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Black-hole ~BH! binaries with single-BH massesm5(5220)M ( , moving on quasicircular orbits, are
among the most promising sources for first-generation ground-based gravitational-wave~GW! detectors. Until
now, the development of data-analysis techniques to detect GWs from these sources has been focused mostly
on nonspinning BHs. The data-analysis problem for the spinning case is complicated by the necessity to model
the precession-induced modulations of the GW signal, and by the large number of parameters needed to
characterize the system, including the initial directions of the spins, and the position and orientation of the
binary with respect to the GW detector. In this paper we consider binaries of maximally spinning BHs, and we
work in the adiabatic-inspiral regime to build families of modulated detection templates that~i! are functions
of very few physical and phenomenological parameters,~ii ! model remarkably well the dynamical and preces-
sional effects on the GW signal, with fitting factors on average*0.97, ~iii ! but, however, might require
increasing the detection thresholds, offsetting at least partially the gains in the fitting factors. Our detection-
template families are quite promising also for the case of neutron-star–black-hole binaries, with fitting factors
on average'0.93. For these binaries we also suggest~but do not test! a further template family, which would
produce essentially exact waveforms written directly in terms of the physical spin parameters.

DOI: 10.1103/PhysRevD.67.104025 PACS number~s!: 04.30.Db, 04.25.Nx, 04.80.Nn, 95.55.Ym
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I. INTRODUCTION

A world-wide network of laser-interferomete
gravitational-wave~GW! detectors, recently built@1#, has by
now begun operation. Inspiraling binaries of compact o
jects, such as black holes~BHs! and neutron stars~NSs! are
among the most promising astrophysical sources for th
detectors. The GWs from the inspirals are expected to e
the frequency band of good detector sensitivity during
last few seconds or minutes of evolution of the binaries; G
scientists plan to track the phase of the signals very ac
rately, and to enhance the signal-to-noise ratio by integra
the signals coherently over their duration in the detec
band. This is achieved by filtering the detector output wit
bank of templatesthat represent our best theoretical pred
tions for the signals.

Until now, the development of data-analysis techniqu
has been focused mostly on binaries containing NSs~whose
spins are negligible for data-detection purposes! and non-
spinning BHs@2#. Nonspinning, high-mass BHs pose a de
cate problem: the breakdown of the post-Newtonian~PN!
expansion in the last stages of the inspiral makes it har
prepare reliable templates for the detection of binary B
~BBHs! of relatively high total mass@say, (10240)M (] with
Laser Interferometric Gravitational Wave Observato
~LIGO! or VIRGO interferometers. Various resummatio
techniques, such as Pade´ approximants@3# and effective one-
body ~EOB! techniques@4,5# have been developed to exten
0556-2821/2003/67~10!/104025~31!/$20.00 67 1040
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the validity of the PN formalism@6#. Damour, Iyer, and
Sathyaprakash@7# compared the templates generated by d
ferent PN treatments, and found that they can be very dif
ent. In a companion paper to the present one@8# @Buonanno-
Chen-Vallisneri~BCV1!#, we investigated this issue for th
GW signals emitted by comparable-mass BBHs with a to
massM5(10240)M ( . In BCV1 we proposed a few ex
amples of detection-template families~DTFs!, built either as
a time series or directly in the frequency domain, which
to address the failure of the PN expansion. The philoso
behind DTFs is to replace a family of signals that correspo
to a specific mathematical model of the binary with famili
that can cover a broader range of plausible signals. Beca
the direct correspondence with the mathematical mode
lost, DTFs are appropriate for the purpose of first detect
GW signals, but do not give direct estimates of physi
parameters, such as the masses of the binary constitu
@Within the EOB framework, see also the recent paper
Damouret al. @9#, where the authors extend 3PN EOB tem
plates with sevenflexibility parametersand then show tha
the unextended 3PN templates already span the ranges o
flexibility parameters consistent with plausible 4PN effect#

Very little is known about the statistical distribution o
spins for the BHs in binaries: the spins could very well
large. Apostolatoset al. @10,11# ~ACST! have shown that
when this is the case, the evolution of the GW phase
amplitude during the inspiral will be significantly affected b
©2003 The American Physical Society25-1
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BUONANNO, CHEN, AND VALLISNERI PHYSICAL REVIEW D 67, 104025 ~2003!
spin-induced modulations and irregularities. In a BBH, the
effects can become dramatic if the two spins are large
they are not exactly aligned or antialigned with the orbi
angular momentum. If this happens, there is a consider
chance that the analysis of interferometer data, carried
without taking spin effects into accounts, could miss the s
nals from these spinning BBHs altogether. The gravitatio
waveforms from binaries of spinning compact objects
pend on many parameters: the masses and spins of the
jects, the angles that describe the relative orientations of
tector and binary, and the direction of propagation of GWs
the detector. In practice it is impossible, due to the extrem
high computational cost, to filter the signals with a templ
bank parametrized by all of these parameters. One strate
that of providingeffectivetemplates that depend on few
parameters, but that have still reasonably high overlaps w
the expected physical signals. An interesting suggest
built on the results obtained in Ref.@10#, came from Apos-
tolatos@11#, who introduced a modulational sinusoidal ter
in the frequency-domain phase of the templates to cap
the effects of precession. However, while Apostolatos’ fa
ily reduces the number of parameters considerably, its c
putational requirements are still very high. Moreover, us
an approximated analytical model of NS-BH waveform
Grandclément, Kalogera, and Vecchio@12# showed that this
family fails to capture those waveforms satisfactorily~see
however Ref.@13# for a hierarchical scheme that can impro
the fit by adding ‘‘spikes’’ in the template phasing!.

In this paper, complementary to BCV1, we study the d
analysis of GWs from binaries with spinning BHs; for sim
plicity, we restrict our analysis to the adiabatic limit, whe
the two compact objects in the binary~either two BHs, or a
NS and a BH! follow an adiabatic sequence ofspherical
orbits driven by radiation reaction~RR!. The denomination
of spherical orbits comes from the fact that the orbital pla
is not fixed in space, but precesses, so the orbits trac
complicated path on a~slowly shrinking! spherical surface
We neglect the problems caused by the failure of PN exp
sion in these binaries~note that the conservative part of th
EOB framework@4# has already been extended to the sp
ning case by Damour@14#, providing a tool to move beyond
the adiabatic approximation; we plan to add radiatio
reaction effects to this model, and to study the conseque
on GW emission and detection elsewhere!. Here, we carry
out a detailed study of PN precessional dynamics and of
generation in precessing binaries in the adiabatic limit, a
we use the resulting insights to build a new class of mo
lated effective templates where modulational effects are
troduced in both the frequency-domain amplitude a
frequency-domain phase of the templates. The mathema
structure of our templates suggests a way to search autom
cally over several of the parameters~in strict analogy to the
automatic search over initial template phase in the d
analysis of nonspinning binaries!, reducing computationa
costs significantly. We argue that our families should capt
very well the expected physical signals.

We note here a shift in perspective from BCV1. In th
paper, we use the PN equations for the two-body dynam
of spinning compact objects to build afiducial model ~our
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target model! that represents our best knowledge of the e
pected physical signals. Because we cannot use the ta
model directly for data analysis~it has too many parameters!,
we build effective template families with fewer paramete
These families are then compared with the target model f
variety of binary parameters, to gauge their ability to ma
the physical signals~their effectualness@3#!. On the other
hand, in BCV1 we employed several variants of the P
equations~with diverging behaviors in the late phase of i
spiral! to identify a range ofplausiblephysical signals; we
then built our DTFs so that they would matchall of the PN
target models satisfactorily. This said, we shall still refer
the template families developed in the present paper
DTFs. We direct the reader to BCV1 for a simple introdu
tion to matched-filtering techniques and their use in GW d
analysis ~developed in the literature by various autho
@2,3,7#!, and for an explanation of some of the notation us
in this paper.

This paper is organized as follows. In Sec. II we defi
the target model, and we explain the conventions used
represent the generation and propagation of GWs. In Sec
we study the two-body dynamics of spinning compact o
jects, looking for the features that are especially relevan
the data-analysis problem. Using this insight, in Sec. IV
formulate our DTFs, and we also describe two families
standard stationary-phase-approximation~SPA! templates, to
be used as a comparison when evaluating the performanc
the DTFs. In Sec. V we discuss the overlap and false-al
statistics of our DTFs. In Sec. VI we evaluate the perf
mance of our DTFs for BBHs and NS-BH binaries, and w
briefly discuss a more advanced~and very promising! tem-
plate family for NS-BH systems. In Sec. VII we summari
our conclusions.

Throughout this paper we adopt the noise spectral den
for LIGO-I given by Eq. ~28! of BCV1. The projected
VIRGO noise curve is quite different~deeper at low frequen
cies, with a displaced peak-sensitivity frequency!, so our re-
sults for high-mass binaries cannot be applied naively
VIRGO. We plan to repeat this study for VIRGO in the ne
future.

II. DEFINITION OF THE TARGET MODEL

In this section we define thetarget modelused in this
paper as a fiducial representation of the GW signals expe
from precessing binaries of spinning compact objects.
restrict our analysis to the adiabatic regime where the
spiral of the compact objects can be represented as a
quence of quasicircular orbits. At any point along the
spiral, a binary of total massM5m11m2 and symmetric
mass ratioh5m1m2 /M2 is completely described by the or
bital angular frequencyv, the orbital phaseC, the direction
L̂N}r3v of the orbital angular momentum, and the tw
spinsS15x1m1

2Ŝ1 andS25x2m2
2Ŝ2, whereŜ1,2 are unit vec-

tors and 0,x1,2,1. Throughout this paper we shall use ca
ets to denote unit vectors, and we shall adopt geometr
units.

In Sec. II A we write the PN equations that govern t
adiabatic evolution of the binary and the precession ofL̂N
5-2
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DETECTING GRAVITATIONAL WAVES FROM . . . PHYSICAL REVIEW D67, 104025 ~2003!
and ofS1,2. All the target waveforms used to test the effe
tualness@3# of our DTFs are obtained by integrating the
equations numerically. The validity of the adiabatic appro
mation is discussed in Appendix A. In Sec. II B we discu
our criterion for stopping the numerical integration of t
evolution equations at the point where the adiabatic appr
mation ceases to be valid. In Sec. II C, building on Re
@10,15,16#, we describe a formalism for computing the r
sponse of a ground-based detector to the GWs generated
spinning binary; the response is a function not just of
trajectory of the binary, but also of the relative direction a
orientation of binary and detector. The formalism describ
also how the precession of the binary modulates the dete
se

e
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response. Last, in Sec. II D we give a classification of all
parameters that enter the expression for the detector
sponse, distinguishing those that specify the evolution of
binary itself from those that describe the relative directi
and orientation of binary and detector.

A. Equations for an adiabatic sequence of precessing spherica
orbits

The path of the binary across the sequence of quasici
lar orbits is described by the adiabatic evolution of the
bital angular frequencyv up to 3.5PN order@17–20,7#, with
spin effects included up to 2PN order@21,17,16#
v̇

v2
5

96

5
h~Mv!5/3S 12

7431924h

336
~Mv!2/32H 1

12 (
i 51,2

Fx i~ L̂N•Ŝi !S 113
mi

2

M2
175h D G24pJ ~Mv!1S 34 103

18 144
1

13 661

2016
h

1
59

18
h2D ~Mv!4/32

1

48
hx1x2@247~Ŝ1•Ŝ2!2721~ L̂N•Ŝ1!~ L̂N•Ŝ2!#~Mv!4/32

1

672
~4159114 532h!p~Mv!5/3

1F S 16 447 322 263

139 708 800
2

1712

105
gE1

16

3
p2D1S 2

273 811 877

1 088 640
1

451

48
p22

88

3
û Dh1

541

896
h22

5605

2592
h3

2
856

105
log@16~Mv!2/3#G~Mv!21S 2

4 415

4 032
1

661 775

12 096
h1

149 789

3 024
h2Dp~Mv!7/3D , ~1!
pin-
r,

l

wheregE50.577 . . . isEuler’s constant, and whereû is an
arbitrary parameter that enters the GW flux at 3PN order@20#
and that could not be fixed in the regularization scheme u
by the authors of Ref.@20#. Note that in Eq.~1! we set the
static parametervs50 @22#. The precession equations for th
two spins are~see, for instance, Eqs.~4.17b,c! of Ref. @16# or
Eqs.~11b,c! of Ref. @10#!

Ṡ15
~Mv!2

2M H h~Mv!21/3S 413
m2

m1
D L̂N

1
1

M2
@S223~S2•L̂N!L̂N#J 3S1 , ~2!

Ṡ25
~Mv!2

2M H h~Mv!21/3S 413
m1

m2
D L̂N

1
1

M2
@S123~S1•L̂N!L̂N#J 3S2 , ~3!
d

where we have replacedr and uLNu by their leading-order
Newtonian expressions inv,

r 5S M

v2D 1/3

, uLNu5mr 2v5hM5/3v21/3. ~4!

This approximation is appropriate because the next s
precession term isO(v1/3) higher than the leading orde
while next terms in the expressions ofr anduLNu areO(v2/3)
higher.

The precession of the orbital plane~defined by the norma

vectorL̂N) can be computed as follows. From Eqs.~4.7! and
~4.11! of Ref. @16# we see that the total angular momentumJ
and its rate of changeJ̇RR ~due to RR! depend onv, L̂N , and
S1,2 ~schematically! as ~letting S5S11S2):
~5!
5-3
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J̇RR52
32

5
h2M ~Mv!7/3L̂N@11O~v2/3!#1O~v10/3!Ŝ1

1O~v10/3!Ŝ2 , ~6!

where the combination

Seff[S 11
3

4

m2

m1
DS11S 11

3

4

m1

m2
DS2 ~7!

is known as theeffective spin@14#. Note that both terms in
theL brace of Eq.~5! originate from orbital angular momen
tum ~the second term comes from the spin-orbit couplin!.
Taking the time derivative of Eq.~5!, we obtain

J̇5hM2~Mv!21/3L̇̂N@11O~v2/3!#2O~v2/3!Ṡeff1Ṡ

1@O~v7/3!L̂N2O~v10/3!Seff#, ~8!

where to get the last term on the right-hand side we h
usedv̇5O(v11/3). Comparing Eqs.~8! and ~6!, projecting
out only the direction perpendicular toL̂N , and keeping only
the terms up to the leading and next-to-leading orders, we

L̇̂N52
~Mv!1/3

hM2
Ṡ5

v2

2M H F S 413
m2

m1
DS11S 413

m1

m2
DS2G

3L̂N2
3v1/3

hM5/3
@~S2•L̂N!S11~S1•L̂N!S2#3L̂NJ . ~9!

Thus, we now have the set of four equations~1!–~2! and~9!

for the four variablesv, S1 , S2, and L̂N . We follow Ref.
@16#, Eq.~4.15!, in defining theaccumulated orbital phaseC
as

C[E
t i

t

v dt5E
v i

v v

v̇
dv. ~10!

This phase describes the position of the two compact obj
along the instantaneous circular orbits of the adiabatic
quence; the phase of the GW waveforms, as detected
ground-based detectors, differs from this by precessiona
fects, as explained below in Sec. II C.

B. End point of evolution

The orbital energy of the two-body system at 2PN a
3PN orders, expressed as a function ofv and assuming the
static parametervs50 @23,22#, reads@17,21,20#

E2PN~v!52
m

2
~Mv!2/3H 12

~91h!

12
~Mv!2/3

1
8

3
L̂N•Seff~Mv!1

1

24
~281157h2h2!~Mv!4/3

1
1

h
@S1•S223~ L̂N•S1!~ L̂N•S2!#~Mv!4/3J , ~11!
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e
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E3PN~v!5E2PN~v!2
m

2
~Mv!2/3H F2

675

64
1S 34445

576

2
205

96
p2Dh2

155

96
h22

35

5184
h3G~Mv!2J .

~12!

In the context of our adiabatic approximation, it is natural
stop the integration of Eqs.~1!–~2! and ~9! at the point~the
minimum energy circular orbit, or MECO! where the energy
EnPN reaches a minimum,

MECO:
dEnPN

dv
50; ~13!

after this point the adiabatic approximation breaks do
@24#. ~The MECO is discussed by Blanchet@25# for nonspin-
ning binaries under the name ICO, for innermost circu
orbit.! However, if we find thatv̇50 ~which implies cer-
tainly that the adiabatic approximation has become inva!
before the MECO is reached, we stop the evolution there
BCV1 we noticed that for nonspinning binaries this behav
occurs for the 2.5PN evolutions, but not at 2PN, 3PN, a
3.5PN orders.

Throughout this paper, we shall call the instantaneous
quency of GWs at the end point of evolution theending
frequency, which, up to a correction that arises from prece
sional effects, is twice the instantaneous orbital freque
defined in this section. It so happens~see BCV1! that a
knowledge of the ending frequency is important to cut off t
candidate detection templates at the point where we kn
too little about the physical signals to model them further.
Sec. III B we study the dependence of the ending freque
on the spins of the binary.

C. Gravitational waveforms
As we have seen, the trajectory of the inspiraling binary

obtained by integrating Eqs.~1!, ~2! and ~9! for the time
evolution ofv(t), S1(t), S2(t), andL̂N(t). To determine the
corresponding gravitational waveforms, we need to choos
specific coordinate system. We follow the convention p
posed by Finn and Chernoff~FC! @15# and also adopted by
Kidder @16#. FC employ a fixed~source! coordinate system
with unit vectors$ex

S , ey
S , ez

S% ~see Fig. 1!. For a circular
orbit, the leading-order mass-quadrupole waveform
~throughout this paper, we use geometrical units!

hi j 5
2m

D S M

r DQc
i j , ~14!

whereD is the distance between the source and the Ea
and whereQc

i j is proportional to the second time derivativ
of the mass-quadrupole moment of the binary,

Qc
i j 52@l il j2ninj #, ~15!
5-4
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with ni andl i the unit vectors along the separation vector
the binaryr and along the corresponding relative velocityv.
These unit vectors are related to the adiabatic evolution
the dynamical variables by

n̂5e1
S cosFS1e2

S sinFS , l̂52e1
S sinFS1e2

S cosFS ;
~16!

the vectorse1,2
S form an orthonormal basis for the instant

neous orbital plane, and in the FC convention they are gi
by

e1
S5

ez
S3L̂N

sin i
, e2

S5
ez

S2L̂N cosi

sin i
. ~17!

The vectore1
S points in the direction of the ascending node

the orbit on the (x,y) plane. The quantityFS is the orbital
phase with respect to the ascending node; its evolutio
given by

ḞS5v2ȧ cosi , ~18!

where i and a are the spherical coordinates ofL̂N in the
source frame, as shown in Fig. 1. Using Eqs.~14! and ~16!,
we can write Eq.~15! as

Qc
i j 522~@e1

S # i j cos 2FS1@e3
S # i j sin 2FS!, ~19!

where the polarization tensorse1
S ande3

S are given by

e1
S [e1

S
^ e1

S2e2
S

^ e2
S, e3

S [e1
S

^ e2
S1e2

S
^ e1

S. ~20!

For a detector lying in the directionN̂5ez
ScosQ1ex

SsinQ, it
is expedient to express GW propagation in theradiation co-
ordinate system with unit vectors$ex

R ,ey
R ,ez

R% @see our Fig. 1
together with, for instance, Eq.~4.22! of Ref. @16## given by

ex
R5ex

S cosQ2ez
S sinQ, ~21!

ey
R5ey

S , ~22!

ez
R5ex

S sinQ1ez
S cosQ5N̂. ~23!

FIG. 1. Source and radiation frames in the FC convention@15#.
10402
f
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In writing Eqs.~21!–~23! we used the fact that for a gener
binary-detector configuration, the entire system consisting
the binary and the detector can be always rotated along tz
axis in such a way that the detector will lie in the (x,z)
plane. Later in this paper~in Sec. IV! we shall find it conve-
nient to conserve the explicit dependence of our formulas
the azimuthal anglew that specifies the direction of the de
tector.

In the transverse-traceless~TT! gauge, the metric pertur
bations are

hTT5h1T11h3T3 , ~24!

where

T1[ex
R

^ ex
R2ey

R
^ ey

R , T3[ex
R

^ ey
R1ey

R
^ ex

R ~25!

and

h15
1

2
hi j @T1# i j , h35

1

2
hi j @T3# i j . ~26!

The response of a ground-based, interferometric dete
~such as LIGO or VIRGO! to the GWs is@15#

hresp5F1h11F3h3

52
2m

D

M

r
@e1

Si jcos 2FS1e3
Si jsin 2FS#

3~@T1# i j F11@T3# i j F3!, ~27!

whereF1 andF3 are theantenna patterns, given by

F1,35
1

2
@ ēx^ ēx2ēy^ ēy#

i j @T1,3# i j ~28!

with ēx,y the unit vectors along the orthogonal interferome
arms. For the geometric configuration shown in Fig. 2, w
detector orientation parametrized by the anglesu, f, andc,
we have

FIG. 2. Detector and radiation frames in the FC convention@15#.
5-5
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F15
1

2
~11cos2u!cos 2f cos 2c2cosu sin 2f sin 2c,

~29!

F35
1

2
~11cos2u!cos 2f sin 2c1cosu sin 2f cos 2c.

~30!

Inserting Eqs.~17!, ~20!, ~21!–~23!, and ~25! into Eq. ~27!,
we get the final result@16#:

hresp5CQ cos 2FS1SQ sin 2FS , ~31!

where

CQ52
4m

D
~Mv!2/3@C1F11C3F3#, ~32!

SQ52
4m

D
~Mv!2/3@S1F11S3F3#, ~33!

and

C15
1

2
cos2Q~sin2a2cos2icos2a!1

1

2
~cos2i sin2a

2cos2a!2
1

2
sin2Q sin2i 2

1

4
sin 2Q sin 2i cosa,

~34!

S15
1

2
~11cos2Q!cosi sin 2a1

1

2
sin 2Q sin i sina,

~35!

C352
1

2
cosQ~11cos2i !sin 2a2

1

2
sinQ sin 2i sina,

~36!

S352cosQ cosi cos 2a2sinQ sin i cosa. ~37!

D. Binary and detector parameters

We shall refer to the total massM, to the mass ratioh
5m1m2 /M2, and to the magnitudes of the two BH~or NS!
spinsS1 andS2 as thebasic parametersof the binary. Once
these are set, we complete the specification of a binary c
figuration by giving the initial orbital phase and the comp
nents of the orbital and spin angular momentain the source
frame, for a given initial frequency. In our convention, th
initial orbital angular momentum is determined by the ang
(uLN

,fLN
), as shown in Fig. 3. The directions of the spi

are specified by the angles (uS1
,fS1

) and (uS2
,fS2

), defined

with respect to an orthonormal basis aligned withL̂N ,

e1[
L̂N3ez

S

uL̂N3ez
Su

, e2[L̂N3e1 , e3[L̂N ~38!

shown in Fig. 4. We then have
10402
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Ŝ15e1 sinuS1
cosfS1

1e2 sinuS1
sinfS1

1e3 cosuS1
,
~39!

Ŝ25e1 sinuS2
cosfS2

1e2 sinuS2
sinfS2

1e3 cosuS2
.
~40!

Among the six angles (uLN
,fLN

), (uS1
,fS1

), and (uS2
,fS2

),
only three are intrinsically relevant to the evolution of th
binary: uS1

, uS2
, and fS1

2fS2
. We shall refer to them as

local parameters. The other three independent parame
which are relevant to the computation of the waveform, d
scribe the rigid rotation of the binary as a whole in spa
and we shall refer to them asdirectionalparameters. In fact

FIG. 3. Specification of the initial Newtonian orbital angul
momentum in the source frame$ex ,ey ,ez%.

FIG. 4. Specification of the initial directions of the spins wi
respect to the FC orthonormal basis$e1 ,e2 ,e3% @Eq. ~38!#.
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TABLE I. Classification of binary, GW propagation, and detector parameters.
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there are five more directional parameters:Q andw specify
the direction to the detector in the source frame, andu, f,
andc specify the orientation of the detector with respect
the radiation frame. All these parameters have already b
introduced in the previous section. Our classification of
15 binary and detector parameters is summarized in Tab

III. ANALYSIS OF PRECESSIONAL DYNAMICS

In a seminal paper@10#, ACST investigated in detail the
evolution of binaries of spinning compact objects, focus
on orbital precession and on its influence on the gravitatio
waveforms. In this section, we build on their analysis
discuss several aspects of quasicircular precessional dy
ics that are especially important to the formulation of a re
able DTFs for these systems. Note also that Wex@26# has
derived analytic solutions for quasielliptical solutions to t
2PN conservative dynamics, including spin-orbit effects.

We complement ACST’s analytical arguments with t
empirical evidence obtained by studying the orbits genera
by the numerical integration of Eqs.~1!–~2! and ~9!. We
select the following typical binaries: BBHs with mass
(m11m2) given by (20110)M ( , (15115)M ( , (20
15)M ( , (10110)M ( , (715)M ( ; and NS-BH binaries
with massesm1510M ( ~BH! and m251.4M ( ~NS!. The
BHs are always chosen to be maximally rotating (S5m2),
while the NSs are assumed to be nonspinning. There
neither astrophysical data nor theoretical results which s
gest that maximal spins are preferred. However, in this pa
we decide to investigate the most pessimistic~in terms of
precessional effects! scenario. The initial GW frequency i
chosen at 30Hz for binaries with total mass larger th
20M ( , and 40 Hz for all the other cases. For each set
masses, we consider 1000~or, when the numerical study i
very computationally expensive, only 200! orbital evolutions
obtained with random initial orientations of the orbital a
spin angular momenta.~These initial configurations are take
from the pseudorandom sequence specified in Sec. VI B
used in Sec. VI C to evaluate the effectualness@3# of our
DTF in matching the target signals.!

In Sec. III A we introduce the ACST results, and in pa
ticular the distinction between simple and transitional prec
sion. In Sec. III B we study the dependence of the GW e
ing frequency~defined in Sec. II B! on the initial values of
spins and on their evolution, and we link this dependenc
the conservation of certain functions of the spins throu
evolution. As mentioned above, a knowledge of the end
frequencies of our target model is important to decide w
extension each of the detection templates should have in
frequency domain. In Sec. III C we examine the value of
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binding energy and of the total angular momentum at the
of evolution, and we estimate the amount of GWs that m
be emitted during plunge, merger, and ringdown to red
the spin of the final BH to the maximal value. In Sec. III
we discuss, largely on the basis of numerical evidence,
effects of spin on the accumulated orbital phaseC @defined
by Eq. ~10!#; we argue that these effects are mainlynon-
modulational, and that, for data-analysis purposes, they c
be treated in the same way as the standard PN correction
the orbits of nonspinning binaries. It follows that the prece
sion of the orbital angular momentum is the primary sou
of modulations in the signal~as already emphasized b
ACST for particular classes of binaries!. In Sec. III E we
show, again on the basis of numerical evidence, that tra
tional precession has little relevance to the data-anal
problem under consideration. In Sec. III F we discuss
power-law approximations introduced by ACST to descr
the precession of the orbital plane as a function of freque
in particular binaries, and we show that they are appropr
in general for the larger class of binaries under considera
in this paper. These approximations are a basic build
block of the effective template families developed by Apo
tolatos @11# and, indeed, of our generalized and improv
families.

A. The ACST analysis

In their paper@10# on precessing binaries of compact o
jects as GW sources, ACST chose to work at the lead
order in both the orbital phasing and the precessional eff
to highlight the main features of dynamical evolution. F
orbital evolution, they retained only the first term on th
right-hand side of Eq.~1!: as a consequence, the precess
of the orbital plane is the only source of GW modulatio
considered in the analysis.@The resulting accumulated or
bital phaseC, given by Eq.~10!, is known asNewtonian
Chirp.# For the precession of the orbital angular moment
and of the spins, ACST retained only the first terms~the
spin-orbit terms! in Eqs. ~2!, ~3!, and ~9!. On the basis of
these approximations, and in the context of binaries w
either m1'm2 ~and spin-spin terms neglected! or S2'0,
ACST classified the possible evolutions of spinning binar
into two categories:simple precessionand transitional pre-
cession.

The vast majority of evolutions is characterized by simp
precession, where the direction of the total angular mom
tum remains roughly constant, and where both the orb
angular momentum and the total spinS5S11S2 precess
around that direction. ACST provided a simple analytic s
lution for the evolutions in this class. They also showed t
the orbital precession angle, expressed as a function of
orbital frequency, follows approximately a power law~see
Eq. ~45! of Ref. @10#!.
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FIG. 5. Binary ending frequencies~gray dots! as functions of the initial value ofkeff /keff
max, for 1000 initial spin configurations ofM

5(15115)M ( BBHs ~in the left panel!, andM5(1011.4)M ( NS-BH binaries~in the right panel!, at 2PN and 3.5PN orders. The sol
lines plot the SO-only predictions for the ending frequencies.
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Transitional precession happens when, at some point
ing the evolution, the orbital angular momentum and the
tal spin become antialigned and have roughly the same m
nitude, so the total angular momentum is almost zero,

J5L1S'0. ~41!

When this condition is satisfied, the total angular moment
is liable to sudden and repeated changes of direction.
evolutions in this class cannot be easily treated analytica
but they occur only for a small portion of the possible init
conditions.

In this paper, we shall refer to the special cases inve
gated by ACST~with either m1'm2 or S2'0) as ACST
configurations. NS-BH binaries and BBHs withm1@m2 are
astrophysically relevant cases among ACST configuratio
because for both we can setS2'0. The ACST formalism can
also describe well BBHs with equal masses but where s
spin effects are negligible.

B. Conservation laws and GW ending frequencies

For the ACST configurations, both the total spin and
projection on the orbital angular momentum are constant
the motion:

@ L̂N~ t !•S~ t !#ACST5const; ~42!

@S2~ t !#ACST5const. ~43!

For generic non-ACST configurations~as discussed, for in
stance, by Damour@14#!, theeffective spinSeff @Eq. ~7!# can,
to some extent, replace the total spin in these conserva
laws.

From Eqs.~2!, ~3!, and~9!, we see also that if we ignor
the spin-spin effects in the precession equations, then
projection

keff[
L̂N•Seff

M2
~44!

of the effective spin onto the Newtonian orbital angular m
mentum is a constant of motion,

@keff~ t !#SO5const ~45!
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~where the subscript ‘‘SO’’ stands for the inclusion of spi
orbit effects only!; on the other hand, neitherS2(t) nor
Seff

2 (t) is conserved.
The conservation ofkeff has important consequences f

the end points of evolution, defined in Sec. II B by Eq.~13!
for the MECO. In the nonspinning case, as discussed
BCV1, if the dynamics was known at all PN orders, then t
MECO would agree with the innermost stable spherical o
~ISCO!, defined as the orbit beyond which circular orb
become dynamically unstable. When only spin-orbit~hence-
forth, SO! effects are included, the conservation ofkeff pre-
serves this correspondence between MECO and ISCO,
cause the leading-order SO term in the energy is proportio
to keff : in fact, the frequency of the MECO has a preci
functional dependence onkeff @see Eqs.~11!–~13!#.

When spin-spin~SS! couplings are also included,keff is
no longer conserved, and the MECOs~and therefore the end
ing frequencies! of binaries with the same initialkeff become
smeared around their SO-only values, which are functi
only of keff . In addition to this smearing, the SS contributio
to the energy introduces also a bias. In the end, however
SS correction is not very important for the ending freque
cies, as we can see in the following examples. In the
panel of Fig. 5, we plot the ending frequency at 2PN a
3.5PN orders@27# versus the initial value ofkeff for BBHs
with M5(15115)M ( ~in gray dots!, as compared to the
SO-only predictions~in solid lines!. The smearing of the
ending frequencies is relatively mild, and so is the system
deviation from the SO-only predictions. We have check
that this behavior characterizes all the mass configurat
enumerated just before Sec. III B, at both 2PN and 3.5
orders. In the right panel of Fig. 5, we plot the ending fr
quencies for NS-BH binaries@with M5(1011.4)M (]. The
ending frequencies follow exactly the expected functio
dependence onkeff .

The mildness of these deviations can be understood~in
part! by looking at the variation ofkeff during the evolution.
For example, for the (15115)M ( BBHs shown in Fig. 5,
the maximum deviation ofkeff from being a constan
„measured as maxdev(keff)5@max(keff)2min(keff)#/2… is
0.036, to be compared with the maximum kinematically
lowed deviation, 0.875; for (2015)M ( BBHs at 2PN order,
maxdev(keff)50.033, to be compared with the maximum k
nematically allowed deviation 0.92.
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As we can infer from Fig. 5, the ending frequencies d
pend also on the PN order, and the difference between
and 3.5PN orders is more striking for NS-BH binaries th
for BBHs. This trend is present also in the nonspinning c
~see BCV1!: for nonspinning (x15x250) equal-mass
BBHs, we have vMECO

2PN 50.137M 21 and vMECO
3PN

50.129M 21. To give a few numbers, for a (10110)M (

BBH, we havef GW,2PN
MECO 5443 Hz andf GW,3PN

MECO 5416 Hz; for a
(15115)M ( BBH, f GW, 2PN

MECO 5295 Hz and f GW, 3PN
MECO

5277 Hz; on the other hand, for a (1011.4)M ( NS-BH
binary, we havef GW,2PN

MECO 5734 Hz andf GW,3PN
MECO 5559 Hz. For

the second and third binaries, these values can be rea
from the solid lines of Fig. 5, by settingkeff50 ~no spins!.

Finally, in Fig. 6 we show the ending frequencies f
(2015)M ( BBHs, when Eq.~1! ~which rules the evolution
of the orbital phase! is evaluated at 2.5PN order. In this cas

if keff>0.5, thenv̇ goes to zero before the MECO can b
reached. The resulting ending frequencies deviate cons
ably from SO-only predictions. As already discussed

BCV1, v̇ goes to zero because at 2.5PN order the grav
tional flux goes to zero for high orbital velocities; since th
very nonphysical behavior happens systematically, we t
choose to exclude the 2.5PN order from our analysis.

FIG. 6. Binary ending frequencies~gray dots! as functions of the
initial value of keff /keff

max, for 1000 initial spin configurations o
M5(2015)M ( BBHs, at 2.5PN order. The solid lines plot th
SO-only predictions for the ending frequencies.
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C. Energy radiated during inspiral and „estimated… total
angular momentum emitted after inspiral

It is interesting to evaluate how much energy can be
diated in GWs before the final plunge, especially for binar
whose inspiral end in the LIGO-VIRGO frequency band.
the left panel of Fig. 7, forM5(15115)M ( BBHs, we plot
the ratio between the 2PN~nonrelativistic! energy, given by
Eq. ~11! and evaluated at the end point of evolution~as de-
fined in Sec. II B!, and the total mass-energy initially avai
able, M. Depending on the initial relative orientation be
tween the spins and the orbital angular momentum~as
expressed by the initialkeff /keff

max), the energy that can be
released in GWs during the inspiral ranges between;1.5%
and 3.5% ofM. More energy can be emitted when the initi
spins are aligned with the orbital angular momentum.
find similar results for all the other BBHs investigated, a
similar results were also obtained by Damour in the EO
framework~see Fig. 1 of Ref.@14#!.

It is also interesting to estimate how much total angu
momentum can be radiated during the coalescence ph
that follow the inspiral~plunge and merger!, especially when
those phases fall in the LIGO-VIRGO band. In general,
have

Jrad5J2SBH , ~46!

whereJrad is the angular momentum radiated during plun
and merger,J is the total angular momentum of the binary
the end of the inspiral, andSBH is the spin of the final black
hole. A lower limit on the angular momentum radiated
these phases can be obtained using the fact that the m
tude of the final spin can be at mostMBH

2 ~whereMBH is the
mass of the final black hole!. To derive this lower limit we
follow Flanagan and Hughes@28#, and we write, using Eq.
~46!,

uJradu>uJu2uSBHu>uJu2MBH
2 >uJu2Erel

2 , ~47!

whereErel5M1E is the relativistic energy of the binary a
the end of inspiral; in deriving Eq.~47! we used the relation
FIG. 7. For 1000 (15115)M ( BBHs with different initial spin configurations, in the left panel we plot the ratio between the~nonrela-
tivistic! 2PN energy@Eq. ~11!# at the ending frequency and the mass-energy initially availableM, versus the initialkeff /keff

max; in the right
panel we plot the ratio between the total angular momentumJ at 2PN order and the square of the~relativistic! 2PN energy@Eq. ~11!# at the
ending frequency, versus the initialkeff /keff

max.
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uSBHu<MBH
2 <Erel

2 . It is straightforward to see from Eq.~47!
that this lower limit is nontrivial~that is, greater than zero!
only whenuJu.Erel

2 .
In the right panel of Fig. 7, forM5(15115)M ( BBHs,

we plot uJu/Erel
2 , where the angular momentum is evaluat

at 2PN order@21,16#,

J/M25h~Mv!21/3L̂NH 11
~91h!

6
~Mv!2/3

2
7

3
L̂N•Seff~Mv!1F 1

24
~81257h1h2!2

1

h
@S1•S2

23~ L̂N•S1!~ L̂N•S2!#G~Mv!4/3J 2h~Mv!2/3Seff1S.

~48!

We see thatJ/Erel
2 is generally less than 1, except whenkeff

>0.4 ~which happens for 13% of all the initial spin configu
rations!; the maximum value ofuJu/Erel

2 is 1.13. ~For a simi-
lar plot obtained in the EOB framework see Fig. 2 of R
@14#.! Such large values ofkeff imply large ending frequen
cies@for the (15115)M ( BBHs shown, larger than 400 Hz#,
which do not lie in the LIGO-VIRGO band of good interfe
ometer sensitivity, unless the BBHs have higher masses;
all the frequencies are scaled down. In any case, forkeff
51 ~spins and orbital momenta initially aligned!, in the
high-mass binaries investigated, Eq.~47! suggests the lowe
limit

uJradu>0.13Erel
2 ;0.1M2, ~49!

to be compared with the value 0.4M2 obtained by Flanagan
and Hughes@28# using BH spins aligned with the orbita
angular momentum~estimated to be;0.9M2).

A ~trivial! upper limit for Jrad is obtained by settingSBH
50:

uJradu<uJu. ~50!

For different values ofkeff , the upper limit for our (15
115)M ( binary is ;(0.5–1.1)M2. However, in order for
the inspiral to end within the LIGO-VIRGO band of goo
interferometer sensitivity~which requires a MECO fre-
quency lower than 400 Hz!, we needkeff,0.4, which corre-
sponds to upper limits (;0.5–0.7)M2.

To put this section into context, we point out that mo
reliable PN estimates for the energy and the angular mom
tum radiated after the MECO can be achieved only w
models that include information about the plunge phase, s
as the model that can be built on Damour’s spinning-E
equations@14#.

D. Spin-orbit and spin-spin effects on the accumulated orbital
phase

While for nonspinning binaries the accumulated orbi
phase@defined by Eq.~10!# coincides with~half! the GW
phase at the detector, for spinning binaries the two pha
differ by precessional effects; in the FC convention, these
found in part in the relation
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ḞS5Ċ2ȧ cosi , ~51!

whereFS is the orbital phase with respect to the ascend
node of the orbit, which appears in Eq.~31! for the detector
response to GW; and in part in the explicit time depende
of the coefficientsCQ and SQ on a and i @see Eqs.~32!–
~37!#. In this section, we are going to argue that the evolut
of the accumulated orbital phase is very similar in spinn
and nonspinning binaries; and that, as a consequence
effect of spins on detector responsethrough the accumulated
orbital phasecan be reproduced using nonspinning-bina
templates, such as those studied in BCV1@see also Eqs.
~92!–~94!#. Of course, precessional effectsdo enter the de-
tector response through the other dependences menti
above, and these cannot be neglected when building t
plates to detect physical signals.

Both the spin-orbit and spin-spin couplings can affect
accumulated orbital phaseC through the 1.5PN and 2PN
terms in Eq.~1!. However, as we shall discuss in this sectio
this effect is largelynonmodulational. For each binary con-
figuration, we introduce three different functions of time:~a!
the accumulated orbital phaseC full , obtained by solving the
full set of Eqs.~1!, ~2! and ~9!, including the SO and SS
couplings;~b! the accumulated orbital phaseCfix, obtained
by using the initial orbital angular momentum and spinsat
all times in the SO and SS couplings; and~c! the accumu-
lated orbital phaseCnospinfor a nonspinning binary, obtaine
by dropping the SO and SS couplings altogether.

In general,Cfix and Cnospin are quite different for the
same set of binary masses. However, the differenceCfix

2Cnospinis not a strongly oscillating function~that is, it does
not show any modulation!, and it can be reduced conside
ably by modifying the 1.5PN and 2PN coefficients in th
phasing equation for the nonspinning binary. It is then r
sonable to assume that such a nonmodulational effect c
be captured by the nonspinning DTFs constructed in BC
Moreover, the difference betweenC full andCfix is due to the
nonconservation of the SO and SS terms that appear in
~1! for v̇. These terms have relatively high PN orders, so
expect that they will be small.

Thus, we expect thatC full can be well described by a
nonmodulational phasing of the kind

Cnonmod~ f !5C01C1f 1
C 2

f 5/3
1

C 3

f 2/3
, ~52!

which looks rather like the frequency-domain phasings e
ployed in the DTFs of BCV1.@HereC2 andC3 can be seen as
actual ~intrinsic! template parameters, whereasC0 and C1
represent, respectively, the initial phase and the time of
rival of the GW signal, both of which are extrinsic param
eters in the sense discussed in BCV1.# To verify this hypoth-
esis, we first evaluateC full in the frequency range
50 Hz2250 Hz ~which is appropriate for first-generatio
ground-based GW detectors!, using Eqs.~1!, ~2! and ~9! at
2PN order, for all the BBH and NS-BH configurations co
sidered earlier@~511! masses3 200 angles#. We then~least-
squares! fit C full with functions of the form~52!. A measure
of the goodness of the fit, given by

DC res5 max
50 Hz, f ,250 Hz

uC full~ f !2Cnonmod~ f !u, ~53!
5-10
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TABLE II. Maximum modulational effects in the accumulated orbital phaseC. We give the average over the 200 samples, the 9
quantile of the distribution, and the maximum value for the diagnosticDC res, defined in Eq.~53!.

Maximum modulational correctionDC res

(20110)M ( (15115)M ( (2015)M ( (10110)M ( (715)M ( (1011.4)M ( @NS-BH#

^DC res&200 0.0247 0.0214 0.0450 0.0402 0.0828 0.1228
DC90%(200)

res 0.0460 0.0411 0.0676 0.0787 0.1504 0.1884
max200DC res 0.0680 0.0523 0.1227 0.1186 0.2196 0.1895
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is shown in Table II. The maximum deviations are all smal
than ;0.1 rad, except for the lighter (715)M ( BBH and
(1011.4)M ( NS-BH systems~where, however, theaverage
deviations are still;0.1 rad). This suggests that templat
with phasing expressions similar to Eq.~52! ~such as those
proposed in BCV1! could already approximate rather we
the full target model studied in this paper.

E. Simple and transitional precession of total angular
momentum

For most of the binary configurations investigated,
find, in analogy with the ACST analysis, that the direction
total angular momentum does not change much during e
lution. In other words, transitional precession does not oc
Table III shows the fraction of configurations that yield

min
t

Ĵ~ t !• Ĵ0,12eJ, ~54!

when eJ50.05 and 0.10. Let us now try to understand t
numbers of Table III in more detail.

We first focus on the columns two to six, which deal wi
binaries of maximally spinning BHs. For BBHs with sing
massesm5(5220)M ( , the total spin is not usually larg
enough to satisfy the transitional-precession condition~41!,
as we can prove easily by using all the evolution equation
the leading PN order: during the evolution, the magnitude
the orbital angular momentum decreases with the GW
quencyf, as in

uL u'uLNu5h~pM f !21/3M2, ~55!

while the total spin is bounded by

uSu,uS1u1uS2u5m1
21m2

25~122h!M2. ~56!

In order for transitional precession to occur, we need at
very leastuLNu5uSu @see Eq.~41!#, which requires
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h~pM f !21/3,~122h! ~57!

or

f . f trans
min [

h3

pM ~122h!3
. ~58!

For transitional precession to occur before we reach
Schwarzschild ISCO frequencyf Schw51/A63pM , we then
need

f trans
min

f Schw
5S A6h

122h D 3

*1⇒h*0.22. ~59!

Although the ending frequencies obtained within our tar
model are usually higher thanf Schw, the very configurations
that can have transitional precession~those with nearly anti-
aligned total spin and orbital angular momenta! have always
lower ending frequencies, making 0.22 too large an estim
for the critical value ofh.

As a consequence, among all the configurations we h
considered, only (2015)M ( and (20110)M ( BBHs can
then haveobservabletransitional-precession phases. The
latter binaries are characterized by significantly larg
changes inJ @see Table III#. However, (20110)M ( BBHs
still require f . f tran

min5138 Hz, which is very close to the rel
evant ending frequency; so the change inJ is smaller, and we
never observed episodes of transitional precession in the
initial configurations analyzed. On the contrary, we observ
a few for (2015)M ( BBHs; one example follows from the
the initial configuration given by uS1

5175.4°, uS2

5105.4°, andfS1
2fS2

592.0° ~at f GW530 Hz). In this
configuration the initial spin of the more massive body
almost exactly antialigned with the orbital angular mome
tum. The trajectories ofĴ and L̂N during this evolution are
shown, respectively, in the left and right panels of Fig. 8.
TABLE III. Deviation of the total angular momentumĴ from its initial direction. This table shows the
percentage of the binary configurations whereĴ(t)• Ĵ(0) goes below 12eJ, for the eJ given in the first
column.

Percentage of binary configurations where' t: Ĵ(t)• Ĵ(0),12eJ

(20110)M ( (15115)M ( (2015)M ( (10110)M ( (715)M ( (1011.4)M ( @NS-BH#

eJ50.05 17.5% 6.0% 33.5% 7.0% 3.5% 0.0%
eJ50.10 2.5% 0.0% 11.0% 0.0% 0.0% 0.0%
5-11
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FIG. 8. Transitional precession. Evolution of the direction of total angular momentum~left panel! and of Newtonian orbital angula
momentum~right panel! in the transitionally precessing (2015)M ( BBH with initial anglesuS1

5175.4°, uS2
5105.4°, andfS1

2fS2

592.0° ~at f GW530 Hz).
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By contrast, none of the NS-BH configurations examin
exhibits transitional precessions. This is because the BH
taken as maximally spinning, soS is always much larger
thanL in the frequency band under consideration.

F. Apostolatos’ power law for orbital precession

As discussed in the previous section, the vast majority
binary configurations undergoes simple precession, wheĴ
remains constant, whileL̂N and S1,2 precess around it. Fo
ACST configurations (m1'm2 and negligible SS interac
tions, orS2'0), both L̂N and Ŝ precess aroundJ with the
precession frequency@@10#, Eq. ~42!#

Vp[
dap

dt
5S 21

3

2

m2

m1
D Jv2. ~60!

ACST identified two regimes where the evolution ofap can
be approximated very well by a power law inv ~or f ). For
LN@S, the total angular momentumJ'LN;v21/3; using
v̇;v11/3, it is straightforward to derive from Eq.~60! that
ap is approximated well by a linear function off 21,

ap(21)
fit ~ f !'

B1

f
1B2 , ~61!

where B1 and B2 are constant coefficients. SinceLN /S
;hv21/3, the conditionLN@S corresponds to comparable
10402
d
is

f

mass binaries (h;1/4) or to large separations. ForLN!S,
we haveJ'S; in this case we derive from Eq.~60! thatap is
approximated well by a linear function off 22/3,

ap(22/3)
fit ~ f !'

B18

f 2/3
1B28 , ~62!

where B18 and B28 are constant coefficients. The conditio
LN!S corresponds tom1!m2 or to small separations~late
inspiral!.

It turns out that Eqs.~61! and ~62! apply also to a large
fraction of the BBHs and NS-BH binaries studied in th
paper. This can be tested semiquantitatively by the follow
procedure. For each configuration, we take the preces
angleap( f ) and we fit it with a functionap(21,22/3)

fit ( f ) of the
form ~61! or ~62!, for frequencies in the range 50–250 H
We then evaluate the maximum difference

Damax(21,22/3)[ max
50 Hz, f ,250 Hz

uap~ f !2ap(21,22/3)
fit ~ f !u.

~63!

In Table IV, we show the values ofDamax(21)
90% ~that is, the

90% percentile ofDamax(21)) and Damax(22/3)
90% , for (15

115)M ( , (20110)M ( , (10110)M ( , and (715)M (

BBHs, and for (1011.4)M ( NS-BH binaries. The number
TABLE IV. Approximation of binary precession histories using best-fit parametersB1 andB2 in Eqs.~61! and~62!. This table shows the
90% percentiles ofDamax(21) @Eq. ~63!# andDamax(22/3) in the BBH and NS-BH populations studied throughout this section.

90% percentiles of error in precession angleDamax

(15115)M ( (20110)M ( (2015)M ( (10110)M ( (715)M ( (1011.4)M ( @NS-BH#

Damax(21)
90% 0.30 0.24 0.23 0.34 0.64 0.61

Damax(22/3)
90% 0.52 0.48 0.50 0.68 1.14 0.72
5-12
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FIG. 9. Simple precession. The upper graphs show the evolution of the direction of total angular momentumĴ ~left!, and of Newtonian

orbital angular momentumL̂N ~right!, in the case of the simply precessing (2015)M ( BBH with initial anglesuS1
544.6°, uS2

5101.0°,

andfS1
2fS2

5239.7° ~at 30 Hz). The lower graphs show the projection ofL̂N onto the plane perpendicular to the initialĴ ~left!, and the

angle betweenL̂N and Ĵ, plotted as a function of inverse GW frequency~right!. The BBH was rotated in space so that the initial directi

of Ĵ would be parallel to thez axis.
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show that Eqs.~61! and~62! yield ~roughly! comparable ap-
proximation. This result is confirmed also by the more d
tailed analyses discussed later in this paper.

Figure 9 plots the 2PN evolutions ofĴ ~upper left panel!
and L̂N ~upper right panel! for a (2015)M ( BBH with ini-
tial conditions uS1

544.6°, uS2
5101.0°, and fS1

2fS2

5239.7° ~at 30 Hz). The figure plots also the projection
L̂N onto the plane perpendicular to the initialĴ ~lower left
panel!, and the precession angleap betweenL̂N and Ĵ, plot-
ted as a function of inverse GW frequencyf 21 ~lower right
panel!, and showing a very nearly linear dependence.

Building on the results obtained by ACST, Apostolat
@11# conjectured~quite reasonably! that orbital precession
will modulate the gravitational waveforms with function
dependencies given by Eqs.~61! and ~62!. On the basis of
this conjecture and of the observation that, in match
filtering techniques, matching the phase of signals is m
important than matching their amplitudes, Apostolatos p
posed a family of detection templates@11# obtained by modi-
fying the phasing of nonspinning PN templates as in

Apostolatos’ ansatz:

cspinning→cnon spinning1C cos~d1Bf 22/3!, ~64!
10402
-

-
re
-

while keeping a Newtonian amplitudef 27/6. Recently,
Grandclément, Kalogera, and Vecchio@12# applied Aposto-
latos’ suggestion to an approximated analytical model
NS-BH binaries and low-mass BBHs: whereas the addit
of phase modulations according to Eq.~64! did increase the
effectualness@3# of nonspinning PN templates, the resultin
DTF family was still not good enough to recommend
application when trying to capture the real modulated wa
forms. Moreover, this DTF requires three additionalintrinsic
parameters (C,d, and B) on top of the two BH~or NS!
masses. The resulting GW searches would then be plag
by an extremely high computational cost.

In the rest of this paper, we shall propose a better temp
family, inspired by old and new insight into the precession
effects that appear in the gravitational waveforms. As
shall see, Apostolatos’ ansatz can be improved to build DT
that have both high effectualness@3# and low computational
requirements.

IV. DEFINITION OF MODULATED DTFS FOR
PRECESSING BINARIES

We are now going to bring together all the observatio
reported in Sec. III to build DTFs that perform well in cap
turing the detector response to the GWs emitted by prec
5-13
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BUONANNO, CHEN, AND VALLISNERI PHYSICAL REVIEW D 67, 104025 ~2003!
ing binaries of NSs and spinning BHs~at least as long as th
actual physical signals are modeled faithfully enough by
adiabatic target model described in Sec. II!.

In Sec. IV A we develop a new~as far as we know! con-
vention for the generation and propagation of GW’s fro
spinning binaries; this convention has the desirable prop
of factorizing the waveform into acarrier signal whose
phase is essentially the accumulated orbital phase of the
nary, and amodulated amplitudeterm which is sensitive to
the precession of the orbital plane. In Sec. IV B we then
the results of Sec. III D to build an approximation of th
carrier signal, and the results of Secs. III B, III E, and III F
build an approximation to the modulated amplitude; us
these terms together, we define three families of detec
templates. In Sec. IV C we describe two standard families
nonspinning-binary templates; in Sec. VI we shall comp
their performance with the performance of our DTFs,
evaluate the performance improvements brought abou
our treatment of precession.

A. A new convention for GW generation in spinning binaries

At least two conventions are used to express the grav
tional waveforms generated by binaries of spinning comp
objects, as computed in the quadrupolar approximation@29#:
the ACST convention@10#, which uses a rotating referenc
frame, and the FC convention@15#, which uses a nonrotating
reference frame. We discussed the FC convention in S
II C, and we used it throughout this paper to generate gr
tational waveforms from the numerical integration of t
equations of motion of the target model. Before going to
specific conventions, we shall first sketch a generic pro
dure to write the gravitational waveform.
he
,

10402
e

ty

bi-

e

g
n
f

e

y

a-
ct

c.
i-

e
e-

In general, the unit vector along the separation vector
the binary,n̂(t), and the unit vector along the correspondi
relative velocity,l̂(t), can be written as

n̂~ t !5e1~ t !cosF~ t !1e2~ t !sinF~ t !,

l̂~ t !52e1~ t !sinF~ t !1e2~ t !cosF~ t !, ~65!

wheree1(t), e2(t), and e3(t)[L̂N(t) are orthonormal vec-
tors, ande1,2(t) forms a basis for the instantaneous orbi
plane@see Fig. 4#; the quantityF(t) is then the orbital phase
with respect toe1,2(t). The definitions ofe1,2(t) and ofF(t)
are not unique: an arbitrary function of time can be added
F(t), and then compensated by a time-dependent rotatio
e1,2(t) aroundL̂N(t), leaving n̂(t) and l̂(t) unchanged. In
nonspinning binaries the orbital plane~and thereforeL̂N)
does not precess, so the natural choice is to keepe1,2 con-
stant. In spinning binariesL̂N(t) precesses, and different, bu
nonetheless meaningful, conventions can be given fore1,2(t)
andF(t). Note thatF(t) is not, in general, the same as th
accumulated orbital phaseC(t)5*v(t)dt. Given a conven-
tion for e1,2(t) andF(t), the tensorQc

i j that appears in Eq
~14! can be written as

Qc
i j 522~@e1# i j cos 2F1@e3# i j sin 2F!, ~66!

where

e15e1^ e12e2^ e2 , e35e1^ e21e2^ e1 . ~67!

With the detector lying along the directionN̂, one goes on to
define a radiation frame, formed by orthonormal vectorsex

R ,

ey
R andez

R5N̂. The GW response is then given by
~68!
l-
e-

l the

the
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tor
where the tensors@T1,3# i j are given by Eq.~25!, namely,

T1[ex
R

^ ex
R2ey

R
^ ey

R , T3[ex
R

^ ey
R1ey

R
^ ex

R , ~69!

and whereF1 andF3 are given by Eq.~28!, namely,

F1,35
1

2
@ ēx^ ēx2ēy^ ēy#

i j @T1,3# i j , ~70!

with ēx,y the unit vectors along the orthogonal arms of t
interferometer. Again,ex

R and ey
R are not uniquely defined

because they can be rotated at will aroundN̂, of course
changing the values ofF1 andF3 .

ACST referF(t) to the directionN̂ of GW propagation,
by imposing that e1

ACST(t)}N̂3L̂N(t); they also set
ex
R(t)}6N̂3L̂N(t). Although the ACST convention has a

lowed some insight into the waveforms, it is rather inconv
nient for the purpose of data analysis, because almost al
quantities that come into Eq.~68! @e1,2, T1,3 , and F1,3]
depend both on the time evolution of the binary and on
direction to the detector. Using the terminology introduced
Sec. II C and Table I, under the ACST convention the lo
and directional parameters are entangled in a time-depen
manner.

FC introduce the fixed source axes$ex
S ,ey

S ,ez
S% @see Sec.

II C#, and they impose thate1
S(t)}ez

S3L̂N(t) @see Eq.~17!#.
The radiation frame does not change with time@see Eqs.
~21!–~23!#. As a consequence, the factorsQ and P in Eq.
~68! become disentangled: the factorQ expresses the com
ponents of the quadrupole moment, which depend only
the evolution of the binary inside the source frame; the fac
5-14
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TABLE V. Parametric dependence of the building elements of the detector response functionhresp @Eq. ~68!# under the ACST, FC, and
precessing conventions.

Convention FactorP FactorQ
T1,3 , F1,3 F(t) e1,3(t)

ACST Function of basic, local, and Function of basic, local, and Function of basic, local, a
directional parameters; directional parameters directional parameters

time dependent
FC Function of directional parameters; Function of basic, local, and Function of basic, local, a

time independent directional parameters directional parameters
Precessing Function of directional parameters; Function of basic and local Function of basic and lo

time independent parameters only; coincides withC(t) parameters only
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P expresses the projection of the quadrupole moment o
the radiation frame and onto the antisymmetric mode of
detector, which depend only on the relative orientation
tween the source frame and the detector. However, for
purposes there are still two shortcomings in the FC conv
tion.

~1! The FC convention definese1,2(t) andF(t) in terms
of the fixed source frameex,y,z

S , which is quite artificial,
because only the relative orientation between binary and
tector affects the detector responsehresp.

~2! In Sec. III D we saw that the accumulated orbit
phaseC(t) is ~almost! nonmodulated, so the modulations
the waveform come mainly from the precession of the orb
plane. Under the FC convention, the modulations app
only in factor Q of Eq. ~68!, but they appear both in th
phaseF(t) and in the precession of the tensorse1,3(t). It
would be nice to isolate the precessional effects in eit
element.

Both issues would be solved if we could find a modific
tion of the FC convention whereF coincides with the accu
mulated orbital phaseC. As it turns out, it is possible to do
so: we need to redefine the vectorse1,2(t) so that they pre-
cess alongsideL̂N ,

ėi~ t !5Ve~ t !3ei~ t !, i 51,2, ~71!

with

Ve~ t ![VL~ t !2@VL~ t !•L̂N~ t !#L̂N~ t !, ~72!

where VL is obtained by collecting the terms that~cross-
product! multiply L̂N in Eq. ~9!. In Appendix B we prove that
this convention yieldsḞ5v5Ċ, as desired. Qualitatively
one can reason as follows. The angular velocity of the bin
lies alongL̂N(t) and has magnitudeĊ5v. The reason why
F andC differ is that the orbital basise1,2, used to define
F, must rotate to keep up with the precession of the orb
plane. However, the difference vanishes if we constrain
angular velocity ofe1,2 to be orthogonal toL̂N ; Eq. ~72!
provides just the right constraint. In the following, we sh
refer to our new convention as theprecessingconvention.

In Table V we summarize the parameter dependence
the terms that make up the detector response function@Eq.
~68!#, under the three conventions. It is important to rem
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that in the precessing convention the polarization tens
e1,3(t), as geometric objects, donot depend on the sourc
frame, but only on the basic and local parameters. In pr
tice, however, we need to introduce an arbitrary choice of
source frame to relate the orientation of the binary to
direction and orientation of the detector~that is, to write
explicitly the products@e1,3# i j @T1,3# i j ). We can avoid this
arbitrariness by setting the source frame according to
initial configuration of the binary at a fiducial orbital fre
quency; for example, we can impose~without loss of gener-
ality!

ex
S}S1~0!2@S1~0!•L̂N~0!#L̂N~0!,

ey
S5L̂N~0!3ex

S , ez
S5L̂N~0! ~73!

and

e1~0!5ex
S , e2~0!5ey

S , e3~0!5ez
S . ~74!

@If S1(0) andL̂N(0) are parallel,ex
S can be chosen to lie in

any direction within the plane orthogonal toL̂N(0).# Then
the initial conditions, as expressed by their components w
respect to the source frame, are determined only by the l
parameters,

L̂N~0!5~0,0,1!, ~75!

S1~0!5~sinuS1
,0,cosuS1

!, ~76!

S2~0!5~sinuS2
cos~fS2

2fS1
!,

sinuS2
sin~fS2

2fS1
!,cosuS2

!, ~77!

along with an initial orbital phaseC0 given by

n~0!5e1~0!cosC01e2~0!sinC0 . ~78!

With this choice, all the directional parameters are isolated
factor P of Eq. ~68!, while the basic and local paramete
~which affect the dynamics of the binary! are isolated in
factor Q. We will call upon this property of the precessin
convention in Sec. VI D, where we propose a new family
templates for NS-BH binaries built by writing a set of orth
normal component templates that contain all the dynam
5-15
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TABLE VI. Specification of the DTFs examined in this paper.

Template family cNM( f ) A1~f! A2( f ) A3( f )

(c0c3/2)2 c0f 25/31c3/2f
22/3 f 27/6u( f cut2 f )

(c0c3/2a)4 c0f 25/31c3/2f
22/3 f 27/6u( f cut2 f ) f 21/2u( f cut2 f )

(c0c3/2B)6 c0f 25/31c3/2f
22/3 f 27/6u( f cut2 f ) f 27/6cos(Bf 22/3)u( f cut2 f ) f 27/6sin(Bf 22/3)u( f cut2 f )

(c0c3/2B8)6 c0f 25/31c3/2f
22/3 f 27/6u( f cut2 f ) f 27/6cos(Bf 21)u( f cut2 f ) f 27/6sin(Bf 21)u( f cut2 f )
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information expressed by factorQ, and then using their lin-
ear combinations to reproduce the projection operation
pressed by factorP.

Going back to the main thrust of this section, we obta
the detector responsehresp by setting the direction to the
detectorN̂ ~specified by the anglesQ andw with respect to
the source frame!, and by introducing the radiation frame
oriented along the axes

ex
R52ex

S sinw1ey
S cosw, ~79!

ey
R52ex

S cosQ cosw2ey
S cosQ sinw1ez

SsinQ,
~80!

ez
R51ex

S sinQ cosw1ey
S sinQ sinw1ez

S cosQ5N̂;
~81!

we then get

hresp52
2m

D

M

r
~@e1# i j cos 2C1@e3# i j sin 2C!

3~@T1# i j F11@T3# i j F3!. ~82!

Applying the stationary-phase approximation at the lead
order, we can write the Fourier transform ofhresp as

h̃resp~ f !52h̃C~ f !$@e1~ t f !#
jk1 i @e3~ t f !#

jk%

3~@T1# jkF11@T3# jkF3! for f .0, ~83!

where h̃C( f ) is the SPA Fourier transform of thecarrier
signal,

hC5
2m

D

M

r
cos 2C, ~84!

and wheret f is the time at which the carrier signal has i
stantaneous frequencyf.

B. Definition of a new DTF for precessing binaries

By adopting the precessing convention, we isolate all
modulational effects due to precession in the evolving po
ization tensors@e1,3# i j ~these effects will show up both in
the amplitudeand in the phase ofhresp). The discussion of
Sec. III D shows that, to a very good approximation, t
carrier signal is not modulated, so we expect thath̃C( f )
should be approximated well by the nonspinning PN te
plates studied in BCV1, or variations thereof. As for the tim
dependence of the tensors@e1,3# i j , the discussion of Secs
10402
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III E and III F suggests that we adopt the Apostolatos’ ans
@30#, and write expressions in the generic forms

@e1,3# i j @T1,3# jk}C1,3cos~Bf 22/31d1,3! or

}C1,3cos~Bf 211d1,3!. ~85!

Indeed, our extended numerical investigations provide e
dence that expressions of the form~85! should work quite
well for the binaries under consideration.

All these elements suggest that we introduce a family
detection templates of the general~Fourier-domain! form

h~cNM ,Ak ,t0 ,ak ; f !

5F (
k51

n

~ak1 iak1n!Ak~ f !Ge2p i f t 0eicNM( f ) ~ for f .0!

~86!

@and h( f )5h* (2 f ) for f ,0], where theAk( f ) are real
amplitude functions, the ak are their~real! coefficients, and
t0 is the time of arrival of the GW signals. The functioncNM
represents the phase of the unmodulated carrier signal
write it as a series in the powers off 1/3,

cNM~ f !5 f 25/3~c01c1/2f
1/31c1f 2/31c3/2f 1••• !.

~87!

As discussed in BCV1, this phasing works well for relative
high-mass, nonspinning BBHs, and for NS-BH binaries;
addition, as anticipated in Sec. III D, the PN coefficientsc i
are able to capture the nonmodulational effects of spin-o
and spin-spin couplings on the orbital phase. In this paper
examine three specific families of detection templates of
form, listed in Table VI. The subscripts 2, 4, and 6 in o
abbreviations for the template families denote the numbe
ak coefficients that appear in Eq.~86!.

The families (c0c3/2)2 and (c0c3/2a)4 were already stud-
ied in Ref. @8# for the case of nonspinning binaries. Bo
families contain the leadingf 27/6 Newtonian dependence o
the amplitude; however, (c0c3/2a)4 contains a correction to
the Newtonian amplitude~introduced in BCV1, where it was
parametrized bya) which can account for the variation o
the rate of inspiral in the late stages of orbital evolution. T
first family is given by
5-16
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~c0c3/2!2 :

h~ . . . ;f !5~a11 ia2! f 27/6u~ f cut2 f !e2p i f t 0

3expi @c0f 25/31c3/2f
22/3#; ~88!

herea11 ia2 can also be written asA expif0
GW, wheref0

GW

is the initial GW phase, andA is an overall normalization
factor for the template. So the twoak coefficients encode the
initial global phase of the waveform, plus a normalizati
factor. The second family is given by

~c0c3/2a!4 :

h~ . . . ;f !5@~a11 ia2! f 27/61~a31 ia4! f 21/2#

3u~ f cut2 f !e2p i f t 0expi @c0f 25/31c3/2f
22/3#;

~89!

another way to rewrite the coefficientsa124 more physically
is A exp@if0

GW# f 27/6(11a exp@ifa#f 2/3), wherea is the ad-
ditional amplitude parameter andfa is the relative phase o
the amplitude correction~as in BCV1, in this paper we al
ways setfa 50!. So the four coefficientsak encode the
global phase, the strength of the correction to the Newton
amplitude, and the relative phase of this correction with
spect to the Newtonian amplitude, plus an overall normali
tion factor.

The third family, (c0c3/2B)6, contains the leading New
tonian amplitude, modified by two modulation terms@a gen-
eralization of the Apostolatos ansatz~85!# that account for
the precession of the orbital angular momentum due to s
effects. It is given by

~c0c3/2B!6 :

h~ . . . ;f !5 f 27/6@~a11 ia2!1~a31 ia4!cos~Bf 22/3!

1~a51 ia6!sin~Bf 22/3!#u~ f cut2 f !e2p i f t 0

3expi @c0f 25/31c3/2f
22/3#; ~90!

another way to rewrite the six coefficientsa1 – 6 in close anal-
ogy to Apostolatos’ ansatz is

Aeif0
GW

f 27/6@11Ceifmod
cos~b f 22/31d11 id2!#

[Aeif0
GW

f 27/6@11Ccose
ifcos

cos~b f 22/3!

1Csine
ifsin

sin~b f 22/3!# ~91!

~where all the coefficients are still real!. So the six coeffi-
cientsak encode the global phase, the strength of the am
tude modulation, its relative phase with respect to the Ne
tonian amplitude, and the internal~complex! phase of the
modulation. It is clear that our family implements a gen
alization of Apostolatos’ ansatz, because we allow acomplex
phase offset between the Newtonian and the sinusoidal
plitude terms, and also between the cosine and sine mod
tional terms. We consider also a variant (c0c3/2B8)6 of this
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family where thef 22/3 frequency dependence in the sin
soidal amplitude functions is replaced byf 21.

For all three families, the templates are terminated at acut
frequencyf cut, above which the amplitude drops to zero; th
f cut is in effect one of the~intrinsic! search parameters. Fo
all three families, the frequency dependence of the ph
includes the leading Newtonian termf 25/3 and a termf 22/3

that corresponds to the 1.5PN correction in the phase ev
tion of nonspinning binaries~as obtained, in the SPA, b
integrating the energy-balance equation through an adiab
sequence of circular orbits, using PN expanded energy
flux!. In BCV1 we found that including either the 1PN o
1.5PN term is in general sufficient to model the phase e
lution of nonspinning binaries of high mass.

C. Definition of the standard SPA template families

In this section we define two families of standa
nonspinning-binary templates, obtained by solving t
Taylor-expanded energy-balance equation for an adiab
sequence of quasicircular orbits, and using the station
phase approximation to express the result as a function o
GW frequencyf ~see BCV1!. In Sec. VI we compare the
matching performance of these templates to the performa
of our new DTFs, to show that the various tricks used
build the new families do indeed improve their effectualne
@3#. The standard SPA families are built from the analy
expressions of Refs.@17,19#. The frequency-domain phasin
~under the assumption of nonevolving orbital angular m
mentum and spins! is given by@11#

cSPA~ f !52p f tc2fc1
3

128
~pMf !25/3F11

20

9 S 743

336

1
11

4
h D ~pM f !2/324~4p2TSO!~pM f !

110S 3058673

1016064
1

5429

1008
h1

617

144
h22TSSD

3~pM f !4/3G , ~92!

whereM5Mh3/5 is thechirp mass, and whereTSO andTSS
are the spin-orbit and spin-spin terms, given explicitly by

TSO5
1

M2 F S 113

12
1

25

4

m2

m1
DS11S 113

12
1

25

4

m1

m2
DS2G•L̂N ,

~93!

TSS5
1

48m1m2M2
@2247S1•S21721~S1•L̂N!~S2•L̂N!#.

~94!

We neglect all PN corrections to the amplitude, by adopt
its Newtonian functional formf 27/6; we also neglect all pre-
cessional effects, by settingTSO5TSS50. Templates of this
form are routinely used in searches for GW signals fro
nonspinning binaries. In that case, the templates are ge
ally ended at the GW frequency corresponding to
Schwarzschild ISCOf Schw.0.022/M . We denote such tem
plates as SPAs. We introduce also a variant of this fam
5-17
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SPAc, characterized by the additional frequency-cut par
eter f cut, used also in our DTFs. Altogether, we get

SPAs:

h~M,h,t0 ,c0 ,aN ; f !5aNf 27/6u~ f Schw2 f !e2p i f t 0

3expi @cSPA1c0#, ~95!

SPAc:

h~M,h, f cut,t0 ,c0 ,aN ; f !5aNf 27/6u~ f cut2 f !e2p i f t 0

3expi @cSPA1c0#. ~96!

V. GW DATA ANALYSIS WITH THE DTF

In searching for GW signals using matched-filtering tec
niques, we construct a discrete bank of templates that re
sent all the possible signals that we expect to receive fro
given class of sources. We then proceed to compare e
stretch of detector output with each of the templates, co
puting theiroverlap ~essentially, a weighted correlation!. A
high value of the overlap statistic for a given stretch of d
tector output and for a particular template implies that th
is a high probability that during that time the detector ac
ally received a GW signal similar to the template. This tec
nique is intrinsically probabilistic because, for any templa
detector noise alone can~rarely! yield high values of the
statistic. In general, the higher the value of the statistic,
harder it is to obtain it from noise alone. So it is important
set the detection threshold~above which we confidently
claim a detection! by considering the resulting probability o
the false alarmscaused by noise.

To verify whether the DTFs developed in Sec. V can
used to search reliably and effectually for the GWs fro
spinning binaries, we need to evaluate thefitting factorFF of
the DTFs in matching the target signals for a variety of
nary and detector parameters. The FF is defined as the
between the overlap of the target signal with the best p
sible template in the family and the overlap of the targ
signal with itself@31#. So in Sec. V A we discuss the max
mization of the overlap over template parameters for a gi
target signal. The other important element to evaluate
reliability and effectualness@3# of the DTFs are the detectio
thresholds that the DTFs yield for a given false-alarm pr
ability. In Sec. V B we discuss these thresholds under
simplifying hypothesis of Gaussian detector noise. The m
terial presented in this section builds on the treatment
matched-filtering data analysis for GW sources given in S
II of BCV1 ~which is built on Refs.@2,3,7#!, and it uses the
same notations.

A. Maximization of the overlap over template parameters

Among all the template parameters that appear in
~86!, we are going to treatc i , f cut, andB as intrinsic pa-
rameters; andak andt0 asextrinsicparameters: that is, whe
we look within one of our DTFs for the template that be
matches a given target signal, we will need to considerex-
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plicitly many different values ofc i , of f cut, and ofB; how-
ever, for any choice of these parameters, the bestak and t0
are determined automatically by simple algebraic expr
sions~see Sec. II B of BCV1!. For the next few paragraphs
where we discuss the optimization of the coefficientsak , we
shall not indicate the dependence of the templates on
intrinsic parameters.

For a given signals, we seek the maximum of the overla

max
t0 ,ak

^s,h~ t0 ,ak!& ~97!

under the normalization condition

^h~ t0 ,ak!,h~ t0 ,ak!&51 ~98!

@this condition is necessary to set a scale for the stati
distribution of the overlap between a given template and p
noise#. Here the inner product^g,h& of two real signals with
Fourier transformsg̃, h̃ is defined by

^g,h&52E
2`

1` g̃* ~ f !h̃~ f !

Sn~ u f u!
d f54 ReE

0

1` g̃* ~ f !h̃~ f !

Sn~ f !
d f

~99!

~see BCV1!. We proceed constructively: first, we build a ne
set of amplitude functionsÂk( f ) that are linear combination
of the Ak( f ), and that satisfy the orthonormality conditio
^Âi( f ),Âj ( f )&5d i j for i , j 51,2, . . . ,n; we then define an
orthonormal set of single-Âk templates,

ĥk~ t0 ; f ![Âk~ f !e2p i f t 0eicNM,

ĥk1n~ t0 ; f ![ i Âk~ f !e2p i f t 0eicNM ~ for f .0! ~100!

@and ĥk( f )5ĥk* (2 f ) for f ,0], which satisfy

^ĥi(t0),ĥ j (t0)&5d i j ~with i , j 51,2, . . . ,2n) for any t0. The
maximized overlap@Eq. ~97!# can now be rewritten as

max
t0 ,ak

^s,h~ t0 ,ak!&5max
t0

max
âk

(
k51

2n

âk^s,ĥk~ t0!&, ~101!

while the condition~98! is now simply (k51
2n âk

251. The
inner maximum of Eq.~101! ~over theâk) is achieved when

âk5
^s,ĥk~ t0!&

A(
j 51

2n

^s,ĥ j~ t0!&2

, ~102!

and the maximum overlap itself is

max
t0 ,ak

^s,h~ t0 ,ak!&5max
t0

max
âk

(
k51

2n

âk^s,ĥk~ t0!&

5Amax
t0

(
j 51

2n

^s,ĥ j~ t0!&2. ~103!

This happens essentially because the sum in Eq.~101! can be
seen as a scalar product in a 2n-dimensional Euclidean
space, which is maximized when the unit 2n-vector âk lies
5-18
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along the direction of the 2n-vector^s,ĥk(t)&. The quantities

^s,ĥ j (t0)& for j 51,2,3, . . . ,n are given by the two related
Fourier integrals

^s,ĥ j&52 ReE
0

1`Âj~ f !eicNM( f )s* ~ f !

Sh~ f !
e2p i f t 0d f ,

~104!

^s,ĥ j 1n&522 ImE
0

1`Âj~ f !eicNM( f )s* ~ f !

Sh~ f !
e2p i f t 0d f .

~105!

We now go back to discussing the full set of templa
parameters. The relevant measure of theeffectualness@3# of
a template family at matching a physical signals is thefitting
factor FF,

FF5 max
t0 ,ak , f cut ,c i

^s,h~ t0 ,ak!&

A^s,s&
~106!

~see, for instance, Sec. II of BCV1!, which is maximized
over theak , but also over the time of arrivalt0 ~also an
extrinsic parameter!, and over all the intrinsic parameter
c i , f cut, andB. The fitting factor is a function of the physi
cal parameters of the physical signals, and of course of the
template family used to match it. We define also thesignal
amplitudeSA for a given signal,

SA5A^s,s&. ~107!

SA gives theoptimal overlap obtained for a template that
exactly equal to the signal~except for its normalization!, and
it is inversely proportional to the luminosity distance to t
source; where we do not indicate otherwise, we always
sume the fiducial distanced05100 Mpc.

The maximization of the overlap overt0 is easy to obtain,
because the integrals~104! and~105! can be evaluated at th
same time for all thet0 using fast Fourier transform tech
niques@32#. On the other hand, the maximization overf cut
and over the other intrinsic parameters is obtained by
explicit search over a multidimensional parameter ran
where we look for the maximum of the partially maximize
~over extrinsic parameters! overlap, given by Eq.~97!. For
all the actual searches discussed in this paper we em
with good results the simplicial algorithmAMOEBA @33#.

B. False-alarm statistics of the DTFs

In the practice of GW data analysis, templatefamiliesare
used to build discrete templatebanksparametrized by a dis
crete set ofntuples of the intrinsic parameters. Then each
the templates is correlated with the detector output, to se
the detection statistic@in our case, the partially maximize
correlation~97!# is greater than the detection threshold. It
important to notice that the statistic is already maximiz
with respect to the extrinsic parameters, while the intrin
parameters serve as labels for each of the templates. Th
fore, we are effectively setting up a separate detection
for each of the templates in the bank.
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In this section we are going to evaluate the false-ala
probability for one such test, defined as the probability t
detector noise alone will yield an overlap greater than
detection threshold. The total false-alarm probability is th
obtained by multiplying the false-alarm probability for
single template by the numberNshapesof independent signa
shapes~generally of the same order of magnitude as
number of templates in the bank!, and by the numberNtimes
of possible times of arrivalt0, distanced in such a way tha
the displaced templates are essentially orthogonal@34#. At
the end of this exercise, we are going to set the detec
threshold so that the total false-alarm probability is acce
ably low.

Under the assumption of Gaussian noise, the inner pr
uct ^n,ĥ j& of noisen alone with a normalized template com
ponent ĥi is ~by construction! a Gaussian random variabl
with zero mean and unit variance~see, for instance, Sec. II o
BCV1!. Because~for the samet0 and for the same intrinsic
parameters! all the ĥ j are orthogonal, the inner produc

^n,ĥ j& ~for j 51, . . . ,2n) are all independent normal var
ables. It follows that the statisticX5maxt0,ak

^n,h(t0,ak)& @see
Eq. ~103!#, given by the square root of the sum of the
squares, follows thex distribution with 2n degrees of free-
dom, characterized by the probability density function a
cumulative distribution function

Px(2n)~X5x!5
x2n21e2x2/2

2n21G~n!
, Cx(2n)~X,x!5

G~n,0,x2/2!

G~n!
,

~108!

where we have used thegeneralized incomplete gamm
functionG(n,z0 ,z1)5*z0

z1tn21e2tdt. For n51 we obtain the

Rayleigh distribution, typical of the maximization of the am
plitude of signals with two quadratures.

In Table VII we show the thresholds needed to obtain
total false alarm probability of 1023, with Ntimes5331010

~typical of about three years of observation with LIGO!, and
with the Nshapesgiven in the first column. We observe tha
each time we increaseNshapesby one order of magnitude, th
threshold increases by about 2%~this happens uniformly for
all n’s!. On the other hand, each step inn increases the
threshold by about 4%. Thus, when we design DTFs

TABLE VII. Detection thresholds for a false-alarm probabilit
51023 for a x-distributed detection statistic with 2n degrees of
freedom, forNtimes5331010, and for theNshapesgiven in the first
column. The values given for (c0c3/2a)4 do not take into accoun
the fa 50 constraint.

Nshapes Threshold for false-alarm probability51023

(c0c3/2)2 (c0c3/2a)4 (c0c3/2B)6

n51 n52 n53

102 8.44 8.87 9.22
103 8.71 9.13 9.48
104 8.97 9.39 9.73
105 9.22 9.63 9.97
106 9.47 9.87 10.21
5-19
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should keep in mind that the best possible overlap increa
with the number of templates employed, and with the co
plexity of the templates~clearly, the complexity of our DTFs
increases with the number of amplitude functions!; but the
detection threshold increases as well, reducing the numb
signals that pass the detection test. So in principle we
justified in using more numerous and more complex te
plates only if the gain in the overlap is larger than the
crease in the detection threshold.

The prospects shown in Table VII for the models withn
52 andn53 improve somewhat if we constrain the valu
that theak can attain when they are~algebraically! maxi-
mized. We can do this, for instance, if we judge that cert
combinations of theak correspond to unphysical waveform
but then we must be consistent and exclude any detect
that cross the threshold within the excluded parameter
gion. In any case, we should remember that our study
false-alarm statistics is based on the idealization of Gaus
noise, which will not be realized in practice: real-world da
analysis schemes rely on matched-filtering techniq
complemented byvetoing schemes@35#, which remove de-
tection candidates using nonlinear tests on the signal. Th
fore, any DTF should be evaluated in that context before
excluded for producing excessive detection thresholds wi
the Gaussian analysis.

VI. EVALUATION OF DTF PERFORMANCE

We wish to investigate the effectualness@3# of our DTFs
in matching the GW signals generated by precessing bina
of spinning compact objects, at least as approximated by
target model described in Sec. II. To do so, we shall evalu
the fitting factor FF@Eq. ~106!# of the DTFs over a popula
tion of binaries with a variety of basic, local and direction
parameters, and compare the results with the FF obtaine
the standard SPA families@Sec. IV C#. In Sec. VI A we study
the effect of the directional parameters on FF~and SA!, with
the aim of reducing the dimensionality of the test popu
tions. In Sec. VI B we describe the Monte Carlo scheme u
to generate the populations, and we identify two performa
indices for the template families~namely, the simple and
SA-weighted averages of FF!. In Sec. VI C we give our re-
sults for these indices, focusing first on the BBHs conside
in this paper. Finally, in Sec. VI D we give our results f
NS-BH binaries, and we briefly describe a new, very pro
ising family of templates for these systems, suggested by
insights accreted during the development of this paper.

A. Effect of directional parameters on FF and SA

As we have seen in Secs. II C and II D, the detector
sponsehresp is a function not only of the basic and loc
parameters of the binary~which describe, respectively, th
masses and spin magnitudes, and the initial relative di
tions of the spins and the orbital angular momentum, a
therefore change the dynamical evolution of the binary!, but
also of the directional parameters~which describe the rela
tive direction and orientation of binary and detector, and a
thepresentationof the precessing orbital plane of the bina
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with respect to the direction and orientation of the detecto!.
Thus, all the parameters will affectboth the amplitudeS
5^hresp,hresp&

1/2 of the signals received at the detectorand
the ability of our DTFs to match them, as codified in th
fitting factor FF; it is therefore clear that, in evaluating th
effectualness of our DTFs at matching the target signals,
will need to compute FF not only for a range of bina
masses and spins, but also for a suitable sampling of
local and directional parameters.

In the case of nonspinning binaries~see BCV1!, there are
no local parameters as we defined them in this paper;
directional parametersdo change the GW signal, but only b
multiplying its amplitude by a constant factor, and by addi
a constant offset to its phase~as opposed to modulating am
plitude and phase as in the case of spinning binaries!. In
BCV1 ~following a common practice in the GW data
analysis literature!, we included the variation of the ampli
tude in the definitionof the target signals, by averaging th
amplitude factor over uniform solid-angle distributions of t
directional parameters@see Eq.~29! of Sec. II D#. As for the
initial phase of the signal, we defined the FF on the basis
minmaxoverlaps@3#, which are maximized over the initia
template phase~and over all the other extrinsic and intrins
template parameters! but minimized over the initial signa
phase; this minimization is obtained algebraically, just as
the extrinsic template parameters. In fact, it turns out t
minimizing or maximizing the overlap over the initial sign
phase changes the resulting FF by a very small quantity

In the case of the spinning binaries examined in this
per, this picture changes radically, because minimizing
overlap over the directional parameters yields very low F
that are not representative of the typical results that
would get in actual observations. So we take a different
proach: we study the distribution of FF for a population
binaries characterized by different basic, local, and dir
tional parameters. In particular, we select several astroph
cally relevant combinations of basic parameters, and
sample randomly~but as uniformly as possible! the space
spanned by the local and directional parameters. In prac
we can exploit certain symmetries of this space~that is, the
fact that different combinations of the local and direction
parameters yield the same signal! to reduce its effective di-
mensionality. Let us see how.

Under the FC convention, the complete specification o
target signal requires~at least formally! 15 parameters: ac
cording to our classification~Sec. II D!, four of these are the
basic parameters (M , h, S1, and S2); three are the loca
binary angles (uS1

, uS2
, andfS1

2fS2
); three are the direc-

tional binary angles (uLN
, fLN

, andfS1
1fS2

); and five are

the directional GW and detector angles (Q, w, u, f, and
c). Of the latter,u, f andc come into the waveform only
through the antenna patternsF1 andF3 @see Eqs.~29! and
~30!#. It is redundant to specifyboth the directional binary
angles~which determine the orientation of the binary as
whole in space! and the directional GW angles~which deter-
mine the directionN̂ of GW propagation to the detector!,
because if we apply the same rotation toN̂ and to the binary
vectorsL̂N , Ŝ1, and Ŝ2, we do not change the response
5-20
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the detectorhresp. So we can use this freedom to setQ
5p/2 andw50. Once this is done, we still have the fre
dom to rotate the detector-binary system around the axisN̂.
Such a rotation~by an anglen) will transform theF1 and
F3 antenna patterns according to

F1→F1cos 2n2F3sin 2n, ~109!

F3→F1sin 2n1F3cos 2n. ~110!

Looking at Eqs.~29! and ~30!, we see that, for any origina
u, f, andc, we can always find an anglen for which F1

50. The corresponding newF3 becomes

F356
1

2
A~11cos2u!2cos22f14 cos2u sin22f;

~111!

once again, the detector response does not change. For f
use, let us define asp@F3# ~with *0

1p@F3#dF351) the
probability density foruF3u induced by uniform solid-angle
distributions foru and f @notice thatc does not appear in
Eq. ~111!#.

Now, for a given DTF and for given basic paramete
consider the distribution of FF and SA obtained for an 1
parameter population of target signals specified by unifo
solid-angle distributions ofuLN,S1 ,S2

, fLN,S1 ,S2
, Q, w, u, f,

andc. By the above arguments, we obtain the same dis
bution of FF and SA from a six-parameter population
target signals specified by uniform solid-angle distributio
of uLN,S1 ,S2

, fLN,S1 ,S2
, by Q5p/2, w50, F150, and by

F3 distributed according top@F3#. Moreover, becauseF3

appears only as a normalization factor in front of the expr
sion ~27! for the signal~once F150), we can simply set
F351: this operation does not change FF@becauseF3 ap-
pears homogeneously in the numerator and denominato
Eq. ~106!#, while the distribution of SA for the original 11
parameter population can be recovered from its moment
the six-parameter population:

^SAm&11 par5K E
0

1

~F3!mSAmp@F3#dF3L
6 par

5^SAm&6 parE
0

1

~F3!mp@F3#dF3 . ~112!

B. A Monte Carlo procedure to evaluate DTF performance

We are going to evaluate the effectualness@3# of our
DTFs within a Monte Carlo framework, by studying the di
tribution of FF ~and FF3SA3, see below! over six sampled
populations of 1000 binaries each, specified as follows.
study the binary systems already examined in Sec. III: BB
with masses (20110)M ( , (15115)M ( , (2015)M ( ,
(10110)M ( , and (715)M ( , and NS-BH binaries with
masses (1011.4)M ( . All the BHs have maximal spin
while the NSs have no spin. We integrate numerically
target-model equations starting from initial configuratio
that correspond to instantaneous GW frequencies of 30
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when M.20M ( , and 40 Hz otherwise. For each set
masses, we use the Halton sequence with bases 2, 3, 5,
and 13 to generate 1000quasirandomsets of the six angles
uLN,S1 ,S2

andfLN,S1 ,S2
; the directions of the resulting orbita

angular momentum and spins are uniformly distributed o
the solid angle. We denote each sestuple by the seque
index l, for l 51, . . . ,N51000. We always setQ5p/2, w
50, F150, F351, and we taked05100 Mpc.

For each set of masses, and for each DTF, we compute
Monte Carlo average of the FF,

FF5^FF&5
1

N (
l 51

N
FF@ l #, ~113!

and its variance

sFF
2 5^DFF2&5

1

N21 (
l 51

N
~FF@ l #2FF!2, ~114!

which can be used to estimate the sampling error of
Monte Carlo average asDFF.sFF/AN.

There is another function of FF and SA that has a parti
lar interest for our purposes. Consider each configurationl as
a representative of a subclass of physical signals that h
the same binary, GW, and detector parameters~except for the
degenerate parameters discussed above!, but that are gener-
ated uniformly throughout the universe. The rate of succe
ful signal detections using a given DT is then

Rdetect@ l ,F351#5Rd0S FF@ l #SA @ l #

threshold@DTF# D
3

, ~115!

whereRd0
is the rate of events out to the distanced0 from

Earth. Here we assume thatRd0
is a function of the basic

parameters of the binary, but not ofl. This equation holds
because FF@ l # SA@ l # is the signal-to-noise ratio~that is, the
overlap maximized over the DTF! for the signal l at the
distanced0; the ratio of FF@ l # SA@ l # to the DTF threshold
gives the fraction or multiple of the distanced0 out to which
signals of the classl will pass the detection test. Folding i
p@F3# we get

Rdetect@ l #5Rdetect@ l ,F351#•E
0

1

~F3!3p@F3#dF3

50.293•Rdetect@ l ,F351#. ~116!

Summing over thel, we get an estimate of the total detectio
rate, Rdetect5(1/N)( l 51

N Rdetect@ l #. On the other hand, the
optimal detection rate that we would obtain with a perfec
faithful DTF is

Roptimal5Rd0

1

N (
l 51

N S SA@ l #

threshold@DTF# D
3

3E
0

1

~F3!3p@F3#dF3 . ~117!
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FIG. 10. GW signal amplitude SA as a function of the initialĴN•N̂ ~that is, the cosine of the angle between the direction of G
propagation and the initial total angular momentum at the Newtonian order!, for our Monte Carlo populations of (15115)M ( BBHs ~in the
left panel! and (1011.4)M ( NS-BH binaries~in the right panel!. The signal amplitude is computed for a LIGO-I noise curve@Eq. ~28! of
BCV1#; it is normalized at fiducial distances of 100 and 30 Mpc, and averaged over the probability distributionp@F3#.
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We can therefore define theeffective average fitting facto
FFeff ~which is a function of the basic parameters of t
binary, but which is already integrated overl ) from the equa-
tion

Rdetect5FFeff
3 Roptimal. ~118!

We then get

FFeff5H ^FF3SA3&

^SA3&
J 1/3

. ~119!

To compute the Monte Carlo results presented below we
the jackknifed@36# version of this statistic to remove bia
and we estimate the errorDFFeff as the jackknifed sampling
variance. For each class of binaries and for a specific D
the effective fitting factorFFeff represents the reduction in th
detection range due to the imperfection of the DTF. The c
responding reduction in the detection rate isFFeff

3 .
In Fig. 10 we show two examples of the distribution

signal amplitudes for the (15115)M ( BBHs and for the
(1011.4)M ( NS-BH binaries in our Monte Carlo popula
tion ~as computed with the 2PN target model!. The plots
show SA as a function of the initialĴN•N̂, normalized at
distances that yield SA values comparable to typical de
tion thresholds, and averaged over the probability distri
tion p@F3#. For heavy, comparable-mass BBHs~except per-
haps for the last stages of the inspiral!, the orbital angular
momentumLN is much larger thanS1,2, so the initial total
angular momentumJN is almost perpendicular to the orbita
plane; furthermore, as seen in Sec. III E, the direction ofJN
does not change much during evolution. Because in
quadrupole approximation the emission of GWs is stron
along the direction perpendicular to the orbital plane, val
of uĴN•N̂u close to 1 give stronger signals, as seen in the
panel of Fig. 10. For NS-BH binaries, whereh is small, the
BH spin S1 is much larger thanLN , and JN lies roughly
alongS1. So an upward curve of the left panel appears wh
LN is roughly parallel or antiparallel toS1 and ĴN ~that is,
when the conserved quantitykeff}L̂N•Ŝ1 has a large absolut
value!, while a downward curve appears whenLN is or-
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thogonal toS1 andĴN ~that is, whenkeff has a value close to
zero @37#!. The mixture of these two tendencies creates
shape seen in the right panel of Fig. 10.

C. Performance indices for the standard SPA templates and
for the modulated DTFs

Figure 11 shows the distribution of FFs, evaluated for o
DTFs and for the SPA standard templates against the 2
target model, within the Monte Carlo populations of BBH
and NS-BH binaries described in the previous section. T
vertical lines show the Monte Carlo estimates ofFF andFFeff
~the latter is always larger!, with their estimated errors; thes
numbers are given also in Tables VIII and IX. We wish
discuss several features of the FFs.

~1! The SPA template families~solid and long-dashed
black lines! always give the worst performance. Except f
the lighter systems, (715)M ( BBHs and (1011.4)M (

NS-BH binaries@38#, the SPAs family~solid black line! is
consistently less effectual than SPAc, because the tar
model ending frequencies are usually different from t
Schwarzchild ISCO frequencies used to terminate the S
templates~in the majority of cases, they are higher!. The
improvement ~SPAs to SPAc! in FF is .3% for M
.(20225)M ( , and* 10% forM530M ( . As pointed out
in BCV1, it is important to add the frequency-cut parame
f cut whenever the ending frequency is not known very we
but it is expected to fall within the band of good interferom
eter sensitivity.

~2! Although the (c0c3/2)2 DTF ~short-dashed lines! is
essentially a reparametrization of SPAc~both families have
the f cut parameter!, it is slightly more effectual. The reaso
for this is that thephysicalranges ofM andh used to opti-
mize FF~and in particular the constrainth,0.25) limit the
ability of the expressioncSPA( f ) to reproduce the phasing o
the target. On the contrary, in the (c0c3/2)2 DTF the coeffi-
cients of f 25/3 and f 22/3 are not functions ofM andh, but
free phenomenological parameters that can achieve the
possible values to match the target phasing. This added f
dom does not buy a dramatic improvement for the spinn
binaries studied in this paper, because the SPAc template
already rather close to the adiabatic target model~except
5-22
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FIG. 11. Distribution of fitting factor FF against the 2PN target model for the DTFs and for the standard SPA template families,
BBH and NS-BH Monte Carlo populations. The vertices of the segmented curves show the number of samples~out of 1000! for which the
FF falls within the equispaced bins@0.725,0.75),@0.75,0.775), . . .~the bins are plotted logarithmically to emphasize the region of FF c
to 1; notice that the NS-BH figure in the bottom right corner shows a different bin range!. The vertical lines show the averagesFF andFFeff

with their 1s error bars (FFeff is always the larger number!.
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of course for precessional modulations!. On the contrary, in
BCV1 we saw that using unconstrained phenomenolog
parameters with extended ranges is very important to fol
the nonadiabatic dynamics of the late inspiral, as predic
by some PN models for nonspinning binaries.

~3! The (c0c3/2a)4 DTF ~dot-dashed lines! introduces the
amplitude-remodeling coefficienta. In BCV1 we found that
a ~together with the extension of parameter ranges! helped
follow the nonadiabatic dynamics of some target PN mod
~see Table X!. In this paper, however, the only target mod
is obtained in the adiabatic limit, so the frequency-dom
amplitude~except of course for the modulations due to p
cession! is always very close to the Newtonian express
10402
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f 27/6. As a result, the improvement@(c0c3/2)2 to
(c0c3/2a)4] in FF is only .0.321.6 %, while~at least ac-
cording to the simple Gaussian analysis of Sec. V B! the
detection threshold increases by. 4% ~although this num-
ber does not take into account thefa 50 constraint!. It
seems therefore that the (c0c3/2a)4 DTF is not a useful up-
grade of (c0c3/2)2 for the purpose of detecting the signa
emitted by precessing binaries.

~4! The (c0c3/2B)6 DTF ~solid lines! includes modula-
tional corrections for both amplitude and phase. The res
ing improvement inFF over the SPA families is remarkab
~for BBHs, 8–22 % over SPAs and 6–10 % over SPAc;
NS-BH binaries, 20% over both!. However, the effect of the
5-23
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TABLE VIII. AveragesFF andFFeff of the fitting factor FF against the 2PN and 3.5PN target models, for the DTFs and for the sta
SPA template families, as computed on our BBH Monte Carlo populations. The numbers in parentheses give the estimated Mo
errors on the last two digits ofFF andFFeff .

Fitting factors against 2PN target model
(715)M ( (10110)M ( (15115)M ( (2015)M ( (20110)M (

FF FFeff FF FFeff FF FFeff FF FFeff FF FFeff

SPAs 0.9030(24) 0.9390(15) 0.8944(21) 0.9198(12) 0.8105(25) 0.8282(16) 0.8576(25) 0.8844(22) 0.8264(27) 0.84
SPAc 0.9018(23) 0.9367(18) 0.9294(20) 0.9558(12) 0.9313(18) 0.9548(10) 0.8854(23) 0.9096(21) 0.9186(20) 0.94
(c0c3/2)2 0.9262(22) 0.9595(13) 0.9423(17) 0.9657(10) 0.9414(15) 0.9620(08) 0.8921(22) 0.9178(23) 0.9270(17) 0.95
(c0c3/2a)4 0.9288(22) 0.9617(13) 0.9480(16) 0.9703(10) 0.9551(14) 0.9726(08) 0.8986(21) 0.9212(23) 0.9421(16) 0.96
(c0c3/2B)6 0.9753(07) 0.9828(05) 0.9861(03) 0.9895(02) 0.9863(03) 0.9891(02) 0.9746(05) 0.9794(05) 0.9843(03) 0.98

Fitting factors against 3.5PN target model
(715)M ( (10110)M ( (15115)M ( (2015)M ( (20110)M (

FF FFeff FF FFeff FF FFeff FF FFeff FF FFeff

(c0c3/2B)6 0.9708(08) 0.9802(06) 0.9854(03) 0.9887(02) 0.9854(03) 0.9883(03) 0.9738(06) 0.9775(05) 0.9844(03) 0.98
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modulational terms is seen best by comparing (c0c3/2B)6 to
(c0c3/2)2: we get an improvement of 5–9 % for BBHs an
20% for NS-BH binaries. These numbers should be co
pared with the projected increase.8% in the detection
threshold~Sec. V B!.

~5! For the (c0c3/2B8)6 DTF, where the frequency depen
dence of the modulating terms isf 22/3 rather thanf 21, fit-
ting factors are not significantly different from (c0c3/2B)6.
Therefore we do not show these numbers. Tables VIII and
also contain a few FFs computed against the 3.5PN o
target model~with û50). The FFs shown for the (c0c3/2B)6
DTF are essentially in line with their 2PN counterparts.

Our results suggest two strategies to search for the sig
from the precessing BBHs examined in this paper. We
try to follow the modulations induced by precession, usin
DTF similar to (c0c3/2B)6; or we can just use (c0c3/2)2,
which is considerably better than SPAs~mostly because o
f cut), and slightly better than SPAc~because of the extende
parameter range!. The gain in FF when we upgrad
(c0c3/2)2 to (c0c3/2B)6 is offset by a similar increase in th
detection threshold, but the latter increase might be c
tained by reducing the range of the allowedak , or by other
data-analysis considerations that do come into the sim
Gaussian analysis of Sec. V B.

Figure 12 shows the projection of the 2PN target wa
forms onto the (c0 ,c3/2) section of the (c0c3/2)2 parameter
space; Fig. 13 shows the projections of the waveforms o
the (c0 ,c3/2) and (c0 ,B) sections of the (c0c3/2B)6 param-
eter space. It is interesting to notice that, with either strate
the ranges ofc0 and c3/2 needed to match effectually th
signals in our populations are essentially the same foun
BCV1 to match the signals predicted by a variety of P
models for BBHs without spins. In Figs. 12 and 13 the
ranges are delimited by the thick dashed lines; the thinmass
lines represent the range of detection templates neede
match effectually the signals predicted by different PN mo
els for the same binary masses. As we can see, the pr
tions of the spinning-binary signals are smeared around
nonspinning-binary mass lines with the same masses.
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Thus, a signal search based on the (c0c3/2)2 DTF is a
good starting point for both nonspinning and spinning bin
ries. It might also pay off, depending on the results of a m
realistic evaluation of false-alarm probabilities, to upgra
this DTF to (c0c3/2a)4, with improved performance for
nonspinning but nonadiabatic BBHs, as shown in BCV1;
even to (c0c3/2B)6, with the best FFs for spinning binarie
and without any deterioration for nonspinning ones.

D. Modulated DTFs for NS-BH binaries

Let us now look in detail at the FFs achieved by the DT
and standard template families against the signals gener
by (1011.4)M ( NS-BH binaries where the BH is spinnin
rapidly ~see Table IX and Figs. 11 and 14!. First of all, we
notice that there is little difference between the performa
of the SPAs and SPAc templates, because the ending
quency lies outside the band of good interferometer sens
ity. Furthermore, the number of GW cycles within this ba
is very high, so it is crucial that a DTF reproduce very acc
rately the evolution of the GW phase; so using the (c0c3/2)2
DTF improves only slightly on the performance of the SP
templates. Introducing precessional corrections brings ab
a dramatic change: for the (c0c3/2B)6 DTF, the increase in
FF andFFeff with respect to SPA is, respectively, 20% an
16%, which is enough to justify the introduction of sixak
coefficients, according to the Gaussian analysis of Sec. V

The dependence of the FF on the spin configuration
shown in Fig. 14. For the NS-BH signals in our Monte Ca
population, Figs. 15 and 16 show the template parame
c0 , c3/2, andB that maximize the overlap plotted again
the initial k ~conserved in NS-BH binaries!. In the left panel,
we see that the parameterc0, which is related to the New-
tonian chirp mass, has only a weak dependence onk ~it
varies by;8%); on theother hand, the parameterc3/2 has a
strong dependence. A plausible explanation is that the
term in the SPA phasing is formally 1.5PN@see Eqs.~92! and
~93!#, and so is the termc3/2f in cNM( f ), which takes on the
job, as it were, of reproducing the nonmodulational effects
5-24
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the SO coupling. In the right panel, we see that for mos
the binary configurations the values ofB cluster around three
lines @B5100, B5(11k)1101110, and B5(11k)240
1160]. Further analyses are needed to provide an expl
tion for this interesting behavior.

Thus, the (c0c3/2B)6 DTF is a good candidate for th
data-analysis problem of detecting GW signals from NS-
binaries with rapidly spinning BHs. However, the analysis
precessional dynamics and GW emission carried out in
paper suggests an even more specialized DTF, which c
be built with the following guidelines.

~1! The waveform can be computed directly from Eq.~82!
~obtained in the precessing convention!: the necessary ingre
dients are the time evolution of the orbital phaseC and of
the binary polarization tensors@e1,3# i j , plus the fixed de-
tector polarization tensors@T1,3# i j .

~2! The evolution ofC is obtained by solving Eq.~1!,
whereS2 can be set to zero, andS1 enters only in thecon-

servedterm L̂N•S1. As a consequence, Eq.~1! is effectively
uncoupled from the evolution ofL̂N , Eq. ~9!.

~3! The evolution of the tensors@e1,3(t)# i j is obtained
from Eq. ~71!, after integrating Eqs.~2! and ~9! for the
coupled evolution ofL̂N and S, which depends only on
L̂N•S1, on S1 ~conserved!, and onv(t).

~4! A source frame attached to the initial configuration
the binary, similar to the frame constructed in Sec. IV A@see

TABLE IX. Averages FF and FFeff of the fitting factor FF
against the 2PN and 3.5PN target models, for the DTFs, and fo
standard SPA template families, as computed on the (1011.4)M (

NS-BH Monte Carlo populations. The numbers in parentheses
the estimated Monte Carlo errors on the last two digits ofFF and
FFeff .

2PN target model
(1011.4)M (

FF FFeff

SPAs 0.7800(34) 0.8169(37)
SPAc 0.7747(49) 0.8129(54)
(c0c3/2)2 0.7807(41) 0.8316(46)
(c0c3/2B)6 0.9331(15) 0.9452(14)

3.5PN target model

(c0c3/2B)6 0.9263(15) 0.9378(14)
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Eqs.~73!#, can be used to carry out the explicit constructio
By way of the initial conditions~74!–~77!, the tensorse1,3
and the orbital phaseC ~up to an additive constantC0) are
then well defined as functions of the basic and local bin
parameters only. We have therefore completed the speci
tion of the first part of Eq.~82!, which expresses the compo
nents of the mass quadrupole moment.

~5! The remaining part of Eq.~82!, which expresses the
projection on the polarization tensor of the detector,

Pi j [@T1# i j F11@T3# i j F3 , ~120!

is determined by the directional parametersQ, w, f, u, and
c, which are now referred to the source frame attached to
binary. When we look for GWs using matched filtering, w
can search rapidly over such a parametrization by trea
thePi j as extrinsic parameters, along with the time of arriv
and the initial orbital phaseC0. The only intrinsic param-
eters would then bem1 , m2 , S1, andS•L̂N , all of which are
conserved.

This family of templates adds a further intrinsic parame
with respect to (c0c3/2B)6, but it has the advantage of pro
ducing essentially exact waveforms~valid in the adiabatic
regime, and up to the highest PN order included!, and of
expressing these waveforms directly in terms of the phys
spin parametersS1 and S•L̂N . We believe that the imple-
mentation and the false-alarm statistics of this family a
worthy of further investigation@39#.

VII. SUMMARY

In BCV1, the nonmodulated DTFs (c0c3/2)2 and
(c0c3/2a)4 were shown to have FF*0.95 against severa
nonspinning-BBH target models, obtained under differe
PN approximation schemes. In this paper, we have sho
that these two families are also rather effectual at match
the signals from BH-BH and NS-BH precessing binar
with single-BH masses between 5M ( and 20M ( and with
maximal BH spins, at least if these signals can be descri
by an adiabatic sequence of quasicircular orbits up to 2
order.

More specifically, for (715)M ( , (10110)M ( ,
(20110)M ( , and (15115)M ( BBHs, we obtain FF
*0.93 andFFeff*0.95. The improvement is 2–16 % ove
Schwarzschild-terminated SPAs templates, thanks largel
the ending-frequency parameterf cut; and 1–2 % over SPAc

he

e

94
93
93
91
TABLE X. Fitting factors against selected PN models ofnonspinningbinaries~defined in BCV1!, for the SPAc and (c0c3/2a)4 template
families. Notice that the (c0c3/2a)4 DTF yields consistently higher FFs.

FF against selected BCV1 PN models, for the SPAc and (c0c3/2a) template families
T~2,2! T~3,3.5,û52) P~2,2.5! P~3,3.5,û52) EP~2,2.5! EP~3,3.5,û52)

SPAc (c0c3/2a)4 SPAc (c0c3/2a)4 SPAc (c0c3/2a)4 SPAc (c0c3/2a)4 SPAc (c0c3/2a)4 SPAc (c0c3/2a)4

(10110)M ( 0.984 0.992 0.984 0.988 0.979 0.985 0.959 0.990 0.988 0.994 0.949 0.9
(2015)M ( 0.970 0.992 0.960 0.986 0.950 0.978 0.968 0.985 0.930 0.993 0.967 0.9
(20110)M ( 0.964 0.989 0.959 0.986 0.925 0.977 0.964 0.986 0.978 0.993 0.982 0.9
(15115)M ( 0.939 0.989 0.941 0.987 0.931 0.980 0.967 0.987 0.971 0.991 0.983 0.9
5-25
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templates, thanks to the effective extension in the range
parameters, released from their functional dependence o
masses of the binary. Although the latter improvement se
negligible, we should keep in mind that (c0c3/2)2 DTFs are
also more suitable to match the nonspinning BH binar
studied in BCV1 with PN expanded and resummed mod
Results are worse for binaries that have smaller mass ra

FIG. 12. Projection of the 2PN target signals onto the (c0c3/2)2

DTF. For the (10110)M ( , (15115)M ( , (2015)M ( , (7
15)M ( , and (20110)M ( BBHs in our Monte Carlo populations
the clusters of gray dots show the projection of the 2PN tar
waveforms onto the (c0 ,c3/2) parameter plane of the (c0c3/2)2

DTF ~the projection of a given target signal is given by the valu
of c0 and c3/2 that maximize the FF; heref cut is not shown!. For
each set of masses, we draw a dashed ellipse centered o
parameter-space baricenter of the dots, and sized to include 90
the dots~the proportions of the axes follow the two-dimension
quadratic moments of the dots!. The larger dark dots, joined by th
thin lines~mass lines!, show the projections of the nonspinning P
models studied in BCV1, for the same sets of masses plus
15)M ( and (1015)M ( ; each line joins signals with the sam
binary masses, but obtained from different PN target models. As
can see, for each set of masses, the projections of the spin
binary signals are clustered around the corresponding mass
moreover, all the projections fall within the region~delimited by the
thick dashed lines! suggested in BCV1 to match all the nonspinni
PN models.
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h and therefore more GW cycles in the band of good int
ferometer sensitivity. In this case the modulational effe
due to precession become important, and must be include
the detection templates. Indeed, for (2015)M ( BBHs, the
(c0c3/2)2 and (c0c3/2a)4 DTFs haveFF.0.89 andFFeff

.0.92; for a (1011.4)M ( NS-BH binary, we findFF

.0.78, andFFeff.0.83.
Motivated by these shortcomings, we have investigated

detail the dynamics of precession in these binaries, and
have introduced a new convention to write the GW signal~as
computed in the quadrupole approximation! as a function of
binary and detector parameters, isolating the oscillatory
fects of precession in the evolution of the polarization te
sors@e1,3# i j . As a result, the detector response to GWs c
be written as the product of a carrier signal, which ve
closely resembles the nonspinning signals studied in BC
and a modulational correction, which can be handled us
an extension of Apostolatos’ ansatz~64!. On the basis of
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FIG. 14. Average fitting factor for the DTFs and for the SPA
template families for (1011.4)M ( NS-BH binaries, plotted agains

the initial keff5L̂N•Seff . The vertices of the segmented curves sh
the FF averaged on the sets of samples that fall within the eq
pacedkeff bins @21,20.8), @20.8,20.6), . . . , @0.8,1#. The error
bars show the sampling error on the bin averages. We plot also
additional vertices, aligned with the abscissas21 and 1, which
show the FF averaged over thekeff bins @21,20.98) and@0.98,1#.
how

lude 90% of
he
FIG. 13. Projection of the 2PN target signals onto the (c0c3/2B)6 DTF. For the (10110)M ( , (15115)M ( , (2015)M ( , (7
15)M ( , and (20110)M ( BBHs, and for the (1011.4)M ( NS-BH binaries in our Monte Carlo populations, the clusters of gray dots s
the projection of the 2PN target waveforms onto the (c0 ,c3/2) ~on the left! and (c0 ,B) ~on the right! parameter plane of the (c0c3/2B)6

DTF. For each set of masses, we draw a dashed ellipse centered on the parameter-space baricenter of the dots, and sized to inc
the dots~the proportions of the axes follow the two-dimensional quadratic moments of the dots!. The nonspinning-model mass lines and t
boundary of the suggested parameter ranges are shown as in Fig. 12.
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FIG. 15. Projection of the (1011.4)M ( NS-BH target signals~computed at 2PN order! onto the (c0c3/2B)6 DTF. The dots show the
values of thec0 ~left panel! andc3/2 ~right panel! target parameters that yield maximum overlaps with the signals in the target popula
TF
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these observations, we build the modulated D
(c0 ,c3/2B)6, which yieldsFF andFFeff. 0.98–0.99 for the
BBHs investigated, andFF.0.93, FFeff.0.95 for (10
11.4)M ( NS-BH binaries. This DTF has the advantage th
all the modulational parameters~except forB) can be treated
as extrinsic parameters, reducing considerably the comp
tional cost of signal searches. According to the simple an
sis of Sec. V B, the detection thresholds for this DTF sho
be set higher than those for simpler families; still, the gain
the FF is still somewhat larger than the increase in
threshold, and more realistic analyses of false-alarm statis
might provide a way to sidestep this difficulty. The sam
arguments that lead to the (c0 ,c3/2B)6 DTF suggest a new
very promising class of templates for NS-BH binaries, wh
we discuss briefly in Sec. VI D, and which we plan to inve
tigate more thoroughly elsewhere@39#.

We wish to make a few final remarks. First, in this pap
we limited our analysis to compact objects moving on q
sicircular orbits; from the results on the ending frequenc
~see Fig. 5! we see that there exist spin initial conditions f
which the ending frequencies~end of inspiral! are in the
LIGO–VIRGO band. So, in these cases we should use s
ning dynamics that goes beyond the adiabatic approximat
This dynamics~without radiation-reaction effects! is already
available in the EOB framework@4,5# thanks to the work of
Damour@14#. We plan to investigate the effects of nonad

FIG. 16. Projection of the (1011.4)M ( NS-BH target signals
~computed at 2PN order! onto the (c0c3/2B)6 DTF. The dots show
the values of theB target parameter that yield maximum overla
with the signals in the target populations.
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batic PN dynamics in the near future.
Second, a few years ago Levin pointed out@40# that spin-

spin effects can introduce chaos into the trajectories; a
consequence, the gravitational waveforms would come to
pend sensitively on the initial conditions. More studies fo
lowed @41,42#. Considering only conservative dynamics~no
RR!, Cornish and Levin@42# found some examples of rathe
eccentric (e;0.6 or 0.9) chaotic orbits, and a few quasic
cular chaotic orbits. However, these authors observed
chaos would be damped by RR effects, and that it would
affect the inspiral waveforms, except~perhaps! at the very
end~the plunge!. Still, at this time the dynamical structure o
phase space has not been explored systematically, and a
conclusive study tuned to the LIGO-VIRGO detection pro
lem remains desirable. The analysis of this paper assu
that, by the time the GW signal enters the band of go
detector sensitivity, RR effects have circularized the or
and have brought the binary into the adiabatic regime, wh
is valid until the MECO. We did not try to perturb the initia
conditions slightly and to investigate the resulting change
the orbital evolution and in the waveforms.

Third, we have evaluated the performance of our DTFs
averaging overuniform distributions of the initial spin
angles. Of course it would be preferable to assume m
realistic, nonuniform distributions derived from astrophy
cal considerations. Some results for spin distributions
BBHs ~with only one spinning BH! and in NS-BH binaries
were obtained by Kalogera using population-synthesis te
niques@43#. In particular, Kalogera found that 30– 80 % o
the NS-BH binaries that will coalesce within a Hubble tim
can have a tilt angle~the angle between the spin and th
orbital angular momentum! larger than 30°. These result
assume that the spinning BH in the binary forms first, a
that its spin is aligned with the orbital angular momentu
the tilt angle originates from the supernova explosion t
forms the NS. For the case of the binaries formed in globu
clusters, there is no theoretical argument to suggest any
ticular spin distribution.

Finally, recent analyses of spin-spin effects in the PN
spiral equations@44# suggest that, for comparable-ma
BBHs, by the time the GW signal enters the band of go
interferometer sensitivity the two BH spins may have b
come roughlylocked into a fixed relative configuration. If
these results are confirmed, they could provide preferred
5-27
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tial spin conditions, and simplify the data-analysis proble
for comparable mass binaries, by reducing the variability
expected GW signals.
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APPENDIX A: VALIDITY OF THE ADIABATIC SEQUENCE
OF SPHERICAL ORBITS

In the target model defined in Sec. II A, the inspiral of t
two compact bodies is described as an adiabatic sequen
spherical orbits. In this appendix we wish to discuss the
lidity of this assumption. Introducing the orthonormal ba
(l̂,n̂,L̂N), wheren̂5x/r , L̂N5LN /LN , l̂5L̂N3n̂, andLN
5mx3v ~with m the reduced mass!, it is straightforward to
write the equations of motion as@see Eqs.~4.1! of Ref. @16#;
we use the relationsv5 ṙ n̂1rvl̂,v25 ṙ 21r 2v2]:

n̂•a5 r̈ 2rv2, ~A1!

l̂•a5r v̇12ṙv, ~A2!

L̂N•a52rv
dL̂N

dt
•l̂, ~A3!

wherea is the acceleration in harmonic gauge given by E
~2.2a,c! of Ref. @16#. If we imposeṙ 505 r̈ , Eq. ~A2! then
implies v̇50; and from Eq.~A1! we get

r 2v25
1

r S 12
2

r 2
LN•SvD ,

Sv[S 11
3

2

m2

m1
DS11S 11

3

2

m1

m2
DS2 , ~A4!

where for simplicity we have setM51. Although spherical
orbits ~orbits where bothr and v remain constant! exist at
any given instant, they are not preserved along dynam
evolution because the quantityLN•Sv that appears in Eq
10402
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~A4! is not conserved. Indeed, averaging over an orbit@45#
~and, for simplicity, neglecting spin-spin effects!, we get

K dLN

dt L 5
2m

r 3
Seff3LN ,

Seff[S 11
3

4

m2

m1
DS11S 11

3

4

m1

m2
DS2 , ~A5!

where^A& denotes the quantityA when the spin-orbit~and
spin-spin! terms have been averaged over an orbit. Using
precession equations for the spins we derive

K d~LN•Sv!

dt L 523
~m1

22m2
2!

m1m2
LN•~S13S2!

1

r 3
. ~A6!

Hence, because the circular-orbit condition is not preser
during the evolution, either̂v̇&Þ0 or ^ ṙ &Þ0 ~or both!.

Let us now see how Eq.~1! for v̇ changes if effects of this
kind are included. The usual argument@16,21# used to obtain
the adiabatic evolution ofv rests on the energy-balanc
equation,

ĖRR5
d

dt
E~v,L̂N ,S1 ,S2!

5
]E

]v
v̇1S ]E

]L̂N

• L̇̂N1
]E

]S1
•Ṡ11

]E

]S2
•Ṡ2D , ~A7!

where

E~v,L̂N ,S1 ,S2!52
m

2
~Mv!2/3H 12

~91h!

12
~Mv!2/3

1
8

3M2
L̂N•Seff~Mv!1F 1

24
~281157h

2h2!1
1

hM4
@~S1•S2!23~ L̂N•S1!

3~ L̂N•S2!#G ~Mv!4/3J ~A8!

is the orbital energy evaluated at Newtonian order, but
cluding spin-orbit and spin-spin effects, and whereĖRR is the
RR energy loss@21,16#. From Eqs.~A8!, ~9!, ~2!, and~3!, we
notice that the sum of the last three terms in parenthese
Eq. ~A7! does not vanish: at leading order, its value is

Ėextra5
1

4

~m12m2!

M
h2x1x2~Mv!11/3@~Ŝ13Ŝ2!•L̂N#.

~A9!

This expression is zero if masses are equal, or if spins
either aligned or antialigned. Retaining the term~A9! in the
calculation yields an additional contribution in the evolutio
of v, with a leading order correction
5-28
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v̇extra

v2
5

3

4

~m12m2!

M
hx1x2~Mv!2@~Ŝ13Ŝ2!•L̂N#.

~A10!

Thus, compared with the other terms in Eq.~1!, v̇extra ap-
pears formally at 0.5 PN order~very low! in the expansion of
v̇. Note that the spin-orbit term in the energy~A8!, com-
bined with the leading-order precessions, does not prod
such a term; this makes the adiabatic approach fully con
tent up to 1.5PN order. In fact,Ėextra originates from taking
the derivative ofĖSO and using next-to-leading-order term
in the precession equations, and the derivativeĖSS while
using the leading-order terms in the precession equation

However, the effect of this term in the regime that w
consider is not as large as suggested by its formal PN or
For example, under the worst possible assumption„that the
geometric factor@(Ŝ13Ŝ2)•L̂N# has always the maximum
value of one, and that spins are maximal…, we get the correc-
tion

DCextra

2p
5

1

2p

25

16384

A124h

h
@~Mv f !

24/32~Mv i !
24/3#

~A11!

to the number of orbital cycles, wherev i and v f are the
initial and final orbital frequencies under consideration. T
is formally a 0.5PN correction, as can be seen by compa
it with Eq. ~4.16! of Ref. @16#. Nevertheless, for~say! a
(2015)M ( BBH, this correction will be at most 0.34 orbita
cycles fromv i5p330 Hz to v i5p3400 Hz, to be com-
pared with a baseline of 52 orbital cycles from the Newto
ian term and eight from the 1PN term. For a (1011.4)M (

binary, the correction will be 1.6 orbital cycles, to be com
pared with 175 orbital cycles from the Newtonian term a
30 from the 1PN term. The correction is small because,
though the PN order is formally low, the numerical coef
cient of the geometric factor@(Ŝ13Ŝ2)•L̂N# is very small.

So far, we have assumed@(Ŝ13Ŝ2)•L̂N#;1 along the
evolution. Let us now estimate the more important effect t
comes from the precession ofL̂N , S1, andS2, which is es-
pecially important for binaries with small mass ratios, whi
have longer RR time scales and more precessional cycle
the leading order~with M51)

d

dt
@~Ŝ13Ŝ2!•L̂N#5

3

2
~m12m2!v5/3@Ŝ1•Ŝ22~Ŝ1•L̂N!

3~Ŝ2•L̂N!#1O~v2! ~A12!

and

d

dt
@Ŝ1•Ŝ22~Ŝ1•L̂N!~Ŝ2•L̂N!#

52
3

2
~m12m2!v5/3@~Ŝ13Ŝ2!•L̂N#1O~v2!. ~A13!
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Combining the above equations, we get~at leading order!

d2

dt2
@~Ŝ13Ŝ2!•L̂N#.2

9

4
~m12m2!2v10/3@~Ŝ13Ŝ2!•L̂N#.

~A14!

This means that the geometric factor@(Ŝ13Ŝ2)•L̂N# oscil-
lates around zero with a time scale;v25/3. Thus the effect
of v̇extraaccumulates only within this time scale, which is 1
PN orders shorter than the RR time scale. Therefore,
expect that the realDCextra will be even smaller than the
formal prediction given by Eq.~A11!, and that it will con-
tribute effectively at 2PN order. As a check, we evaluated
FF between the gravitational waveforms obtained, for a
11.4)M ( BBH, by first including and then dropping th
extra term inv̇. We found that the FF is.0.99. On the basis
of this last check and of the analysis outlined above,
conclude that the adiabatic assumption is quite adequate
the purposes of this paper.

APPENDIX B: PROOF THAT THE PRECESSING
CONVENTION YIELDS vÄḞS

First of all, it is easy to confirm that, as long ase1,2(0)
and L̂N(0) form an orthonormal basis at some initial tim
the evolution equationė1,25Ve3e1,2 will always keep the
triplet an orthonormal basis. It is then always possible
have aF(t), such that

n̂~ t !5e1cosF~ t !1e2sinF~ t !,

l̂~ t !52e1sinF~ t !1e2cosF~ t !. ~B1!

Taking the time derivative ofn̂(t), we have

ṅ̂5Ḟl̂1Ve3n̂, ~B2!

Now, the adiabatic condition for a sequence of circular orb

states thatṅ̂5vl̂, so we have

ṅ̂5vl̂5Ḟl̂1Ve3n̂. ~B3!

By definition @Eq. ~72!#, Ve has no components alonge3

[L̂N . It also has no components alongl̂, because

Ve3L̂N5 L̇̂N5 ṅ̂3l̂1n̂3 l̇̂5vl̂3l̂1n̂3~2Ḟn̂1Ve3l̂!
~B4!

5Ve~ n̂•l̂!2l̂~ n̂•Ve!}l̂, ~B5!

where in the last step we usedn̂•l̂50 and the vector–triple-
product rule. It follows thatVe lies alongn̂, and therefore
Ve3n̂50. Equation~B3! then gives the desired result,Ḟ
5v, i.e., F(t)5C(t)1const.
5-29
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