N

N

Detecting gravitational waves from precessing binaries of
spinning compact objects: Adiabatic limit

Alessandra Buonanno, Yanbei Chen, Michele Vallisneri

» To cite this version:

Alessandra Buonanno, Yanbei Chen, Michele Vallisneri. Detecting gravitational waves from precessing
binaries of spinning compact objects: Adiabatic limit. Physical Review D, 2003, 67, 10.1103/Phys-
RevD.67.104025 . hal-04111233

HAL Id: hal-04111233
https://hal.science/hal-04111233v1
Submitted on 8 Jun 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-04111233v1
https://hal.archives-ouvertes.fr

PHYSICAL REVIEW D 67, 104025 (2003

Detecting gravitational waves from precessing binaries of spinning compact objects:
Adiabatic limit

Alessandra Buonanno
Institut d’Astrophysique de Paris (GReCO, FRE 2435 du CNBS¥ Boulevard Arago, 75014 Paris, France
and Theoretical Astrophysics and Relativity, California Institute of Technology, Pasadena, California 91125

Yanbei Chen
Theoretical Astrophysics and Relativity, California Institute of Technology, Pasadena, California 91125

Michele Vallisneri
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109
and Theoretical Astrophysics and Relativity, California Institute of Technology, Pasadena, California 91125
(Received 27 November 2002; published 30 May 2003

Black-hole (BH) binaries with single-BH masses=(5—20)M, moving on quasicircular orbits, are
among the most promising sources for first-generation ground-based gravitational@v&yeletectors. Until
now, the development of data-analysis techniques to detect GWs from these sources has been focused mostly
on nonspinning BHs. The data-analysis problem for the spinning case is complicated by the necessity to model
the precession-induced modulations of the GW signal, and by the large number of parameters needed to
characterize the system, including the initial directions of the spins, and the position and orientation of the
binary with respect to the GW detector. In this paper we consider binaries of maximally spinning BHs, and we
work in the adiabatic-inspiral regime to build families of modulated detection template6)tilaaé functions
of very few physical and phenomenological parametgirsinodel remarkably well the dynamical and preces-
sional effects on the GW signal, with fitting factors on averag@.97, (ii) but, however, might require
increasing the detection thresholds, offsetting at least partially the gains in the fitting factors. Our detection-
template families are quite promising also for the case of neutron-star—black-hole binaries, with fitting factors
on average=0.93. For these binaries we also sugdest do not testa further template family, which would
produce essentially exact waveforms written directly in terms of the physical spin parameters.

DOI: 10.1103/PhysRevD.67.104025 PACS nuni§er04.30.Db, 04.25.Nx, 04.80.Nn, 95.55.Ym

I. INTRODUCTION the validity of the PN formalisn{6]. Damour, lyer, and

A world-wide network of laser-interferometer Sathyaprakasfi7] compared the templates generated by dif-
gravitational-wave GW) detectors, recently bui[tl], has by  ferent PN treatments, and found that they can be very differ-
now begun operation. Inspiraling binaries of compact ob-ent. In a companion paper to the present @84 Buonanno-
jects, such as black holéBHs) and neutron stardNSg are  Chen-Vallisneri(BCV1)], we investigated this issue for the
among the most promising astrophysical sources for thes&W signals emitted by comparable-mass BBHs with a total
detectors. The GWs from the inspirals are expected to entenassM =(10—-40)M . In BCV1 we proposed a few ex-
the frequency band of good detector sensitivity during theamples of detection-template familid3TFs), built either as
last few seconds or minutes of evolution of the binaries; GWa time series or directly in the frequency domain, which try
scientists plan to track the phase of the signals very accue address the failure of the PN expansion. The philosophy
rately, and to enhance the signal-to-noise ratio by integratingehind DTFs is to replace a family of signals that correspond
the signals coherently over their duration in the detectoto a specific mathematical model of the binary with families
band. This is achieved by filtering the detector output with athat can cover a broader range of plausible signals. Because
bank oftemplatesthat represent our best theoretical predic-the direct correspondence with the mathematical model is
tions for the signals. lost, DTFs are appropriate for the purpose of first detecting

Until now, the development of data-analysis techniquesGW signals, but do not give direct estimates of physical
has been focused mostly on binaries containing N8®wse parameters, such as the masses of the binary constituents.
spins are negligible for data-detection purpgsasd non- [Within the EOB framework, see also the recent paper by
spinning BHs[2]. Nonspinning, high-mass BHs pose a deli- Damouret al. [9], where the authors extend 3PN EOB tem-
cate problem: the breakdown of the post-Newton{&iN) plates with severflexibility parametersand then show that
expansion in the last stages of the inspiral makes it hard tthe unextended 3PN templates already span the ranges of the
prepare reliable templates for the detection of binary BHdlexibility parameters consistent with plausible 4PN effdcts.
(BBHs) of relatively high total masgsay, (10-40)M o] with Very little is known about the statistical distribution of
Laser Interferometric Gravitational Wave Observatoryspins for the BHs in binaries: the spins could very well be
(LIGO) or VIRGO interferometers. Various resummation large. Apostolatoset al. [10,11] (ACST) have shown that
techniques, such as Paapproximant$3] and effective one- when this is the case, the evolution of the GW phase and
body (EOB) techniqueg4,5] have been developed to extend amplitude during the inspiral will be significantly affected by
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spin-induced modulations and irregularities. In a BBH, thesdarget mode) that represents our best knowledge of the ex-
effects can become dramatic if the two spins are large angected physical signals. Because we cannot use the target
they are not exactly aligned or antialigned with the orbitalmodel directly for data analysi# has too many parameteys
angular momentum. If this happens, there is a considerable build effective template families with fewer parameters.
chance that the analysis of interferometer data, carried outhese families are then compared with the target model for a
without taking spin effects into accounts, could miss the sigvariety of binary parameters, to gauge their ability to match
nals from these spinning BBHs altogether. The gravitationafhe Physical signalstheir effectualnes$3]). On the other
waveforms from binaries of spinning compact objects deh@nd, in BCV1 we employed several variants of the PN
pend on many parameters: the masses and spins of the O%q'uatmns'(wnh'dlvergmg behawors in the'late phase of in-
jects, the angies that describe the relative orientations of dePira) to identify a range oplausiblephysical signals; we
tector and binary, and the direction of propagation of GWs tdnen built our DTFs so that they would matel of the PN

the detector. In practice it is impossible, due to the extremel}arget models satisfactorily. This said, we shall still refer to

high computational cost, to filter the signals with a templatelN®_template families developed in the present paper as

bank parametrized by all of these parameters. One strategy i1 S We direct the reader to BCV1 for a simple introduc-

that of providingeffectivetemplates that depend on fewer tion to matched-filtering techniques and their use in GW data

parameters, but that have still reasonably high overlaps wifnaIySIS (developed in the literature by various authors
the expected physical signals. An interesting suggestio ?,3,7]), and for an explanation of some of the notation used
built on the results obtained in RdfL0], came from Apos- N this paper. . .
tolatos[11], who introduced a modulational sinusoidal term  'NiS paper is organized as follows. In Sec. Il we define
in the frequency-domain phase of the templates to captur'® target model, and we explain the conventions used to
the effects of precession. However, while Apostolatos’ fam-'éPresent the generation and propagation of GWs. In Sec. Il
ily reduces the number of parameters considerably, its com€ Study the two-body dynamics of spinning compact ob-
putational requirements are still very high. Moreover, using€cts; 100king for the features that are especially relevant to
an approximated analytical model of NS-BH waveforms,the data-analysis problem. Using this |n§|ght, in Sec._ IV we
Grandclenent, Kalogera, and Vecchjd2] showed that this formulate our DTFs, and we alsq describe two families of
family fails to capture those waveforms satisfactorigee ~ Standard stationary-phase-approximatifA templates, to

however Ref[13] for a hierarchical scheme that can improve € uséd as a comparison when evaluating the performance of
the fit by adding “spikes” in the template phasing the DTFs. In Sec. V we discuss the overlap and false-alarm

In this paper, complementary to BCV1, we study the datzStatistics of our DTFs. In Sec. VI we evalu_ate.the perfor-
analysis of GWs from binaries with spinning BHs; for sim- mance of our DTFs for BBHs and NS-BH binaries, and we

plicity, we restrict our analysis to the adiabatic limit, where Priefly discuss a more advanceahd very promisingtem-

the two compact objects in the binafsither two BHs, or a plate family_for NS-BH systems. In Sec. VIl we summarize
NS and a BH follow an adiabatic sequence spherical ~©Ur conclusions. _ _
orbits driven by radiation reactiofRR). The denomination Throughout this paper we adopt the noise spectral density

of spherical orbits comes from the fact that the orbital pland®f_LIGO-I given by Eq. (28) of BCV1. The projected

is not fixed in space, but precesses, so the orbits trace WRGO noise curve is quite differerideeper at low frequen-
complicated path on &slowly shrinking spherical surface. C1€S, With a displaced peak-sensitivity frequenso our re-
We neglect the problems caused by the failure of PN expargults for high-mass binaries cannot be applied naively to
sion in these binarie@ote that the conservative part of the YIRGO. We plan to repeat this study for VIRGO in the near
EOB framework[4] has already been extended to the spin-Tuture.

ning case by Damoyrl4], providing a tool to move beyond

the adiabatic approximation; we plan to add radiation- IIl. DEFINITION OF THE TARGET MODEL

reaction effects to this model, and to study the consequences | this section we define thearget modelused in this

on GW emission and detection elsewheridere, we carry paper as a fiducial representation of the GW signals expected
out a detailed study of PN precessional dynamics and of GWqy, precessing binaries of spinning compact objects. We
generation in precessing binaries in the adiabatic limit, angestrict our analysis to the adiabatic regime where the in-
we use the resulting insights to build a new class of mOdUSpiraI of the compact objects can be represented as a se-
lated effective templates where modulational effects are inquence of quasicircular orbits. At any point along the in-
troduced in both the frequency-domain amplitude andg iral, a binary of total masM=m,+m, and symmetric
frequency-domain phase of the templates. The mathematicgl ;g ration=rm,m,/M?2 is completely described by the or-

structure of our templates suggests a way to search automafjjia| angular frequency, the orbital phasa’, the direction
cally over several of the parametéis strict analogy to the -~ %1%y of the orbital anaular momentum. and the tw
automatic search over initial template phase in the dat«JiN of the orbital anguiar momentum, a e two

analysis of nonspinning binariesreducing computational SpinsS; = x1M;S; andS,= x,msS,, whereS, , are unit vec-

costs significantly. We argue that our families should capturdors and 6<x; ,<1. Throughout this paper we shall use car-

very well the expected physical signals. ets_ to denote unit vectors, and we shall adopt geometrical
We note here a shift in perspective from BCV1. In this units.

paper, we use the PN equations for the two-body dynamics In Sec. Il A we write the PN equations that govern the

of spinning compact objects to build faducial model (our  adiabatic evolution of the binary and the precession. gf
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and of S, ,. All the target waveforms used to test the effec-response. Last, in Sec. Il D we give a classification of all the
tualness 3] of our DTFs are obtained by integrating these parameters that enter the expression for the detector re-
equations numerically. The validity of the adiabatic approxi-Sponse, distinguishing those that specify the evolution of the
mation is discussed in Appendix A. In Sec. Il B we discussbinary itself from those that describe the relative direction
our criterion for stopping the numerical integration of the and orientation of binary and detector.

evolution equations at the point where the adiabatic approxi-

mation ceases to be valid. In Sec. Il C, building on Refs.
[10,15,18, we describe a formalism for computing the re-
sponse of a ground-based detector to the GWs generated by a
spinning binary; the response is a function not just of the The path of the binary across the sequence of quasicircu-
trajectory of the binary, but also of the relative direction andlar orbits is described by the adiabatic evolution of the or-
orientation of binary and detector. The formalism describedital angular frequencyw up to 3.5PN ordef17-20,7, with

also how the precession of the binary modulates the detectapin effects included up to 2PN ordg21,17,16

A. Equations for an adiabatic sequence of precessing spherical
orbits

© 96 o] g 743924 o |1 s c e 113m—‘2+75 ab v, 34103, 13661
;—gn( @)™ 1= ——5ze— (Mw)™= 2.2, xi(Ln-S) 2 T || AT (Mo)+| 75744" 2016 7
59 2 4/3 1 C & " c " o 4/3 1 5/3
+1_877 (Mw) _4_877X1X2[247(Sl'SZ)_721(LN'81)(LN’SZ)](MQ’) —6—72(4159+1453271)7T(Mw)
16447322263 1712 16 | ( 273811877 451 , 88| 541 , 5605 .
139708800 105 ET 37 1088640 48" 37|"" goe” ~ 25927
856 o am| gz, [ 4415 661775 149789 .\ . .
10209 16M )™ (Mw) 4032 120067 3024 7| "M@/, @
[
whereye=0.577 . .. isEuler’s constant, and wheris an ~ Where we have replacedand [Ly| by their leading-order

arbitrary parameter that enters the GW flux at 3PN of@ef  Newtonian expressions i@,
and that could not be fixed in the regularization scheme used

by the authors of Ref.20]. Note that in Eq.(1) we set the

static parametew =0 [22]. The precession equations for the

two spins arésee, for instance, Eq&t.17b,¢ of Ref.[16] or M\ e , s s
Egs.(11b,9 of Ref.[10]) r= = ILn|= uréo=nM>"P0 ™15, (4)
. (Mw)2 13 my\
S = M 7n(Mw) 4-i-3m—l Ly
1 This approximation is appropriate because the next spin-
+—2[Sz—3(32~|:N)|:N]} XS, (2)  precession term i©)(w) higher than the leading order,
M while next terms in the expressionsradind|L | areO(w??)
higher.
Sz:(M w)? (M3 4+3ﬂ) ; The precession of the orbital plafaefined by the normal
2M m,) N vectorL ) can be computed as follows. From E@4.7) and

(4.11) of Ref.[16] we see that the total angular momentdm

1 . . ~
+—[S,—3(S,-Ly)Ln]t XSy, 3 and its rate of changésg (due to RR depend onw, Ly, and
M?2 [573(5Ly) N]] =2 ® S; » (schematically as (letting S=S; + S;):

J=L+S=gM*(M ) PL[1+O(0??)]-2 n(M 0)*?S 4+8, (5)

L
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. 32 . N
Jre= = M(M@)L[1+0(0?)]+ O(01™)§;

+0(0)S,, (6)

where the combination

3m
4m,

B 3m,
Sor=| 1+ 7 iy /S| 1 2 1, | Y

is known as theeffective spirf14]. Note that both terms in

theL brace of Eq(5) originate from orbital angular momen-
tum (the second term comes from the spin-orbit coupling

Taking the time derivative of E(5), we obtain

I= pM2(M )~ 3L [1+ O(023)]— O( 023 S+ S

+[O(0™)Ly— O(0 ) Sy], €)

PHYSICAL REVIEW D 67, 104025 (2003

. . B || 675, (34445
PN @)= 2PN(w)—E( w) ~ %2 576
205 155 . 35

‘%”2) " 967 ~51ga” <M‘”>2]-

(12

In the context of our adiabatic approximation, it is natural to
stop the integration of Eq$1)—(2) and(9) at the point(the
minimum energy circular orbit, or MECQwhere the energy
E,pn reaches a minimum,

dEnPN

MECO: do

=0; (13

after this point the adiabatic approximation breaks down
[24]. (The MECO is discussed by BlancHe&b] for nonspin-

where to get the last term on the right-hand side we havaing binaries under the name ICO, for innermost circular

usedw=O(»'3. Comparing Eqs(8) and (6), projecting
out only the direction perpendicular fq\. and keeping only

orbit.) However, if we find thatw=0 (which implies cer-
tainly that the adiabatic approximation has become inyalid

the terms up to the leading and next-to-leading orders, we gdefore the MECO is reached, we stop the evolution there. In

S _ (I\/Iw)l/3._ (1)2 mo ml)
LN——WS—N 4+3E S+ 4+3m—2 S,
“ 3w’ . . .
XLN_W,[(%'LN)%JF(%'LN)SJXLN]- 9

Thus, we now have the set of four equatighs—(2) and(9)

for the four variablesw, S;, S,, andLy. We follow Ref.
[16], Eq.(4.15), in defining theaccumulated orbital phas#

as
t o W
\I’EJ wdtZJ —dw. (10
t wj W

BCV1 we noticed that for nonspinning binaries this behavior
occurs for the 2.5PN evolutions, but not at 2PN, 3PN, and
3.5PN orders.

Throughout this paper, we shall call the instantaneous fre-
quency of GWs at the end point of evolution teading
frequency which, up to a correction that arises from preces-
sional effects, is twice the instantaneous orbital frequency
defined in this section. It so happesee BCV] that a
knowledge of the ending frequency is important to cut off the
candidate detection templates at the point where we know
too little about the physical signals to model them further. In
Sec. Il B we study the dependence of the ending frequency
on the spins of the binary.

C. Gravitational waveforms
As we have seen, the trajectory of the inspiraling binary is

This phase describes the position of the two compact objecisbtained by integrating Eqg1), (2) and (9) for the time

along the instantaneous circular orbits of the adiabatic sesyolution ofw(t), S(t), Sy(t), andL (). To determine the
quence; the phase of the GW waveforms, as detected by &responding gravitational waveforms, we need to choose a
ground-based detectors, differs from this by precessional efSpecific coordinate system. We follow the convention pro-

fects, as explained below in Sec. Il C.

B. End point of evolution

posed by Finn and ChernoffFC) [15] and also adopted by
Kidder [16]. FC employ a fixedsource coordinate system
with unit vectors{e;, €, &} (see Fig. 1 For a circular

The orbital energy of the two-body system at 2PN and®rbit, the leading-order mass-quadrupole waveform is

3PN orders, expressed as a functionwoind assuming the
static parametew,=0 [23,22, readg17,21,2(Q

EopN@) = — ﬁ(|V|w)2/3 1- %(Mw)z3

N

8. 1
+3Ln Ser( M)+ 5, (— 814577~ 7)(Maw)*?

1 . A
+ 7_7[81'52_3(LN'51)(LN'SZ)](M(U)4/3 . (13)

(throughout this paper, we use geometrical ynits

hi =%"(¥) i (14)

whereD is the distance between the source and the Earth,
and whereQ/ is proportional to the second time derivative
of the mass-quadrupole moment of the binary,

QU=2[\'\—n'nl], (15)
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detector

FIG. 1. Source and radiation frames in the FC conventids.

with n' and\' the unit vectors along the separation vector of

the binaryr and along the corresponding relative veloaity
These unit vectors are related to the adiabatic evolution
the dynamical variables by

n=gjcosPs+esindg, A=—gsindg+e5cosds;
(16)

the vectorse? , form an orthonormal basis for the instanta-

neous orbital plane, and in the FC convention they are give

by

e— L cosi
sini

. -
eXLly
e 8- (17)

The vectonef points in the direction of the ascending node of
the orbit on the X,y) plane. The quantitybs is the orbital

PHYSICAL REVIEW D67, 104025 (2003

FIG. 2. Detector and radiation frames in the FC conventids.

In writing Egs.(21)—(23) we used the fact that for a generic

0F)inary-detector configuration, the entire system consisting of

the binary and the detector can be always rotated along the
axis in such a way that the detector will lie in the,Z)
plane. Later in this papdm Sec. I\) we shall find it conve-
nient to conserve the explicit dependence of our formulas on
the azimuthal angle that specifies the direction of the de-
}]ector.

In the transverse-tracele§§T) gauge, the metric pertur-
bations are

h'T=h,T,+h,T,, (24)

where

T.=fed-dad!, T.=Lod+fod (25

phase with respect to the ascending node; its evolution is

given by

ds=w—acosi, (18
wherei and o are the spherical coordinates bf, in the
source frame, as shown in Fig. 1. Using E€(e}) and (16),
we can write Eq(15) as

icj:_z([ei]iicos@s-i-[ei]ij sin2dg), (19

where the polarization tensoeS andeS are given by

e =ere-65R6, e=er6+ewe. (20
For a detector lying in the directioN=eScos®+e;sin®, it
is expedient to express GW propagation in thdiation co-
ordinate system with unit vectoff; ,e}, e} [see our Fig. 1

together with, for instance, E¢4.22 of Ref.[16]] given by

ef=e’cos® —e’sind, (21)
4=, (22)
f=esin® +eScosO=N. (23)

and

1

. 1 .
hy EhIJ[T+]ijv hX:Eh”[TX]ij- (26)

The response of a ground-based, interferometric detector
(such as LIGO or VIRGQto the GWs ig15]

hresp:F+h++F><h><

=— %u g[eﬁ”cos 2D g+ eSlsin 24 g]
X(TijFe +[Tx]ijFx), (27)
whereF . andF are theantenna patternsgiven by
Fonmpleoa-gegliT, Jy (29

with e , the unit vectors along the orthogonal interferometer
arms. For the geometric configuration shown in Fig. 2, with
detector orientation parametrized by the andgleg), and,

we have

104025-5
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1
Fo=5(1+ cos 6) oS 2p COS 24— coSH Sin 2¢ sin 244,
(29)

1
Fy= §(1+ co< 6)cos 2 Sin 2+ cose sin 2¢ cos 24).
(30)

Inserting Egs(17), (20), (21)—(23), and(25) into Eq. (27),
we get the final result16]:

Nresp= Cq €OS 2P g+ Sy sin 2P, (31
where
4p 2
cQz—F(Mw) JCLF,+CF.], (32
4p 2/
SQ:_F(M‘U) 3[SJrFJr‘I'SXFX]: (33
and

C.,= %co§®(sin2a—co§ico§a) + %(c0§i sirfa

1 1
—cofa)— Esin2 sirfi — = sin 20 sin 2i cosa,

4

(34)
1 . 1 L

S, = §(1+ cos0)cosi sin 2a+ Esm 20 sini sinea,

(35
1 o 1 o

Cy=-— Ecos®(1+co§|)sm 2a— Esm@ sin2i sine,
(36)

S, = —€0s0 cosi cos 2o —sin® sini cosa. (37)

D. Binary and detector parameters

We shall refer to the total madd, to the mass ratiay
=m;m,/M?, and to the magnitudes of the two Bldr NS

spinsS; andS, as thebasic parametersf the binary. Once
these are set, we complete the specification of a binary con-
figuration by giving the initial orbital phase and the compo-
nents of the orbital and spin angular momeintahe source
frame for a given initial frequency. In our convention, the
initial orbital angular momentum is determined by the angles
(GLN,qSLN), as shown in Fig. 3. The directions of the spins

are specified by the angleﬁs(lxﬁsl) and (052,¢32), defined

with respect to an orthonormal basis aligned witl,

Lyxe . .
L e=LyXe, &=Ly (39

===,
ICnxel

shown in Fig. 4. We then have

PHYSICAL REVIEW D 67, 104025 (2003

Z\

- —

FIG. 3. Specification of the initial Newtonian orbital angular
momentum in the source franfe, ,g, ,e,}.

S;=e;sin fs, COShs + & sin Os, sin s, T €3C0S0s ,
(39)
S,=ey sinbs, Cosps, + e, sin b sin ¢ +e; cosfs . o
40

Among the six anglesbﬁ_N ,d;,_N), (asl,qbsl), and (052,¢52),

only three are intrinsically relevant to the evolution of the
binary: 65, 6s, and ¢s —¢s,. We shall refer to them as
local parameters. The other three independent parameters,
which are relevant to the computation of the waveform, de-
scribe the rigid rotation of the binary as a whole in space,
and we shall refer to them abrectional parameters. In fact,

Ae3ELN

FIG. 4. Specification of the initial directions of the spins with
respect to the FC orthonormal basis ,e,,e;} [Eq. (38)].

104025-6
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TABLE |. Classification of binary, GW propagation, and detector parameters.

Binary GW propagation |Detector orientation
M7 m, Sla S2 051: 052: ¢51 - ¢52 oLny ¢L1w ¢51 + ¢52 67 4 0: ¢7 "/)
Basic Local Directional

there are five more directional parametafsand ¢ specify  binding energy and of the total angular momentum at the end
the direction to the detector in the source frame, andp, of evolution, and we estimate the amount of GWs that must
and s specify the orientation of the detector with respect tobe emitted during plunge, merger, and ringdown to reduce
the radiation frame. All these parameters have already bedfe spin of the final BH to the maximal value. In Sec. 1ll D

introduced in the previous section. Our classification of theve discuss, largely on the basis of numerical evidence, the

15 binary and detector parameters is summarized in Table gffects of spin on the accumulated orbital phas¢defined
by Eqg. (10)]; we argue that these effects are maimign-

modulational and that, for data-analysis purposes, they can
IIil. ANALYSIS OF PRECESSIONAL DYNAMICS be treated in the same way as the standard PN corrections to

In a seminal papef10], ACST investigated in detail the the orbits of nonspinning binaries. It follows that the preces-
evolution of binaries of spinning compact objects, focusingSion ©f the orbital angular momentum is the primary source

on orbital precession and on its influence on the gravitationa f(:?‘?ci‘glratlgrr]t?cl:rllarthc?as;%r;a{oafsb?r:;?}ae?; eSrTelgh’Tl”SIée\cliveby
waveforms. In this section, we build on their analysis to P X

discuss several aspects of quasicircular precessional d nashow’ again on the basis of numerical evidence, that transi-
. >pect 9 P . ynagsnal precession has little relevance to the data-analysis
ics that are especially important to the formulation of a rel

“problem under consideration. In Sec. Ill F we discuss the
able DTFs for these systems. Note also that W& has  ,\ver.Jaw approximations introduced by ACST to describe

derived analytu_: solut|ons_ for _quaS|_eII|pt|c§iI soll_Jtlons to theie precession of the orbital plane as a function of frequency
2PN conservative dynamics, including spin-orbit effects.  jn particular binaries, and we show that they are appropriate
We complement ACST's analytical arguments with thein general for the larger class of binaries under consideration
empirical evidence obtained by studying the orbits generategh this paper. These approximations are a basic building
by the numerical integration of Eq$1)—(2) and (9). We  block of the effective template families developed by Apos-
select the following typical binaries: BBHs with massestolatos[11] and, indeed, of our generalized and improved
(m;+m,) given by (20+10)My, (15+15Mg, (20  families.
+5)Mg, (10+10)Mg, (7+5)Mg; and NS-BH binaries
with massesm;=10M (BH) and m,=1.4M (NS). The A. The ACST analysis
BHs are always chosen to be maximally rotatirg=(m?), In their pape{10] on precessing binaries of compact ob-
while the NSs are assumed to be nonspinning. There afjects as GW sources, ACST chose to work at the leading
neither astrophysical data nor theoretical results which sugsrder in both the orbital phasing and the precessional effects
gest that maximal spins are preferred. However, in this papdo highlight the main features of dynamical evolution. For
we decide to investigate the most pessimigtic terms of  orbital evolution, they retained only the first term on the
precessional effectsscenario. The initial GW frequency is right-hand side of Eq(1): as a consequence, the precession
chosen at 30Hz for binaries with total mass larger tharPf the orbital plane is the only source of GW modulation
20M,, and 40 Hz for all the other cases. For each set ofonsidered in the analysi§The resulting accumulated or-
masses, we consider 1006r, when the numerical study is Pital phase, given by Eq.(10), is known asNewtonian
very computationally expensive, only 206rbital evolutions Chirp.] For the_ precession of t_he orbital angullar momentum
obtained with random initial orientations of the orbital and @nd Of the spins, ACST retained only the first terfiise
spin angular moment&These initial configurations are taken SPIN-orbitterms in Egs. (2), (3), and (9). On the basis of
from the pseudorandom sequence specified in Sec. VI B ant(@ese approximations, and in the context of binaries with

. either my~m, (and spin-spin terms neglecjedr S,~0,
gSTelgirl1nn1saetghi\rfgct:h:aot:r\glgﬂjzfgn;)h: effectuaingsiof our ACST classified the possible evolutions of spinning binaries

In Sec. lll A we introduce the ACST results, and in par- Ln(atgsti\(l)vrc]) categoriessimple precessioand transitional pre
ticular the distinction between simple and transitional preces- The.vast majority of evolutions is characterized by simple
sion. In Sec. Il B we study the dependence of the GW endprecession, where the direction of the total angular momen-
ing frequency(defined in Sec. Il Bon the initial values of  tm remains roughly constant, and where both the orbital
spins and on their evolution, and we link this dependence tgngular momentum and the total spBS;+S, precess

the conservation of certain functions of the spins througharound that direction. ACST provided a simple analytic so-
evolution. As mentioned above, a knowledge of the endingution for the evolutions in this class. They also showed that
frequencies of our target model is important to decide whathe orbital precession angle, expressed as a function of the
extension each of the detection templates should have in therbital frequency, follows approximately a power ldgee
frequency domain. In Sec. Il C we examine the value of theEq. (45) of Ref.[10]).
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FIG. 5. Binary ending frequenciggray dot3 as functions of the initial value ofes/xgs ", for 1000 initial spin configurations dfl

=(15+15)M, BBHs (in the left panel, andM = (10+ 1.4)M NS-BH binaries(in the right panel at 2PN and 3.5PN orders. The solid
lines plot the SO-only predictions for the ending frequencies.

Transitional precession happens when, at some point dufwhere the subscript “SO” stands for the inclusion of spin-
ing the evolution, the orbital angular momentum and the to-orbit effects only; on the other hand, neithe®?(t) nor
tal spin become antialigned and have roughly the same ma@ﬁ_ﬁ(t) is conserved.

nitude, so the total angular momentum is almost zero, The conservation ok has important consequences for
~ _ the end points of evolution, defined in Sec. Il B by Ef3)
J=L+5~0. 4D for the MECO. In the nonspinning case, as discussed in

BCV1, if the dynamics was known at all PN orders, then the

When this condition is satisfied, the total angular momentunﬂwIECO would agree with the innermost stable spherical orbit

is liable to sudden and repeated changes of direction. ThﬁSCO) defined as the orbit beyond which circular orbits
evolutions in this class cannot be easily treated analyticalbeecom’e dynamically unstable. When only spin-otbince-

but they occur only for a small portion of the possible initial forth, SO effects are included, the conservationsg; pre-

conditions. .
In this paper, we shall refer to the special cases investice' Vo> this correspondence between MECO and ISCO, be-

gated by ACST(with either my~m, or S,~0) as ACST cause the leading-order SO term in the energy is proportional
17— 12 -

configurations NS-BH binaries and BBHs witm;>m, are ;Sn'((:(teiﬁc;ng]l ;aé(;‘eéz(znfgiqgéncéecg éhqi (TSC(?:;;]]aS a precise
astrophysically relevant cases among ACST configurations, When spin-spinSS couplings are also includedy is

because for both we can s&t~0. The ACST formalism can

also describe well BBHs ﬁh equal masses but where spin.r-]O longer co_nserve_d, a_nd th? MEC(@sd the_r_efore the end-

spin effects are negligible. ing frequenciepof bln_arles with the same |n|t_|a}eﬂ become_
smeared around their SO-only values, which are functions

only of k¢ . In addition to this smearing, the SS contribution

to the energy introduces also a bias. In the end, however, the

For the ACST configurations, both the total spin and itsSS correction is not very important for the ending frequen-

projection on the orbital angular momentum are constants ofies, as we can see in the following examples. In the left

B. Conservation laws and GW ending frequencies

the motion; panel of Fig. 5, we plot the ending frequency at 2PN and
R 3.5PN orderd27] versus the initial value ok for BBHs
[Ln(t) - S(t)]acsT=CONSL; (420  with M=(15+15)M4 (in gray dot3, as compared to the
SO-only predictions(in solid lineg. The smearing of the
[S%(t)]acsT= CONSt. (43 ending frequencies is relatively mild, and so is the systematic

deviation from the SO-only predictions. We have checked
For generic non-ACST configuratiorias discussed, for in-  that this behavior characterizes all the mass configurations
stance, by Damour4]), theeffective spirS,; [Eq. (7)] can,  enumerated just before Sec. Il B, at both 2PN and 3.5PN
to some extent, replace the total spin in these conservatiogrders. In the right panel of Fig. 5, we plot the ending fre-
laws. guencies for NS-BH binarigsvith M =(10+1.4)Mg]. The
From Egs.(2), (3), and(9), we see also that if we ignore ending frequencies follow exactly the expected functional
the spin-spin effects in the precession equations, then th@ependence oRrg.

projection The mildness of these deviations can be understaod
N par) by looking at the variation ok during the evolution.

Y For example, for the (1515)Ms BBHs shown in Fig. 5,

Keff= M2 (44) the maximum deviation ofxes from being a constant

(measured as maxdevfy) = max(xker) — MiN(ker) 1/2) s
of the effective spin onto the Newtonian orbital angular mo-0.036, to be compared with the maximum kinematically al-

mentum is a constant of motion, lowed deviation, 0.875; for (265)M  BBHSs at 2PN order,
maxdev(kx) = 0.033, to be compared with the maximum ki-
[ ke(t) ]so= const (45  nematically allowed deviation 0.92.
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800 Q0+5M, C. Energy radiated during insp.iral and (gstimate@ total

700 angular momentum emitted after inspiral
g 600 2.5PN It is interesting to evaluate how much energy can be ra-
g 500 diated in GWs before the final plunge, especially for binaries
% 400 whose inspiral end in the LIGO-VIRGO frequency band. In
£ 960 the left panel of Fig. 7, foM = (15+ 15)M o BBHs, we plot
5 the ratio between the 2Pkhonrelativistig energy, given by

200 Eq. (11) and evaluated at the end point of evoluti@s de-

100 fined in Sec. Il B, and the total mass-energy initially avail-

L0005 06002 000 028 IS0 075 100 able, M. Depending on the initial relative orientation be-
Ko et tween the spins and the orbital angular moment(as
FIG. 6. Binary ending frequenciégray dots as functions of the ~ €xpressed by the initiake/ ko ), the energy that can be
initial value of ke /«Me%, for 1000 initial spin configurations of released in GWs during the inspiral ranges betwe€n5%
M=(20+5)M, BBHSs, at 2.5PN order. The solid lines plot the and 3.5% ofM. More energy can be emitted when the initial
SO-only predictions for the ending frequencies. spins are aligned with the orbital angular momentum. We
find similar results for all the other BBHs investigated, and
As we can infer from Fig. 5, the ending frequencies deSimilar results were also obtained by Damour in the EOB

pend also on the PN order, and the difference between meamework(see Fig. 1 of Refl14]).

. L S It is also interesting to estimate how much total angular
and 3.5PN o.rders IS more striking fqr NS-BH bman_es thanmomentum can be radiated during the coalescence phases
for BBHSs. This trend is present also in the nonspinning cas

) ee R &hat follow the inspiralplunge and merggrespecially when
(see BCVY: for nonspinning kl_)@l_o) equalégNass those phases fall in the LIGO-VIRGO band. In general, we
BBHs, we have wygco=0.13M and  wyeco  have

=0.12M L. To give a few numbers, for a (#010)M

BBH, we havef { o= 443 Hz andf g =416 Hz; for a Jrad=J— SgH, (46)

(15+15)My  BBH, fise=295Hz and fea shy

=277 Hz; on the other hand, for a (3@.4)My NS-BH  whereJ,,qis the angular momentum radiated during plunge

binary, we havef i ap= 734 Hz andf ty spn=559 Hz. For  and merger) is the total angular momentum of the binary at

the second and third binaries, these values can be read dffe end of the inspiral, anSgy is the spin of the final black

from the solid lines of Fig. 5, by setting.s=0 (no sping. hole. A lower limit on the angular momentum radiated in
Finally, in Fig. 6 we show the ending frequencies forthese phases can be obtained using the fact that the magni-

(20+5)M, BBHSs, when Eq(1) (which rules the evolution ~tude of the final spin can be at mdé,; (whereMyg, is the

of the orbital phaseis evaluated at 2.5PN order. In this case,mass of the final black holeTo derive this lower limit we

if ker=0.5, thenw goes to zero before the MECO can be follow Flanagan and Hughe28], and we write, using Eq.

reached. The resulting ending frequencies deviate conside@'@’

ably from SO-only predictions. As already discussed in

BCV1, w goes to zero because at 2.5PN order the gravita- [9rad =3 =Sgul = [9| = M3 =13 — EZ, (47)

tional flux goes to zero for high orbital velocities; since this

very nonphysical behavior happens systematically, we thehereE,,=M +E is the relativistic energy of the binary at

choose to exclude the 2.5PN order from our analysis. the end of inspiral; in deriving Eq47) we used the relation

0015 11 S
0.020 Lo L
e g 09

= 0025 < 08 ,

9 = .
-0.030 % 0.7 L

"-:- 0.6 N 1.?‘!!!' g
2 “ Ol &
0.035 (15+15)M, % 0.5 .5 (15+15)M,
-1.00 -0.60 -0.20 020 0.60 1.00 -1.00 -0.60 -020 020 060 1.00
Keﬂll(:'f?x Keﬁ/‘cggx

FIG. 7. For 1000 (1% 15)M, BBHSs with different initial spin configurations, in the left panel we plot the ratio betweelrtniierela-
tivistic) 2PN energy{Eq. (11)] at the ending frequency and the mass-energy initially availehlgersus the initiakq/xox; in the right
panel we plot the ratio between the total angular moment@in2PN order and the square of tfrelativistic 2PN energy{Eg. (11)] at the
ending frequency, versus the initiag/ «gg
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|Seul <M2,=<EZ,. Itis straightforward to see from E¢47) b=V - acosi, (51)
that this lower limit is nontrivial(that is, greater than zero
only when|J|>EZ,.

In the right panel of Fig. 7, foM =(15+ 15)M, BBHs,
we plot|J|/EZ,, where the angular momentum is evaluated

at 2PN ordeff21,16],

where®g is the orbital phase with respect to the ascending
node of the orbit, which appears in E§1) for the detector
response to GW; and in part in the explicit time dependence
of the coefficientsCq, and S; on o andi [see Eqs(32)—
(37)]. In this section, we are going to argue that the evolution
(9+7) o3 of the accumulated orbital phase is very similar in spinning
6 (Mw) and nonspinning binaries; and that, as a consequence, the
effect of spins on detector resportbeough the accumulated
1 , 1 orbital phasecan be reproduced using nonspinning-binary
5481577+ 7 )_;[SI'SZ templates, such as those studied in BCjke also Egs.
(92—(94)]. Of course, precessional effeals enter the de-
tector response through the other dependences mentioned
(Mw)4/3} ~7(Mw)*®S¢+S.  above, and these cannot be neglected when building tem-
plates to detect physical signals.
(48 Both the spin-orbit and spin-spin couplings can affect the
. accumulated orbital phas# through the 1.5PN and 2PN
We see thall/Ey, is generally less than 1, except whegs  terms in Eq(1). However, as we shall discuss in this section,
=0.4 (which happens for 13% of all the initial spin configu- this effect is largelynonmodulational For each binary con-
rationg; the maximum value o|fJ|/Er2el is 1.13.(For a simi-  figuration, we introduce three different functions of tinfa):
lar plot obtained in the EOB framework see Fig. 2 of Ref.the accumulated orbital phade™, obtained by solving the
[14].) Such large values ot imply large ending frequen- full set of Egs.(1), (2) and (9), including the SO and SS
cies[for the (15+ 15)M, BBHs shown, larger than 400 fjz  couplings;(b) the accumulated orbital phase™, obtained
which do not lie in the LIGO-VIRGO band of good interfer- by using the initial orbital angular momentum and spits
ometer sensitivity, unless the BBHs have higher masses; thedl! timesin the SO r%'s‘dinss couplings; aiid) the accumu-
all the frequencies are scaled down. In any case,dgr 'ated orbital phas&"**P"'for a nonspinning binary, obtained
—1 (spins and orbital momenta initially alignedin the PY dropping the SO and SS couplings altogether.

o e : In general, W™ and w"°sP" gre quite different for the
mg: mass binaries investigated, &47) suggests the lower same set of binary masses. However, the differedd®

— "o not a strongly oscillating functiofthat is, it does
|Jrad =0.1FZ~0.1M?, (490 not show any modulationand it can be reduced consider-

ably by modifying the 1.5PN and 2PN coefficients in the
to be compared with the value 04 obtained by Flanagan phasing equation for the nonspinning binary. It is then rea-
and Hughedq 28] using BH spins aligned with the orbital sonable to assume that such a nonmodulational effect could

1+

JIM2=p(Mw) Y3,

7.
_§LN'Seff(Mw)+

—-3(Ly-S)(Ly-SY]

angular momentungestimated to be-0.9M?2). be captured by the nonspinning DTFs constructed in BCV1.
A (trivial) upper limit for J..4 is obtained by settings;  Moreover, the difference betwedn™ and W™ is due to the
=0: nonconservation of the SO and SS terms that appear in Eq.
e <|g]. (50) (1) for w. These terms have relatively high PN orders, so we

expect that they will be small.
Thus, we expect tha®™" can be well described by a

For different values ofk.¢, the upper limit for our (15 : . .
e Pp ( nonmodulational phasing of the kind

+15)M¢ binary is ~(0.5—-1.1M2. However, in order for

the inspiral to end within the LIGO-VIRGO band of good C, Cjq
nonmo;
interferometer sensitivity(which requires a MECO fre- v ‘(f)=Co+le+ﬁg+ 213’ (52
guency lower than 400 Hzwe needk+< 0.4, which corre-
sponds to upper limits<0.5—-0.7M?2. which looks rather like the frequency-domain phasings em-

To put this section into context, we point out that mostployed in the DTFs of BCV1 HereC, andC; can be seen as
reliable PN estimates for the energy and the angular momeractual (intrinsic) template parameters, whereég and C;
tum radiated after the MECO can be achieved only withrepresent, respectively, the initial phase and the time of ar-
models that include information about the plunge phase, sucfival of the GW signal, both of which are extrinsic param-

as the model that can be built on Damour’s spinning-EOBeters in the sense discussed in BCVID verify this hypoth-
equationd 14]. esis, we first evaluate?™ in the frequency range

50 Hz—250 Hz (which is appropriate for first-generation
ground-based GW detectyrsising Egs.(1), (2) and (9) at
2PN order, for all the BBH and NS-BH configurations con-
;Sidered earlief(5+1) masses< 200 anglet We then(least-
squaresfit ¥ with functions of the form(52). A measure
é%f the goodness of the fit, given by

D. Spin-orbit and spin-spin effects on the accumulated orbital
phase
While for nonspinning binaries the accumulated orbita
phase[defined by Eq.(10)] coincides with(half) the GW
phase at the detector, for spinning binaries the two phas
differ by precessional effects; in the FC convention, these are Apres— max  |PUI(f)—pnonmogsyl (53
foundin part in the relation 50 Hz<f<250 Hz
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TABLE II. Maximum modulational effects in the accumulated orbital phdseWe give the average over the 200 samples, the 90%
guantile of the distribution, and the maximum value for the diagnastc®® defined in Eq(53).

Maximum modulational correctioA ¥
(20+ 10)M (15+ 15)M ¢, (20+5)M, (10+10)M ¢, (7+5)Mg (10+1.4)M, [NS-BH]

(AW™9,509 0.0247 0.0214 0.0450 0.0402 0.0828 0.1228
AVES . 200 0.0460 0.0411 0.0676 0.0787 0.1504 0.1884
maXpgA WS 0.0680 0.0523 0.1227 0.1186 0.2196 0.1895
is shown in Table Il. The maximum deviations are all smaller (M f)y < (1- 27) (57)

than~0.1 rad, except for the lighter (#5)M, BBH and
(10+ 1.4)M NS-BH systemgwhere, however, thaverage or
deviations are stil~0.1 rad). This suggests that templates

with phasing expressions similar to E2) (such as those _ 7
proposed in BCVY1 could already approximate rather well f>fiane= —. (58)
the full target model studied in this paper. TM(1-27)

For transitional precession to occur before we reach the
Schwarzschild ISCO frequendign,= 1/V/6°7M, we then
need

E. Simple and transitional precession of total angular
momentum
For most of the binary configurations investigated, we
find, in analogy with the ACST analysis, that the direction of

min 3
total angular momentum does not change much during evo- ftrans: V67 — 1o p=0.22 (59
lution. In other words, transitional precession does not occur. fsew \1—27m) =0-cL

Table 11l shows the fraction of configurations that yield
N N Although the ending frequencies obtained within our target
minJ(t) - Jo<1— ey, (54 model are usually higher thaf,,, the very configurations
t that can have transitional precessitimose with nearly anti-
aligned total spin and orbital angular momertiave always
when €,=0.05 and 0.10. Let us now try to understand the|q\yer ending frequencies, making 0.22 too large an estimate
numbers of Table Il in more detail. for the critical value of7.

We first focus on the columns two to six, which deal with ¢ 4 consequence, among all the configurations we have
binaries of maximally spinning BHs: Fpr BBHs with single considered, only (265)M, and (20-10)M,, BBHs can
massesm=(5-20)M¢, the total spin is not usually large {hen haveobservabletransitional-precession phases. These
enough to satisfy the transitional-precession condit®h),  |ater binaries are characterized by significantly larger
as we can prove easily by using all the evolution equations a&hanges inJ [see Table II]. However, (26- 10)M , BBHs
the leading PN order: during the evolution, the magnitude ofStiII require f > f™"=138 Hz, which is very close to the rel-
the orbital angular momentum decreases with the GW freévantending frérarl;ency; o ’the changd is smaller, and we

quencyf, as in never observed episodes of transitional precession in the 200
initial configurations analyzed. On the contrary, we observed
a few for (20+ 5)M o BBHSs; one example follows from the
the initial configuration given by 0s,=175.4°, bs,
=105.4°, andé¢s — ¢s,=92.0° (at fgw=30 Hz). In this

|9/ <|Si|+]|S,|=mi+m3=(1—27)M?. (56)  configuration the initial spin of the more massive body is

almost exactly antialigned with the orbital angular momen-

In order for transitional precession to occur, we need at théum. The trajectories of and Ly during this evolution are
very least|Ly|=|9 [see Eq.(41)], which requires shown, respectively, in the left and right panels of Fig. 8.

IL|~|Lnl=n(7Mf)~13Mm2, (55

while the total spin is bounded by

TABLE lIl. Deviation of the total angular AmomAentufhfrom its initial direction. This table shows the
percentage of the binary configurations whd(e)-J(0) goes below % €;, for the €; given in the first
column.

Percentage of binary configurations whére:J(t)-J(0)<1—e¢,
(20+10)M (15+15)Mg (20+5)Mg (10+10)Mg (7+5)Mg  (10+1.4)Mg [NS-BH]

€;=0.05 17.5% 6.0% 33.5% 7.0% 3.5% 0.0%
€;=0.10 2.5% 0.0% 11.0% 0.0% 0.0% 0.0%
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FIG. 8. Transitional precession. Evolution of the direction of total angular momefiftnpane) and of Newtonian orbital angular
momentum(right pane) in the transitionally precessing (26)M o BBH with initial angles 031=175.4°, 032=105.4°, and¢slf¢52
=092.0° (at fgw=30 Hz).

By contrast, none of the NS-BH configurations examinedmass binaries %~ 1/4) or to large separations. Fog<S,
exhibits transitional precessions. This is because the BH iwe have]~S; in this case we derive from E0) thatay is
taken as maximally spinning, s is always much larger approximated well by a linear function éf 3,
thanL in the frequency band under consideration.

!

) B ; fi 1
F. Apostolatos’ power law for orbital precession aplt(_zls)(f)m ﬁ’* +Bj, (62)

As discussed in the previous section, the vast majority of

binary configurations undergoes simple precession, where , ) o -
remains constant, whiléy and S, , precess around it. For where 5; and B, are constant coefficients. The condition
ACST configurations fi;~m, and negligible SS interac- LS corresponds tan,<m; or to small separationgate

. ~ - ) inspiral).

tions, orS,~0), bothLy and S precess around with the

. It turns out that Eqs(61) and (62) apply also to a large
precession frequendy10], Eq. (42)] fraction of the BBHs and NS-BH binaries studied in this

da 3m, paper. This can be tested semiquantitatively by the following

P (2 ——)sz_ (60) procedure. For each configuration, we take the precession
anglea(f) and we fit it with a functiony_; _,s(f) of the
ACST identified two regimes where the evolutionaf can I/?/rmtkfm) or (|62)t' f;)hr frequgnC|es(j|$rthe range 50-250 Hz.
be approximated very well by a power law an (or f). For ¢ then evaluate the maximum difierence

Lny>S, the total angular momentudi~Ly~ w3 using

w~w™? it is straightforward to derive from EqB0) that Admax-1-2=  Max  lag(f)—ap_q _os(F)].

a, is approximated well by a linear function 6f ¢, 50 Hz=f<250 Hz

2 my

(63

, B

fit ~-t 0 .
ap-)(f)=+ + B, (6D 1n Table IV, we show the values afay q) (that is, the
90% percentile OfAama-1y) and Aaph o, for (15
where B; and B, are constant coefficients. Sindgy/S  +15Mg, (20+10)Mg, (10+10)Mg, and (75)Mg

~nw Y3 the conditionLy>S corresponds to comparable- BBHSs, and for (16-1.4)M, NS-BH binaries. The numbers

TABLE IV. Approximation of binary precession histories using best-fit paraméteend 5, in Egs.(61) and(62). This table shows the
90% percentiles O oy 1) [EQ. (63)] and A max(—213) in the BBH and NS-BH populations studied throughout this section.

90% percentiles of error in precession angle .y
(15+15)M o (20+10)M g (20+5)M¢ (10+10)M g (7+5)Mg (10+1.4)Mg [NS-BH]

Aapge 1) 0.30 0.24 0.23 0.34 0.64 0.61
Aapi o 0.52 0.48 0.50 0.68 1.14 0.72
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FIG. 9. Simple precession. The upper graphs show the evolution of the direction of total angular modéleftimand of Newtonian
orbital angular momenturﬁN (right), in the case of the simply precessing (2B)M BBH with initial anglesasl=44.6°, bs,= 101.0°,
and ¢s,— bs,= —39.7° (at 30 Hz). The lower graphs show the projectior_gf onto the plane perpendicular to the initial(left), and the
angle betweelh  andJ, plotted as a function of inverse GW frequengight). The BBH was rotated in space so that the initial direction
of J would be parallel to the axis.

show that Eqs(61) and(62) yield (roughly) comparable ap- while keeping a Newtonian amplitudé™ "6, Recently,
proximation. This result is confirmed also by the more de-Grandclenent, Kalogera, and Vecchid 2] applied Aposto-
tailed analyses discussed later in this paper. latos’ suggestion to an approximated analytical model of
Figure 9 plots the 2PN evolutions af(upper left pangl  NS-BH binaries a_nd Iow-mas_s BBHs: whgre_as the addition
and(  (upper right panglfor a (20+ 5)M o BBH with ini- of phase modulations ac_cordmg to EG4) did increase thg
tial conditions s =44.6°, s =101.0°, and ¢s — s, effectualnes$3] of nonspinning PN templates, the resulting

B . i - DTF family was still not good enough to recommend its
= —39.7° (at 30 Hz). The figure plots also the projection of 5 ication when trying to capture the real modulated wave-

Ly onto the plane perpendicular to the initial(lower left  forms. Moreover, this DTF requires three additiomatinsic
pane), and the precession angle betweenl  andJ, plot-  parameters 6, and B) on top of the two BH(or NS

ted as a function of inverse GW frequenty® (lower right masses. The resulting GW searches would then be plagued
pane), and showing a very nearly linear dependence. by an extremely high computational cost.

Building on the results obtained by ACST, Apostolatos In the rest of this paper, we shall propose a better template
[11] conjectured(quite reasonablythat orbital precession family, inspired by old and new insight into the precessional
will modulate the gravitational waveforms with functional effects that appear in the gravitational waveforms. As we
dependencies given by Eg®l) and (62). On the basis of shall see, Apostolatos’ ansatz can be improved to build DTFs
this conjecture and of the observation that, in matchedthat have both high effectualnefsd| and low computational
filtering techniques, matching the phase of signals is morgequirements.
important than matching their amplitudes, Apostolatos pro-

pqsed a family_ of detection_templal‘@élﬂ] obtained by modi— IV. DEFINITION OF MODULATED DTFS FOR
fying the phasing of nonspinning PN templates as in PRECESSING BINARIES
Apostolatos’ ansatz: We are now going to bring together all the observations
reported in Sec. Il to build DTFs that perform well in cap-
Yspinning— Ynon spinningt C €O 8+ Bf ~#3), (64)  turing the detector response to the GWs emitted by precess-
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ing binaries of NSs and spinning BHiat least as long as the In general, the unit vector along the separation vector of
actual physical signals are modeled faithfully enough by thehe binary,n(t), and the unit vector along the corresponding

adiabatic target model described in Seg. Il relative velocity,A(t), can be written as
In Sec. IV A we develop a nevas far as we knoyvcon-
vention for the generation and propagation of GW’s from n(t)=e,(t)cosd(t)+e,(t)sind(t),
spinning binaries; this convention has the desirable property
of factorizing the waveform into aarrier signal whose X(t)z—el(t)sintb(t)Jre2(t)cos<I>(t), (65)

phase is essentially the accumulated orbital phase of the bi- R

nary, and amodulated amplitudéerm which is sensitive to wheree,(t), e (t), andes(t)=Ly(t) are orthonormal vec-
the precession of the orbital plane. In Sec. IV B we then us¢ors, ande, ,(t) forms a basis for the instantaneous orbital
the results of Sec. 1l D to build an approximation of the plane[see Fig. 4, the quantity®(t) is then the orbital phase
carrier signal, and the results of Secs. Ill B, Ill E, and Ill F to with respect tog; ,(t). The definitions o, t) and of d(t)
build an approximation to the modulated amplitude; usingare not unique: an arbitrary function of time can be added to
these terms together, we define three families of detectiof?(t), and then compensated by a time-dependent rotation of
templates. In Sec. IV C we describe two standard families o&; j(t) aroundLy(t), leavingn(t) and A(t) unchanged. In
nonspinning-binary templates; in Sec. VI we shall compargwonspinning binaries the orbital plariand thereforel )
their performance with the performance of our DTFs, todoes not precess, so the natural choice is to legercon-
evaluate the performance improvements brought about byiot |n spinning binarieSy(t) precesses, and different, but

our treatment of precession. nonetheless meaningful, conventions can be giverfg(t)
and®(t). Note that®(t) is not, in general, the same as the

A. A new convention for GW generation in spinning binaries accumulated orbital phask(t) = [ w(t)dt. Given a conven-
At least two conventions are used to express the gravitaiion for e; (t) and®(t), the tensoiQ{ that appears in Eq.

tional waveforms generated by binaries of spinning compac{14) can be written as

objects, as computed in the quadrupolar approximd@&h i ii .

the ACST conventiorf10], which uses a rotating reference c=—2([e.]"cos2b+[e,]"sin 20), (66)

frame, and the FC conventi¢t5], which uses a nonrotating \yhere

reference frame. We discussed the FC convention in Sec.

Il C, and we used it throughout this paper to generate gravi- e, =eRe—6Re), e=ere+ere. (67)

tational waveforms from the numerical integration of the ) A

equations of motion of the target model. Before going to theWVith the detector lying along the directid#, one goes on to

specific conventions, we shall first sketch a generic procedefine a radiation frame, formed by orthonormal vectgs

dure to write the gravitational waveform. e? andel=N. The GW response is then given by
2u M i i
hresp: - F T([e+] jCOS2q)+[e><] jsm2¢)([T+]ijF+ +[T><:|ijF><)’ (68)
factor Q: quadrupole moment factor P: detector projection

where the tensorgT ;. . J;; are given by Eq(25), namely, eX(t)c =NxX L(t). Although the ACST convention has al-
_ Ro.R_.R..R _ R .R..Ro.R lowed some insight into the waveforms, it is rather inconve-
T =606&-§08g, Tx=60g+g06, (69 nient for the purpose of data analysis, because almost all the
quantities that come into Eq68) [e; 5, T4 x, andF . 4]
depend both on the time evolution of the binary and on the
direction to the detector. Using the terminology introduced in

and where=, andF are given by Eq(28), namely,

|:+‘X:%[g)(@gx_gy@gy]ij[-rhx]” , (700  Sec. IIC and Table I, under the ACST convention the local
and directional parameters are entangled in a time-dependent
manner.

with gx,y the unit vectors along the orthogonal arms of the  FC introduce the fixed source axés;, e}, €5} [see Sec.
interferometer. Againgf and €} are not uniquely defined, | CJ, and they impose thag(t)<eSx L y(t) [see Eq(17)].
because they can be rotated at will aroudd of course The radiation frame does not change with tifs=e Eqgs.
changing the values d¥, andF . (21)—(23)]. As a consequence, the factdgsand P in Eq.
ACST referd(t) to the directionN of GW propagation, (68) become disentangled: the factQrexpresses the com-

. . csT A ) ponents of the quadrupole moment, which depend only on
by imposing  that e"f ()=NXLy(t); they also set the evolution of the binary inside the source frame; the factor

104025-14



DETECTING GRAVITATIONAL WAVES FROM . .. PHYSICAL REVIEW D67, 104025 (2003

TABLE V. Parametric dependence of the building elements of the detector response fimgtiéBq. (68)] under the ACST, FC, and
precessing conventions.

Convention FactoP FactorQ
Tixs Fox ®(1) e, x(t)
ACST Function of basic, local, and Function of basic, local, and Function of basic, local, and
directional parameters; directional parameters directional parameters

time dependent

FC Function of directional parameters; Function of basic, local, and Function of basic, local, and
time independent directional parameters directional parameters

Precessing Function of directional parameters; Function of basic and local Function of basic and local
time independent parameters only; coincides Witft) parameters only

P expresses the projection of the quadrupole moment ontthat in the precessing convention the polarization tensors
the radiation frame and onto the antisymmetric mode of thee, . (t), as geometric objects, dwt depend on the source
detector, which depend only on the relative orientation beframe, but only on the basic and local parameters. In prac-
tween the source frame and the detector. However, for ouiice, however, we need to introduce an arbitrary choice of the
purposes there are still two shortcomings in the FC convensource frame to relate the orientation of the binary to the
tion. direction and orientation of the detecthat is, to write

(1) The FC convention defines (t) and®(t) in terms  explicitly the productge, . ];;[ T+ «Jij). We can avoid this
of the fixed source framef’yyz, which is quite artificial, arbitrariness by setting the source frame according to the
because only the relative orientation between binary and denitial configuration of the binary at a fiducial orbital fre-
tector affects the detector resporiggy,. quency; for example, we can impo&egithout loss of gener-

(2) In Sec. I D we saw that the accumulated orbital ality)
phaseV (t) is (almos) nonmodulated, so the modulations of

the waveform come mainly from the precession of the orbital €2S;(0) —[S1(0) - Ly(0) 1L (0),
plane. Under the FC convention, the modulations appear R R
only in factor Q of Eq. (68), but they appear both in the &=Ln0)xe}, e=L\(0) (73

phased(t) and in the precession of the tensers . (t). It
would be nice to isolate the precessional effects in eithefnd
element. s s S

Both issues would be solved if we could find a modifica- e(0)=¢, e(0)=¢, e0)=¢. (74)
tion of the FC convention wher® coincides with the accu- -~ s o
mulated orbital phas# . As it turns out, it is possible to do LI S1(0) andL(0) are parallelg, can be chosen to lie in

so: we need to redefine the vect@s(t) so that they pre- any direction within the plane orthogonal tq,(0).] Then

cess alongsidé the initial conditions, as expressed by their components with
' respect to the source frame, are determined only by the local
(=0t x8(1), =12, (7n) ~ Parameters,

with Ln(0)=(0,0,D), (75
Q)= () —[Q(1)- L) N(1), (72) $1(0)=(sinfs ,0,c080s,), (76)

where Q, is obta}ined by collecting the terms th@tross- S$,(0)=(sinbs,cod s, ~ b)),

producy multiply Ly in Eq.(9). In Appendix B we prove that _ _

this convention yieldsb=w=¥, as desired. Qualitatively, sinfs sin(¢s,— ¢s,),C0S0s)), (77

one can reason as follows. The angular velocity of the binary _ o ) )

lies alongl y(t) and has magnitud® = w. The reason why &/0Ng With an initial orbital phas#, given by

® and¥ differ is that the orbital basis, ,, used to define _ ;

&, must rotate to keep up with the precession of the orbital n(0)=ey(0)cost o+ &(0)sino. (78)

plane. However, the difference vanishes if we constrain theyith this choice, all the directional parameters are isolated in

angular velocity ofe; , to be orthogonal td_y; Eq. (72  factor P of Eq. (68), while the basic and local parameters

provides just the right constraint. In the following, we shall (which affect the dynamics of the binanare isolated in

refer to our new convention as tipgecessingonvention. factor Q. We will call upon this property of the precessing
In Table V we summarize the parameter dependence afonvention in Sec. VI D, where we propose a new family of

the terms that make up the detector response fun¢iion  templates for NS-BH binaries built by writing a set of ortho-

(68)], under the three conventions. It is important to remarknormal component templates that contain all the dynamical
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TABLE VI. Specification of the DTFs examined in this paper.

Template family Uam(f) A, (F) Ay(f) As(f)
(Yotha)2 tof =33+ yhgpf 23 f=700(f o 1)
(Yothae)a tof =53+ g 23 f=700(f o ) f20(f oy )
(Yodh32B)e Pof =5+ thgpf 2° f=7%0(f i~ ) f~"cos@f ) o(f e f) f=7%sin(Bf =9 6(f cu— 1)
(Yot32B")6 Pof =5+ tgpf 2° f=7%0(f i~ ) f~"%cos@f 1) 0(f cu— ) f=7%sin(Bf 1) O(f e )
information expressed by fact@y, and then using their lin- 11l E and Il F suggests that we adopt the Apostolatos’ ansatz

ear combinations to reproduce the projection operation ex-30], and write expressions in the generic forms
pressed by factol. i_ o

Going back to the main thrust of this section, we obtain (e 5 J'[T+ xjk*Cy xCOIBF "7+ 5, ) or
the detePtor response,, by setting the direction to the ocC+,Xcos(Bf‘l+5+,X). (85)
detectorN (specified by the angle® and ¢ with respect to
the source frame and by introducing the radiation frame,

oriented along the axes Indeed, our extended numerical investigations provide evi-
_ dence that expressions of the foii®5) should work quite
ff=—e’sinp+e) cose (79) " darafi
' well for the binaries under consideration.
, , All these elements suggest that we introduce a family of
R= —e5cosO cosp— €’ cosO sing+esin® : : :
&§="& g PTE , 60 detection templates of the genefBburier-domaii form
f'=+¢7sind cose+€sind sing+e cos®=N; (s Ao ar f)
(81)
n
we then get = D (ayt+iays ) A f) [e2mifoglvnm®  (for f>0)
k=1
2u M - N
hresp=—HMT([eJ,]"cosZPwL[eX]”sin W) (86)
X[ JiF o [T Foo)- (82 rand h(f)=h*(—f) for f<0], where theA(f) are real

mplitude functionsthe «, are their(rea) coefficients, and
o is the time of arrival of the GW signals. The functigf
represents the phase of the unmodulated carrier signal; we

_ _ . . . . . . . 3
Presd 1) = —he(F){[e, (t) TF+ilex(t) ) write it as a series in the powers f3,

Applying the stationary-phase approximation at the leadin
order, we can write the Fourier transformtof, as

X([ToliF++[Tx]iFx) for >0, (83
jk jk wNM(f)=f75/3(l//O+ $1/2f1/3+ wlf2/3+ 1/13/2f+ . )

where he(f) is the SPA Fourier transform of thearrier (87)
signal
2u M As discussed in BCV1, this phasing works well for relatively
he=—4 -cos2v, (84 high-mass, nonspinning BBHs, and for NS-BH binaries; in

addition, as anticipated in Sec. Il D, the PN coefficieiits

and wheret; is the time at which the carrier signal has in- are able to capture the nonmodulational effects of spin-orbit
stantaneous frequendy and spin-spin couplings on the orbital phase. In this paper we
examine three specific families of detection templates of this
form, listed in Table VI. The subscripts 2, 4, and 6 in our
abbreviations for the template families denote the number of

By adopting the precessing convention, we isolate all they, coefficients that appear in E(86).
modulational effects due to precession in the evolving polar-  The families /yi/s/5), and (Yoispa) 4 Were already stud-
ization tensorge, »]" (these effects will show up both in jed in Ref.[8] for the case of nonspinning binaries. Both
the amplitudeand in the phase ofy.s). The discussion of families contain the leading™ "6 Newtonian dependence of
Sec. 1l D shows that, to a very good approximation, thethe amplitude; howeveryy i) 4 contains a correction to
carrier signal is not modulated, so we expect thaff) the Newtonian amplitudéntroduced in BCV1, where it was
should be approximated well by the nonspinning PN tem-parametrized by) which can account for the variation of
plates studied in BCV1, or variations thereof. As for the timethe rate of inspiral in the late stages of orbital evolution. The
dependence of the tensdms, ], the discussion of Secs. first family is given by

B. Definition of a new DTF for precessing binaries
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(Yothan) family where thef =% frequency dependence in the sinu-
soidal amplitude functions is replaced by?.
h( ... :f)=(a,+ian)f 700(f— f)e o For all three families, }he templatgs are terminated(atta.
frequencyf ., above which the amplitude drops to zero; this
X expi[ of 53+ gnf ~20: (88)  fis in effect one of theintrinsic) search parameters. For

all three families, the frequency dependence of the phase
herea; +ia, can also be written ad expigS", wheregS"W  includes the leading Newtonian ter®? and a termf ~ %
is the initial GW phase, and! is an overall normalization that corresponds to the 1.5PN correction in the phase evolu-
factor for the template. So the twg, coefficients encode the tion of nonspinning binariesas obtained, in the SPA, by
initial global phase of the waveform, plus a normalizationintegrating the energy-balance equation through an adiabatic

factor. The second family is given by sequence of circular orbits, using PN expanded energy and
flux). In BCV1 we found that including either the 1PN or
(Yothapt) 4 1.5PN term is in general sufficient to model the phase evo-

lution of nonspinning binaries of high mass.

h(...iH)=[(a;+ia)f "+ (az+iayf 7] C. Definition of the standard SPA template families
X O(f ou— F) 2™ toexpi[ ¢of ~ 53+ ignf ~23; In this section we define two families of standard
(89) nonspinning-binary templates, obtained by solving the
Taylor-expanded energy-balance equation for an adiabatic
sequence of quasicircular orbits, and using the stationary-
s A" 1f 751+ a exli™i ), wherea is the ad- Gy SRR B0 B VYR SR LS O e
ditional amplitude parameter angf" is the relative phase of - aiching performance of these templates to the performance
the amplitude correctiofias in BCV1, in this paper we al-  of gur new DTFs, to show that the various tricks used to
ways set¢*=0). So the four coefficientsy, encode the pyiid the new families do indeed improve their effectualness
global phase, the strength of the correction to the Newtoniapg]. The standard SPA families are built from the analytic
amplitude, and the relative phase of this correction with reexpressions of Ref§17,19. The frequency-domain phasing
spect to the Newtonian amplitude, plus an overall normalizafunder the assumption of nonevolving orbital angular mo-
tion factor. mentum and spinss given by[11]
The third family, @/qi38)6, contains the leading New-

another way to rewrite the coefficients _, more physically

tonian amplitude, modified by two modulation terfizsgen- _ - i —5 33 L43
eralization of the Apostolatos ansai®5)] that account for Vsea ) =27t pot 128( M) 1+ 51338
the precession of the orbital angular momentum due to spin 1

effects. It is given by + Z 77) (M f)2/3_ 4(477_TSO)(77M f)
(FodaB)e: 0( 3058673 5429 617 , _ )
h(...:5)=F "9 (ay+iay) + (as+iay)cog Bf 23 1016064 1008”7 1447 ~ 'SS

+ (ag+iag)sin(Bf ~23)]0(f g f)e?™ o

X expi[ gof ~>+ graf ~27; (90)
where M =M 7°5 is thechirp massand whereTgo and Tsg
another way to rewrite the six coefficients_g in close anal-  are the spin-orbit and spin-spin terms, given explicitly by

ogy to Apostolatos’ ansatz is
113+ 25m, . 113+ 25m,
12 4m 12 4 m,

X (7Mf)*3], (92

1
T e

N »

Ae'90 T 1+ Cel 4" cog B3+ 8,+168,)]

- ow - cos (93
=Ae'%0 9 1+Ce'? cogBf 2R
. 1 “ A
+Cg. € sin( Bf 23] (92) Tss:W[—24751'52+721(51'LN)(Sz'LN)]-
(94)

(where all the coefficients are still realSo the six coeffi-
cientsa, encode the global phase, the strength of the ampliYWe neglect all PN corrections to the amplitude, by adopting
tude modulation, its relative phase with respect to the Newits Newtonian functional forni ~ /%, we also neglect all pre-
tonian amplitude, and the internédomplex phase of the cessional effects, by settinfso=Tss=0. Templates of this
modulation. It is clear that our family implements a gener-form are routinely used in searches for GW signals from
alization of Apostolatos’ ansatz, because we allogomplex nonspinning binaries. In that case, the templates are gener-
phase offset between the Newtonian and the sinusoidal anally ended at the GW frequency corresponding to the
plitude terms, and also between the cosine and sine modul&chwarzschild ISCQ g¢,,~0.022M. We denote such tem-
tional terms. We consider also a variamty(/s8')e of this  plates as SPAs. We introduce also a variant of this family,
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SPAc, characterized by the additional frequency-cut paramplicitly many different values of; , of ., and of 5; how-

eterf.y, used also in our DTFs. Altogether, we get ever, for any choice of these parameters, the bgsindt,
are determined automatically by simple algebraic expres-
SPAs: sions(see Sec. I B of BCVL For the next few paragraphs,
where we discuss the optimization of the coefficiemts we
h(M, 9,tg, o, an;f) = anf™ 700(f genu— f)e? o shall not indicate the dependence of the templates on the
intrinsic parameters.
X expi[ ¥spat o], (95 For a given signas, we seek the maximum of the overlap,
SPAC: max(s,h(tg,ay)) (97
' to,ax
h(M, 7, feurto, Yo, an; f)= aNf—Wﬁg(fcut—f)eZWi”o under the normalization condition
X expi[ Yspat Yol (96) (h(to,a),h(tg,a)) =1 (98)
[this condition is necessary to set a scale for the statistic
V. GW DATA ANALYSIS WITH THE DTF distribution of the overlap between a given template and pure

] ) ] o noisg. Here the inner produc,h) of two real signals with
In searching for GW signals using matched-filtering tech-r oy transformg, T is defined by

nigues, we construct a discrete bank of templates that repre-

sent all the possible signals that we expect to receive from a +2g* (f)h(f) +og* (F)R(f)
given class of sources. We then proceed to compare each (9,h>=2f Wdf—4 ef Wdf
stretch of detector output with each of the templates, com- o 0 " 99)
puting theiroverlap (essentially, a weighted correlatiorA

high value of the overlap statistic for a given stretch of de-(see BCV]. We proceed constructively: first, we build a new
tector output and for a particular template implies that thereset of amplitude functionst,(f) that are linear combinations
is a high probability that during that time the detector actu-of the A,(f), and that satisfy the orthonormality condition
ally received a GW signal similar to the template. This tech—<;4,(f) ,Ql-(f)>=5~- for i,j=1,2,...n: we then define an
nique is intrinsically probabilistic because, for any template, .~ '~} ! o :

detector noise alone cafmarely) yield high values of the orthonormal set of singlek, templates,

statistic. In general, the higher the value of the statistic, the Ri(to; f)=A,(f)e2 flog!¥nm,

harder it is to obtain it from noise alone. So it is important to

set the detection thresholdabove which we confidently Aisn(to:f)=iA(f)e?mtog¥nm  (for £>0) (100
claim a detectiopby considering the resulting probability of . A

the false alarmscaused by noise. [and h(f)=hg(—f) for f<O0], which satisfy

To verify whether the DTFs developed in Sec. V can be(ﬁi(to)ﬁj(to»z & (withi,j=1,2,...,2) for anyt,. The
used to search reliably and effectually for the GWs frommaximized overlagEq. (97)] can now be rewritten as
spinning binaries, we need to evaluate fitting factor FF of
the DTFs in matching the target signals for a variety of bi- - A
nary and detector parameters. The FF is defined as the ratio {“a><5'h(t0’“k)>:”}ax”3axk21 ai{s.Ni(to)), (10D
between the overlap of the target signal with the best pos- 0k 0
sible template in the family and the overlap of the targe
signal with itself[31]. So in Sec. V A we discuss the maxi-
mization of the overlap over template parameters for a give

2n

Swhile the condition(98) is now simply 32" ,42=1. The
Ijpner maximum of Eq(101) (over thea,) is achieved when

target signal. The other important element to evaluate the (sﬁ (to))
reliability and effectualneds3] of the DTFs are the detection a = Ko , (102
thresholds that the DTFs yield for a given false-alarm prob- 2n
ability. In Sec. V B we discuss these thresholds under the (s,ﬁj(to)>2
simplifying hypothesis of Gaussian detector noise. The ma- j=1
terial presented in this section builds on the treatment o - : -
matched-filtering data analysis for GW sources given in Sec;md the maximum overlap itself is
Il of BCV1 (which is built on Refs[2,3,7]), and it uses the -
same notations. maxs,h(tg, ay))=max maxkzl a{s,h(to))
to. e to o 7
A. Maximization of the overlap over template parameters 2n
Among all the template parameters that appear in Eq. = \/maXE (s,hi(te))%. (103

(86), we are going to trea#;, f.,, and B asintrinsic pa- to 171

rameters; andy, andt, asextrinsicparameters: that is, when This happens essentially because the sum in(Hif) can be
we look within one of our DTFs for the template that bestseen as a scalar product in a-Bimensional Euclidean

matches a given target signal, we will need to conseer space, which is maximized when the unit-2ector &, lies
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along the direction of ther2vector(s,h,(t)). The quantities
(s,hi(te)) for j=1,2,3...,n are given by the two related
Fourier integrals

e [N O ()
(s,hj>—2Ref0 s e?™todf,
(104
R B +ocJ2[J.(f)ei'//NM(f)s*(f) poitt
(s,th)——Zlmf0 ) e-™Modf,
(105

We now go back to discussing the full set of template105

parameters. The relevant measure of éffectualnes3] of
a template family at matching a physical sige# thefitting
factor FF,

(s,h(tg,ay))

V(s:s)

(see, for instance, Sec. Il of BCY1which is maximized
over thea,, but also over the time of arrivdl, (also an
extrinsic parametey and over all the intrinsic parameters,
¥i, feur, @ndB. The fitting factor is a function of the physi-
cal parameters of the physical sigrsaland of course of the
template family used to match it. We define also $ignal
amplitudeSA for a given signal,

SA=\/(s,s). (107

SA gives theoptimal overlap obtained for a template that is
exactly equal to the sign&except for its normalization and

FF=

to. k. fout i

(106)

it is inversely proportional to the luminosity distance to the
source; where we do not indicate otherwise, we always ad

sume the fiducial distanady=100 Mpc.

The maximization of the overlap ovéy is easy to obtain,
because the integra{¢04) and(105) can be evaluated at the
same time for all the, using fast Fourier transform tech-
niques[32]. On the other hand, the maximization ovg[;
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TABLE VII. Detection thresholds for a false-alarm probability
=102 for a y-distributed detection statistic withn2degrees of
freedom, forNjmes=3x 10", and for theNgpapesgiven in the first
column. The values given forj, i), do not take into account
the ¢* =0 constraint.

Nshapes Threshold for false-alarm probability 103
(Yotbar2) 2 (Yothapa)a (YothsiB)e
n=1 n=2 n=3
10 8.44 8.87 9.22
10° 8.71 9.13 9.48
10 8.97 9.39 9.73
9.22 9.63 9.97
1 9.47 9.87 10.21

In this section we are going to evaluate the false-alarm
probability for one such test, defined as the probability that
detector noise alone will yield an overlap greater than the
detection threshold. The total false-alarm probability is then
obtained by multiplying the false-alarm probability for a
single template by the NUMbEY;,40.s0f independent signal
shapes(generally of the same order of magnitude as the
number of templates in the bankand by the numbeies
of possible times of arrivaly, distanced in such a way that
the displaced templates are essentially orthog¢ddl). At
the end of this exercise, we are going to set the detection
threshold so that the total false-alarm probability is accept-
ably low.

Under the assumption of Gaussian noise, the inner prod-

uct(n,ﬁj) of noisen alone with a normalized template com-
ponenth; is (by constructioh a Gaussian random variable
with zero mean and unit varian¢see, for instance, Sec. Il of
CV1). Becausdfor the same, and for the same intrinsic
parameters all the ﬁj are orthogonal, the inner products
(n,ﬁj) (for j=1,...,2n) are all independent normal vari-
ables. It follows that the statist= maxoyakm,h(to,ak)) [see
Eq. (103)], given by the square root of the sum of their
squares, follows thg distribution with 2n degrees of free-

and over the other intrinsic parameters is obtained by agom, characterized by the probability density function and
explicit search over a multidimensional parameter rangegcumulative distribution function

where we look for the maximum of the partially maximized

(over extrinsic parameter®verlap, given by Eq(97). For

all the actual searches discussed in this paper we emplo¥yn)(X=X)=

with good results the simplicial algorithmvoEeBA [33].

B. False-alarm statistics of the DTFs

In the practice of GW data analysis, templéeniliesare
used to build discrete templabanksparametrized by a dis-

2nflef)<2/2 F(n,O,XZ/Z)

INGI
(108
where we have used thgeneralized incomplete gamma
functionF(n,zO,zl)=f§(1)t”‘1e‘tdt. Forn=1 we obtain the
Rayleigh distributiontypical of the maximization of the am-

Z“Tl“(n)' Cy2n)(X<X)=

crete set ohtuples of the intrinsic parameters. Then each ofplitude of signals with two quadratures.
the templates is correlated with the detector output, to see if In Table VII we show the thresholds needed to obtain a

the detection statistifin our case, the partially maximized

total false alarm probability of IC°, with ANjmes=3% 101

correlation(97)] is greater than the detection threshold. It is (typical of about three years of observation with LI@nd
important to notice that the statistic is already maximizedwith the Ngpapesgiven in the first column. We observe that
with respect to the extrinsic parameters, while the intrinsiceach time we increast/,apedy one order of magnitude, the
parameters serve as labels for each of the templates. Therreshold increases by about 2%is happens uniformly for
fore, we are effectively setting up a separate detection testll n's). On the other hand, each step fnincreases the

for each of the templates in the bank.

threshold by about 4%. Thus, when we design DTFs we
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should keep in mind that the best possible overlap increasesith respect to the direction and orientation of the detegctor
with the number of templates employed, and with the com-Thus, all the parameters will affechoth the amplitudeS
plexity of the templategclearly, the complexity of our DTFs =<hresp,hres;>1/2 of the signals received at the detectord
increases with the number of amplitude functiprisut the  the ability of our DTFs to match them, as codified in the
detection threshold increases as well, reducing the number @ting factor FF; it is therefore clear that, in evaluating the
signals that pass the detection test. So in principle we argffectualness of our DTFs at matching the target signals, we
justified in using more numerous and more complex temwyj| need to compute FF not only for a range of binary
plates only if the gain in the overlap is larger than the in-masses and spins, but also for a suitable sampling of the
crease in the detection threshold. local and directional parameters.

The prospects shown in Table VII for the models with In the case of nonspinning binariésee BCV1, there are
=2 andn=3 improve somewhat if we constrain the valuesno local parameters as we defined them in this paper; the
that the e can attain when they ar@lgebraically maxi-  directional parametemo change the GW signal, but only by
mized. We can do this, for instance, if we judge that certainmultiplying its amplitude by a constant factor, and by adding
combinations of they, correspond to unphysical waveforms, a constant offset to its phagas opposed to modulating am-
but then we must be consistent and exclude any detectiorsiitude and phase as in the case of spinning binaries
that cross the threshold within the excluded parameter reBCv1 (following a common practice in the GW data-
gion. In any case, we should remember that our study ofnalysis literature we included the variation of the ampli-
false-alarm statistics is based on the idealization of Gaussiaidein the definitionof the target signals, by averaging the
noise, which will not be realized in practice: real-world data-amplitude factor over uniform solid-angle distributions of the
analysis schemes rely on matched-filtering techniquesgirectional parametefsee Eq(29) of Sec. I D). As for the
complemented byetoing schemef35], which remove de- initial phase of the signal, we defined the FF on the basis of
tection candidates using nonlinear tests on the signal. Thergninmaxoverlaps[3], which are maximized over the initial
fore, any DTF should be evaluated in that context before it isemplate phaséand over all the other extrinsic and intrinsic
excluded for producing excessive detection thresholds withifemplate parametersut minimized over the initial signal
the Gaussian analysis. phase; this minimization is obtained algebraically, just as for
the extrinsic template parameters. In fact, it turns out that
minimizing or maximizing the overlap over the initial signal
phase changes the resulting FF by a very small quantity.

We wish to investigate the effectualnd$g§ of our DTFs In the case of the spinning binaries examined in this pa-
in matching the GW signals generated by precessing binarigger, this picture changes radically, because minimizing the
of spinning compact objects, at least as approximated by theverlap over the directional parameters yields very low FFs
target model described in Sec. Il. To do so, we shall evaluatthat are not representative of the typical results that we
the fitting factor FFEq. (106)] of the DTFs over a popula- would get in actual observations. So we take a different ap-
tion of binaries with a variety of basic, local and directional proach: we study the distribution of FF for a population of
parameters, and compare the results with the FF obtained féinaries characterized by different basic, local, and direc-
the standard SPA familigSec. IV C. In Sec. VI Awe study tional parameters. In particular, we select several astrophysi-
the effect of the directional parameters on @Rd SA, with cally relevant combinations of basic parameters, and we
the aim of reducing the dimensionality of the test popula-sample randomlybut as uniformly as possiblehe space
tions. In Sec. VI B we describe the Monte Carlo scheme use@panned by the local and directional parameters. In practice,
to generate the populations, and we identify two performanc#e can exploit certain symmetries of this spatiet is, the
indices for the template familieghamely, the simple and fact that different combinations of the local and directional
SA-weighted averages of FAn Sec. VI C we give our re- parameters yield the same signad reduce its effective di-
sults for these indices, focusing first on the BBHs considerednensionality. Let us see how.
in this paper. Finally, in Sec. VI D we give our results for ~Under the FC convention, the complete specification of a
NS-BH binaries, and we briefly describe a new, very promdarget signal requiregat least formally 15 parameters: ac-
ising family of templates for these systems, suggested by theording to our classificatiofSec. Il D), four of these are the
insights accreted during the development of this paper.  basic parametersM, 7, S;, andS;); three are the local
binary angles Qsl- Os,, and bs,— d)sz); three are the direc-
tional binary angles((LN, bry and¢>31+ ¢SZ); and five are
) the directional GW and detector angle®,(¢, 6, ¢, and

As we haye seen in Secs. Il C and II D, thg detector re—lr,l)_ Of the latter,6, ¢ and ¢ come into the waveform only
SponseNyesy is @ function not only of the basic and local y4,qh the antenna patters andF ., [see Eqs(29) and
parameters of the binarywhich describe, respectively, the (34)) % s redundant to specifypoth the directional binary
masses and spin magnitudes, and the initial relative diréCysias(which determine the orientation of the binary as a
tions of the spins and the orbital angular momentum, angy e in spaceandthe directional GW anglesvhich deter-
therefore change the dynamical evolution of the binanyt . A .
also of the directional parametefwhich describe the rela- MN€ the.d|rect|onN of GW propagation to the detgc)or
tive direction and orientation of binary and detector, and altePecause if we apply the same rotatiorN@nd to the binary

the presentatiorof the precessing orbital plane of the binary vectorsLy, S;, andS,, we do not change the response of

VI. EVALUATION OF DTF PERFORMANCE

A. Effect of directional parameters on FF and SA
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the detectorh,es,. So we can use this freedom to set when M>20Mg, and 40 Hz otherwise. For each set of
=m/2 ande=0. Once this is done, we still have the free- masses, we use the Halton sequence with bases 2, 3, 5, 7, 11,
and 13 to generate 10@fuasirandomnsets of the six angles

dom to rotate the detector-binary system around the Rixis e , )
bL,.s,.s,andd s s the directions of the resulting orbital

Such a rotation(by an anglev) will transform theF . and

F . antenna patterns according to angular momentum and spins are uniformly distributed over
the solid angle. We denote each sestuple by the sequential
F.—F,.cos2—Fsin2v, (109  indexl, for 1=1,... N=1000. We always se® = 7/2, ¢
=0,F,=0, F«=1, and we takely=100 Mpc.
Fx—F,sin2v+Fycos2. (110 For each set of masses, and for each DTF, we compute the

Looking at Eqs(29) and(30), we see that, for any original Monte Carlo average of the FF,

0, ¢, and ¢, we can always find an angke for which F o 1 N
=0. The corresponding neWw, becomes FF=<FF):N2 FF[1], (113
I=1
1
Fy= iz\/(l+00529)200522¢+4 cod sin22¢; and its variance
(111 N
once again, the detector response does not change. For future UEF:<AFF2>:m 21 (FF[I1-FF)?, (114

use, let us define ap[F«] (with fép[FX]dezl) the

probability density forlF.| induced by uniform solid-angle yhich can be used to estimate the sampling error of the
distributions for¢ and ¢ [notice thaty does not appear in  y\1qnte Carlo average aSFF=oe/ N,

Eq. (111)]. . . . There is another function of FF and SA that has a particu-
Now, for a given DTF and for given basic parameters, oy jnterest for our purposes. Consider each configuratisn

consider the dlstr|t_>ut|on of FF and SA obta!ned for an -y representative of a subclass of physical signals that have

parameter p(_)pu_latlc_m of target signals specified by uniformyo came binary, GW, and detector paramefexsept for the

solid-angle distributions o, s, s,, ¢1,.s,.5, @, @, 0, . gegenerate parameters discussed abdue that are gener-

and . By the above arguments, we obtain the same distriated uniformly throughout the universe. The rate of success-

bution of FF and SA from a six-parameter population offul signal detections using a given DT is then

target signals specified by uniform solid-angle distributions

of O s, s, L5, DY O=7/2, ¢=0, F.=0, and by FF[I]SA[I] |2

F . distributed according t@[F.]. Moreover, becausE Ruetedt !, Fx=1]=Rq, thresholDTF]) (119

appears only as a normalization factor in front of the expres-

sion (27) for the signal(onceF, =0), we can simply set whereR,_ is the rate of events out to the distardgfrom

F.=1: this operation does not change Ffécausé™. ap-  garth. Here we assume th&, is a function of the basic
pears homogeneously in the numerator and denominator of rameters of the binary. b ton t b Thi tion hold
Eq. (106)], while the distribution of SA for the original 11- parameters of the binary, but no S équation nolds

parameter population can be recovered from its moments Op]ecause F[FF]. S.A[l] Is the signal-to-noise ra}tldhat Is, the
the six-parameter population: overlap maximized over the DJFHor the signall at the

distanced,; the ratio of FFl] SA[l] to the DTF threshold
1 gives the fraction or multiple of the distandg out to which
(SA™ 11 par=< J (Fx)"SA™p[F]d F><> signals of the claskwill pass the detection test. Folding in
0 6 par p[F«] we get

1
:<SA >6 par O(FX) p[FX]dFX . (112) Rdetec[l]:Rdetec[lyFX:]-]'fl(FX)Sp[FX]dFX
0

B. A Monte Carlo procedure to evaluate DTF performance =0.293 Ryeted | F =11 (116

We are going to evaluate the effectualng¢8$ of our

DTFs within a Monte Carlo framework, by studying the dis- _ N
tribution of FF (and FFPSA3, see below over six sampled rate, Retecr= (1) 21=1Raeted 1] On the other hand, the

populations of 1000 binaries each, specified as follows, Woptlmaldetectlon rate that we would obtain with a perfectly

study the binary systems already examined in Sec. Ill: BBHEa'tthI DTF is

with masses (26 10)Mo, (15+15Mg, (20+5)Mg, N 3

(10+ 10)M, and (7+5)My, and NS-BH binaries with Rer Ry ( SAll] )

masses (181.4)My. All the BHs have maximal spin, optimal™™ "o A7 (<4 | thresholdi DTF]

while the NSs have no spin. We integrate numerically the N

target-model equations starting from initial conﬁgurauons Xf (Fy)3p[Fx]dFy . (117
that correspond to instantaneous GW frequencies of 30 Hz 0

Summing over thé, we get an estimate of the total detection
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(15+15)Mg at 100 Mpc . (10+1.4)M at 30 Mpc
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FIG. 10. GW signal amplitude SA as a function of the initfm-N (that is, the cosine of the angle between the direction of GW
propagation and the initial total angular momentum at the Newtonian)ofdeour Monte Carlo populations of (#515)M o BBHSs (in the
left pane) and (10+1.4)M NS-BH binaries(in the right panel The signal amplitude is computed for a LIGO-I noise curtzg. (28) of
BCV1]; it is normalized at fiducial distances of 100 and 30 Mpc, and averaged over the probability distritjiioh

We can therefore define theffective average fitting factor thogonal toS; andJy, (that is, whenk.¢ has a value close to
FFe (which is a function of the basic parameters of thezero[37]). The mixture of these two tendencies creates the
binary, but which is already integrated ov¢rfrom the equa-  shape seen in the right panel of Fig. 10.

tion

Rdetect= ﬁ:gﬂRoptima|. (118 C. Performance indices for the standard SPA templates and
for the modulated DTFs

We then get Figure 11 shows the distribution of FFs, evaluated for our

1/3 DTFs and for the SPA standard templates against the 2PN
(119 target model, within the Monte Carlo populations of BBHs
and NS-BH binaries described in the previous section. The
vertical lines show the Monte Carlo estimates-6f andFFy
To compute the Monte Carlo results presented below we usghe latter is always larggrwith their estimated errors; these
the jackknifed[36] version of this statistic to remove bias, numbers are given also in Tables VIII and IX. We wish to
and we estimate the errarFF.¢ as the jackknifed sampling discuss several features of the FFs.
variance. For each class of binaries and for a specific DTF, (1) The SPA template familiegsolid and long-dashed
the effective fitting factoFF.¢ represents the reduction in the black lineg always give the worst performance. Except for
detection range due to the imperfection of the DTF. The corthe lighter systems, (¥5)Mo BBHs and (16-1.4)Mq
responding reduction in the detection rateF_Fsgﬁ. NS-BH binaries[38], the SPAs family(solid black ling is
In Fig. 10 we show two examples of the distribution of consistently less effectual than SPAc, because the target-
signal amplitudes for the (¥515)M, BBHs and for the model end_lng frequencies are usually dn‘ferent from the
(10+1.4)M, NS-BH binaries in our Monte Carlo popula- Schwarzchnd ISCO frequenmes used to termlnz_ite the SPAs
tion (as computed with the 2PN target modeThe plots ~ témplates(in the majority of cases, they are highehe

show SA as a function of the initiajN-N, normalized at 'MProvement (SPAs to OSPA): in FF is :3%. for M
distances that yield SA values comparable to typical detec= (20-25)Mo , and= 10% forM =30M, . As pointed out
tion thresholds, and averaged over the probability distribu!" BCV1, itis |mportar_1t to add the fr_equency-cut parameter
tion p[F«]. For heavy, comparable-mass BBtéxcept per- fout yvhenever the ending frequency IS not "”OWT‘ very well,
haps for the last stages of the inspirahe orbital angular zjefrltssnes)i(t?v?tcyted to fall within the band of good interferom-
momentumL  is much larger tharg, ,, so the initial total ) L
angular momentundy, is almost perpendicular to the orbital (2) Although the {ot31), DTF (short-dashed lingsis

plane: furthermore, as seen in Sec. Ill E, the directiod,of essentially a reparametrization of SPAmth families have

does not change much during evolution. Because in th%;retfl’:ilg ?Sa:ﬁ;ntetthe)r, '; i:i ;Iiiﬁggyerg(g&e:ne;tuilégdh?orgatsi?n
qguadrupole approximation the emission of GWs is stronge ize FF(and in qz);\rt)ilcular thegconstrai <7(7) 25) limit t?le
along the direction perpendicular to the orbital plane, valuedN'% parti nt<0. .

PR . . . ability of the expressionspa(f) to reproduce the phasing of

of [Jy-N| qlose to 1 give stronger _S|gnals, as seen in the IefEhe target. On the contrary, in the{is,,), DTF the coeffi-
panel of Fig. 10. For NS-BH binaries, whereis small, the o 1o £ ~5/3 andi £ ~23 are not functions oM and 7, but

BlH spin % is much Izrger thap_r,;,, Ia?d I I||es roughlyh free phenomenological parameters that can achieve the best
a or?gSl. 0 an upwar curvg of the lelt pane Aappears. w erbossible values to match the target phasing. This added free-
Ly is roughly parallel or antiparallel t§, andJy (that is,  dom does not buy a dramatic improvement for the spinning
when the conserved quantikizcL - S; has a large absolute binaries studied in this paper, because the SPAc templates are
value, while a downward curve appears when, is or- already rather close to the adiabatic target ma@eicept

= _{(FF3SA3>
eff — (SA3>
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FIG. 11. Distribution of fitting factor FF against the 2PN target model for the DTFs and for the standard SPA template families, for our
BBH and NS-BH Monte Carlo populations. The vertices of the segmented curves show the number of &aumplie$000 for which the
FF falls within the equispaced bifi6.725,0.75)[0.75,0.775), . . .(the bins are plotted logarithmically to emphasize the region of FF close
to 1; notice that the NS-BH figure in the bottom right corner shows a different bin yafige vertical lines show the averagi?lé andﬁ:eﬂ
with their 1o error bars F_Feﬁ is always the larger number

of course for precessional modulation®n the contrary, in  f~"%  As a result, the improvemen{(yohsn), to
BCV1 we saw that using unconstrained phenomenologicaliys, i) ,] in FF is only =0.3—-1.6 %, while(at least ac-
parameters with extended ranges is very important to followcording to the simple Gaussian analysis of Sec. )\l
the nonadiabatic dynamics of the late inspiral, as predictedetection threshold increases by 4% (although this num-
by some PN models for nonspinning binaries. ber does not take into account thE =0 constraint It

(3) The (Yoirspa) 4 DTF (dot-dashed lingsdntroduces the  seems therefore that they{i;a) 4 DTF is not a useful up-
amplitude-remodeling coefficient. In BCV1 we found that ~ grade of @o5/,), for the purpose of detecting the signals
a (together with the extension of parameter randesped emitted by precessing binaries.
follow the nonadiabatic dynamics of some target PN models (4) The (¥o/328)¢ DTF (solid lineg includes modula-
(see Table X In this paper, however, the only target model tional corrections for both amplitude and phase. The result-
is obtained in the adiabatic limit, so the frequency-domaining improvement inFF over the SPA families is remarkable
amplitude(except of course for the modulations due to pre-(for BBHs, 8—22 % over SPAs and 6—10 % over SPAc; for
cession is always very close to the Newtonian expressionNS-BH binaries, 20% over bothHowever, the effect of the
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TABLE VIII. AveragesFF andFF of the fitting factor FF against the 2PN and 3.5PN target models, for the DTFs and for the standard
SPA template families, as computed on our BBH Monte Carlo populations. The numbers in parentheses give the estimated Monte Carlo

errors on the last two digits dfF andFF.g.

Fitting factors against 2PN target model

(7+5)Mg (10+10)M, (15+ 15)M, (20+5)M, (20+10)M ¢,
FF FFag FF FFoq FF FFog FF FFog FF FFog
SPAs 0.9030(24) 0.9390(15) 0.8944(21) 0.9198(12) 0.8105(25) 0.8282(16) 0.8576(25) 0.8844(22) 0.8264(27) 0.8494(18)
SPAC 0.9018(23) 0.9367(18) 0.9294(20) 0.9558(12) 0.9313(18) 0.9548(10) 0.8854(23) 0.9096(21) 0.9186(20) 0.9461(12)

(Yotb3n),  0.9262(22) 0.9595(13) 0.9423(17) 0.9657(10) 0.9414(15) 0.9620(08) 0.8921(22) 0.9178(23) 0.9270(17) 0.9529(12)
(Yotbspa)s 0.9288(22) 0.9617(13) 0.9480(16) 0.9703(10) 0.9551(14) 0.9726(08) 0.8986(21) 0.9212(23) 0.9421(16) 0.9625(12)
(Yot3oB)s 0.9753(07) 0.9828(05) 0.9861(03) 0.9895(02) 0.9863(03) 0.9891(02) 0.9746(05) 0.9794(05) 0.9843(03) 0.9884(03)

Fitting factors against 3.5PN target model
(7+5)Mg (10+10)M¢ (15+15)M (20+5)Mg (20+10)M
FF FFeg FF FFogt FF FFeog FF FFag FF FFogt

(Yot3oB)s 0.9708(08) 0.9802(06) 0.9854(03) 0.9887(02) 0.9854(03) 0.9883(03) 0.9738(06) 0.9775(05) 0.9844(03) 0.9882(02)

modulational terms is seen best by comparifgiz,5)s to Thus, a signal search based on th@s,), DTF is a
(o310 We get an improvement of 5-9 % for BBHs and good starting point for both nonspinning and spinning bina-
20% for NS-BH binaries. These numbers should be comties. It might also pay off, depending on the results of a more
pared with the projected increase8% in the detection realistic evaluation of false-alarm probabilities, to upgrade
threshold(Sec. V B. this DTF to (oi3pa)s, With improved performance for
(5) For the (oy3.8')s DTF, where the frequency depen- nonspinning but nonadiabatic BBHs, as shown in BCV1; or
dence of the modulating terms s %3 rather thanf "%, fit-  even to @ys,B)s, With the best FFs for spinning binaries
ting factors are not significantly different fromjgi/328)s.  and without any deterioration for nonspinning ones.
Therefore we do not show these numbers. Tables VIl and IX
also contain a few FFs computed against the 3.5PN order D. Modulated DTFs for NS-BH binaries

target mode(with @=0). The FFs shown for the/i3,8) ¢ . . .
DTF are essentially in line with their 2PN counterparts. Let us now look in detail at the FFs achieved by the DTFs

Our results suggest two strategies to search for the signafé'd Standard template families against the signals generated
from the precessing BBHs examined in this paper. We ca¥ (10+1.4)Mq NS-BH binaries where the BH is spinning
try to follow the modulations induced by precession, using d@Pidly (see Table IX and Figs. 11 and)14irst of all, we
DTF similar to ($oi/,8)s; OF We can just use koiba) 2, notice that there is little difference between the performance
which is considerably better than SPAmostly because of ©Of the SPAs and SPAc templates, because the ending fre-
fou), and slightly better than SPAbecause of the extended quency lies outside the band of good mterferqmgter sensitiv-
parameter range The gain in FF when we upgrade ity. Furthermore, the number of GW cycles within this band
(Yoira)» 10 (YoirsB)g is oOffset by a similar increase in the IS Very high, so [t is crucial that a DTF repro_duce very accu-
detection threshold, but the latter increase might be contately the evolution of the GW phase; so using thig /) >
tained by reducing the range of the alloweg, or by other ~DTF improves only slightly on the performance of the SPA
data-analysis considerations that do come into the simplimplates. Introducing precessional corrections brings about
Gaussian analysis of Sec. V B. a dramatic change: for the/{3,8)s DTF, the increase in

Figure 12 shows the projection of the 2PN target waveFF andFF. with respect to SPA is, respectively, 20% and
forms onto the {y, 3, section of the §yi3,), parameter 16%, which is enough to justify the introduction of six
space; Fig. 13 shows the projections of the waveforms ontgoefficients, according to the Gaussian analysis of Sec. V B.
the (o, 132 and (o, B) sections of the @yi5.8) ¢ param- The dependence of the FF on the spin configuration is
eter space. It is interesting to notice that, with either strategyshown in Fig. 14. For the NS-BH signals in our Monte Carlo
the ranges ofiy, and ¢, needed to match effectually the population, Figs. 15 and 16 show the template parameters
signals in our populations are essentially the same found ifo, ¥3, and3 that maximize the overlap plotted against
BCV1 to match the signals predicted by a variety of PNthe initial x (conserved in NS-BH binarigsin the left panel,
models for BBHs without spins. In Figs. 12 and 13 thesewe see that the parametgp, which is related to the New-
ranges are delimited by the thick dashed lines; the téiss  tonian chirp mass, has only a weak dependencex ofit
lines represent the range of detection templates needed taries by~8%); on theother hand, the parametgsg, has a
match effectually the signals predicted by different PN mod-strong dependence. A plausible explanation is that the SO
els for the same binary masses. As we can see, the projeterm in the SPA phasing is formally 1.5HBee Eqs(92) and
tions of the spinning-binary signals are smeared around th€3)], and so is the terng,f in ¥yw(f), which takes on the
nonspinning-binary mass lines with the same masses. job, as it were, of reproducing the nonmodulational effects of
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TABLE IX. Averages FF and FF.; of the fitting factor FF Eqgs.(73)], can be used to carry out the explicit construction.
against the 2PN and 3.5PN target models, for the DTFs, and for thBy way of the initial conditiong74)—(77), the tensor®,
standard SPA template families, as computed on the-(8M¢  and the orbital phas® (up to an additive constank ) are
NS-BH Monte Carlo populations. The numbers in parentheses givehen well defined as functions of the basic and local binary
the estimated Monte Carlo errors on the last two digit§Bfand  parameters only. We have therefore completed the specifica-

FFeft- tion of the first part of Eq(82), which expresses the compo-
nents of the mass quadrupole moment.
2PN target model (5) The remaining part of Eq(82), which expresses the
(10+1.4)M¢ projection on the polarization tensor of the detector,
FF FFog -~ N N
PU=[T VR, +[Tx]"Fx, (120

SPAs 0.7800(34) 0.8169(37)
SPAc 0.7747(49) 0.8129(54) is determined by the directional parametérse, ¢, 0, and
(Yotha)2 0.7807(41) 0.8316(46) W, which are now referred to the source frame attached to the
(oipaB)sg 0.9331(15) 0.9452(14) binary. When we look for GWs using matched filtering, we

3.5PN target model can search rapidly over such a parametrization by treating

the P! as extrinsic parameters, along with the time of arrival
and the initial orbital phas@,. The only intrinsic param-

eters would then be;, m,, S;, andS- L, all of which are
f:onserved.

This family of templates adds a further intrinsic parameter
with respect to {yi/38)6, but it has the advantage of pro-
g_ucing essentially exact wavefornggalid in the adiabatic
regime, and up to the highest PN order includeshd of

(otpaB)s 0.9263(15) 0.9378(14)

the SO coupling. In the right panel, we see that for most o
the binary configurations the values®fluster around three
lines [B=100, B=(1+x)110+110, and B=(1+x)240
+160]. Further analyses are needed to provide an explan
tion for this interesting behavior. . . . .
Thus, the {risB)s DTF is a good candidate for the expressmg these wavefor[ns directly |.n terms of the. physical
data-analysis problem of detecting GW signals from NS-BHSPIN parameters, and S-Ly. We believe that the imple-
binaries with rapidly spinning BHs. However, the analysis of mentation and th_e fals_e-a!arm statistics of this family are
precessional dynamics and GW emission carried out in thig/orthy of further investigatio39).
paper suggests an even more specialized DTF, which could
be built with the following guidelines. VIl. SUMMARY

(1) The waveform can be computed directly from E8R)
(obtained in the precessing conventicihe necessary ingre- N BCV1, the nonmodulated DTFs ytis32), and
(Yotspa) s Were shown to have FE0.95 against several

dients are the time evolution of the orbital phaBeand of 27 , X
the binary polarization tensof®, ., plus the fixed de- nonspinning-BBH target models, obtained under different
tector polarization tensofsT . X]“' ! PN approximation schemes. In this paper, we have shown
<Jij - Y :
: : : ; that these two families are also rather effectual at matching
2) The evolution of¥ is obtained by solving Eq(l), ) ) S
2 y g Eqtl) the signals from BH-BH and NS-BH precessing binaries

whereS, can be set to zero, ars} enters only in thecon- . : .
dtSZ 0 A 6 E .y Hactivel with single-BH masses betweerMy, and 20 and with
servedtermLy:-S,. As a consequence, EQD) is effectively oy imal BH spins, at least if these signals can be described

uncoupled from the evolution dfy, Eq. (9). by an adiabatic sequence of quasicircular orbits up to 2PN
(3) The evolution of the tensorfse, . (t)];; is obtained  order.

from Eq. (71), after integrating Eqs(2) and (9) for the More specifically, for (#5)My, (10+10)Mg,

coupled evolution ofLy and S, which depends only on (20+10)M,, and (15-15M, BBHs, we obtain FF

Lyn-Sp, on'S; (conservell and one(t). =0.93 andFF.4=0.95. The improvement is 2—16 % over

(4) A source frame attached to the initial configuration of Schwarzschild-terminated SPAs templates, thanks largely to
the binary, similar to the frame constructed in Sec. I{Ys@e the ending-frequency parametiy,; and 1-2 % over SPAc

TABLE X. Fitting factors against selected PN modelsohspinningbinaries(defined in BCV}, for the SPAc and i i/3,c) 4 template
families. Notice that the fy30a) , DTF yields consistently higher FFs.

FF against selected BCV1 PN models, for the SPAc afglig ) template families
T(2,2 T(3,3.50=2) P2,2.9 P(3,3.5p=2) ER2,2.5 ER3,3.50=2)
SPAC  (othspa)s SPAC (fotana)s SPAC (bothapa)s SPAC (othsna)s SPAC (hospa)s SPAC (fothspa)s

(10+10)My 0.984 0.992 0.984 0.988 0.979 0.985 0.959 0.990 0.988 0.994 0.949 0.994
(20+5)Mgy  0.970 0.992 0.960 0.986 0.950 0.978 0.968 0.985 0.930 0.993 0.967 0.993
(20+10)My 0.964 0.989 0.959 0.986 0.925 0.977 0.964 0.986 0.978 0.993 0.982 0.993
(15+15)M, 0.939 0.989 0.941 0.987 0.931 0.980 0.967 0.987 0.971 0.991 0.983 0.991
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- (10:5)Mo (5+5)Mo ! 0.90
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FIG. 12. Projection of the 2PN target signals onto thgis)» FIG. 14. Average fitting factor for the DTFs and for the SPAs

DTF. For the (1&10)Mo, (15+15Mq, (20+5)Mo, (7 template families for (18 1.4)M, NS-BH binaries, plotted against
+5)Mo, and (20 10)M BBHSs in our Monte Carlo populations,  he intial = - S.¢. The vertices of the segmented curves show
the clusters of gray dots show the projection of the 2PN targefhe Fr averaged on the sets of samples that fall within the equis-
waveforms onto the ko, y3,) parameter plane of theyoysn)2  pacediy bins[—1,—0.8), [—0.8-0.6), .. .,[0.8,1]. The error
DTF (the projection of a given target signal is given by the valuesy ;g show the sampling error on the bin averages. We plot also two
of Yo and ¢, that maximize the FF; herk,, is not showi. For  5qitional vertices, aligned with the abscissag and 1, which
each set of masses, we draw a dashed ellipse centered on tgﬁow the FF averaged over thgy bins[ —1,—0.98) and0.98,1].
parameter-space baricenter of the dots, and sized to include 90% of

the dots_(the proportions of the axes follow the tw_o-_dlmensmnal 7 and therefore more GW cycles in the band of good inter-
qqad.ratlc moments of the dotThe !arg.e r dark dots, Jom(.ed .by the ferometer sensitivity. In this case the modulational effects
thin lines(mass lines show the projections of the nonspinning PN gue to precession bécome important, and must be included in

models studied in BCV1, for the same sets of masses plus ( .
+5)Mg and (16+5)Mg; each line joins signals with the same the detection templates. Indeed, for (28)Mo BBHS, the

binary masses, but obtained from different PN target models. As wé¥ot32)2 and (o) DTFs haveFF=0.89 andFFgy
can see, for each set of masses, the projections of the spinning=0.92; for a (16-1.4)My NS-BH binary, we findFF
binary signals are clustered around the corresponding mass linez0.78, andFF.;=0.83.

moreover, all the projections fall within the regiédelimited by the Motivated by these shortcomings, we have investigated in
thick dashed lingssuggested in BCV1 to match all the nonspinning detail the dynamics of precession in these binaries, and we
PN models. have introduced a new convention to write the GW sigaal

computed in the quadrupole approximali@s a function of
templates, thanks to the effective extension in the range dfinary and detector parameters, isolating the oscillatory ef-
parameters, released from their functional dependence on ttiects of precession in the evolution of the polarization ten-
masses of the binary. Although the latter improvement seemsors[ e, . J;; . As a result, the detector response to GWs can
negligible, we should keep in mind tha¥{i5), DTFs are  be written as the product of a carrier signal, which very
also more suitable to match the nonspinning BH binarieslosely resembles the nonspinning signals studied in BCV1,
studied in BCV1 with PN expanded and resummed modelsand a modulational correction, which can be handled using
Results are worse for binaries that have smaller mass ratian extension of Apostolatos’ ansaf@4). On the basis of

5
I (10+1.4)Mp
O+10)Mg 4 (15+15)My ih
.7 (10:‘r5)M@ : (10+1.4)M (ZOHO)MS/OHO)M@ i
\ 18 (5:+5)M@ i R 3 Q0+5)Me 5 (10+5)M, i
RN 2 Y/ if3
.. .. i Q & £}
(15+5)M, " & o
-2 ~/ 20+5)My i b o |
3 ¥ ]
0.0 1.0 2.0 3.0 4.0 . 2.0 3.0 4.0
P /10% o /104

FIG. 13. Projection of the 2PN target signals onto the®s,B8)¢ DTF. For the (16-10)My, (15+15Mg, (20+5)Mg, (7
+5)Mg, and (20+ 10)M , BBHSs, and for the (18 1.4)M NS-BH binaries in our Monte Carlo populations, the clusters of gray dots show
the projection of the 2PN target waveforms onto tlfg ,i/3,) (on the lefy and (y,B) (on the righi parameter plane of the/gis,5)e

DTF. For each set of masses, we draw a dashed ellipse centered on the parameter-space baricenter of the dots, and sized to include 90% ¢

the dots(the proportions of the axes follow the two-dimensional quadratic moments of the Blaésnonspinning-model mass lines and the
boundary of the suggested parameter ranges are shown as in Fig. 12.
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KK

FIG. 15. Projection of the (161.4)M, NS-BH target signalscomputed at 2PN ordeonto the (/qi38)¢ DTF. The dots show the
values of they, (left pane) and 5, (right pane) target parameters that yield maximum overlaps with the signals in the target populations.

these observations, we build the modulated DTFbatic PN dynamics in the near future.
(0, 13B8)s, Which yieldsFF andFF.4= 0.98—0.99 for the Second, a few years ago Levin pointed pt@] that spin-
BBHs investigated, andFF=0.93, FFs~0.95 for (10 spin effects can introd'ucg chaos into the trajectories; as a
+1.4)M ¢ NS-BH binaries. This DTF has the advantage thatconsequence, the gravitational waveforms would come to de-
all the modulational parametesxcept forB) can be treated Pend sensitively on the initial conditions. More studies fol-
as extrinsic parameters, reducing considerably the comput4ewed[41,42. Considering only conservative dynamice
tional cost of signal searches. According to the simple analyRR), Cornish and Levin42] found some examples of rather
sis of Sec. V B, the detection thresholds for this DTF should®ccentric €~0.6 or 0.9) chaotic orbits, and a few quasicir-
be set higher than those for simpler families; still, the gain incular chaotic orbits. However, these authors ob_served that
the FF is still somewhat larger than the increase in th&haos would be damped by RR effects, and that it would not
threshold, and more realistic analyses of false-alarm statisticdfect the inspiral waveforms, excefpierhaps at the very
might provide a way to sidestep this difficulty. The sameénd(the plunge. Still, at this time the dynamlcgl structure of
arguments that lead to thes§, ¢/s,8)s DTFE suggest a new, phase space has not been explored systematlcally,_and amore
very promising class of templates for NS-BH binaries, whichconclusive study tuned to the LIGO-VIRGO detection prob-
we discuss briefly in Sec. VI D, and which we plan to inves-1€m remains desirable. The analysis of this paper assumes
tigate more thoroughly elsewhefa9]. that, by the time the GW signal enters the band of good
We wish to make a few final remarks. First, in this paperdetector sensitivity, RR effects have circularized the orbit,
we limited our analysis to compact objects moving on qua-&nd have brought the binary into the adiabatic regime, which
sicircular orbits; from the results on the ending frequencieds valid until the MECO. We did not try to perturb the initial
(see Fig. 5 we see that there exist spin initial conditions for conditions slightly and to investigate the resulting changes in
which the ending frequencie@nd of inspiral are in the the orbital evolution and in the waveforms.
LIGO-VIRGO band. So, in these cases we should use spin- Third, we have evaluated the performance of our DTFs by
ning dynamics that goes beyond the adiabatic approximatior@veraging overuniform distributions of the initial spin
This dynamicswithout radiation-reaction effedtss already ~ angles. Of course it would be preferable to assume more
available in the EOB frameworf,5] thanks to the work of realistic, nonuniform distributions derived from astrophysi-

Damour[14]. We plan to investigate the effects of nonadia-cal considerations. Some results for spin distributions in
BBHs (with only one spinning B and in NS-BH binaries

were obtained by Kalogera using population-synthesis tech-
niques[43]. In particular, Kalogera found that 30—80 % of
the NS-BH binaries that will coalesce within a Hubble time
can have a tilt angléthe angle between the spin and the
orbital angular momentumlarger than 30°. These results
assume that the spinning BH in the binary forms first, and
that its spin is aligned with the orbital angular momentum;
the tilt angle originates from the supernova explosion that
forms the NS. For the case of the binaries formed in globular
clusters, there is no theoretical argument to suggest any par-

B/10?

- 4.'. .
= T v H A 2T
. o_serat s T
-00'. *

: - 3 (4
(21 0 e 0 030 0% i 1'00 ticular spin distribution.
’ ’ T ﬂJK.m' ) ’ Finally, recent analyses of spin-spin effects in the PN in-
el eff

spiral equations[44] suggest that, for comparable-mass
FIG. 16. Projection of the (101.4)M, NS-BH target signals BBHS, by the time the GW signal enters the band of good
(computed at 2PN ordepnto the ¢qis,8)s DTF. The dots show interferometer sensitivity the two BH spins may have be-
the values of the3 target parameter that yield maximum overlaps come roughlylockedinto a fixed relative configuration. If
with the signals in the target populations. these results are confirmed, they could provide preferred ini-
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tial spin conditions, and simplify the data-analysis problem(A4) is not conserved. Indeed, averaging over an e
for comparable mass binaries, by reducing the variability oftand, for simplicity, neglecting spin-spin effegtsve get

expected GW signals.
dLN _ 2,LL
rr r_356ﬁ>< Lns
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precession equations for the spins we derive

1
LN'(Slxsz)r_s- (AB)

m;mp

. d .
ERR:aE(erN 181182)
APPENDIX A: VALIDITY OF THE ADIABATIC SEQUENCE

JE. JE JE . JE .
OF SPHERICAL ORBITS =t | i s 25|, (A7)
. . . w JL 93, S,
In the target model defined in Sec. Il A, the inspiral of the N
two compact bodies is described as an adiabatic sequence oL
spherical orbits. In this appendix we wish to discuss the va¥/"€¢
lidity of this assumption. Introducing the orthonormal basis 9+
< 5 s - - NP 3 M 23 9+ n) 213
(A,n,Ly), wheren=x/r, Ly=Ly/Ly, A=LyXn, andLy Elo.ln.$1,8)=~5(Mo)™ 1= —5—(Mo)

= uxXv (with u the reduced massit is straightforward to
write the equations of motion gsee Eqgs(4.1) of Ref.[16];

. n 2 ) 8 . 1
we use the relationg=rn+rw\,v?=r?+r?w?]: + WLN-Seﬁ(Mw)vL 5a(—81+577
n-a=r—rw? (A1) 1
- S — 7))+ ——[(S1-S)—3(Ly-S)
Na=ro+2ro, (A2) M
- dly . S 4/3
LN.a:—rwd—tN.)\, (A3) X(LnS) ]| (Mw) (A8)

wherea is the acceleration in harmonic gauge given by Egsis the orbital energy evaluated at Newtonian order, but in-
(2.2a,¢ of Ref.[16]. If we imposer =0=r, Eq. (A2) then  cluding spin-orbit and spin-spin effects, and whEgg is the

implies w=0; and from Eq(A1) we get RR_energy los$21,16. From Eqgs(A8), (9), (2)_, and(3), we _
notice that the sum of the last three terms in parentheses in
r2w2=%( 1— %LN'S,U>, Eq. (A7) does not vanish: at leading order, its value is
r
. l (ml_ m2) A~ A~ A~
3m, 3m, Eextra:ZTﬂzXle(Mw)n/a[(Slxsz)'LN]-
SwE(l+§m—1 S+ 1+§m—2>82, (A4) (A9)

where for simplicity we have sé¥l =1. Although spherical This expression is zero if masses are equal, or if spins are
orbits (orbits where bothr and w remain constantexist at  either aligned or antialigned. Retaining the tefA®) in the

any given instant, they are not preserved along dynamicatalculation yields an additional contribution in the evolution
evolution because the quantityy-S, that appears in Eq. of w, with a leading order correction
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‘-”extra_ 3 (m—my) Combining the above equations, we get leading order

2 —2 x1X2(Mo)?[(S$:xS) - L]
47 M . o
(A10) E[(SlXSZ)'LN]Z_Z(ml_mz)zwlol?[(SlXSz)~LN],

Thus, compared with the other terms in E), weyya ap- (Al14)
pears formally at 0.5 PN ordévery low) in the expansion of

w. Note that the spin-orbit term in the ener¢48), com-  This means that the geometric fac{qiS, X S;)-Ly] oscil-
bined with the leading-order precessions, does not produdates around zero with a time scalew >, Thus the effect
such a term; this makes the adiabatic approach fully consi®f w.,,,accumulates only within this time scale, which is 1.5
tent up to 1.5PN order. In facE .y, originates from taking PN orders shorter than the RR time scale. Therefore, we

the derivative ofEso and using next-to-leading-order terms €XPect that the reah W, will be even smaller than the

. . . o . formal prediction given by Eq(A1l), and that it will con-
n _the precession equations, _and the denvgﬁ@ Wh'l.e tribute effectively at 2PN order. As a check, we evaluated the
using the leading-order terms in the precession equations.

However, the effect of this term in the regime that we FF between the gravitational waveforms obtained, for a (10

consider is not as large as suggested by its formal PN ordeﬁ 1.4Me BBH, by first including and then dropping the

For example, under the worst possible assumpgtbat the extra term inw. We found that the FF is=0.99. On the basis

cometric factof (§,x&,)- [ ] has always the maximum of this last check and of the analysis outlined above, we
g " —N Away conclude that the adiabatic assumption is quite adequate for
value of one, and that spins are maxijmale get the correc-

tion the purposes of this paper.

0]

APPENDIX B: PROOF THAT THE PRECESSING
25 1-4y

AWeira 1 [(Mwg) 3= (M) 4] CONVENTION YIELDS w=®¢

27 2w 16384 g

(A11) First of all, it is easy to confirm that, as long asy0)
. and L (0) form an orthonormal basis at some initial time,
to the number of orbital cycles, wheke, and w; are the N(0) .

initial and final orbital frequencies under consideration. ThisN€ évolution equatior, ,= QX e, , will always keep the

is formally a 0.5PN correction, as can be seen by comparing'plet an orthonormal basis. It is then always possible to
it with Eq. (4.16 of Ref. [16]. Nevertheless, fofsay a ave ad(t), such that

(20+5)M¢ BBH, this correction will be at most 0.34 orbital

cycles fromw;=mx30 Hz to w;=7Xx400 Hz, to be com- n(t)=e,cosd(t)+esind(t),
pared with a baseline of 52 orbital cycles from the Newton-
ian term and eight from the 1PN term. For a (10.4)M g X(t)z —e;Sind(t) +e,cosd(t). (B1)

binary, the correction will be 1.6 orbital cycles, to be com-
pared with 175 orbital cycles from the Newtonian term a”dTaking the time derivative orﬁ(t), we have
30 from the 1PN term. The correction is small because, al-
though the PN order is formally low, the numerical coeffi-

cient of the geometric factd(élx éz) . I:N] is very small.
So far, we have assumddS;xS,)-Ly]~1 along the

evolution. Let us now estimate the more important effect th

comes from the precession bf;, S;, andS,, which is es-

pecially important for binaries with small mass ratios, which )

have longer RR time scales and more precessional cycles. At n=wh=DOA+Q.Xn. (B3)

the leading ordefwith M=1)

n=dR+Q XN, (B2)

a{\low, the adiabatic condition for a sequence of circular orbits
states thah=wA\, so we have

By definition [Eq. (72)], Q. has no components alorg
=[y. It also has no components alohg because

d . . -~ 3 e a e
Gl (51X &) Lal=5(m-my)w IS1-S= (S L)
QX Ly=Ly=nXA+NXA=wAXA+nX(—Pn+ QX N)

X(S-Ly)]+0(w?) (A12) (B4)
and N A aa -
=Q(n-N)—A(Nn- Q) xA, (B5)
d . . P IR
&[Sl' S,—(Si-Ly)(S-Ly)] where in the last step we usad\=0 and the vector—triple-

product rule. It follows that), lies alongﬁ, and therefore

Q.xn=0. Equation(B3) then gives the desired resufb

3 L
== 5(M—M)@*(SXS) - Lul+0(e?). (ALY %5 ) —w(t) + const

104025-29



BUONANNO, CHEN, AND VALLISNERI

[1] A. Abramoviciet al., Science256, 325(1992; B. Caronet al,
Class. Quantum Graw4, 1461 (1997; H. Luck et al, ibid.
14, 1471 (1997; M. Ando et al, Phys. Rev. Lett86, 3950
(2001).

[2] B. S. Sathyaprakash and S. V. Dhurandhar, Phys. Re44,D
3819 (1991); L. S. Finn, ibid. 46, 5236 (1992; S. V.
Dhurandhar and B. S. Sathyaprakaiiid. 49, 1707(1994); B.
S. Sathyaprakasfibid. 50, R7111(1994: C. Cutler and EE.
Flanagan,ibid. 49, 2658 (1994); B. J. Owen,ibid. 53, 6749
(1996; B. J. Owen and B. Sathyaprakashid. 60, 022002
(1999; E. E. Flanagan and S. A. Hughesqid. 57, 4535
(1998; 57, 4566 (1998; T. Damour, B. R. lyer, and B. S.
Sathyaprakashipid. 62, 084036 (2000; F. A. Jenet and T.
Prince,ibid. 62, 122001(2000; A. E. Chronopoulos and T. A.
Apostolatos,bid. 64, 042003(200)); E. Porter, Class. Quan-
tum Grav.19, 4343(2002.

[3] T. Damour, B. R. lyer, and B. S. Sathyaprakash, Phys. Rev.

57, 885(1998.

[4] A. Buonanno and T. Damour, Phys. Rev5B, 084006(1999;
62, 064015(2000.

[5] T. Damour, P. Jaranowski, and G. Stdra Phys. Rev. D62,
084011(2000.

[6] T. Damour, in300 Years of Gravitatigredited by S. W. Hawk-

PHYSICAL REVIEW D 67, 104025 (2003

ibid. 62, 044024(2000; 62, 021501R) (2000; 63, 044021
(2001).

[24] Note that the MECO, as defined by Ed3) via a total deriva-
tive, depends also on the evolutionlof S;, andS,. However,
later in this pape(Sec. Il B) we shall see that this dependence
is rather weak.

[25] L. Blanchet, Phys. Rev. B5, 124009(2002.

[26] N. Wex, Class. Quantum Gra%¥2, 983(1995.

[27] When referring to results at 3PN and 3.5PN orders we shall
always set the arbitrary paramefﬁ#o in Eq.(1). In the non-
spinning case, the dependence of the GW signa@ arather
mild, at least if & is limited to values of order 120], as
investigated in BCV1.

[28] E. E. Flanagan and S. A. Hughes, Phys. Rev.5D 4535
(1998.

629] Here “quadrupole” refers to the multipolar expansion used to

compute GWSs, and not to the expansion used to introduce RR
effects in the inspiral.

[30] T. A. Apostolatos, Phys. Rev. B2, 605 (1995.

[31] Because the amplitude of signals is generally unknown, the FF
is generally defined in terms abrmalizedsignals in the sense
of Eqg. (98).

ing and W. Israel(Cambridge University Press, Cambridge, [32] B. F. Schutz, inThe Detection of Gravitational Radiatiped-

England, 198, L. Blanchet, Living Rev. Relativs, 2002-3
(2002.

ited by D. Blair(Cambridge University Press, Cambridge, En-
gland, 1989.

[7] T. Damour, B. R. lyer, and B. S. Sathyaprakash, Phys. Rev. 33] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-

63, 044023(2001); 66, 027502(2002.
[8] A. Buonanno, Y. Chen, and M. Vallisneri, Phys. Rev.60,
024016(2003.

[9] T. Damour, B. R. lyer, P. Jaranowski, and B. S. Sathyaprakash,

Phys. Rev. D67, 064028(2003.

[10] T. A. Apostolatos, C. Cutler, G. J. Sussman, and K. Thorne,

Phys. Rev. D49, 6274(1994).
[11] T. A. Apostolatos, Phys. Rev. B4, 2438(1996.

[12] P. Grandclment, V. Kalogera, and A. Vecchio, Phys. Rev. D

67, 042003(2003.

[13] P. Grandcleent and V. Kalogera, Phys. Rev. &, 082002
(2003.

[14] T. Damour, Phys. Rev. B4, 124013(2001).

[15] L. S. Finn and D. F. Chernoff, Phys. Rev.47, 2198(1993.

[16] L. E. Kidder, Phys. Rev. [»2, 821(1995.

[17] L. Blanchet, T. Damour, B. R. lyer, C. M. Will, and A. G.
Wiseman, Phys. Rev. Let?4, 3515(1995; L. Blanchet, T.
Damour, and B. R. lyer, Phys. Rev. ®1, 5360(1995; C. M.
Will and A. G. Wisemanjbid. 54, 4813(1996.

[18] L. Blanchet, B. R. lyer, C. M. Will, and A. G. Wiseman, Class.

Quantum Gravl3, 575(1996.
[19] L. Blanchet, Phys. Rev. 34, 1417 (1996; Class. Quantum
Grav.15, 113(1998.

[20] L. Blanchet, G. Faye, B. R. lyer, and B. Joguet, Phys. Rev. D

65, 061501(2002; L. Blanchet, B. R. lyer and B. Jogueibid.
65, 064005(2002.

[21] L. E. Kidder, C. M. Will, and A. G. Wiseman, Phys. Rev.43,
4183R) (1993.

[22] T. Damour, P. Jaranowski, and G. Sf#raPhys. Lett. B513
147 (2001).

[23] P. Jaranowski and G. Sdeea, Phys. Rev. 67, 7274(1998;
60, 124003(1999; T. Damour, P. Jaranowski, and G. Sfara

nery, Numerical Recipes in C: The Art of Scientific Computing
(Cambridge University Press, Cambridge, England, 1992

[34] The time of arrival of the GW signal is an extrinsic parameter

(it is searched automatically for the best possible value using

fast Fourier transform integralshowever, when we evaluate

the total false-alarm probability it is easier to consider a single

detection test for each possible time of arrival. So the probabil-

ity distributions discussed in Sec. V B are for an overlap sta-

tistic that is not automatically maximized over the time of

arrival.

[35] B. Allen et al, Phys. Rev. Lett83, 1498(1999.

[36] R. G. Miller, Biometrika61, 1 (1974.

[37] The downward-arcing envelope of Fig. 10b actually corre-
sponds tokez=—0.3, possibly because the ending frequency
(a function ofk) plays into the SA.

[38] Because the template family SPAs is a subset of SPAc, SPAs
should always be more effectual. In fact, for{ )M BBHs
and (10+1.4)M, NS-BH binaries, we find slightly higher
numbers for SPAs. In these lighter systems, SPAc has no ad-
vantage over SPAs because the ending frequency is above the
range of good detector sensitivity, so the FFs should be the
same. However, evaluating the effectualness of SPAc requires
a three-parameter numerical maximization of the overlap,
which is inevitably less precise than the two-parameter maxi-
mization needed for SPAs. So numerical error explains the
discrepancy.

[39] A. Buonanno, Y. Chen, Y. Pan, and M. Vallisnéin prepara-
tion).

[40] J. Levin, Phys. Rev. Let84, 3515(2000; Phys. Rev. D67,
044013(2003.

[41] J. D. Schnittman and F. Rasio, Phys. Rev. L8i, 121101
(2002.

104025-30



DETECTING GRAVITATIONAL WAVES FROM . .. PHYSICAL REVIEW D67, 104025 (2003

[42] N. J. Cornish and J. Levin, gr-qc/0207016; Phys. Rev. [88t. workshop, Hanford, 2002.
179001(2002. [45] We are implicitly assuming that the precession frequangys
[43] V. Kalogera, Astrophys. b41, 319 (2000. much smaller than both the orbital frequency and the effective
[44] J. D. Schnittmar(private communication “Spin-Orbit Reso- radiation-reaction frequency T4g, where Tgrg Iis the
nance in Compact Binary LIGO Sources,” talk given at LSC radiation-reaction folding time.

104025-31



