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Abstract. The systematic magnification of background sources by the weak gravitational-lensing effects of foreground matter,
also calledcosmic magnification, is becoming an efficient tool both for measuring cosmological parameters and for exploring
the distribution of galaxies relative to the dark matter. We extend here the formalism of magnification statistics by estimating
the contribution of second-order terms in the Taylor expansion of the magnification and show that the effect of these terms was
previously underestimated. We test our analytical predictions against numerical simulations and demonstrate that including
second-order terms allows the accuracy of magnification-related statistics to be substantially improved. We also show, however,
that both numerical and analytical estimates can provide only lower bounds to real correlation functions, even in the weak lens-
ing regime. We propose to use count-in-cells estimators rather than correlation functions for measuring cosmic magnification
since they can more easily be related to correlations measured in numerical simulations.
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1. Introduction

Gravitational lensing by large-scale structures magnifies
sources and distorts their images. The systematic distortion of
faint background galaxies near matter overdensities, thecos-
mic shear, has been measured by several groups in the past few
years (Bacon et al. 2000, 2002; H¨ammerle et al. 2002; Hoekstra
et al. 2002; Kaiser et al. 2000; Maoli et al. 2001; R´efrégier
et al. 2002; Rhodes et al. 2001; Van Waerbeke et al. 2000, 2001,
2002; Wittman et al. 2000). It was found to be in remarkable
agreement with theoretical predictions based on the Cold Dark
Matter model, and has already provided new constraints on cos-
mological parameters (Van Waerbeke et al. 2001).

In a similar way, systematic magnifications of background
sources near foreground matter overdensities, thecosmic mag-
nification, can be measured and can provide largely inde-
pendent constraints on cosmological parameters (M´enard &
Bartelmann 2002; M´enard et al. 2002). Gravitational magni-
fication has two effects: first, the flux received from distant
sources is increased, and the solid angle in which they appear
is stretched, thus their density is diluted. The net result of these
competing effects depends on how the loss of sources due to
dilution is balanced by the gain of sources due to flux magnifi-
cation. Sources with flat luminosity functions, like faint galax-
ies, are depleted by cosmic magnification, while the number
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density of sources with steep luminosity functions, like
quasars, is increased. Thus, cosmic magnification gives rise
to apparent angular cross-correlations between background
sources and foreground matter overdensities which are phys-
ically completely uncorrelated with the sources. These over-
densities can be traced by using the distribution of foreground
galaxies.

Numerous studies have demonstrated the existence of
quasar-galaxy correlations on angular scales ranging from one
arcminute to about one degree, as expected from cosmic lens-
ing (for a review, see Bartelmann & Schneider 2001; also
Guimarães et al. 2001). In many cases, the measured corre-
lation amplitudes have been higher than the theoretical predic-
tions, however a number of non-detections have also been re-
ported, leaving the true amplitude of the effect unclear from the
observational point of view.

While cosmic shear can directly be related to observable
quantities like image ellipticities, the theoretical interpretation
of cosmic magnification involves several approximations:

– the luminosity function of the sources is described by a
power-law over the range probed by the flux limit of the
observation; and

– the magnification is assumed to fall into the weak lensing
regime, i.e. to deviate weakly from unity. Thus, the mag-
nification can with sufficient accuracy be approximated by
its first-order Taylor expansion and its deviation from unity
becomes proportional to the lensing convergence alone.
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While the first assumption is comfortably satisfied, in particular
for quasars, the validity of the second needs to be verified. This
is the goal of the present paper.

Our paper is structured as follows: first, we introduce the
formalism of the effective magnification and its Taylor expan-
sion in Sect. 2. We then describe a number of statistics related
to the lensing convergence, and evaluate the amplitude of the
second-order terms which appear in the Taylor expansion. In
Sect. 3, we describe the numerical simulations we use to test
our analytical results and estimate the accuracy of several ap-
proximations for the magnification. As an application, we in-
vestigate second-order effects on quasar-galaxy correlations in
Sect. 4, and we summarise our results in Sect. 5.

2. Formalism

2.1. Expanding the magnification

Cosmic magnification can be measured statistically through
characteristic changes in the number density of the background
sources. Along a given line-of-sight, this effect depends on two
quantities:

– the magnification factorµ, which describes whether
sources are magnified or demagnified, depending on
whether the matter along their lines-of-sight is preferen-
tially over- or underdense compared to the mean,

– and the logarithmic slopeα of the source counts as a
function of flux, which quantifies the amplitude of source
number-count modifications due to flux magnification. As
mentioned in the introduction, magnification by gravita-
tional lensing not only increases the observed flux, but also
stretches the sky, thus the number density of sources on a
magnified patch of the sky is reduced. The net magnifica-
tion effect, calledmagnification bias, depends on the bal-
ance between the number of sources lost by dilution and
gained by flux magnification. The steeper the number-count
function of the sources is, the more pronounced is the mag-
nification bias.

If the number-count function of the background sources can
be described as a power law in a sufficiently wide range around
the flux limit of the observation, the magnification bias is quan-
tified by theeffective magnificationµα−1. It directly expresses
the changes of the background source density caused by lens-
ing through the relation

n(>S, θ) = µα−1(θ) n0(>S) (1)

wheren0(>S) is the intrinsic number-count function of sources
whose observed flux exceedsS in the absence of lensing,
andn(>S) is the corresponding number-count function in pres-
ence of lensing.

The local properties of the gravitational lens mapping are
characterised by the convergenceκ, which is proportional to
the surface mass density projected along the line-of-sight, and
the shearγ, which is a two-component quantity and describes
the gravitational tidal field of the lensing mass distribution. The
effective magnification is related toκ andγ through

µα−1 =
[
(1− κ)2 − |γ|2

]1−α
, (2)

where|γ| = (γ2
1 + γ

2
2)1/2 is taken as the absolute value of the

shear. In the weak-lensing regime, bothκ and|γ| are small com-
pared to unity, and the previous expression can be expanded in
a Taylor series:

µα−1 = 1+ (α − 1)
[
2κ + (2α − 1)κ2 + |γ|2

]
+ O

(
κ3, |γ|3

)
. (3)

Previous studies using analytical formulae for magnification
statistics focused only on the first-order term of this expansion,
i.e. they used the approximationµα−1 ≈ 1 + 2(α − 1)κ, which
potentially causes the amplitude of the effect to be underesti-
mated. In this section, we investigate the second-order terms in
the expansion and estimate their contribution.

In doing so, we first note thatκ2(θ) and |γ|2(θ) share the
same statistical properties (e.g. Blandford et al. 1991), because
both κ andγ are linear combinations of second-order deriva-
tives of the lensing potential. The identity of their statistics is
most easily seen in Fourier space. Since we will only deal with
ensemble averages of the magnification later on,κ2 and|γ|2 can
be combined into a single variable, which we denote byκ for
simplicity. Thus, we can write for our purposes,

µα−1 = 1+ 2(α − 1)
[
κ + ακ2

]
+ O(κ3) . (4)

Observable effects are due to departures from the mean value of
the magnification. Therefore, the relevant quantity to correlate
is δµα−1 = µα−1 − 〈µα−1〉. Then, up to second order inκ2, the
autocorrelation function of the effective magnification is

〈δµα−1(φ) δµα−1(φ + θ)〉 = 4(α − 1)2
[〈κ(φ)κ(φ + θ)〉

+ 2α〈κ(φ)κ2(φ + θ)〉
]
, (5)

and the corresponding power spectrum can be expanded in a
similar way,

Pµα−1(s) = 4(α − 1)2
[
Pκ(s) + 2αPµ,2(s)

]
; (6)

the power spectrumPµ,2(s) will be defined in Eq. (16) below.
The last two equations show that the importance of the second-
order terms in the expansion (3) increases as the number-count
function of the background sources steepens, i.e. asα increases.
In the following, we will useα = 2 unless stated otherwise.
This value applies, for instance, to the number counts of bright
quasars withmB < 19.5 (Pei 1995). For simplicity, we abbrevi-
ate〈δµ δµ〉 by 〈µ µ〉.

2.2. Second and third-order correlations

We will now estimate severalκ-related statistical quantities
needed in the Taylor expansion of the magnification. For this
purpose, we first introduce theκ projector such that

κ(θ) =
∫ wH

0
dw pκ(w)δ

[
θ fK(w), w

]
(7)

can be written as a weighted line-of-sight projection of the den-
sity contrastδ from the observer to the Hubble distancewH. The
projector is

pκ(w) =
3
2
Ω0

(H0

c

)2

×
∫ wH

w

dw′

a(w)
nS(w′)

fK(w) fK(w′ − w)
fK(w′)

, (8)
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wherew is the radial coordinate distance,fK(w) is the comov-
ing angular-diameter distance,nS(w) is the normalised distance
distribution of the sources, anda(w) is the cosmological scale
factor. Using Limber’s equation, we can then relate the auto-
correlation function ofκ to the dark-matter power spectrumPδ,

〈κ(φ)κ(φ + θ)〉 =
∫

dw
p2
κ(w)

f 2
K(w)

×
∫

sds
2π

Pδ

(
s

fk(w)
, w

)
J0(sθ) , (9)

where J0 is the zeroth-order Bessel function, and the power
spectrumPκ corresponding to this correlation function is

Pκ(s) =
∫

dw
p2
κ(w)

f 2
K(w)

Pδ

(
s

fk(w)
, w

)
· (10)

As indicated by Eq. (5), the estimation of second-order terms
requires the computation of the cross-correlation betweenκ
and κ2. We do this by first introducing a three-point correla-
tion function forκ and then identifying two of its three points.
As usual, we define the three-point function by

zκ(θ1, θ2) = 〈κ(φ) κ(φ + θ1) κ(φ + θ2)〉 . (11)

Using theκ projector defined in (8), we can then write

zκ(θ1, θ2) =
∫

dw1 pκ(w1)
∫

dw2 pκ(w2)
∫

dw3 pκ(w3)

× 〈
δ
[
fK(w1)φ, w1

]
δ
[
fK(w2)(φ + θ1), w2

]
× δ [ fK(w3)(φ + θ2), w3

]〉
. (12)

Next, we employ the approximation underlying Limber’s equa-
tion, which asserts that the coherence length of the density fluc-
tuation field is much smaller than the scales on which the pro-
jector pκ varies appreciably. Finally, we insert the expression
for the bispectrum of the dark-matter fluctuations detailed in
Appendix A, and find

zκ(θ1, θ2) =
∫

dw p3
κ(w)

∫
d2k1

(2π)2
eik1·θ1 fK (w)

∫
d2k2

(2π)2

× Bδ (k1, k2,−k1 − k2, w) eik2·θ2 fK (w) , (13)

whereBδ(k1, k2, k3) is defined by

〈δ̂(k1)δ̂(k2)δ̂(k3)〉 = δD (k1 + k2 + k3) Bδ (k1, k2, k3) . (14)

Then, using Eq. (12) and identifying two points of the three-
point correlation functionθ1 → θ2 ≡ θ (or equivalentlyθ1

or θ2 → 0), we find

〈κ(φ)κ2(φ + θ)〉 =
∫

dw p3
κ(w)

∫
d2k1

(2π)2
eik1·θ fK (w)

×
∫

d2k2

(2π)2
Bδ (k1, k2,−k1 − k2, w) . (15)

The term〈κ(φ)κ2(φ+θ)〉 is a function ofθ only. Its contribution
Pµ,2(s) to the power spectrum of the magnification is given by
the inverse Fourier transform of Eq. (15), which reads

Pµ,2(s) =
∫

dw
p3
κ(w)

f 4
K(w)

∫
d2s′

(2π)2

× Bδ

(
s′

fk(w)
,

s
fk(w)

,
−s′ − s
fk(w)

, w

)
· (16)

Fig. 1. The upper panel shows the amplitude of the two first terms
of the Taylor expansion of the magnification autocorrelation, namely
〈κ(φ)κ(φ + θ)〉 (dashed line) and 4〈κ(φ)κ2(φ + θ)〉 (dotted line), using
a source redshift of unity. The sum of these two terms is shown as the
solid line. The lower panel details the relative contributionRµµ of the
second-order term for different source redshifts. The figure shows that
the lowest-order approximationµ ≈ 1+2κ misses a substantial part of
the amplitude of the magnification autocorrelation function. Given the
accuracy of the bispectrum fitting formula,Rµµ is accurate to∼2%.

2.3. Results and predictions

We can now numerically evaluate the first two contributions
to the Taylor expansion of the magnification autocorrelation
function defined in Eq. (5). As mentioned before, we useα = 2
here.

For evaluating the correlation functions, we use a CDM
power spectrum in a spatially flat Universe parameterised with
Ω0 = 0.3,σ8 = 0.9, h = 0.7 andΓ = 0.21. The non-linear evo-
lution of the power spectrum and the bispectrum are computed
according to the formalisms developed by Peacock & Dodds
(1996) and Scoccimarro et al. (2000), see Appendix A. The
upper panel of Fig. 1 shows the first- and second-order contri-
butions (dashed and dotted lines, respectively) to the Taylor ex-
pansion of the magnification for a fixed source redshift ofzs =

1. The sum of the two contributions is shown by the solid line.
The figure shows that the contribution of the second-order term
reaches an amplitude of more than 30% of the first-order term
on angular scales smaller than one arcminute. According to
Eq. (5) which describes the Taylor expansion of the magnifica-
tion autocorrelation, we define the contribution of the second-
order relative to the first-order term as

Rµµ(θ) =
2α 〈κ(φ)κ2(φ + θ)〉
〈κ(φ)κ(φ + θ)〉 · (17)

The lower panel shows this ratio in per cent for different source
redshifts as a function of angular scale. From the lower to the
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upper curves, the source redshifts are 1, 1.5, 2 and 3. For each
source redshift, the contribution of the second term exhibits a
similar dependence on angular scale:

– on scales larger than a few degrees, the contribution drops
to negligible values;

– effects become relevant on smaller scales, with a
fairly constant amplitude from a few degrees down to
around 10 arcmin;

– on yet smaller scales, the second-order contribution in-
creases steeply, due to the non-linear evolution of the den-
sity field. For sources at redshift 2, the amplitude of the
second term reacheshalf of the amplitude of the first term
below one arcmin.

Thus, given the amplitude ofRµµ, the correcting term intro-
duced in Eq. (5) is relevant and must be taken into account for
describing the magnification autocorrelation with an accuracy
better than 30%–50% on scales smaller than a few degrees.

So far, we have only investigated the amplitude contributed
by the second-order term. In order to estimate the remaining
contributions of all missing terms of the magnification expan-
sion, we will now use numerical simulations allowing a direct
computation ofµ as a function of the convergenceκ and the
shearγ.

3. Magnification statistics from numerical
simulations

On sub-degree scales, lensing effects due to non-linearities
in the density field can only beapproximatedusing analyti-
cal fitting formulae (Peacock & Dodds 1996; Scoccimarro &
Couchman 2001) as seen above. A full description requires nu-
merical simulations (White & Hu 2000).

3.1. The ray-tracing simulation

For testing the theoretical predictions we performed ray-tracing
experiments in a Very LargeN-body Simulation (VLS) re-
cently carried out by the Virgo Consortium (Jenkins et al. 2001;
and see also Yoshida et al. 2001 for simulation details)1.

The simulation was performed using a parallel P3M code
(MacFarland et al. 1998) with a force softening length oflsoft ∼
30 h−1 kpc. The simulation employed 5123 CDM particles in a
cubic box of 479h−1 Mpc on a side. It uses a flat cosmological
model with a matter densityΩ0 = 0.3, a cosmological con-
stantΩΛ = 0.7, and a Hubble constanth = 0.7. The initial mat-
ter power spectrum was computed using CMBFAST (Seljak
& Zaldarriaga 1996) assuming a baryonic matter density of
Ωb = 0.04. The particle mass (mpart = 6.86× 1010 h−1 M�) of
the simulation is sufficiently small to guarantee practically no
discreteness effects on dark-matter clustering on scales down
to the softening length in the redshift range of interest for our
purposes (Hamana et al. 2002).

The multiple-lens plane ray-tracing algorithm we
used is detailed in Hamana & Mellier (2001; see also

1 The ray-tracing data are available from T. Hamana on request,
hamanatk@cc.nao.ac.jp

Bartelmann & Schneider 1992; Jain et al. 2000 for the theoret-
ical basics); we thus describe only aspects specific to the VLS
N-body data in the following. In order to generate the density
field betweenz = 0 andz ∼ 3, we use a stack of ten snapshot
outputs from two runs of theN-body simulation, which differ
only in the realisation of the initial fluctuation field. Each cubic
box is divided into 4 sub-boxes of 4792 × 119.75 h−3 Mpc3

with the shorter box side being aligned with the line-of-sight
direction. TheN-body particles in each sub-box are projected
onto the plane perpendicular to the shorter box side and thus to
the line-of-sight direction. In this way, the particle distribution
between the observer andz∼ 3 is projected onto 38 lens planes
separated by 119.75 h−1 Mpc. Note that in order to minimise
the difference in redshift between a lens plane and an output of
N-body data, only one half of the outputs (i.e. two sub-boxes)
atz= 0 are used.

The particle distribution on each plane is converted into the
surface density field on either a 10242 or 20482 regular grid
using the triangular shaped cloud (TSC) assignment scheme
(Hockney & Eastwood 1988). The two grid sizes are adopted
for the following reasons:

– the 10242 grid is chosen to maintain the resolution provided
by theN-body simulation and removing at the same time
the shot noise due to discreteness in theN-body simulation.
Its computation follows the procedure described in Hamana
& Mellier (2001) and Jain et al. (2000). The corresponding
outputs will be labelled withlarge-scale smoothingin the
following.

– the 20482 grid is also chosen to examine effects of small-
scale nonlinear structures which are smoothed in thelarge-
scale smoothingsimulation. We should, however, note
that in this case the shot noise is not sufficiently re-
moved. Actually, the shot-noise power spectrum amplitude
exceeds the convergence power spectrum on scales be-
low ∼1 arcmin. In the following, therefore, we will only
consider measured correlation functions on scales larger
than 1 arcmin. The corresponding outputs will be labelled
with small-scale smoothingbelow.

Having produced surface density fields on all lens planes,
10242 rays are traced backwards from the observer’s point
using the multiple-lens plane algorithm (e.g. Schneider et al.
1992). The initial ray directions are set on 10242 grids with a
grid size of 0.25 arcmin, thus the total area covered by rays
is 4.272 square degrees. We produced 36 realizations of the
underlying density field by randomly shifting the simulation
boxes in the direction perpendicular to the line-of-sight using
the periodic boundary conditions of theN-body boxes. Note
that the lens planes coming from the same box are shifted in
the same way in order to maintain the clustering of matter in
the box.

We point out that second and higher-order statistics of
point-source magnifications are generally ill-defined in pres-
ence of caustic curves because the differential magnification
probability distribution asymptotically decreases asµ−2 for
large µ (see Fig. 2). This is a generic feature of magnifica-
tion near caustics and is thus independent of the lens model.
Strong lensing effects on point sources near caustic curves
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Fig. 2. Probability distribution of the magnification for our small- and
large-scale smoothing simulations, assuming sources at redshift unity.
The power law tail behaviour (∝µ−2) found in the small-scale smooth-
ing indicates the existence of caustics, while for large-scale smooth-
ing, no prominent tail is shown which suggests caustics do not play a
noticeable role.

give rise to rare, but arbitrarily high magnification values in
the simulations, and therefore the variance of the measured
statistics ofµ cannot be defined. However, the smoothing pro-
cedure introduced above allows this problem to be removed
because it smoothes out high density regions in the dark mat-
ter distribution and thus the fractional area of high magnifica-
tion decreases. In reality, infinite magnifications do not occur,
for two reasons. First, each astrophysical source is extended
and its magnification (given the surface brightness-weighted
point-source magnification across its solid angle) remains fi-
nite. Second, even point sources would be magnified by a fi-
nite value since for them, the geometrical-optics approximation
fails near critical curves and a wave-optics description leads to
a finite magnification (Schneider et al. 1992, Chap. 7).

3.2. Filtering

The computation of correlation functions from numerical sim-
ulations is mainly affected by two effects; on large scales by
the finite box size of the dark matter simulation, and on small
scales by the grid size used for computing the surface density
field from the particle distribution. These boundaries set the
limits for the validity of correlation functions measured in nu-
merical simulations. In other words, this means that measuring
a correlation function on a given scale is relevant only if this
scale falls within the range of scales defined by the simulation.
As shown in the previous section, our method for computing
the cross-correlation betweenκ andκ2 consists of first comput-
ing a three-point correlation function〈κ(φ)κ(φ + θ1)κ(φ + θ2)〉,

and then identifying two of its three points. In such a case, one
of the correlation lengths of the triple correlator becomes zero,
thus necessarily smaller than the smallest relevant scales in any
simulation. This prevents us from using any numerical simula-
tion for directly comparing the results.

In order to avoid this problem, and for comparing our an-
alytical with numerical results, we will introduce an effec-
tive smoothing into the theoretical calculations, such that each
value ofκ at a given positionθ is evaluated by averaging the
κ-values in a disk of radiusθS centred onθ. Indeed, the limit
imposed by the grid size of the simulation gives rise to an un-
avoidable smoothing-like effect which cancels all information
coming from scales smaller than a corresponding smoothing
scaleθS. For this purpose, we introduce a smoothed three-point
correlator,

zsmooth(θ2 − θ1, θ3 − θ1) = 〈κ(θ1)κ(θ2)κ(θ3)〉θS (18)

=

∫
dθ′1

∫
dθ′2

∫
dθ′3

〈
κ(θ′1)κ(θ′2)κ(θ′3)

〉
×WθS(θ′1 − θ1)WθS(θ

′
2 − θ2)WθS(θ

′
3 − θ3) ,

where the functionWθS(θ
′) is a normalised top-hat window of

radiusθS. Introducing this smoothing scheme into the expres-
sion for〈κ(φ)κ2(φ + θ)〉 yields

zsmooth(θS) =
∫

dw
p3
κ(w)

f 4
K(w)

∫
d2s1

(2π)2

∫
d2s2

(2π)2

× I (s1 θS) I (s2 θS) I (|s1 + s2|θS) (19)

× Bδ

(
s1

fk(w)
,

s2

fk(w)
,
−s1 − s2

fk(w)
, w

)
ei s1θ ,

where I(x) = 2 J1(x)
x . Similarly, introducing the smoothing

scheme into the two-point correlation function gives

wsmooth(|θ2 − θ1|) = 〈κ(θ1)κ(θ2)〉θS
=

∫
dw

p2
κ(w)

f 2
K(w)

∫
d2s

(2π)2
P

(
s

fK(w)
, w

)

× |I (sθS)|2 ei sθ . (20)

The effective smoothing scale depends on two parameters:

– the evolution of the apparent grid size of the simulation as
a function of redshift, and

– the radial selection function of the dark-matter field whose
correlation function has to be measured.

These quantities are plotted in Fig. 3. In order to use a unique
smoothing scale valid on the final convergence map, we define
the effective angular smoothing scale by

θS =

∫
dz W(z) θgrid(z) , (21)

whereW(z) is the relevant normalised selection function along
the line-of-sight. Measuringws means probing the power spec-
trum along the line-of-sight, weighted byp2

κ(z). Therefore, we
will use W(z) = D2

+(z) p2
κ(z), whereD+(z) is the growth factor.

In a similar way, we will useW(z) = D4
+(z) p3

κ(z) for measur-
ing zsmooth. The numerical values of the corresponding effective
angles are presented in Table 1.
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Fig. 3. Smoothing angle of the simulation as a function of redshift for
the two ray-tracing schemes. In order to show the relevant quantities
leading to the effective smoothing angle, we overplot the weighting
functionW(z) = D4

+(z) p3
κ(z) (see Eqs. (8) and (21)).

Table 1.Effective smoothing angles in arcminutes forws andzs com-
puted from Eq. (21) as a function of simulation resolution.

small-scale smoothing large-scale smoothing

wsmooth θS = 0.40 θS = 0.80
zsmooth θS = 0.39 θS = 0.78

The second important difference between analytical calcu-
lations and measurements in numerical simulations is the finite
box size effect. Indeed, the analytical correlation functions pre-
sented above were computed taking into account all modes in
the power spectrum. However, the finite size of the box used in
the simulation introduces an artificial cutoff in the power spec-
trum since wavelengths larger than the box size are not sampled
by the simulation. This effect can also be taken into account in
the analytical calculations by simply cancelling all the power
on wavelengths with wave numberk < kmin. The boxes we
use have a comoving size of 480h−1 Mpc which corresponds
to kmin = 0.013hMpc−1.

3.3. Comparing 〈κ κ〉 and 〈κ κ2 〉
With the help of the filtering schemes introduced in the previ-
ous section, we can now compare our theoretical predictions
with correlation functions measured from the numerical simu-
lations. We first compare the amplitude and angular variation of
the two first terms of the Taylor expansion of the magnification
separately. In the next section, we will then compare their sum
to the total magnification fully computed from the simulation.

Fig. 4.Comparison between theoretical predictions and measurements
from numerical simulations assuming sources at redshift unity. The
upper and lower curves show〈κκ〉 and〈κκ2〉, respectively. The points
are measurements from the large-scale smoothing simulations, with
the error bars showing the variance among 36 different realisations.
The dotted lines show the analytical computations taking into account
the smoothing scale of the simulation. The solid lines additionally in-
clude a cut in the power spectrum for cancelling the wavelengths not
covered by the simulation. The dashed line presents the same statistics
without any smoothing. Obviously, the smoothing effects are crucial
for the〈κκ2〉 cross-correlation.

In Fig. 4, we overplot analytical and numerical results. The
upper curve shows the autocorrelation function ofκ as a func-
tion of angular scale. We plot in circles the average measure-
ment from 36 realisations of the simulation, and the corre-
sponding 1-σ error bars to show the accuracy of the numerical
results as a function of angular scale. The solid line shows the
analytical prediction, including effective smoothing and an ar-
tificial cut of the power at scales belowkmin. The agreement is
good on all scales. For comparison, the dotted line shows the
result if we do not impose the large-wavelength cut, and the
dashed line is the result if no cut and no smoothing are applied.
In both cases, the deviations from the fully filtered calculation
remain small since we are probing angular scales within the
range allowed by the simulation.

The lower curves in Fig. 4 show a quantity proportional to
the second-order correction of the Taylor expansion, namely
the correlation function〈κ κ2〉. In the same way as before, the
circles show average measurements from 36 realisations, and
the error bars denote the corresponding 1-σ deviation. The pre-
diction including smoothing and small-wavelength cut (solid
line) shows a relatively good agreement given the expected
accuracy of the bispectrum fitting formula, which is approxi-
mately 15% (Scoccimarro & Couchman 2000). This time, in-
cluding smoothing changes the amplitude dramatically, and
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this effect affects all scales (see the dashed line). As discussed
before, this is expected since we are measuring a three-point
correlator on triangles which have one side length smaller than
the angular grid size of the simulation. Finally, as shown by the
difference between the dotted and solid lines, cancelling the
power on scales wherek < kmin again improves the agreement
on large scales.

The agreement between our analytical and numerical com-
putations of〈κ κ〉 and 〈κ κ2〉 demonstrates the validity of the
formalism introduced in Sect. 2 as well as the choice of the
effective smoothing scale (Eq. (21)) for describing the second-
order term in the Taylor expansion of the magnification.

3.4. Deviations from simulated µ-statistics

We now want to investigate how well the second-order expan-
sion describes the full magnification expression (2) which can
be computed using maps ofκ, γ andω (a net rotation term
which arises from lens-lens coupling and the lensing deflection
of the light ray path; see Van Waerbeke et al. 2001b) obtained
from the simulations (see Hamana et al. 2000 for more detail).

Before doing so, we recall that the amplitude of the magni-
fication autocorrelation measured from the simulation depends
on the smoothing scale, as seen in Sect. 3.2, sinceµ is nonlinear
in the density field. Therefore, all the following comparisons
are valid for a given effective smoothing length only.

We further emphasise that two problems will complicate
this comparison. First, our analytical treatment is valid in the
weak-lensing regime only, i.e. as long as convergence and shear
are small compared to unity,κ � 1, |γ| � 1. While most
light rays traced through the numerical simulations are indeed
weakly lensed, a non-negligible fraction of them will experi-
ence magnifications well above two, say. Such events are re-
stricted to small areas with high overdensities and thus af-
fect the magnification statistics only at small angular scales.
Second, a separate problem sets in if and where caustics are
formed. The magnification of light rays going through caustics
is infinite, and the magnification probability distribution near
caustics drops likeµ−2 for µ→ ∞. As noted above, second- or
higher-order statistics ofµ then become meaningless because
they diverge.

Departures of the numerical from the analytical results will
thus have two distinct reasons, viz. the occurrence of non-weak
magnifications which causes the analytical to underestimate the
numerical results on small angular scales; and the formation of
caustics, which causes second-order magnification statistics to
break down entirely. Both effects will be demonstrated below.
They can be controlled or suppressed in numerical simulations
by smoothing, which makes lensing weaker, or by masking
highly magnified light rays or regions containing caustics.

In Fig. 5, we plot with circles the autocorrelation func-
tion 〈µ(φ) µ(φ + θ)〉 measured from the large- and small-scale
smoothing simulations in the left and right panels, respec-
tively. The presence of caustics is more pronounced in the case
of small-scale smoothing than in the large-scale smoothing
simulations. The dotted line shows the theoretical prediction
given by the first-order term of the Taylor expansion, namely

4 〈κ(φ)κ(φ + θ)〉. This yields a low estimate of the correlation,
with a discrepancy of order 10% on large scales, and more
than 20% below a few arcminutes.

As expected from the preceding discussion, this level of
discrepancy also depends on the effective smoothing scale
and can increase if simulations with a smaller grid size are
used. Estimating the contribution of the two lowest-order terms
of µα−1, we computed in Sect. 2.3 a lower bound to this discrep-
ancy for a real case without smoothing, and found it to reach
a level of 25% at large scales, and above 30% below a few ar-
cminutes. The smoothed results taking the additional contribu-
tion of the second-order term into account are plotted as solid
lines, and give a much better agreement, as expected. To quan-
tify this in more detail, the lower panels of the figure show sev-
eral contributions compared to the first-order term, i.e. to 4〈κκ〉.
– The symbols show the additional amplitude of the magni-

fication statistics measured from the simulation, compared
to the first-order term also obtained from the simulation,

Rnum
µµ =

〈µ(φ)µ(φ + θ)〉num

4 〈κ(φ)κ(φ + θ)〉num
− 1 . (22)

The error bars indicate the 1-σ deviation across 36 realisa-
tions.

– The solid line shows the contribution of the second-order
relative to the first-order term computed from the analytical
expression including the effective smoothing,

Rsmooth
µµ =

2α〈κ(φ)κ2(φ + θ)〉θS
〈κ(φ)κ(φ + θ)〉θS

(23)

with α = 2.

In each case, we use the appropriate reference for〈κ(φ)κ(φ+θ)〉,
i.e. the numerical measurement in the first and the analyti-
cal estimation in the second case. Indeed, the measurement
of 〈κ κ〉 from the simulation agrees with the analytical estima-
tion within some uncertainty, which is due to numerical effects
like the finite number of dark-matter boxes used for simulat-
ing the light cone. It introduces a bias into our comparisons
which is impossible to separate from the real offset due to all
higher-order terms of the Taylor expansion that were not taken
into account. The two contributions plotted in Fig. 5 are thus of
different nature, but are suitable for a relative comparison.

As the lower panel of the large-scale smoothing simu-
lation shows, the simple 4〈κ κ〉 estimate of the magnifica-
tion misses 20% of the real amplitude near one arcminute.
This discrepancy almost vanishes after adding the contribu-
tion of the second-order term, which gives at all scales a fi-
nal agreement on the per cent level: the additional amplitude
reaches 19% at the smallest scales of the figure, compared to
a value of 20% given by the simulation, and agrees within
better than one per cent on larger scales. Therefore, taking
into account the 2α 〈κκ2〉 correction allows the accuracy to
be increased by a factor of∼20 compared to the approxima-
tion 4〈κκ〉, in the case of ourlarge-scale smoothingsimulation.
On the largest scales, between 6 and 30 arcmin, the agreement
even improves. Above these scales, the numerical results do not
allow any relevant comparison because the number of available
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Fig. 5.The upper panel shows a comparison between the magnification autocorrelation measured from the simulation compared to the analytical
estimation for a source redshift of unity. The circles show averaged measurements from 36 realisations of the simulation and the corresponding
1-σ error bars. The dashed line shows the analytical estimation using the approximationµ ≈ 1+2κ. The solid line shows the improvement given
by the second-order term of the Taylor expansion ofµ. The lower panel shows the relative contributionRµµ, both measured from the simulation
and estimated using expansion terms ofµ up to second order. In the right panel, each angular point shows three different measurements,
taking into account the complete magnification maps (solid-line error bars), or maps where pixels were masked where the magnification value
exceeds 8 or 4 (dashed-line error bars, from left to right).

independent samplings corresponding to a given separation de-
creases. On scales below a few arcminutes, the offset between
the measured points and the analytical estimate gives the ampli-
tude of all higher-order terms neglected in the Taylor expansion
of the magnification. As we can see, their contribution is on the
one per cent level for the large-scale smoothing simulation.

The curves shown in the right panel demonstrate how the
use of a smaller smoothing scale increases the discrepancy be-
tween the analytical and the numerical results. The fraction of
non-weakly magnified light rays increases, and caustics appear
which give rise to a power-law tail in the magnification proba-
bility distribution. We investigate the impact of the rare highly
magnified light rays by masking pixels where the simulated
magnification exceeds 4 or 8, and show that caustics have no
noticeable effect on the amplitude of the magnification autocor-
relation function determined from these simulated data. Note,
however, that the impact of the caustics depends on the source
redshift. The higher the redshift, the more caustics appear, and
the larger is their impact on the correlation amplitude.

Imposing lower masking thresholds removes a significant
fraction of the area covered by the simulation, changing the
spatial magnification pattern and thus the magnification au-
tocorrelation function. The corresponding measurements are
represented by the dashed error bars in the lower right panel
of Fig. 5. We note that the error bars ofRnum

µµ computed with
the small-scale smoothing simulation become larger at small
scales compared to the lower left panel. This reflects the fact
that second-order magnification statistics are ill-defined once
caustics appear. In the next section, we will investigate similar

smoothing effects on cross-correlations between magnification
and dark matter fluctuations. These quantities are not affected
by problems of poor definition when the smoothing scale be-
comes small, and therefore do not show larger error bars at
small scales when the smoothing scale decreases.

These comparisons show that the approximationµ ≈ 1+2κ
misses a non-negligible part of the total amplitude of weak-
lensing magnification statistics. The formalism introduced in
Sect. 2 allows second-order corrections to be described with or
without smoothing of the density field. This provides a better
description of the correlation functions, but still gives a lower
amplitude than the simulation results. As we noticed, the ana-
lytic computation based on the Taylor expansion is sufficiently
accurate only in the weak lensing regime. In reality, however,
the strong lensing, which can not be taken into account in the
analytic formalism, has a significant impact on the magnifica-
tion correlation especially at small scales as shown in the small-
scale smoothing simulation. Therefore, one should carefully
take the strong lensing effect into consideration when one inter-
prets the magnification related correlation functions. However,
we will see in the next section that counts-in-cells estimators
are less affected by the strong lensing than correlation func-
tions and thus enable better comparisons of observations with
results from simulations.

4. Applications to quasar-galaxy correlations

As a direct application of the formalism introduced previ-
ously, we now investigate the effects of second-order terms
on a well-known magnification-induced correlation, namely
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the quasar-galaxy cross-correlation (the results can also be
applied to galaxy-galaxy correlations induced by magnifica-
tion; Moessner & Jain 1998). In order to estimate cosmological
parameters from this kind of correlations, we then suggest the
use of a more suitable estimator using counts-in-cells rather
than two-point correlation functions. It has the advantage of
making the observational results more easily reconciled with
the ones from numerical simulations.

4.1. Formalism and correcting terms

The magnification bias of large-scale structures, combined
with galaxy biasing, leads to a cross-correlation of dis-
tant quasars with foreground galaxies. The existence of this
cross-correlation has firmly been established (e.g. Ben´ıtez &
Martı́nez-Gonz´alez 1995; Williams & Irwin 1998; Norman &
Impey 1999; Norman & Williams 2000; Ben´ıtez et al. 2001;
Norman & Impey 2001). M´enard & Bartelmann (2002) showed
that the Sloan Digital Sky Survey (York et al. 2000) will allow
this correlation function to be measured with a high accuracy.
Its amplitude and angular shape contain information on cosmo-
logical parameters and the galaxy bias factor. Thus, it is impor-
tant to accurately describe these magnification-related statistics
in order to avoid a biased estimation of cosmological parame-
ters as well as the amplitude of the galaxy bias.

As shown in Bartelmann (1995), the lensing-induced cross-
correlation function between quasars and galaxies can be
written as

wQG(θ) ≡ 〈δQSO(φ) δgal(φ + θ)〉
= 〈δµα−1(φ) δgal(φ + θ)〉 . (24)

Using the above formalism, we can expand the effective mag-
nification fluctuationδµα−1 up to second order and find the cor-
recting term:

wQG(θ) = 2 (α − 1)
[
〈κδgal〉 + α 〈κ2δgal〉

]
. (25)

The second term is proportional toα (contrary to the factor 2α
in Eq. (5)), since there is only one contribution of the magni-
fication. Therefore, the expected effects will be roughly half
of those on the autocorrelation of the effective magnification
seen in the previous section. Assuming a linear biasb between
galaxies and dark matter, the cross-correlation betweenδgal

andκ2 can be written as

〈δgal(φ)κ2(φ + θ)〉= b 〈δDM(φ) κ2(φ + θ)〉
=

∫
dw

p2
κ(w) pδ(w)

f 4
K(w)

∫
d2s1

(2π)2

∫
d2s2

(2π)2

× Bδ

(
s1

fk(w)
,

s2

fk(w)
,
−s1 − s2

fk(w)
, w

)
eis1θ, (26)

where pδ(w) is the normalised distance distribution of the
galaxies. For this example, we will use

pδ(z) dz=
β z2

z3
0 Γ(3/β)

exp

−
(

z
z0

)β dz , (27)

with β = 1.5 andz0 = 0.3.

Fig. 6.The upper panel shows the amplitude of the normalised quasar-
galaxy correlationwQG/2(α − 1) as a function of angular separation.
We show the first two terms of the Taylor expansion of this correlation,
namely〈δ(φ)κ(φ+θ)〉 (dashed line) and 2〈δ(φ)κ2(φ+θ)〉 (dotted line),
using a source redshift of unity. The sum of these two terms is shown
as the solid line. The lower panel details the relative contributionRδµ
and of the second-order term for different source redshifts, namely
z= 1, 1.5, 2 and 3 from bottom to top.

The results are shown in Fig. 6. As we can see, previous
estimates using the approximationµ ≈ 2κ missed approxi-
mately 15% of the amplitude on small scales for quasars at
redshift unity. Using quasars at redshift 2, these effects reach
up to 25%. These offsets, which are only lower limits, would
lead to biased estimates ofΩ0 or b, for example.

As for the magnification autocorrelation, we can compare
our theoretical estimates against numerical estimations. We can
first introduce a coefficientRδµ describing the accuracy of our
second-order correction:

Rδµ(θ) =
α 〈δ(φ)κ2(φ + θ)〉
〈δ(φ)κ(φ + θ)〉 · (28)

We plot the results in Fig. 7. Note that contrary to the magnifi-
cation autocorrelation, this quantity does not suffer from poor
definition, even without smoothing. The difference can be seen
by the same size of the error bars between the two simulation
results at small scales, whereas they were larger in the case
of 〈µµ〉 for the small-scale smoothing simulation (Fig. 5). The
results forRδµ are very similar those obtained forRµµ: for the
large-scale smoothing ray-tracing we find very good agreement
which reaches the one percent level on small scales. However,
when the smoothing length decreases, we see from the small-
scale smoothing outputs that we are missing a part of the total
amplitude on small scales, which shows that higher-order terms
play a non negligible role on those scales.
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Fig. 7. Comparison ofRδµ given by the theoretical calculation and
measured from the numerical simulation. The results are shown for
the large- and small-scale smoothing simulations from bottom to
top. They show that a second-order description of the〈µδ〉 cross-
correlation gives good results when the smoothing is large, but misses
some part of the total amplitude in the case of our small-scale smooth-
ing ray-tracing.

4.2. Using count-in-cells estimators

For precisely estimating cosmological parameters as well as
the amplitude of the galaxy bias, it is necessary to employ the-
oretical magnification statistics that closely describe the ob-
servables. However, we have seen in Sect. 3 that analytical
estimates as well as numerical simulations have intrinsic limi-
tations and prevent us from accurately describing usualn-point
correlation functions related to magnification statistics.

Besides, it is possible to focus on another estimator closely
related to correlation functions, namely a count-in-cells esti-
mator, which naturally smoothes effects originating from the
density field and can thus more easily be reconciled with nu-
merical simulations. So far, quasar-galaxy or galaxy-galaxy
correlations have been quantified measuring the excess of
background-foreground pairs at a given angular separation.
Instead, we can correlate the amplitude of the background and
foreground fluctuations, both measured inside a given aperture.
We will therefore introduce a count-in-cells estimator,

w̄QG(θ) =
〈
δQSO(φ) δgal(φ)

〉
θ〈

δµα−1(φ) δgal(φ)
〉
θ
, (29)

where the subscriptθ indicates averaging ofδQSO(φ) andδgal(φ)
inside a cell of radiusθ. In practice, this estimator is intended
to be applied to galaxy-galaxy rather than to quasar-galaxy cor-
relations, since the average angular separation between bright
distant quasars is of order one degree for current surveys, thus
averaging the source counts inside cells with radii of several

arcminutes will not be relevant. Using galaxies as background
sources, this limitation occurs at much smaller scales.

Using a first-order Taylor expansion for the magnification,
the new estimator ¯wQG(θ) can be written

w̄QG(θ)

2 (α − 1)b
=

∫
dw

pκ(w)pδ(w)

f 2
K(w)

∫
sds
2π

× P

(
s

fk(w)
, w

)
|I (sθ)|2 , (30)

whereI (x) = 2 J1(x)
x . This expression differs from the 2-point

correlation function (9) by its Fourier-space filtering of the
power spectrum. The additional smoothing wipes out the power
on scales smaller than the physical scale corresponding to the
angular smoothing scaleθ. For any observational result to be
compared to a numerical simulation,θ and the smoothing scale
used in the simulation will have to be carefully adapted to each
other and to the redshift distribution of the foreground galaxy
distribution.

In practice, masking always makes correlation functions
easier to measure than counts-in-cells. However, in a large
survey with short exposures like the SDSS, masking is not a
real issue to measure counts-in-cells since unusable regions are
quite rare and their area is small compared to the total survey
size. This is different for cosmic shear surveys for which im-
ages are deeper and saturation occurs more frequently.

Note that gravitational lensing by the foreground galax-
ies themselves is entirely irrelevant here. The angular scale on
which galaxies act as efficient lenses is on the order of one
arc second and below, much smaller than the angular scales
we are concerned with. Moreover, the probability for a quasar
to be strongly lensed by a galaxy is well below one per cent.
Bartelmann & Schneider (1991) demonstrated this point ex-
plicitly by including galaxies into their numerical simulations
and showing they had no noticeable effect.

5. Conclusion

As surveys mapping the large-scale structure of the Universe
become wider and deeper, measuring cosmological parameters
as well as the galaxy bias with cosmic magnification will be-
come increasingly efficient and reliable. Therefore, an accurate
theoretical quantification of magnification statistics becomes
increasingly important.

Previous estimates of cosmic magnification relied on the
assumption that the magnification deviates sufficiently little
from unity that it can be accurately approximated by its first-
order Taylor expansion about unity, i.e.µ ≈ 1 + 2κ. In this
paper, we have tested the validity of this assumption in the
framework of magnification statistics, by investigating the
second-order terms in the Taylor expansion ofµ. We have
shown that:

– Second-order terms can be related to the cross-correlation
betweenκ andκ2;

– their importance increases as the number-count function of
the background sources steepens, i.e. asα increases;
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– their amplitude isnot negligible: for the magnification au-
tocorrelation, their contribution is typically on the order of
30%–50% at scales below one degree. Therefore, previous
estimates of cosmic magnification were systematically low.

For testing our theoretical calculations, we have compared our
results to magnification statistics found in numerical simula-
tions by performing ray-tracing experiments in a very large
N-body simulation. We have first checked the validity of our
formalism describing the correlation〈κκ2〉, and demonstrated
the importance of including an effective smoothing into the an-
alytical calculations. Indeed,µ is nonlinear in the density field
and the amplitude of magnification statistics measured from
numerical simulations depends therefore on the available reso-
lution.

Using a simulation with an effective smoothing scale
of 0.8 arcmin, we found that our second-order formalism is
accurate to the percent level for describing magnification au-
tocorrelations. Compared to previous estimates, this improves
the accuracy by a factor of≈20. For smaller effective smooth-
ing scales, the contribution of third- and higher-order terms be-
comes important on scales below a few arcminutes.

Finally we have applied our formalism to observed cor-
relations, like quasar-galaxy and galaxy-galaxy correlations
due to lensing. We have shown that second-order corrections
increase their amplitude by 15% to 25% on scales below one
degree. These correlations are valuable tools to probe cos-
mological parameters as well as the galaxy bias. However,
even including our correcting terms, analytical or numerical
estimates of magnification statistics can only provide lower
bounds to the real amplitude of the correlation functions in the
weak-lensing regime. Thus, we propose using count-in-cells
estimators rather than correlation functions since the intrinsic
smoothing in determining counts-in-cells allows the observa-
tional results to be more directly related to those obtained in
numerical simulations.

Thus, some care is required in using cosmic magnification
as described by a Taylor expansion for constraining cosmo-
logical parameters, especially for interpreting measurements
on small angular scales. Therefore, describing magnification
statistics using the halo-model formalism will be of great in-
terest in order to achieve a precise and direct description of
observational quantities.

Acknowledgements.We thank Francis Bernardeau and St´ephane
Colombi for helpful discussions. This work was supported in part
by the TMR Network “Gravitational Lensing: New Constraints on
Cosmology and the Distribution of Dark Matter” of the EC under con-
tract No. ERBFMRX-CT97-0172.

Appendix A: Bispectrum and non-linear evolution

The bispectrum can be estimated using second-order perturba-
tion theory. Indeed, an expansion of the density field to second
nonlinear order as

δ(x) ≈ δ(1)(x) + δ(2)(x) , (A.1)

whereδ(2) is of order (δ(1))2 and represents departures from
Gaussian behaviour, yields the bispectrum

〈δ1δ2δ3〉 ' 〈δ(1)
1 δ

(1)
2 δ

(1)
3 〉 + 〈δ(1)

1 δ
(1)
2 δ

(2)
3 〉

+ cyclic terms (231, 312). (A.2)

The first term in Eq. (A.2) vanishes because the density fluc-
tuation field is Gaussian to first order, hence the third moment
of δ(1) is zero. Thus, the leading term in Eq. (A.2) is of the
order of〈δ(1)

1 δ
(1)
2 δ

(2)
3 〉 and can be quantified using second-order

perturbation theory.
The bispectrumBδ(k1, k2, k3) is defined only for closed

triangles formed by the wave vectorsk1, k2, k3. It can be ex-
pressed as a function of the second-order kernelF(k1, k2) and
the power spectrum

Bδ(k1, k2, k3) = 2 F(k1, k2) P(k1)P(k2)

+2 F(k2, k3) P(k2)P(k3)

+2 F(k1, k3) P(k1)P(k3) . (A.3)

For describing the bispectrum on all scales, we use the fitting
formula derived by Scoccimarro & Couchman (2000) for the
non-linear evolution of the bispectrum in numerical simula-
tions of CDM models, extending previous work for scale-free
initial conditions. In that case, we have

F(k1, k2) =
5
7

a(n, k1)a(n, k2)

+
1
2

k1 · k2

k1k2

(
k1

k2
+

k2

k1

)
b(n, k1)b(n, k2)

+
2
7

(
k1 · k2

k1k2

)2

c(n, k1)c(n, k2), (A.4)

with

a(n, k) =
1+ σ−0.2

8 (z) [0.7 Q3(n)]1/2 (q/4)n+3.5

1+ (q/4)n+3.5

b(n, k) =
1+ 0.4 (n+ 3) qn+3

1+ qn+3.5

c(n, k) =
1+ 4.5/

[
1.5+ (n+ 3)4

]
(2q)n+3

1+ (2q)n+3.5
, (A.5)

and q ≡ k/kNL(z), where 4πk3
NLPL(kNL) = 1, andPL(k) is

the linear power spectrum at the desired redshift. The effec-
tive spectral index is taken from the linear power spectrum as
well. The functionQ3(n) is given by

Q3(n) =
(4− 2n)

(1+ 2n+1)
· (A.6)

For more detail, see Scoccimarro & Couchman (2000).
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