficienpy of the plane wave solution is
Drotar~ Mg. at all times This resultp,g~ Mg. is in agreement qbtalned by matc_hmg the two solutions and thel.r flrst deriva-
with a recent work by Starobinskj8], which showed that tives at the_tranSItlon POikyhys=K . . Of_course, it gives an
models with dispersion relations such that the WKB approxi-""pp_m)_(Imatlon 10, but as we show in the foIIowmg.the
mation is not valid in the far past when the physical waved€viation from the overall behavior g6, away from its

et 1 i ey s o ot . S 1501 ST o 5 i 1ok
ticle production. gible. P : g ,

In the following we calculate the amount of energy den-"€ galculate the Bogoliuboy coefficient denot@ﬁj‘pp“’x) by
sity stored in modes with a physical wave numbgfy solvmg for the Be;sel functions in the remote past.and per-
~Mp,. The calculation follows the line of thought indicated forming the matchlng aK. . In .th.e s&lz:c%quent §ect|0n, we
in the previous section. Since in the rangek,, <K the f:alculate the Bogc_)hubov coeficiert an?g}(/)t!cally us-
WKB approximation is valid, one can decompose the soluing the exact solution and demonstrate (g™ is a good
tion to the field equation in terms of plane waves as in Eqapproximation for values df;/H as high as=10°. Finally
(11) when modes enter this regime. As long|@QZ|<1  We examine the behavior @2PP) and evaluate the amount
one can neglect the time evolution 6§, and it is natural to  Of energy density produced by the nonadiabatic evolution of
interpret| ;|2 as the occupation number of particles in modemodes in the “tail” for realistic values ok./H. This calcu-

k. As argued earlier this decomposition in p|ane waves Canl.atlon IS entlrely an.alytllcal;.only the.verlflcatlon of the accu-
not be made for modes that are still contained in the tail. racy of the approximation is numerical.

One can then calculate the amount of energy density
dp,,/dIn(ky,9 stored in the log interval around the physical
wave numbeik,, s and the corresponding fractional density ~ As already mentioned above, see Ef, the mode func-
parameter £ ,,/d In(k,n,9 in units of the background energy tion in the tail can be approximatively expressed in terms of
density: the Bessel and Neumann functiohsandN, as

1. Approximate calculation of the Bogoliubov coefficient
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1
ﬁ[Al(k)Jo(ey) +Ax(K)Ng(e) ],

()=

(14

akZ(4— El)]

_ A k +1I
Y=2—kc77 5N H2

This solution is valid if the scale factor is that of de Sitter

space-timea(») = —1/(H#). The mode function must sat-
isfy the relationW= u,uf '— i =i. Using the above
equation, one finds that the Wronskian is equal\e=
—H(AAT —A1A%)/(27k.). As a consequence, if one rep-
resents the coefficier, in polar form,A,=re®, one has
A,;=—wk./(Hr sin®), where we have chosék, to be real.
The parametensand® will characterize the choice of initial
data in the following.

In the region in which the WKB approximation is valid,
i.e., for p,,e>H, one has

Bk

ay

w(p)=——e '+ ——=€*, (15
V2w(k, 7) V2w(k,7)
whereQ = ["7drw(k, 7). In order to express the Bogoliubov

coefficient| 8, in terms of the constants parametrizing the

choice of the initial data in the taii;(k) andA,(k), we use
the continuity of the mode functiop, and of its derivative
at the transition between the two regionyaty,,, for which

@phys(Ym) = V2H. The result reads

-iQ
@prox—__—_{ A (k [— Jo(e¥m
B 4kw(k,ym)( 1(K)| = Yk(Ym) Jo(€'m)
k
"‘Ek_eym\h(eym) +A2(k)[—ykN0(eVm)
C
H key o
+Ek_c Ny(em) |, (16)
where y,=w'/(2w) +iw. Working out this last expression,

one obtains

H
V23

1/2 K
_) {Al(k){ ak,

Ky
Az

B(kappfox): ;Q (
V42

+1/23,(e'm)

No(e'm)

AL

+ ﬁwevm} (17)
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We are now in a position where we can complggPrx)?
using the parametrization of the coefficieds and A, in-
troduced above. The final result reads

w? J Np K 1

(approx) 2 'QD COT.(I)——,
B )= 5 e e a2 2
(18

where we have defined the rescaled variapleby p
=rH/K_, and where the coefficients, N, andK can be
expressed as

1 1 k. z
— —12_ c 2 2
J= 1536 BK, 0J1+2K2+(J0+Jl),
N K N3+ ! —LNgN; +2(N2+N3), (19
= + +
16k2 ( k
Ke
K= 16k — 3N+ (JON +J1No) + 23 — (J0N0+J N;).

(20

The Bessel and Neumann functions are evaluated at the
matching point, and their argument reads=e22k./K , .

A direct calculation shows thatN—K?=2/7?. The Bogo-
liubov coefficient | 8@"P"™)2 can be viewed as a two-
dimensional surface parametrized by the polar coordinates
(p,P).

2. Test of the method of approximation

Before studying the above Bogoliubov coefficient in
greater detail, one must check that the approximation is well
controlled. For this purpose, it is interesting to calculate the
Bogoliubov coefficient using the exact solution expressed in
terms of hypergeometric functions,

il m) = F[Cl(k)ﬂ(l)(77)+Cz(k),u(2)] (21)

where the functiong:.{") and u{?) have been defined in Eq.
(8) above, and the(dimensionless functions C,(k) and
C,(k) are related to each other by the Wronskian normaliza-
tion condition[12]:

imh

i = i =[1C1(K)[2— |C2(k)|2]2k—.7:, (22
c| 77O|
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with the numerical factotF written in terms of the param-

2

1 H
etersb andd, as =———k GC,+G*C
() \/ﬂ . |77||( 1 2)
12 1 1
b+d+§) 3 1 —GCl[ZyEJrlIf b+d+ 5| +¥(b-d+3
f_WZFl b+d+§,b—d+§,2b+2, .
1 1 _G*Cz[Z)/E‘l‘\I’ _b+d+§
1
1 1 +¥| —b—d+=||{, (26)

where the coefficienG is given in terms of the Euler beta

1 1 ; — —
Ch - - . function as G=1B(b+d+1/2b—d+1/2)=T'(2b+1)/
X oF b—d+ s,—b+d+5;—2b+1;-1 o . !
21 2 2 ) [[(b+d+1/2)'(b—d+1/2)], and satisfies, sinceb is
112 purely imaginary andi is real, G* = G(b«~ —b). This rela-
( —b+d+ = tion stems from the asymptotic behavior of the hypergeomet-
2 1 1 _ ric functions for large values of their argument given by Eq.
tTgpog 2h|brdtgbmdt5i2ba (15.3.13 of Ref.[9]. The digamma functio’(x) is defined

by ¥(x)=dInT'(x)/dx. If one identifies the constant term

—1|.F.l —p—d+ E —b+d+ §._2b+2._1) and the linear term in conformal time of the two previous
21 2’ 2’ ’ ' relations, we obtain

(23)

bd:L
+d+ 5

k2(4—€y)
A;(k)=GCy(k){ In oz -y

This solution is valid at all times since it is an exact solution
of the field equation. In this case, one can calculate the Bo-

goliubov coefficient at any time provided the WKB approxi- . k§(4— €1)
mation is then valid, using W[ b=d+ 5] +G"Ca(k)|In Tz
BEN = |+ & e (24) P T (27)
k \/Z Mk 2w Mkl 2 2 ’
where, in the last expression, is given by Eq.(21). Notice Ay(k)=—m[GCy(k)+GC*Cy(k)]. (28

that this procedure differs from the previous calculation of

the Bogoliubov coefficient. Here, we do not perform aThen, itis sufficient to use the above relations in Bf) to
matching at the transition between the tail and the WKBObtain| B{2**") in terms ofC, (k) andC,(k) and compare it
region but rather use the exact solutié®l) all the way to |B{¥®Y. In order to characterize the accuracy with which
through and calculate its “overlap” with the WKB solution the Bogoliubov coefficient is calculated, we plot the follow-
deep in the WKB region. The initial conditions enter this ing quantity:

expression via the two constar@s (k) andC,(k).

We need to compargg(&®) with | B{2PP) for the same |18 — | iy
initial conditions. Sincd BPP"™) is expressed in terms of 8PP ¢ | gt
the constants\; (k) andA,(k), one needs to reexpress(k) k K
andA;(k) in terms ofC, (k) andC,(k). This can be done by  for various values of the coefficien® (k) andC,(k). More
matching the asymptotic behaviors of the two solutions deepyecisely, we use a polar representation and t&kék)
in the tail, i.e., in the limity— —o. There, the approximate —Re? while C,(k) is real and calculated in terms 65(k)

(29

solution given by Eq(14) reduces to using the Wronskian relation E¢22). In Fig. 2, we have
plottedA(R, 8) for k./H=10? andk.=Mp,. We see that the
1 H 2A, 2A, error for large values op is less than~40% and constant,
mk(7)= \/ﬁ Al—AzTr—kk| |- 7In2+ — JE i.e., the offset between the two Bogoliubov coefficients does
¢ not depend orp and® in a first approximation. Fop~0,
A, [4K3(4—ey) } the error increases to 1, this artifact is a result of the fact that
+ —=In| ———| ¢, (25)  the minima at which the two Bogoliubov coefficients vanish
77 H? are slightly offset one from the other. If one coefficient van-

ishes while the other remains finite and nonzero, then the
where y¢ is the Euler constantyg=0.5772. On the other value ofAis pushed toward onéy— 1. This error, however,
hand, the exact solution of ER1) can be written as is of no consequence for what follows. Indeed we will not be
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FIG. 2. Left panel: the functioi defined in Eq.(29), which quantifies the deviation of the approxim§gg| with respect to its exact
form. Ais depicted as a function oR( ), which parametrizes the initial condition€{,C,) of the exact solution. Right panel: enlargement
around the origin in order to unveil the two-peaks structure.

interested in the location of the minimum but in the behaviorresponds to a choice of initial data such that at late times,
of By around the minimum and far from the minimum. As is when modes have exited from the tail, their quantum state is
obvious from Fig. 2, these behaviors match closely in boththat of an adiabatic vacuum. Note therefore that there is no
cases and our approximation will be sufficient for our pur-naturalness in choosing these initial conditions since the
poses. We have checked that the functtoremains the same adiabatic vacuum is only a late time consequence of such
for other values ofk./H, which allow numerical calcula- initial data. Furthermore one can show that for generic initial
tions, i.e..k./He[10,1F]. data, the state of the quantum field at late times is not an
The situation is in fact very similar to the standard calcu-adiabatic vacuum, hence quanta have been produced.
lation of the power spectrum in an inflationary theory: in  Indeed the behavior dfg,|? around this absolute mini-
principle, one cannot match two different branches at thenum can easily be established. From a Taylor expansion, one
point at which the approximation breaks doar standard obtains
inflation this occurs at first horizon crossingiowever, since

the approximation is only violated in a small region one N -

expects the corresponding result to be correct at leading or- |B|?= —=(p—pmin)?: | Bl?>==I?N3(D>— D)2

der. This is indeed the case for inflation, for which the am- V2 o

plitude of the spectrum is predicted up to a factor of order 3D

unity and the spectral slope is unchanged by the matching. ) )

Here we also find thali{3*P™) = 0(1)| &Y. For a crude order of magnitude estimate, one can develop the

Bessel functions to first order in the small argument limit

3. Fine tuning of the initial conditions eVm=2\/§kc/K+<1 (more exactly, for de Sitter inflation and

Since we have demonstrated that the approximation tl(a(C:MPh one has k./K,=0.06). This leads to
~ 212 —n2 2 2 /,2
| Byl is quite reasonable, we now study the behavior of EQ: =1/16+ O(ke/K?) and N=In*(\2k:/K ,)/(47%) (K1 /kS)

0 O . . .
(18) for more realistic values of the ratie,/H. The Bogo- + O(Kc/K%). Thus in order to avoid a back-reaction prob-

liubov coefficient possesses an absolute minimum véigh lem, the initial conditiong and® must not differ too much
from pmin and @i, which lead toB,=0 (hence a zero

=0 located at , )
amount of energy density creajedore precisely, the en-
7232 K ergy density produced is of the order of the background en-
Prin= 2 D hin= , (300  ergy density, i.e., Q,/dIn(k,n,9d =1, whenp or ®, respec-
JN—K VIN tively, depart from the minimum by amoungs or 6® given
by

using the notations defined previously. One should not be
surprised to find a minimum witl8,=0 since one can ex-
press the matching of the two branches of the solution and5p20
their first derivatives aty,, as two equations relating the co-
efficients A, (k) and A,(k) as a function ofe, and 8, and

find a solution withB,=0. The Wronskian normalization Here we assume#;=Mp,. Hence the corresponding fine
condition is always satisfied by both branches of the solutuning of the initial conditions is of ordeH/My, (if one
tion. This solution with initial conditions d,in, ®min) COr-  assumes a uniform measuregrand® in parameter spage

H
—In‘l( ., D=0

el
Mp

H
o —In‘2(

el
Mp

H

- (32
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One should note that the above constraint is valid for a a’ K, 1+
given comoving wave numbdrand has been calculated at a Vit EzamHm Wﬂt 1+i T) . (35
time at whichk/a=k.. Since the fractional density param- ¢
eter of quanta extracted out of the vacuufd ddIn(kynyd The constant<, (k) and C_(k) are related to one an-

must be smaller at all times during inflation, i.e., for a rangeginer by the normalization of the mode functionsguy '
of comoving wave numbetssincek and, can be related by _ + «"_i \\hich ai

the above constrairkt/a=k., the above constraint op,,
and® ., rather applies to a continuum of values of comov- K.
ing wave numbers. In other words one does not have to fine C.(k)= —ﬁm,
tune two parameters characterizing the initial data but a m

whole continuum of parameters, i.e., the .functiqn,%(k) and as before we keap=|C_(k)| and®=ard C_(k)] as
and® mn(k) themselves. The dependencekiof these func-  the two independent parameters characterizing the choice of
tions is hidden in the argument of the Bessel and Neumanitial data. One finally derives the squared modulus of the

(36)

functions ém, sincey,, depends ork. Bogoliubov coefficients, as
2 2
B. Nonconformal coupling: £+ 1/6 |,3k|2: 1 3_1 / B K_+ (l+ &) 1+8
One can also perform a similar calculation of the Bogo- résif® 4 VA+1Hn ke B
liubov coefficient when the coupling is no longer conformal, ;2 H 1
&£+ 1/6. In this case the calculation can be performed analyti- + A /i_m — A /i
cally for all background scale factors. For the sake of sim- 4p? V1+BK, 2 V1+p

plicity we choose minimal coupling=0 but this can be
trivially expanded to various choices of the coupling to grav- >
ity, and does not modify the conclusions we derive below.

If £=0, the evolution of the modes is dominateddiya ) ) ) )
in the tail, i.e., whenwyne<H (Kynyeke), and the solution SinceK , /H,, is a large number, in the following we use the

1
cotd— —. (37)

K.
J’__
1 2

4K,

can be written as rescaled variablp=rH/K, instead ofr. Equation(37)
above is particularly attractive because it has exactly the
1 a(n) a; 7 dr same functional shape as E@8). It allows us to understand
pk(n)=—=| Ci(k)———C_(k)—a(7n) , analytically the behavior of the amount of energy density
J2k a; 7, n a%(7)

produced in modes witk,, s~ K. as a function of the initial

(33 data. The occupation numbgg, |2 has an absolute minimum
located at

where C,(k) and C_(k) are two dimensionless
k-dependent constants, angl is some initial conformal B\

time. One can check that this solution and the power laws pmin=|B] 1+8

given in Eq.(4) are the same. Here one cannot choose the

time of matchingz,, to the WKB solution, since the match- 1+K., /(4ky)

. . 2 ” + C
ing has to be done whef,=0, i.e., whenwy=a"/a or cos® in= > .
Konys=K 1 . In the regionwyn,eH, ie., for > 7,, the 1+K. /(4K TP +(1+B)IB
WKB approximation is valid as we have seen before, and th
matching to the WKB form is justified at= »,(k). For a
given wave numbek, we are free to se;= 7,,, since this
amounts to a redefinition of the consta@ts(k) andC_ (k)

by a function ofk. The matching aty,, then gives

2 1+
TB

B

Ky

1+4—kc

(38

%s before the occupation number vanishes exactly at this
minimum, but the back-reaction problem cannot be avoided
for generic initial conditions. In the present case it is not
possible to make a sensible contour plot 61 d/d In(kyyy9
since this function changes by many orders of magnitude
over very small intervals op,®. Therefore, we take a con-

i ., a’ C_] servative approach in which we calculégi(p)|? as a func-
X Ko Col vt a _a , tion of p for the values ofP that minimize this quantity at
K ’ eachp. We also evaluatgs,(®)|? as a function ofb for the
values ofp that minimize this quantity at each. In other
—i c a’\ C_] 34 words, we solvedy|B|?=0 for ® as a function ofp and
Bk= wt—=|——| 2— i :
Jakay | + al” d,|B|*=0 for p as a function ofb:

, , , B KL 1Ak P+ (14 BB
with the functiony,=(w'/2w)+iw as abovdsee Eq.(16)] D min(p) =tan™ = — 17K, /(4k) ,
o . . p + C

and where all quantities in the above two equations are un-

derstood to be taken at= 7,,(k). In particular, at timer,,, 4 5
wg=a"la=(1+p)azH%/B. Sinceky,s k. at 7, one can ph (D)= B [(14_ &) n 1+B
use the limiting form ofw s given in Eq.(9), hence mn Sirfd 4k, B

: (39
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FIG. 3. Left panel: the solid line represents Jg(¢8x|*/| 8¢ *1?) =log,d d€2,, /d In(kyn,9 ] plotted as a function of the rescaled variaple
characterizing the initial data. This plot corresponds to an inflationary era with a de Sitter metric, and Hubble pardifetsty. The
other parameter of initial data #B=® ;,. Allowed regions correspond to lgg| 8,/%/| BF*1%) <0, and are peaked around a particular value
of p. The minimum is in fact3,|?=0, corresponding to lag(| By #/| Br*1?) = — =, but it cannot be seen in the figure due to insufficient
resolution. The dotted line provides a continuation of the numerical result to the analytical value at that point. In most of parameter space,
the energy density is too large by10 orders of magnitude. Right panel: same as left panaHfpr 107 5'Mp, in a matter dominated era.
In nearly all of the parameter space the energy density is too largel#2 orders of magnitude.

2 K 2 1+ 2
| Bl prin(®), 1|2 in Fig. 4 (for, respectively, de Sitter infla- |8kl *(®)= 2 [( 1+ 4k+> + B'B} (O—Dpin)?,
tion and today. One clearly sees from these figures that ¢

dQ,/d In(kphys)~M§,|/H2 for most values ofP, which cor- (D~D ). (41)
responds to our previous expectations, i.e., the amount of _ )

energy density created in quanta whf,<~k,~Mp is of  If we write the value| By, such that @, /dIn(kn,d=1
orderM#,. The behavior of 8,|2 around the local minimum (i-€., with a similar amount of energy created in quanta with

can be studied in the same way as before and one obtainsKphys™Kc @s in the backgroundthen this value is reached if
p and® depart fromp,, and® i, by an amountp, 5P,

with
H o2 Me
M p, H

140 ' , ' ]
120 'h ]

100 .

and plot d,,/d IN(kyhyd for | Bl p, Pmin(p) 1|2 in Fig. 3 and 1/ B

1+ 8

12

1/ B
|'Bk|2(p)~,82(1+,3

. (42

(p=pmn)? (p~pru), (40 ap~o(h;'), 5D~ 0

;(nnx'E)
)

8O ]

1°€10(|ﬁk|2/|ﬁ
10g10(|ﬁk|2/|ﬁ
o
=)
T
|

40F .

20F .
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0 n/4 n/2 3n/4 m 0 n/4 n/2 3n/4 ™
$ ¢

1

FIG. 4. Left panel: logy(| B« */| Bx*1%)=[dQ,,/d In(kynyd ] plotted as a function of the phase characterizing the initial data. This plot
corresponds to an inflationary era with a de Sitter metric, and Hubble param#8e®Mp,. As indicated in the text, the other parameter of
initial data (a modulug has been eliminated for the phageby minimizing | 8,/2. Allowed regions correspond to lgd|8|?%/| BR®1?)
<0, and are seen to be peaked around a particular valde @he plot is symmetric in the interchande— ® + . Note that the ordinate
scale is in logy: in most of parameter space, the energy density is too large 1y orders of magnitude. Right panel: same as left panel
for Hy~10"5Mp, in a matter dominated era. In nearly all of parameter the space the energy density is too lard@dyrders of
magnitude, i.e., 8,,/d IN(Kyn,d ~ M.
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In other words, the fine tuning necessary to avoid a back-My/H, but a whole continuum of values (k) such

reaction is of order~ §®~ dp~H/Mp (neglecting the In  that the back reaction is avoided for all of these values.
term). During inflation H/Mp~108, and todayH/Mp,

~10"®L Although the fine tuning can be considered not too IV. EQUATION OF STATE
severe during inflation, we see that, during the matter epoch,
it is as severe as the usual fine tuning of the cosmological Up to now we have argued thé& in the scenario pro-
constant problem. Therefore, the scenario of Rgfs-3]  posed in Refs[1-3] there is no preferred initial vacuum
does not improve the situation. state, hence all conclusions drawn depend on atiehoc

At this point, it should be emphasized that the abovechoice of initial data;(ii) for arbitrary values of the two
problem is a generic feature of the dispersion relation used iRarameters characterizing this choice of initial data one finds
Refs. [1-3]. In order for the trans-Planckian effects to that energy in excess of the background energy density is
modify the power spectrum of the fluctuations, the physicaProduced due to the nonadiabatic evolution of modes in the
modes of interest must spend some time in a region in whickail-
the WKB approximation is violated. As already mentioned, In aseparate publication, we have constructed an effective
this implies production of particles, and the energy densityenergy-momentum tensor for scalar field theories with non-
associated to these particles must not exceed the backgrouli@gear dispersion relations, and we have shown that disper-
energy density. This implies some constraints on the occupaion relations of the form of that proposed in Reff$=-3]
tion number|B,|2. It has been shown in Reff8] that these generically led to the wrong equation of state. This finding
constraints are quite stringent if the production takes plac&as been challenged by Bastero-Gil and Mersini recently,
today. Usually, these tight constraints can be avoided by rewho argued that the energy-momentum tensor we have con-
quiring that the violation only occur during inflation where structed is ill defined as {supposedlyis not divergenceless.
the problem is less severe. This can be achieved if the dis- Explicitly, in Ref. [6], the vacuum expectation values for
persion relation is such that,,,&>H for all trans-Planckian ~the energy density and pressure are given by
wave numbers, witld the Hubble constant at some unspeci-

fied time after inflation. Such an example is provided in Fig. _ o ol [ 2k’ 2 2 P

2 of Ref.[6]. Then as was argued in the discussion following {p)= 4772a4f dkk? &l | ) |+ ekl } 43
Eq. (9) the WKB approximation should be valid at all times

after inflation and adiabaticity are restored. Here, however, w12 (2 . dw?

since wppys— 0 askppys— +, there is at all times a region (p)= f dkkz{az (_k> +(—k2—

in which the WKB is violated. Therefore the class of disper- 4m%a’ a 3 dk?

sion relations used in Ref§l-3] suffers in a generic way
from the problem discussed in R¢8].

Furthermore, we also note as previously that the above
calculation of the fine tuning holds for a given comoving
wave numberk. Similar constraints apply for other wave and the integrals extend from O tocc. The authors of Ref.
numbers but the values df,;, and p,i, are shifted from the [3] claim that{p) +3H(p+ p)#0, with H=a'/a. However,
above[notably because of the choiag= 7,(k)]. Therefore  noting that the comoving frequenay(k) = awynydKpnyd, @
one must not only pick one right value d@f to one part in  straightforward calculation gives

—o?lud?|, (44)

”

a//
H2- E)Mk}(M:’_HﬁL:)'F(MI’(_HMk) ME”—HM§’+(H2— =

1
<p>’=4772a4j dkk? [ML’—HMH

ME}
dw?
— AH| g~ Hp 2+ 0?(K) (i + s ') — ZHKZQ | > = 2Hw?(K)| 2]

n

a”’ a
(ﬂﬁ—gﬂk)(ﬂ’i ' —HMEH(M&—HMK)(uE”— = Mk ) —6H| ey — Hpl?

_ 1 fdkk2
472a*

dw?
+ 0?(K)[ i ! —HME)+ME(M&—HMK)]—2HKZ@IM|2}

41a

1 dw?
- 4f dkk2< _6H|MQ_HMK|2_2HKZ@|M|<|2
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where the field equationu—(a"/a)u=—w?(k)u, has changing the result since the equation is written in a gener-
been used in the last step. Since ally covariant way. Therefore we conclude that the addition
of terms proposed by Frampton cannot lead to any difference
with respect to the energy-momentum tensor we proposed
6H| e —Hpmid? earlier. Hence such terms cannot account straightforwardly
for a vacuumlike equation of state in this scenario.
The difference of the conclusion of R¢L0] probably lies
, (46) in the choice of normalization af*: Ref.[10] claims that, in
a cosmological contexu"u#—a*:o (a is the scale fac-
] N ] tor). However,u“u,, is a scalar, whilea~? is the component
the energy conservation conditigip)’+3H(p+p)=0 is  of a rank two tensor so that this choice of normalization is
trivially satisfied. _ _ _ manifestly not covariant. Of course, it can be made covariant
We take advantage of this section to point out that theyt the expense of the introduction of a second vector field but
energy-momentum tensor we have constructed in a previouygis does not seem to be the case in R&€]. This implies
publication[6] is well behaved and the construction is en-ihat the Lagrangian proposed by Frampton is generally not
tirely consistent. In effect we constructed a generally covarizgyariant. Of course the correct normalization et in a
ant Lagrangian for a scalar field with a nonlinear diSF’erSiorbosmological context is always“u,—1=0 (up to the sign
relation. The breaking of the Lorentz invariance is Conﬁrmedconventior), and u* can be Writte‘rq as+{1/a,0,0,0) if the
by introducing a dynamical four-vector* in the Lagrangian  FRLW metric is written in terms of conformal time, or
whose role is to define the preferred rest frame while Pre(—1,0,0,0 if the metric is written in terms of cosmic time.
serving general covariance at the same time, following pre- T4 conclude, let us also note that it is claimed in Rel.
vious work by Jacobson and Mattingl¢3] (see also refer-  nat “the tail modes are still frozen at pregen. . Thus the
ences therein The energy-momentum tensor derived by energy of the tail is a contribution to the dark energy of the
varying the action with respect to the metric is the sum of thniverse: up to the present it has the equation of state of a
energy-momentum tensor of the scalar field and that"of  cosmological constant terfnHere, the fact that the tail
We have restricted ourselves to FLRW spacetimes by choo$podes are frozen meang.{/a)’ ~0, the solution to the
ing u*=(—1,0,0,0). This approach is consistent sin¢¢ fie|q equation when the teraf'/a dominatefor £&=0). But
satisfies its field equatiofsee Eq(15) in Ref.[6]], and the  there is no logical relationship between these modes being
s_calar field also satisfies its field equation. In FRLW spacefygzen and the equation of state being that of a cosmological
time, the energy-momentum tensor of the four-vedi®.,  constant. As a matter of fact the equation of state of the
the part that depends only art) vanishes since” is con-  modes of wavelengths larger than the horizon size for a sca-
stant[6], hence the remainder is the scalar field energyiar field with a linear dispersion relation takes the fopm
momentum tensor, which is conserved as shown above. We ;3 The derivation of the equation of state requires to
consider this scalar field as a test field, which we quantize oQefine correctly a stress-energy tensor when such nonlinear
the curved background. The dynamics of the background Caflispersion relations are taken into accoGad thus when
be specified by adding matter fields to the action without grentz invariance is brokeras we did in Ref[6]. Note also
modifying our approach. Indeed the matter field energythat there is a contradiction between the above claim of Ref.
momentum tensor will be separately conserved. Thereforg)] and the whole content of the recent paper by Bastero-Gil
our earlier criticisms on the equation of state of the transyng Mersini[3], who calculated the equation of state of the

Planckian modes apply. trans-Planckian modes and found that it is not the equation
We also note that a recent paper by Frampttdj argues o state of the vacuum but that it is approached only at late
that by adding higher order terms of the foufD®"u, in  {imes.

the effective Lagrangian, one can obtain a correct equation of
state, i.e., one similar to that of the vacuum. HBredenotes

a three-dimensional Laplacian expressed in a generally cova-
riant way on spacelike hypersurfacésee Refs[6,13] for
explicit definitions. The choiceu*#=(—-1,0,0,0) then re- In this paper, we have examined in detail the scenario
duces this term to the usual three-dimensional Laplacian oproposed in Refd.1—3] which attributes the dark energy to
constant time hypersurfaces for FLRW space-times. Howthe properties of a scalar field with a dispersion relation that
ever, as should be obvious, the only terms that can enter thdecreases exponentially with trans-Planckian wave number
energy-momentum tensefa this new term always contain Kk, =k.~Mp. We have demonstrated that this mechanism
derivatives of the formD?"u* whenn=2. Those terms van- does not work, mainly for two reasong) The mode func-

ish when one pickai”* to be constant as above. Fo=1,  tion of the scalar field does not behave as a plane wave as
i.e., the lowest order term of the expansion, one can checly— —« in the so-called “tail”(i.e., the part of the nonlinear
that the variation ofD?u* with respect to the metric or its dispersion relation at whichpnys<H andkpynye>Mp). This

first derivative always induces a term proportional to a deimplies that there is no definite prescription for constructing
rivative of u* that is either spatial or temporal. This calcula- a well-defined initial vacuum state, hence the choice of ini-
tion can be found in Eqs(B3) and (B4) of Ref. [6] (the tial data is entirely arbitrary. This situation is similar to the
substitutiong— u* in this calculation can be made without problem of setting initial data for cosmological perturbations

1
3H{p+p)= fdkk2
(p+p) PRC

dw?
+ 2Hk2@|#k|2

V. CONCLUSIONS
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in the absence of an accelerated expansior(l@rawith lin-  duction in expanding space-times. We have calculated the
ear dispersion relatiopsin which case the data would have amount of energy density produced in modes of physical
to be specified on superhorizon scales at which the modwave numberk, as a function of the two parameters that
function does not oscillate and it is frozen by the expansioncharacterize thearbitrary) choice of initial data. We have

In the scenario of Ref$1—3] the WKB approximation is not shown that this energy density is generically of ormﬁl.

valid at all times for modes in the tail. This explains that theThe production of energy density in quanta with wave num-
notion of an adiabatic vacuum cannot be used to set up initidbers ~Mp, in excess of the background energy density
data and the initial state proposed in Rdf] is thusad hoc ~H2M§,I implies the breakdown of the perturbative semi-
It also brings us to the second objection to this scendiiip: classical framework used for the calculation, and renders all
since all modes originate in the tail of the dispersion relationgclaims irrelevant. There is a small region of parameter space
the breakdown of the WKB approximation for a given physi-in which this energy density can be tuned down to zero, but
cal wave number at early times implies the continuous prothe fine tuning in the choice of initial data is of ordéfMp,.
duction of a substantial number of quanta with physical waveSuch a fine tuning at the time of inflation is of ordef.0 8
numbers=k.. The breakdown of the WKB approximation and is probably acceptable, but today, it is of the same order
can indeed be seen as the signal of a strongly nonadiabatis the celebrated fine tuning of the cosmological constant
evolution which is generically associated with particle pro-problem.
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