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Abstract. The systematic magnification of background sources by the weak gravitational-lefisittg ef foreground matter,

also calledcosmic magnifications becoming anféicient tool both for measuring cosmological parameters and for exploring

the distribution of galaxies relative to the dark matter. We extend here the formalism of magnification statistics by estimating
the contribution of second-order terms in the Taylor expansion of the magnification and show tlfegdhef¢hese terms was
previously underestimated. We test our analytical predictions against numerical simulations and demonstrate that including
second-order terms allows the accuracy of magnification-related statistics to be substantially improved. We also show, however,
that both numerical and analytical estimates can provide only lower bounds to real correlation functions, even in the weak lens-
ing regime. We propose to use count-in-cells estimators rather than correlation functions for measuring cosmic magnification
since they can more easily be related to correlations measured in numerical simulations.

Key words. cosmology: gravitational lensing — cosmology: large-scale structure of Universe

1. Introduction density of sources with steep luminosity functions, like
tational lensi by | | _f_quasars, is increased. Thus, cosmic magnification gives rise
Gravitational lensing by large-scale structures magnifigs . narent angular cross-correlations between background
sources and distorts their images. The systematic distortionggf, ceq and foreground matter overdensities which are phys-
faint background galaxies near matter overdensitiescdse jcally completely uncorrelated with the sources. These over-

mic shearhas been measured by"several groups in the past f(’f’é%sities can be traced by using the distribution of foreground
years (Bacon et al. 2000, 2002akiimerle et al. 2002; HoekStr%alaxies.

et al. 2002, Kaiser et al. 2000; Maoli et al. 2001efRegier Numerous studies have demonstrated the existence of
etal. 2092’ Rhodes et al. 2001; Van Waerbeke et al. 2000, 20 &asar-galaxy correlations on angular scales ranging from one
2002; Wittman et al. 2000). It was found to be in remarkab

) s o cminute to about one degree, as expected from cosmic lens-
agreement with theoretical predictions based on the Cold D?ﬁb (for a review, see Bartelmann & Schneider 2001; also

Matter model, and has already provided new constraints on CeSiimades et al 2001). In many cases, the measured corre-

mologlca.l pgrameters (Van W.aerbeke. ?t a!. 2001). lation amplitudes have been higher than the theoretical predic-
In a similar way, systematic magnifications of backgrounghns however a number of non-detections have also been re-

sources near foreground matter overdensitiesctisenic mag- horted, leaving the true amplitude of thigeet unclear from the

nification can be measured and can provide largely indgpseryvational point of view.

pendent constraints on cosmological parametersn@id & While cosmic shear can directly be related to observable

Bartelmann 2002; Mnard et al. 2002). Gravitational magniyyantities like image ellipticities, the theoretical interpretation
fication has two ffects: first, the flux received from distantys cosmic magnification involves several approximations:

sources is increased, and the solid angle in which they appear

is stretched, thus their density is diluted. The net result of these the luminosity function of the sources is described by a
competing €ects depends on how the loss of sources due to power-law over the range probed by the flux limit of the
dilution is balanced by the gain of sources due to flux magnifi- observation; and

cation. Sources with flat luminosity functions, like faint galax-— the magnification is assumed to fall into the weak lensing

ies, are depleted by cosmic magnification, while the number regime, i.e. to deviate weakly from unity. Thus, the mag-
nification can with sfficient accuracy be approximated by

Send gfprint requests toB. Ménard, its first-order Taylor expansion and its deviation from unity
e-mail:menard@mpa-garching.mpg.de becomes proportional to the lensing convergence alone.
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While the first assumption is comfortably satisfied, in particulavherely| = (y5 + ¥3)*? is taken as the absolute value of the

for quasars, the validity of the second needs to be verified. Thigear. In the weak-lensing regime, beténd|y| are small com-

is the goal of the present paper. pared to unity, and the previous expression can be expanded in
Our paper is structured as follows: first, we introduce threTaylor series:

formalism of the &ective magnification and its Taylor expan-

sion in Sect. 2. We then desgribe a number of sta%istics Fr)elaldgd1 =1+ (0= 1)[2+ @ - D + P+ O(C0F). (@)

to the lensing convergence, and evaluate the amplitude of vious studies using analytical formulae for magnification

second-order terms which appear in the Taylor expansion.dfatistics focused only on the first-order term of this expansion,

Sect. 3, we describe the numerical simulations we use to tgst they used the approximatipfi™t ~ 1 + 2(a — 1)«, which

our analytical results and estimate the accuracy of several pptentially causes the amplitude of thieet to be underesti-

proximations for the magnification. As an application, we inmated. In this section, we investigate the second-order terms in

vestigate second-ordeffects on quasar-galaxy correlations ithe expansion and estimate their contribution.

Sect. 4, and we summarise our results in Sect. 5. In doing so, we first note that’(8) and|y?(8) share the
same statistical properties (e.g. Blandford et al. 1991), because

2. Formalism bothx andy are linear combinations of second-order deriva-
tives of the lensing potential. The identity of their statistics is

2.1. Expanding the magnification most easily seen in Fourier space. Since we will only deal with

semble averages of the magnification latexdand|y|?> can

Cosmic magnification can be measured statistically throu R ; . . , )
characteristic changes in the number density of the backgrog?d, combined into a single variable, which we denotex ligr
simplicity. Thus, we can write for our purposes,

sources. Along a given line-of-sight, thifect depends on two
quantities: Pt =1+ 20 - 1) [k + ak?| + O() . (4)

— the magnification factoru, which describes whethergpseryableects are due to departures from the mean value of
sources are magnified or demagnified, depending gy magnification. Therefore, the relevant quantity to correlate
whether the matter along their lines-of-sight is preferegs su1 = u*1 — (u*1y. Then, up to second order if, the
tially over- or underdense compared to the mean, autocorrelation function of theflective magnification is

— and the logarithmic sloper of the source counts as a
function of flux, which quantifies the amplitude of sourcé” () u™ (¢ + 6)) = 4(a — 1) [(($)x(¢ + 6))
number-count modifications due to flux magnification. As + 2a(k(P)K(P + g))], (5)
mentioned in the introduction, magnification by gravita- _ )
tional lensing not only increases the observed flux, but alggd the corresponding power spectrum can be expanded in a
stretches the sky, thus the number density of sources oni/Bilar way,
magnified patch of the sky is reduced. The net magnifiqal}l_l(s) = 4(a — 1) [pk(s) + zap#’z(s)] ; (6)
tion effect, calledmagnification biasdepends on the bal- _ : .
ance between the number of sources lost by dilution aH Power spectruri, »(s) will be defined in Eq. (16) below.

gained by flux magpnification. The steeper the number-couHi€ last two equations show that the importance of the second-
function of the sources is, the more pronounced is the mjder terms in the expansion (3) increases as the number-coun
nification bias. function of the background sources steepens, i @isreases.

) In the following, we will usea = 2 unless stated otherwise.
If the number-count function of the background sources cgfis value applies, for instance, to the number counts of bright

be described as a power law in dftiently wide range around qyasars withmg < 19.5 (Pei 1995). For simplicity, we abbrevi-
the flux limit of the observation, the magnification bias is quagye (s, 5u by (u ).

tified by theeffective magnificatiop®1. It directly expresses

the changes of the background source density caused by lens- ] )
ing through the relation 2.2. Second and third-order correlations

NS, 0) = u®1(6) no(>S) (1) We will now estimate severg&—related statistjc;al guantities _
needed in the Taylor expansion of the magnification. For this

whereng(>S) is the intrinsic number-count function of Sourceﬁurpose we first introduce theprojector such that

whose observed flux excee&sin the absence of lensing, ,
andn(>S) is the corresponding number-count function in Pregig) = f " dw pe(w)5 [0k (w), w] @)
ence of lensing. 0 ‘ ’

The local properties of the gravitational lens mapping aggn be written as a weighted line-of-sight projection of the den-

characterised by the convergencewhich is proportional to sjty contrast from the observer to the Hubble distangg The
the surface mass density projected along the line-of-sight, gf@jector is

the sheaw, which is a two-component quantity and describes )
the gravitational tidal field of the lensing mass distribution. Thﬁk(w) _ 3 Qo (@)

effective magnification is related toandy through 2 c
_ R dw’ fk (w) fx (W' — w)
l1-a 4
pt = [(1 — k)% - |)’|2] ) (2) % ‘fw a(w) Ns(w’) f (w) ’ ®)
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wherew is the radial coordinate distanck,(w) is the comov- Without Smoothing

ing angular-diameter distanag;(w) is the normalised distance

6.0x10” 4

First—order : <kk>

distribution of the sources, ara{w) is the cosmological scale Second—order : <> e
factor. Using Limber’s equation, we can then relate the autesxio™* - Sum ——————
correlation function ok to the dark-matter power spectru?y,
I% w X104 ) —
(k(P)x(p +6)) = f dw —pz( ) 3010
fi (w)
sds S
x | =Ps|——,w]Jo(s6) , 9) 1sx07t .
[ 5eps(700) s © o

where Jy is the zeroth-order Bessel function, and the power
spectrumP, corresponding to this correlation function is

pE(w) S 50%
P9 - [ 2 Ps(501) (10)
As indicated by Eq. (5), the estimation of second-order terms *°%
requires the computation of the cross-correlation between
and«?. We do this by first introducing a three-point correla-
tion function fork and then identifying two of its three points. ., ‘ ‘ ‘
As usual, we define the three-point function by 1 10 100

6 (arcmin)
(01, 02) = () k(¢ + 01) k(¢ + 62)) . (11)
Using thex projector defined in (8), we can then write

LN AN
IRl

= |=d e
o

30%

N
I

Fig. 1. The upper panel shows the amplitude of the two first terms
of the Taylor expansion of the magnification autocorrelation, namely

B (k(P)x(¢ + 0)) (dashed line) and(#(¢)«*(¢ + 0)) (dotted line), using
2.(01,6,) = f dwy pe(w1) f dw, pe(w2) f dws Pe(w3) a source redshift of unity. The sum of these two terms is shown as the
< (5[ ’ St +6y), solid line. The lower panel details the relative contributip of the
(O [fic(w)g, w1l 0 [T (w2)(@ + 61), wo] second-order term for fierent source redshifts. The figure shows that
X 6 [f(ws)(¢ + 62), wa]) . (12)  the lowest-order approximatign~ 1+ 2« misses a substantial part of

Next, we employ the approximation underlying Limber’s equéhe amplitude of the magnification autocorrelation function. Given the
tion, which asserts that the coherence length of the density fIESUracy of the bispectrum fitting formul,, is accurate te-2%.
tuation field is much smaller than the scales on which the pro-

jector p, varies appreciably. Finally, we insert the expressiaf 3. Results and predictions

for the bispectrum of the dark-matter fluctuations detailed \I/I’\1/ icall | he fi ibuti
Appendix A, and find e can now numerically evaluate the first two contributions

to the Taylor expansion of the magnification autocorrelation

Pl ko function defined in Eq. (5). As mentioned bef 2
0..0,) = | dwp f kit fic(w) unction defined in Eq. (5). As mentioned before, we wse
ZK( 1 2) f wpk(w) (271_)2 (271_)2 here.
x By (Ky, ko, —k1 — ko, w) g*2f2 k@) (13) For evaluating the correlation functions, we use a CDM
. ' power spectrum in a spatially flat Universe parameterised with
whereB;(ky, ko, ks) is defined by Qo =0.3,05 =0.9,h = 0.7 andl' = 0.21. The non-linear evo-

(6(k1)8(k2)5(K3)) = 6p (K1 + ko + ka) Bs (K, ka, Ka). (14) lution of the power spectrum and the bispectrum are computed
according to the formalisms developed by Peacock & Dodds
?_1996) and Scoccimarro et al. (2000), see Appendix A. The
upper panel of Fig. 1 shows the first- and second-order contri-
butions (dashed and dotted lines, respectively) to the Taylor ex-

Then, using Eq. (12) and identifying two points of the thre
point correlation functiord; — 6, = @ (or equivalentlyd,
or 6, — 0), we find

ke ion of th ification for a fixed dshifz;of

2 _ 3 K- fic () pansion of the magnification for a fixed source redshifs

(@)(g +0) fdw Pu(w) f (2n)? ¢ 1. The sum of the two contributions is shown by the solid line.
d%k, The figure shows that the contribution of the second-order term

@2 Bs (k1. k2, —ki — ka,w).  (15) reaches an amplitude of more than 30% of the first-order term

) ) ] o on angular scales smaller than one arcminute. According to

The term(«(¢)x*(¢ +6)) is a function oy only. Its contribution gq_ (5)which describes the Taylor expansion of the magnifica-
Py.2(s) to the power spectrum of the magnification is given by, autocorrelation, we define the contribution of the second-

the inverse Fourier transform of Eq. (15), which reads order relative to the first-order term as
pw) [ d&’s 2a (K(P)K*(p +6))
P,Z(s)zfdw g) = 20K P)($ + ) 17
! fiew) J (2n)? Rl = —on@ + o) &
s S —S-s ). The lower panel shows this ratio in per cent fdfelient source
Bs , s , W (16)
fuw)” fw)  fi(w) redshifts as a function of angular scale. From the lower to the
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upper curves, the source redshifts are.5, 2 and 3. For each Bartelmann & Schneider 1992; Jain et al. 2000 for the theoret-
source redshift, the contribution of the second term exhibitseal basics); we thus describe only aspects specific to the VLS
similar dependence on angular scale: N-body data in the following. In order to generate the density
o field betweerz = 0 andz ~ 3, we use a stack of ten snapshot
—on sca!e§ larger than a few degrees, the contribution erﬂﬁputs from two runs of th&l-body simulation, which dier
to negligible values; _onlyin the realisation of the initial fluctuation field. Each cubic
— effects become relevant on smaller scales, with |2 is divided into 4 sub-boxes of 47& 11975 h-3 Mpc3
fairly constant amplitude from a few degrees down Qi the shorter box side being aligned with the line-of-sight
around 10 arcmin; _ direction. TheN-body particles in each sub-box are projected
— on yet smaller scales, the second-order contribution iga, the plane perpendicular to the shorter box side and thus to
creases steeply, due to the non-linear evolution of the dgfa jine-of-sight direction. In this way, the particle distribution
sity field. For sources at redshift 2, the amplitude of thgayeen the observer amé- 3 is projected onto 38 lens planes
second term reachésilf of the amplitude of the first term separated by 1185 h~*Mpc. Note that in order to minimise
below one arcmin. the diference in redshift between a lens plane and an output of
Thus, given the amplitude d&,,, the correcting term intro- N-body data, only one half of the outputs (i.e. two sub-boxes)
duced in Eq. (5) is relevant and must be taken into account f# = O areused. _ _
describing the magnification autocorrelation with an accuracy | € particle distribution on each plane is converted into the
better than 30%—50% on scales smaller than a few degreesSurface density field on either a 162dr 2048 regular grid
So far, we have only investigated the amplitude contribut&§in9 the triangular shaped cloud (TSC) assignment scheme
by the second-order term. In order to estimate the remainifidockney & Eastwood 1988). The two grid sizes are adopted
contributions of all missing terms of the magnification expar©' the following reasons:

sion, we will now use numerical simulations allowing a direct- the 1024 grid is chosen to maintain the resolution provided
computation ofu as a function of the convergengeand the by the N-body simulation and removing at the same time

sheary. the shot noise due to discreteness infhkody simulation.
Its computation follows the procedure described in Hamana
3. Magpnification statistics from numerical & Mellier (_2001) and Jain _et al. (2000). The cor_re_sponding
simulations outqus will be labelled witharge-scale smoothingn the
following.
On sub-degree scales, lensinffeets due to non-linearities — the 2048 grid is also chosen to examinéects of small-
in the density field can only bapproximatedusing analyti- scale nonlinear structures which are smoothed inatigge-

cal fitting formulae (Peacock & Dodds 1996; Scoccimarro & scale smoothingsimulation. We should, however, note
Couchman 2001) as seen above. A full description requires nu-that in this case the shot noise is notffgiently re-
merical simulations (White & Hu 2000). moved. Actually, the shot-noise power spectrum amplitude
exceeds the convergence power spectrum on scales be-
low ~1 arcmin. In the following, therefore, we will only
consider measured correlation functions on scales larger
For testing the theoretical predictions we performed ray-tracing than 1 arcmin. The corresponding outputs will be labelled
experiments in a Very Larg&l-body Simulation (VLS) re- with small-scale smoothinigelow.
cently carried out by the Virgo Consortium (Jenkins et al. 200|1:|;
and see also Yoshida et al. 2001 for simulation defails)
The simulation was performed using a paralléMPcode
(MacFarland et al. 1998) with a force softening lengthgf ~
30h~tkpc. The simulation employed 512DM particles in a

. 1 . o gri in,
cubic bO).( of 47¢h™ Mpc on aside. ltuses aflat co;mologma?s 4.27%square degrees. We produced 36 realizations of the
model with a matter densit®y = 0.3, a cosmological con-

stantQ, = 0.7, and a Hubble constaht= 0.7. The initial mat- underlying density field by randomly shifting the simulation

ter power spectrum was computed using CMBFAST (Selj%):es in the direction perpendicular to the line-of-sight using

& Zaldarriaga 1996) assuming a baryonic matter density periodic boundary co_nditions of thé-body boxes. N(_)te .
Qb = 0.04. The particle massTha = 6.86x 101 h~ M) of flat the lens pl_anes coming f_rom_ the same b(_)x are shlfted_m
o : art = = © the same way in order to maintain the clustering of matter in
the simulation is sfiiciently small to guarantee practically % box
discretenessfiects on dark-matter clustering on scales down We .point out that second and higher-order statistics of

to the softening length in the redshift range of interest for our . e . . )
point-source magnifications are generally ill-defined in pres-
purposes (Hamana et al. 2002). . e .
: . . ence of caustic curves because thffedential magnification
The multiple-lens plane ray-tracing algorithm we . L .
: . . ; i robability distribution asymptotically decreases ag for
used is detailed in Hamana & Mellier (2001; see alsQ . - . o
argeu (see Fig. 2). This is a generic feature of magnifica-
! The ray-tracing data are available from T. Hamana on reque@n near caustics and is thus independent of the lens model.
hamanatk@cc.nao.ac. jp Strong lensing #ects on point sources near caustic curves

3.1. The ray-tracing simulation

aving produced surface density fields on all lens planes,
1024 rays are traced backwards from the observer's point
using the multiple-lens plane algorithm (e.g. Schneider et al.
1992). The initial ray directions are set on 182gids with a
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0 C oo ] andthen identifying two of its three points. In such a case, one
—— Small-scale smoothing3  of the correlation lengths of the triple correlator becomes zero,
T Large—scale Sm°°thm8_; thus necessarily smaller than the smallest relevant scales in any
F : 3 simulation. This prevents us from using any numerical simula-
0.1 | tion for directly comparing the results.
F 3 In order to avoid this problem, and for comparing our an-
0.01 b | alytical with numerical results, we will introduce arffec-
— g 3 tive smoothing into the theoretical calculations, such that each
3 10-3 & - value of« at a given positiord is evaluated by averaging the
; k-values in a disk of radiu8s centred ord. Indeed, the limit
8 10 < imposed by the grid size of the simulation gives rise to an un-
E J avoidable smoothing-likefect which cancels all information
1075 & + coming from scales smaller than a corresponding smoothing
- 3 scaleds. For this purpose, we introduce a smoothed three-point
1076 & o correlator,
10-7 ;_ :; Zsmoot 02 — 01, 03 — 61) = (k(01)x(62)x(63))ss (18)
10-8 Lokl i I = f de; f de, f CUACICALCAYICA)
! u 10 X Wiy (6], — 0:)Wis (6 — 02)We(0 — 05) |

Fig. 2. Probability distribution of the magnification for our small- andvhere the functio,(¢’) is a normalised top-hat window of
large-scale smoothing simulations, assuming sources at redshift uniagiusés. Introducing this smoothing scheme into the expres-
The power law tail behaviourdq:~2) found in the small-scale smooth-sion for (x(¢)«*(¢ + 6)) yields

ing indicates the existence of caustics, while for large-scale smooth- 3 ) )

ing, no prominent tail is shown which suggests caustics do not pla)ésa HOs) = duw P (w) d°s d°s

noticeable role. mootRYS faw) J @2 J (2r)?

X 1(s1605) 1(s265) I (Is1 + 2165) (19)

S % —S-% ) jse
><B‘s(fk(w)’fk(w)’ fi(w) ’“’)é ’

give rise to rare, but arbitrarily high magnification values in
the simulations, and therefore the variance of the measured B i ] . )
statistics ofu cannot be defined. However, the smoothing préthere 1) = 2==. Similarly, introducing the smoothing
cedure introduced above allows this problem to be remov&g'€me into the two-point correlation function gives

because it smoothes out high density regions in the dark mv@ét'mootr(laz — 04]) = (k(02)k(62))s
S

ter distribution and thus the fractional area of high magnifica-

2 2
tion decreases. In reality, infinite magnifications do not occur, = fdw p;(w) f d 32 p( S ,w)
for two reasons. First, each astrophysical source is extended few) J (@m)? \fk(w)
and its magnification (given the surface brightness-weighted x |1 (sés)P e . (20)

point-source magnification across its solid angle) remains fi- ) )
nite. Second, even point sources would be magnified by a fi?e éfective smoothing scale depends on two parameters:

nite value since for them, the geometrical-optics approximation . . . .
X " : S — the evolution of the apparent grid size of the simulation as
fails near critical curves and a wave-optics description leads to . :
a finite magnification (Schneider et al. 1992, Chap. 7) a function of redshift, and
9 ' ! P- ). — the radial selection function of the dark-matter field whose
correlation function has to be measured.

3.2. Filterin
g These quantities are plotted in Fig. 3. In order to use a unique

The computation of correlation functions from numerical sinsmoothing scale valid on the final convergence map, we define
ulations is mainly ffected by two fects; on large scales bythe dfective angular smoothing scale by

the finite box size of the dark matter simulation, and on small

scales by the grid size used for computing the surface density= | dz\W2) 041ia(2) , (21)
field from the particle distribution. These boundaries set the

limits for the validity of correlation functions measured in nuwhereW(2) is the relevant normalised selection function along
merical simulations. In other words, this means that measuriting line-of-sight. Measurings means probing the power spec-
a correlation function on a given scale is relevant only if thisum along the line-of-sight, weighted Ipf(2). Therefore, we
scale falls within the range of scales defined by the simulationill use W(2) = D2(2) p2(2), whereD, (2) is the growth factor.
As shown in the previous section, our method for computirg a similar way, we will uséN(z) = D%(2) p3(2) for measur-
the cross-correlation betweemnd«? consists of first comput- ing Zsmootr The Nnumerical values of the correspondiffgetive

ing a three-point correlation functiqr(¢)«(¢ + 01)x(¢ + 62)), angles are presented in Table 1.
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Fig. 3. Smoothing angle of the simulation as a function of redshift for 6 (aremin)

the two ray-tracing schemes. In order to show the relevant quantitfgg. 4. Comparison between theoretical predictions and measurements
leading to the ffective smoothing angle, we overplot the weightingrom numerical simulations assuming sources at redshift unity. The
functionW(z) = D%(2) p3(? (see Egs. (8) and (21)). upper and lower curves shok) and{xx2), respectively. The points
are measurements from the large-scale smoothing simulations, with
the error bars showing the variance among 3tedént realisations.
Table 1.Effective smoothing angles in arcminutes dggrandzs com-  The dotted lines show the analytical computations taking into account
puted from Eq. (21) as a function of simulation resolution. the smoothing scale of the simulation. The solid lines additionally in-
clude a cut in the power spectrum for cancelling the wavelengths not
covered by the simulation. The dashed line presents the same statistics
without any smoothing. Obviously, the smoothinieets are crucial
Wsmooth 6s =0.40 6s =0.80 for the (kk?) cross-correlation.
Zsmooth Os = 0.39 Os = 0.78

small-scale smoothing large-scale smoothing

In Fig. 4, we overplot analytical and numerical results. The
_ ) ) upper curve shows the autocorrelation function afs a func-

The second important fierence between analytical calCution of angular scale. We plot in circles the average measure-
lations and measurements in numerical simulations is the finlfg.nt from 36 realisations of the simulation, and the corre-
box size &ect. Indeed, the analytigal cprrelation functions Pr&ponding 1e- error bars to show the accuracy of the numerical
sented above were computed taking into account all modesdats as a function of angular scale. The solid line shows the
the power spectrum. However, the finite size of the box Useddﬁalytical prediction, includingfBective smoothing and an ar-
the simulation introduces an artificial ctitin the power spec- tificial cut of the power at scales belduy,. The agreement is
trum since wavelengths larger than the box size are not sampé%gd on all scales. For comparison, the dotted line shows the
by the simulation. Thisfect can also be taken into account iRagit if we do not impose the large-wavelength cut, and the
the analytical calculations by simply cancelling all the powgfashed line is the result if no cut and no smoothing are applied.
on wavelengths with wave numb&r < knin. The boxes we | poth cases, the deviations from the fully filtered calculation
use have a comoving size of 480" Mpc which corresponds yemain small since we are probing angular scales within the
t0 kmin = 0.013hMpc™". range allowed by the simulation.

The lower curves in Fig. 4 show a quantity proportional to
the second-order correction of the Taylor expansion, namely
the correlation functiorix «%). In the same way as before, the
With the help of the filtering schemes introduced in the prewircles show average measurements from 36 realisations, and
ous section, we can now compare our theoretical predictidhg error bars denote the corresponding deviation. The pre-
with correlation functions measured from the numerical simdiction including smoothing and small-wavelength cut (solid
lations. We first compare the amplitude and angular variationlafe) shows a relatively good agreement given the expected
the two first terms of the Taylor expansion of the magnificaticaccuracy of the bispectrum fitting formula, which is approxi-
separately. In the next section, we will then compare their sumately 15% (Scoccimarro & Couchman 2000). This time, in-
to the total magnification fully computed from the simulationcluding smoothing changes the amplitude dramatically, and

3.3. Comparing {(x ky and (x k°)
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this dfect dfects all scales (see the dashed line). As discusskt(d)x(¢ + 6)). This yields a low estimate of the correlation,
before, this is expected since we are measuring a three-paiith a discrepancy of order 10% on large scales, and more
correlator on triangles which have one side length smaller théman 20% below a few arcminutes.
the angular grid size of the simulation. Finally, as shown by the As expected from the preceding discussion, this level of
difference between the dotted and solid lines, cancelling tiliscrepancy also depends on thiéeetive smoothing scale
power on scales wheke< ki, again improves the agreementind can increase if simulations with a smaller grid size are
on large scales. used. Estimating the contribution of the two lowest-order terms
The agreement between our analytical and numerical coffx«®~*, we computed in Sect. 2.3 a lower bound to this discrep-
putations of(xx) and (k k%) demonstrates the validity of theancy for a real case without smoothing, and found it to reach
formalism introduced in Sect. 2 as well as the choice of tigelevel of 25% at large scales, and above 30% below a few ar-
effective smoothing scale (Eq. (21)) for describing the secorgminutes. The smoothed results taking the additional contribu-
order term in the Taylor expansion of the magnification. tion of the second-order term into account are plotted as solid
lines, and give a much better agreement, as expected. To quan-
o ) o tify this in more detail, the lower panels of the figure show sev-
3.4. Deviations from simulated u-statistics eral contributions compared to the first-order term, i.e (tay

We now want to investigate how well the second-order expan- The symbols show the additional amplitude of the magni-
sion describes the full magnification expression (2) which can fcation statistics measured from the simulation, compared

be computed using maps ef y andw (a net rotation term g the first-order term also obtained from the simulation,
which arises from lens-lens coupling and the lensing deflection

of the light ray path; see Van Waerbeke et al. 2001b) obtained guum _ ((@)u(@ + 6)um ;- (22)
from the simulations (see Hamana et al. 2000 for more detail). " 4(«($)x($ + 6))num

_ Before doing so, we recall that the amplitude of the magni- The error bars indicate thedt deviation across 36 realisa-
fication autocorrelation measured from the simulation depends jgns.

on the smoothing scale, as seen in Sect. 3.2, gimeaonlinear  _ The solid line shows the contribution of the second-order
in the density field. Therefore, all the following comparisons q|ative to the first-order term computed from the analytical

are valid for a given fective smoothing length only. expression including theffective smoothing,

We further emphasise that two problems will complicate
this comparison. First, our analytical treatment is valid in the psmooth_ 2XK(@)K*(P + 6))as (23)
weak-lensing regime only, i.e. as long as convergenceand shear " (k(¢)x(# + 6))as

are small compared to unity, < 1, |y] < 1. While most
light rays traced through the numerical simulations are indeed

weakly lensed, a non-negligible fraction of them will experiy each case, we use the appropriate referendef@)x(¢-+6)),
ence magnifications well above two, say. Such events are fg: the numerical measurement in the first and the analyti-
stricted to small areas with high overdensities and thus &l estimation in the second case. Indeed, the measurement
fect the magnification statistics only at small angular scalgs. (x k) from the simulation agrees with the analytical estima-
Second, a separate problem sets in if and where causticsgji¢ within some uncertainty, which is due to numericéigets
formed. The magnification of light rays going through caustigge the finite number of dark-matter boxes used for simulat-
is infinite, and the magnification probability distribution Nedhg the light cone. It introduces a bias into our comparisons
caustics drops likg 2 for 4 — co. As noted above, second- Ofyhich is impossible to separate from the refiset due to all
higher-order statistics qf then become meaningless becaugggner-order terms of the Taylor expansion that were not taken
they diverge. into account. The two contributions plotted in Fig. 5 are thus of
Departures of the numerical from the analytical results widlifferent nature, but are suitable for a relative comparison.
thus have two distinct reasons, viz. the occurrence of non-weak As the lower panel of the large-scale smoothing simu-
magnifications which causes the analytical to underestimate fgon shows, the simple &«) estimate of the magnifica-
numerical results on small angular scales; and the formationigh misses 20% of the real amplitude near one arcminute.
caustics, which causes second-order magnification statisticTkgs discrepancy almost vanishes after adding the contribu-
break down entirely. BothfEects will be demonstrated belowtion of the second-order term, which gives at all scales a fi-
They can be controlled or suppressed in numerical simulationg agreement on the per cent level: the additional amplitude
by smoothing, which makes lensing weaker, or by maskifgaches 19% at the smallest scales of the figure, compared to
highly magnified light rays or regions containing caustics. a value of 20% given by the simulation, and agrees within
In Fig. 5, we plot with circles the autocorrelation funchetter than one per cent on larger scales. Therefore, taking
tion (u(¢) u(¢ + 6)) measured from the large- and small-scali@to account the @ (xx?) correction allows the accuracy to
smoothing simulations in the left and right panels, respelge increased by a factor 820 compared to the approxima-
tively. The presence of caustics is more pronounced in the ctiea 4x«), in the case of ouarge-scale smoothingimulation.
of small-scale smoothing than in the large-scale smoothi@a the largest scales, between 6 and 30 arcmin, the agreement
simulations. The dotted line shows the theoretical predicti@wen improves. Above these scales, the numerical results do not
given by the first-order term of the Taylor expansion, nameéflow any relevant comparison because the number of available

with @ = 2.
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Fig. 5. The upper panel shows a comparison between the magnification autocorrelation measured from the simulation compared to the anal
estimation for a source redshift of unity. The circles show averaged measurements from 36 realisations of the simulation and the correspol
1-0 error bars. The dashed line shows the analytical estimation using the approximatibin 2«. The solid line shows the improvement given

by the second-order term of the Taylor expansiop.dfhe lower panel shows the relative contributRp, both measured from the simulation
and estimated using expansion termsuadfip to second order. In the right panel, each angular point shows thifeeedt measurements,
taking into account the complete magnification maps (solid-line error bars), or maps where pixels were masked where the magnification
exceeds 8 or 4 (dashed-line error bars, from left to right).

independent samplings corresponding to a given separationstaoothing &ects on cross-correlations between magnification
creases. On scales below a few arcminutes, ffeebbetween and dark matter fluctuations. These quantities are fiettd

the measured points and the analytical estimate gives the amipyiproblems of poor definition when the smoothing scale be-
tude of all higher-order terms neglected in the Taylor expansioomes small, and therefore do not show larger error bars at
of the magnification. As we can see, their contribution is on tisenall scales when the smoothing scale decreases.

one per cent level for the large-scale smoothing simulation. These comparisons show that the approximatienl + 2«

;stses a non-negligible part of the total amplitude of weak-

The curves shown in the right panel demonstrate how ! o . C .
asing magnification statistics. The formalism introduced in

use of a smaller smoothing scale increases the discrepanc %
tween the analytical and the numerical results. The fraction F
non-weakly magnified light rays increases, and caustics app
which give rise to a power-law tail in the magnification proba-
bility distribution. We investigate the impact of the rare highly . . LT
magnified light rays by masking pixels where the simulat }ﬁt'c computatlpn based on the_Taonrgxpansmn ﬁismzntly
magnification exceeds 4 or 8, and show that caustics have 8urate only in the weak lensing regime. In reality, however,

noticeable &ect on the amplitude of the magnification autocoF— € strong lensing, which can not be taken into account in the

relation function determined from these simulated data. Noﬁgalytm formahsm, hz_as a significant impact on the_magnlflca—
however, that the impact of the caustics depends on the souiea correlation especially at small scales as shown in the small-

redshift. The higher the redshift, the more caustics appear, %ﬁglihsm?othlnlg S|_mulat|;).n.t Therefgre, tgne s;\ould cgr(ta-fully
the larger is their impact on the correlation amplitude. akethe strong .gns[ngfec INto consideration when one inter-
prets the magnification related correlation functions. However,

Imposing lower masking thresholds removes a significagie will see in the next section that counts-in-cells estimators
fraction of the area covered by the simulation, changing thee less fiected by the strong lensing than correlation func-
spatial magnification pattern and thus the magnification abns and thus enable better comparisons of observations with
tocorrelation function. The corresponding measurements ageults from simulations.
represented by the dashed error bars in the lower right panel
of Fig. 5. We note that 'Fhe error bgrs Bf,," computed with 4 Applications to quasar-galaxy correlations
the small-scale smoothing simulation become larger at small
scales compared to the lower left panel. This reflects the fag a direct application of the formalism introduced previ-
that second-order magnification statistics are ill-defined oneasly, we now investigate theffects of second-order terms
caustics appear. In the next section, we will investigate similan a well-known magnification-induced correlation, namely

ct. 2 allows second-order corrections to be described with or
out smoothing of the density field. This provides a better

escription of the correlation functions, but still gives a lower

mplitude than the simulation results. As we noticed, the ana-
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the quasar-galaxy cross-correlation (the results can also be _, Without Smoothing
applied to galaxy-galaxy correlations induced by magniﬁca—wo ‘
tion; Moessner & Jain 1998). In order to estimate cosmological — Second—order « 2<is  +rrmmreireisiee
parameters from this kind of correlations, we then suggest the _ .| S Sum

use of a more suitable estimator using counts-in-cells rathet® :
than two-point correlation functions. It has the advantage of
making the observational results more easily reconciled with AN
the ones from numerical simulations. 107" o )
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4.1. Formalism and correcting terms 195 T N\

The magnification bias of large-scale structures, combined
with galaxy biasing, leads to a cross-correlation of dis-
tant quasars with foreground galaxies. The existence of this
cross-correlation has firmly been established (e.g.ltBer& 20%
Martinez-Gonalez 1995; Williams & Irwin 1998; Norman & 3
Impey 1999; Norman & Williams 2000; Beez et al. 2001;
Norman & Impey 2001). Mhard & Bartelmann (2002) showed
that the Sloan Digital Sky Survey (York et al. 2000) will allow
this correlation function to be measured with a high accuracy. °°%
Its amplitude and angular shape contain information on cosmo-
logical parameters and the galaxy bias factor. Thus, it is impor-
tant to accurately describe these magnification-related statist@s 6. The upper panel shows the amplitude of the normalised quasar-
in order to avoid a biased estimation of cosmological paran@&laxy correlationugs/2(e — 1) as a function of angular separation.
ters as well as the amplitude of the galaxy bias. We show the first two terms of _the Taylor expansion of this cor_relation,
As shown in Bartelmann (1995), the lensing-induced crosMmely(s(#)«(¢ +)) (dashed line) and(@(¢)«*(¢ +6)) (dotted line),

correlation function between quasars and galaxies can ysing a source redshift of unity. The sum of these two terms is shown
as the solid line. The lower panel details the relative contribugign

30%

10%

1 10 100
6 (arcmin)

written as and of the second-order term forfiirent source redshifts, namely
woc(6) = (oso(@) Sgald + 6)) z=1, 15, 2 and 3 from bottom to top.
= (" "H($) Sgall + 6)) - (24)

Using the above formalism, we can expand tfeative mag- 1 ne results are shown in Fig. 6. As we can see, previous

nification fluctuationsu®~* up to second order and find the coréStimates using the approximatipn~ 2« missed approxi-

recting term: mately 15% of the amplitude on small scales for quasars at
redshift unity. Using quasars at redshift 2, theffieas reach

woe(d) =2 (@-1) [(;«Sgap + a<K2(sga|)] . (25) up to 25%. Thesefisets, which are only lower limits, would
lead to biased estimates @Qf or b, for example.

The second term is proportionaldo(contrary to the factor@ ~ As for the magnification autocorrelation, we can compare

in Eq. (5)), since there is only one contribution of the magngy theoretical estimates against numerical estimations. We can

fication. Therefore, the expectedets will be roughly half first introduce a coicientR;, describing the accuracy of our
of those on the autocorrelation of théextive magnification gecond-order correction:

seen in the previous section. Assuming a linear bibstween

galaxies and dark matter, the cross-correlation betwggn o) = a (5()k*(p + 6)) 28
and«? can be written as Ro(0) = (6(P)(¢p + 0)) ' (28)
(Sgal(@)K*(@ + 0)) = b (Som(8) K*(¢ + 6)) We plot the results in Fig. 7. Note that contrary to the magnifi-
p2(w) ps(w) [ d?s s, cation autocorrelation, this quantity does noffsufrom poor
:fdw F4(w) 2n)2) (@n)2 definition, even without smoothing. Thefidirence can be seen
K

by the same size of the error bars between the two simulation
6( 2 %2 - SQw) g9 (2p) results at small scales, whereas they were larger in the case
fu()” f(w)  f(w) of (uu) for the small-scale smoothing simulation (Fig. 5). The

where p;(w) is the normalised distance distribution of th&€Sults forRs, are very similar those obtained f&,: for the
galaxies. For this example, we will use Iarge—scale smoothing ray-tracing we find very good agreement
which reaches the one percent level on small scales. However,
B A when the smoothing length decreases, we see from the small-
Ps(2) dz = m exp[— (z) } dz, (27)  scale smoothing outputs that we are missing a part of the total
amplitude on small scales, which shows that higher-order terms

with 8 = 1.5 andz, = 0.3. play a non negligible role on those scales.
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207 T T ‘ arcminutes will not be relevant. Using galaxies as background

| sources, this limitation occurs at much smaller scales.
L } | Using a first-order Taylor expansion for the magnification,
{ the new estimatawggs(d) can be written

AT i l | e _ [asnnt) [ s
I 1 2@-1)b f2(w) 21
S

f 1 X P(—,w) (s, (30)
& 10% - W : fie(w)
L Ll 1 wherel(x) = 2J1—>((X). This expression dliers from the 2-point
L i T4 || { correlation function (9) by its Fourier-space filtering of the
- St o LT e 1l || {1 powerspectrum. The additional smoothing wipes out the power
05% - < on scales smaller than the physical scale corresponding to the
r 1 angular smoothing scale For any observational result to be
1 compared to a numerical simulatighand the smoothing scale

used in the simulation will have to be carefully adapted to each
00% o AL ] other and to the redshift distribution of the foreground galaxy
] 10 distribution.

6 (arcmin) In practice, masking always makes correlation functions

: ) . ) . easier to measure than counts-in-cells. However, in a large
Fig. 7. Comparison ofR;, given by the theoretical calculation and . . o
measured from the numerical simulation. The results are shown 7t V&Y with short exposures !'ke the S_DSS’ masking IS not a
the large- and small-scale smoothing simulations from bottom kgal issue to measure counts-in-cells since unusable regions are
top. They show that a second-order description of ¢fa& cross- quite rare and their area is small compared to the total survey
correlation gives good results when the smoothing is large, but mis&ée. This is difterent for cosmic shear surveys for which im-
some part of the total amplitude in the case of our small-scale smoadgies are deeper and saturation occurs more frequently.
ing ray-tracing. Note that gravitational lensing by the foreground galax-

ies themselves is entirely irrelevant here. The angular scale on
] ) ) which galaxies act asflécient lenses is on the order of one
4.2. Using count-in-cells estimators arc second and below, much smaller than the angular scales

For precisely estimating cosmological parameters as well 4§ aré concemned with. Moreover, the probability for a quasar
the amplitude of the galaxy bias, it is necessary to employ tH8-P€ strongly lensed by a galaxy is well below one per cent.
oretical magnification statistics that closely describe the oBartélmann & Schneider (1991) demonstrated this point ex-
servables. However, we have seen in Sect. 3 that analytigifitly by including galaxies into their numerical simulations
estimates as well as numerical simulations have intrinsic linf'd Showing they had no noticeabléeet.
tations and prevent us from accurately describing usyedint
correlation functions related to magnification statistics. .
. . . : . Conclusion

Besides, it is possible to focus on another estimator closely
related to correlation functions, namely a count-in-cells esfis surveys mapping the large-scale structure of the Universe
mator, which naturally smoothesfects originating from the become wider and deeper, measuring cosmological parameters
density field and can thus more easily be reconciled with nais well as the galaxy bias with cosmic magnification will be-
merical simulations. So far, quasar-galaxy or galaxy-galaggme increasinglyféicient and reliable. Therefore, an accurate
correlations have been quantified measuring the excessthaforetical quantification of magnification statistics becomes
background-foreground pairs at a given angular separatigncreasingly important.
Instead, we can correlate the amplitude of the background andPrevious estimates of cosmic magnification relied on the
foreground fluctuations, both measured inside a given apertégsumption that the magnification deviatesfisiently little

We will therefore introduce a count-in-cells estimator, from unity that it can be accurately approximated by its first-

_ order Taylor expansion about unity, i,2.~ 1 + 2«. In this

woa(f) = (Saso(®) dgal#)), paper, we have tested the validity of this assumption in the
< Su"Y(g) 5gal(¢)>9 . (29) framework of magnification statistics, by investigating the

second-order terms in the Taylor expansionuofWe have
where the subscrigtindicates averaging @hso(¢) andsga(¢) shown that:
inside a cell of radius. In practice, this estimator is intended
to be applied to galaxy-galaxy rather than to quasar-galaxy co- Second-order terms can be related to the cross-correlation
relations, since the average angular separation between brighbetweenx and«?;
distant quasars is of order one degree for current surveys, thustheir importance increases as the number-count function of
averaging the source counts inside cells with radii of several the background sources steepens, i.e: Bxreases;
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— their amplitude isot negligible: for the magnification au- where 5 is of order ¢%)? and represents departures from
tocorrelation, their contribution is typically on the order ofsaussian behaviour, yields the bispectrum
30%-50% at scales below one degree. Therefore, previous 1) (1) (D) 1) 1) )
estimates of cosmic magnification were systematically lo@$16203) = (677°65°037) +(677°65°03"7)
+ cyclic terms (231, 312) (A.2)

For testing our theoretical calculations, we have compared I

results to magnification statistics found in numerical Simu'?ﬁlation field is Gaussian to first order, hence the third moment

tions by performing ray-tracing experiments in a very larg& sa) s ;e Thus, the leading term in Eq. (A.2) is of the
N-body simulation. We have first checked the validity of oul der of(sDsDsDy and can be quantified using second-order
formalism describing the correlatiow«?), and demonstrated 17273 q 9

the importance of including arffiective smoothing into the an- perturbation theory.

alytical calculations. Indeeg, is nonlinear in the density field , . The bispectrumB; (ky, ks, ks) is defined only for closed
. e . triangles formed by the wave vectoks, ko, ks. It can be ex-
and the amplitude of magnification statistics measured from "
) . ) : ressed as a function of the second-order kefiki, k,) and
numerical simulations depends therefore on the available reso-
€ power spectrum

first term in Eq. (A.2) vanishes because the density fluc-

lution.
Using a simulation with an féective smoothing scale By(ky, ko, k3) = 2 F(Ky, ko) P(ky)P(k2)
of 0.8 arcmin, we found that our second-order formalism is +2 F (Ko, ks) P(ko)P(ks)

accurate to the percent level for describing magnification au- 2 E(ke. ko) P(kP(K A3
tocorrelations. Compared to previous estimates, this improves +2 F(ky, ks) P(ky)P(ks) - (A-3)

the accuracy by a factor af20. For smaller fiective smooth- £qr gescribing the bispectrum on all scales, we use the fitting
ing scal_es, the contribution of third- and hlghe_r-orderterms BSimula derived by Scoccimarro & Couchman (2000) for the

comes important on scales below a few arcminutes. non-linear evolution of the bispectrum in numerical simula-

Finally we have applied our formalism to observed cofions of CDM models, extending previous work for scale-free

relations, like quasar-galaxy and galaxy-galaxy correlatiopstial conditions. In that case, we have
due to lensing. We have shown that second-order corrections

increase their amplitude by 15% to 25% on scales below OBk, ko) = S a(n, kp)a(n, ko)
degree. These correlations are valuable tools to probe cos- 7

mological parameters as well as the galaxy bias. However, 1ki-kp (ki ko
. . . . ; +=———=—=+ =] b(n, ky)b(n, k»)
even including our correcting terms, analytical or numerical 2 kiko \ko kg
estimates of magnification statistics can only provide lower 2 (ke - Ko\
. . . . 1° R2
bounds to the real amplitude of the correlation functions in the A c(n, ky)c(n, ko), (A.4)
1R2

weak-lensing regime. Thus, we propose using count-in-cells
estimators rather than correlation functions since the intringigth
smoothing in determining counts-in-cells allows the observa- 14 0927 10.7 12 (/435
tional results to be more directly related to those obtainedé'm K) = +0g (9[0.7 Qs(M1™" (a/4)
numerical simulations. 1+ (q/4)yw3s

Thus, some care is required in using cosmic magnification

n+3
as described by a Taylor expansion for constraining cosnign, k) = 1+04 (n+335)q
logical parameters, especially for interpreting measurements 1+gm=
on small angular scales. Therefore, describing magnification 1+45/ [1'5_‘_ (n+ 3)4] (20"
statistics using the halo-model formalism will be of great ing(n, k) = i (A.5)
terest in order to achieve a precise and direct description of 1+ (2q)m32
observational quantities. andq = k/ku (2), where 4rk§,LPL(kNL) _ 1, andPL(K) is

_ ) the linear power spectrum at the desired redshift. Tifiece
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For more detail, see Scoccimarro & Couchman (2000).
Appendix A: Bispectrum and non-linear evolution

The bispectrum can be estimated using second-order pertufdg@ferences

tion theory. Indeed, an expansion of the density field to secogg.on p. Massey, R.,d¥égier, A., & Ellis, R. 2002, MNRAS, sub-
nonlinear order as mitted [astro-ph/0203134]

Bartelmann, M. 1995, A&A, 298, 661
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