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ABSTRACT
We present a simple, semi-analytical model to explain gamma-ray burst temporal and spectral
properties in the context of the internal shock model. Each individual pulse in the temporal
profiles is produced by the deceleration of fast moving material by a comparatively slower
layer within a relativistic wind. The spectral evolution of synthetic pulses is first obtained with
standard equipartition assumptions to estimate the post-shock magnetic field and the electron
Lorentz factor. We find Ep ∝ t−δ with δ = 7/2, which is much steeper than the observed slopes
δobs � 1.5. We therefore consider the possibility that the equipartition parameters depend on
the shock strength and post-shock density. We then obtain a much better agreement with the
observations and our synthetic pulses satisfy both the hardness–intensity and hardness–fluence
correlations. We also compute time-lags between profiles in different energy channels and we
find that they decrease with increasing hardness. Finally, we compare our predicted time-lag–
luminosity relation with the result of Norris, Marani & Bonnell obtained from six bursts with
known redshift.

Key words: hydrodynamics – radiation mechanisms: non-thermal – shock waves – gamma-
rays: bursts.

1 I N T RO D U C T I O N

Cosmic gamma-ray burst (hereafter GRBs) exhibit a great diversity
of duration and profiles. The distribution of durations is clearly bi-
modal with two peaks at approximately 0.2 and 20 s. GRB light
curves are highly variable but can often be interpreted in terms of
a succession of elementary pulses which possibly overlap (Norris
et al. 1996). These pulses appear as the building blocks of the profiles
and understanding their physical origin would certainly represent a
clue towards a better description of the whole GRB phenomenon.
The pulse temporal evolution has often been described by a fast
rise followed by an exponential decay (the so-called FRED shape;
see Fishman et al. 1994), but other mathematical behaviour such as
stretched exponentials, Gaussian (Norris et al. 1996) or power-law
decays (Ryde & Svensson 2000) have also been proposed. Spectral
hardness decreases during pulse decay and two relations between the
temporal and spectral properties, the hardness–intensity correlation
(HIC; Golenetskii et al. 1983) and the hardness–fluence correlation
(HFC; Liang & Kargatis 1996) appear to be satisfied by a substan-
tial fraction of GRB pulses during the decay phase. Pulse profiles
peak earlier in higher-energy bands and the corresponding time-lags
between different energy channels correlate to pulse hardness and
peak luminosity (Norris, Marani & Bonnell 2000). These observa-
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tional results must be reproduced by the models and may help to
discriminate among different possibilities.

Two distinct mechanisms have been proposed to explain the origin
of pulses in GRBs. In the external shock model they are formed when
a relativistic shell ejected by the central engine is decelerated by the
circumstellar material (Meszaros & Rees 1993). An homogeneous
medium leads to a single pulse but an irregular, clumpy environment
can produce a complex profile if a large number of small clouds are
present (Dermer & Mitman 1999). In the internal shock model (Rees
& Meszaros 1994) the central engine generates a relativistic flow
with a highly non-uniform distribution of the Lorentz factor and the
pulses are made by collisions between rapid and slower parts of the
flow. In the two scenarios the variability of the profiles has a very
different interpretation. In one case it provides a ‘tomography’ of
the burst environment while in the second case it reveals the activity
of the central engine.

In this paper we consider in some detail the mechanism of pulse
formation by internal shocks. Three characteristic time-scales may
be relevant during pulse evolution: the time t rad required to radi-
ate the energy dissipated in shocks; the dynamical time tdyn, i.e.
the time taken by internal shocks to travel throughout the flow and
the angular spreading time t ang corresponding to the delay in arrival
time of photons emitted from a spherical shell. A short radiative
time t rad � tdyn, t ang appears to be mandatory to avoid adiabatic
losses and to maintain sufficient efficiency. This condition is satisfied
by the synchrotron process, which is the most commonly invoked
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radiation mechanism in GRBs. If the thickness of colliding shells
is small compared with their initial separation, tdyn � t ang and the
pulse temporal evolution is fixed by geometry; conversely if the
source produces a continuous wind rather than a series of discrete,
well-separated shells, tdyn � t ang and hydrodynamical effects control
the pulse shape.

Pulse evolution has been studied extensively when it is domi-
nated by geometry (see, e.g., Fenimore, Madras & Nayakshin 1996;
Kobayashi, Piran & Sari 1997) but discrepancies between model pre-
dictions and the observations (Soderberg & Fenimore 2001) have
cast some doubt concerning the validity of the internal shock model.
Our purpose is to see if the situation can be improved when the hy-
drodynamical point of view is adopted. In Section 2 we summarize
some basic information regarding pulse temporal and spectral evo-
lution. We then develop, in Section 3, a simple model where pulses
are formed when a fast moving wind is decelerated by a compar-
atively slower shell. Spectral evolution is considered in Section 4
where constraints are obtained on the GRB radiation mechanism.
Temporal profiles computed with our model are presented in Sec-
tion 5 and time-lags are discussed in Section 6. Section 7 gives our
conclusions.

2 T E M P O R A L A N D S P E C T R A L E VO L U T I O N
D U R I N G P U L S E D E C AY

We consider a pulse characterized by a photon flux N (t) in the energy
range (E1, E2), a peak energy Ep(t) of the E2N (E, t) spectrum and
a photon fluence defined by

d�N(t)

dt
= N (t) =

∫ E2

E1

N (E, t) dE . (1)

The HIC and the HFC are then given by

Ep(t) ∝ N (t)δ (2)

and

Ep(t) ∝ e−a�N(t), (3)

where a is an exponential decay constant. For pulses satisfying both
the HIC and the HFC, Ryde & Svensson (2000) have shown that the
photon flux and the peak energy follow simple power laws during
the decay phase

N (t) = N0

1 + t/τ
(4)

and

Ep(t) = Ep,0

(1 + t/τ )δ
, (5)

where t = 0 corresponds to the maximum of N (t).
Ryde & Svensson (2002) performed a detailed analysis of the

decay behaviour of a sample of 25 long and bright pulses to check
whether it was indeed described by equations (4) and (5). They
found that to account for the temporal and spectral evolution of
all the pulses, equation (4) had to be replaced by the more general
expression

N (t) = N0

(1 + t/τ )n
. (6)

If n �= 1, the δ indices appearing in equations (2) and (6) are differ-
ent and following Ryde & Svensson (2002) we then write Ep(t) =
Ep,0/(1 + t/τ )δ

�
with δ� = nδ. Ryde & Svensson (2002) found

that the distribution of n in their sample was sharply peaked at n =
1 with, however, a secondary bump at n � 3. The values of δ� were

Figure 1. Derivative of ϕ(Ep) for three Band functions with β = −2.5 and
α = −2/3 (dotted line) α = −1 (full line) and α = −1.5 (dashed line). The
two vertical lines limit the BATSE spectral range. The average slope during
pulse decay typically lies between 0 and 1.

all smaller than 1.5 for the n = 1 pulses, but could reach 3.5 when
n ≈ 3. The distribution of δ was narrower with 0.5 � δ � 1 in most
of the sample.

Once the decay behaviour of N(t) and Ep(t) has been specified, it
becomes possible to obtain the evolution of the bolometric energy
flux FE(t) since

FE(t) =
∫ ∞

0

N (E, t)E dE = E2
p

∫ ∞

0

N (x, t)x dx, (7)

where x = E/Ep. We suppose that the temporal and spectral be-
haviour can be separated in N (x, t):

N (x, t) = A(t)B(x), (8)

with B(x) representing the spectrum shape. The photon flux in the
energy range (E1, E2) is then given by

N (t) =
∫ E2

E1

N (E, t) dE = FE(t)ϕ(Ep)

Ep(t)ϕ0
, (9)

so that

FE(t) = N (t)Ep(t)
ϕ0

ϕ(Ep)
= N0 Ep,0

(1 + t/τ )1+δ�

ϕ0

ϕ(Ep)
(10)

with

ϕ(Ep) =
∫ E2/Ep

E1/Ep

B(x) dx (11)

and

ϕ0 =
∫ ∞

0

xB(x) dx . (12)

The derivative of ϕ(Ep) has been represented in Fig. 1 for the
BATSE spectral range (20, 1000 keV), using a standard Band
function (Band et al. 1993) with low and high energy indices
α = − 2

3 , −1 or −1.5 and β = −2.5. At low (respectively, high)
Ep, ϕ(Ep) is given by a simple power law E−(β+1)

p [respectively,
E−(α+1)

p ] but for intermediate values (E1 < Ep < E2), which are
representative of the decay phase in the Ryde & Svensson (2002)
sample, ϕ(Ep) does not have a simple analytical form. Assuming
that it can still be approximated by a power law, ϕ(Ep) ∝ E−(ζ+1)

p ,
where ζ is a weighted average of the low- and high-energy spectral
indices (−2 � ζ � −1) the bolometric energy flux also follows a
power law:
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Figure 2. Solution for γ (τ ) corresponding to equation (21) with γ 0 = 0.25.
The dashed line is the approximation given by equation (23).

FE(t) ∝ 1

(1 + t/τ )ε
(13)

with

ε = n + (2 + ζ )δ�. (14)

The slope of the HIC is then given by

δ = δ�

n
= 1

ε/δ� − (2 + ζ )
. (15)

If the temporal and spectral evolution during pulse decay is due
to geometrical effects alone ε = 3 and δ� = 1 (Granot, Piran &
Sari 1999), which leads to δ = 1/(1 − ζ ). With −2 � ζ � − 1
the resulting value 0.3 � δ � 0.5 lies below what is found in most
observed pulses (Soderberg & Fenimore 2001).

Geometrical effects govern pulse evolution if the shell thickness
is small compared with their initial separation. However, if a contin-
uous outflow emerges from the central engine the hydrodynamical
time-scale can play a dominant role during pulse decay. We have
then developed a simple model to check whether a better agreement
can be found with the observations when the hydrodynamical aspect
of the flow is taken into account.

3 A S I M P L E P U L S E M O D E L

We consider a relativistic wind where a slow shell of mass M0

and Lorentz factor �0 decelerates a more rapid part of the flow
characterized by a constant mass flux Ṁ (in the source frame) and
Lorentz factor �1 > �0. We do not solve the true hydrodynamical
problem but rather approximate the flow evolution by considering
that fast material is ‘accreted’ by the slow shell. The accretion rate
is given by

dM

dt
= Ṁ(1 − γ 2), (16)

where t is the observer time and γ = �/�1 (with � and M being
the current Lorentz factor and mass of the slow shell). As a result of
the accretion of fast moving material, the Lorentz factor of the slow
shell increases. When a mass element dM is accreted the Lorentz
factor becomes

� + d� =
(

�1�
�1 dM + �M

� dM + �1 M

)1/2

, (17)

Figure 3. Dissipated power in units of 1/2Ṁ�1c2 for our pulse model with
γ 0 = 0.25. The dashed line corresponds to equation (24) while the full line
takes into account angular spreading.

so that
dγ

dM
= 1 − γ 2

2M
, (18)

which can be integrated to give

µ =
(

1 + γ

1 − γ

)/(
1 + γ0

1 − γ0

)
, (19)

where µ = M/M0 and γ 0 = �0/�1. Introducing t0 = M0/Ṁ and
τ = t/t0, equations (16)–(19) yield

dγ

dτ
= Q(1 − γ 2)(1 − γ )2 (20)

with Q = 1/2[(1 + γ 0)/(1 − γ 0)]. Equation (20) has the analytical
solution

τ = 1

Q
[F(γ ) − F(γ0)], (21)

where the function F(γ ) is given by

F(γ ) = 1

8
log

(
1 + γ

1 − γ

)
+ 1

4(1 − γ )
+ 1

4(1 − γ )2
. (22)

The solution γ (τ ) corresponding to equation (21) has been repre-
sented in Fig. 2 for γ 0 = 0.25. When τ � 2, it is well approximated
by

γ (τ ) � 1 − 1

2
√

Qτ
. (23)

Once γ (τ ) is known it is possible to calculate the dissipated power

Ė(τ ) = Ṁ�1c2

2
(1 − γ 2)(1 − γ )2, (24)

which has been represented in Fig. 3. At large τ , it behaves as τ−3/2

since

Ė(τ ) ∝ (1 − γ )3(1 + γ ) ∝ τ−3/2 (25)

for τ � 2. Pulse evolution is essentially completed at τ ∼ 10 when
�/�1 > 0.8 and Ė has decreased by more than an order of magnitude.

The dissipated power given by equation (24) is slightly different
from what the observer will see since the energy released at time
t is spread over an interval � t corresponding to the difference in
arrival time for photons emitted by a shell of radius r moving at a
Lorentz factor �,

�t = r

2c�2
. (26)
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590 F. Daigne and R. Mochkovitch

Figure 4. Pulse profile N(t) (full line) and 1/N(t) (dashed line) produced
by a relativistic outflow with �1 = 400 decelerated by a slow shell of initial
Lorentz factor �0 = 100 (see the text for the other model parameters). The
dashed vertical lines limit the time interval where we plot the HIC and the
HFC in Fig. 6.

The solution for Ė including angular spreading has been obtained
numerically and is also shown in Fig. 3. It differs from the analytical
expression (equation 24) at early times but preserves the power-law
decay of slope ε = 3/2 at late times.

4 S P E C T R A L E VO L U T I O N A N D E M I S S I O N
P RO C E S S E S

We now use the analytical model to follow the spectral evolution
during pulse decay. If the dissipated energy is radiated by the syn-
chrotron process the peak energy Ep is

Ep = Esyn ∝ �B�2
e , (27)

where B is the magnetic field and �e is the characteristic electron
Lorentz factor behind the shock. With classical equipartition as-
sumptions B and �e can be expressed as

B = (
8παBρεc2

)1/2
(28)

and

�e = αe

ζ

mp

me
ε, (29)

where ρ is the density and εc2 is the dissipated energy per unit
mass (both in the comoving frame); αB and αe are the equipartition
parameters and ζ is the fraction of electrons that are accelerated.
Finally,

Esyn ∝ �ρ1/2ε5/2, (30)

where the comoving density ρ is proportional to r−2 (with r being
the shock radius, r ∼ �2 ct) and ε is obtained from Ė = dM/dt�εc2

and equation (16),

ε = (1 − γ )2

2γ
. (31)

This leads to the following expression for E syn:

Esyn ∝ (1 − γ )5

γ 7/2t
, (32)

which behaves as a power law (Ep ∝ t−7/2) when (1 − γ ) ∼ t−1/2.
This is much steeper than the observed spectral evolution of pulses,
which satisfy both the HIC and the HFC. Instead of using equa-

Figure 5. Hardness–intensity (full line) and hardness–fluence (dashed line)
correlations for the pulse shown in Fig. 4.

tion (30) we therefore parametrize the peak energy with the more
general phenomenological expression

Ep ∝ �ρxε y ∝ (1 − γ )2y

γ 4x+y−1t2x
, (33)

which becomes

Ep ∝ 1

t2x+y
(34)

at late times. The exponents x and y can be different from their
standard synchrotron values 1/2 and 5/2 if the equipartition param-
eters αB, αe or ζ vary with ρ or/and ε. For example, Daigne &
Mochkovitch (1998) adopted a fraction ζ of accelerated electrons
proportional to ε so that �e remains constant, which leads to x = y
= 1/2 and Ep ∝ t−3/2. However, since most of the observed values
of δ� = 2x + y are smaller than 1.5, it seems necessary to further
reduce the x and y indices and we have therefore considered below
the case x = y = 1/4, i.e. δ� = 0.75.

5 T E M P O R A L P RO F I L E S

We obtain the temporal profile of synthetic pulses from equations
(9), (24) and (33) of our model. We have represented in Fig. 4 a
pulse formed when a wind of Lorentz factor �1 = 400 and power
Ṁ�1c2 = 1052 erg s−1 is decelerated by a slow shell with �0 =
100. We adopt t0 = 0.4 s, x = y = 1/4 and z = 1. The profile
is computed in the BATSE range (20–1000 keV) and the constant
of proportionality in equation (33) is fixed to obtain a peak energy
Ep = 300 keV for the whole pulse spectrum. The pulse duration
is close to 10 (1 + z) t0 as expected from the results obtained in
Section 3.

The evolution after maximum is initially close to a 1/t decay (i.e.
n ∼ 1 in equation 6) as can be seen in Fig. 4, where 1/N(t) has also
been represented. This can be simply understood from equation (14)
which, for the decay slopes of the dissipated power ε = 1.5 (equation
25) and of the peak energy δ� = 2x + y = 0.75 gives

n = −0.75ζ. (35)

With −2 � ζ � −1, the central value of n is indeed close to unity.
Since the decay phase of our synthetic pulse can be described by
equations (4) and (5) it should also satisfy both the HIC and the
HFC. This is checked in Fig. 5 where the two relations have been
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Figure 6. Time lag–hardness ratio diagram of BATSE bursts from Norris
et al. (2000) compared with model predictions. The three lines represent se-
quences of synthetic pulses obtained with similar distributions of the Lorentz
factor (the dotted line corresponds to �1 = 300, the full line to �1 = 400
and the dashed line to �1 = 600; see the text for details).

plotted in the time interval delimited by the two vertical lines in
Fig. 4. The HIC is not a strict power law but its average slope
δ ∼ 0.9 is in global agreement with the observations. The HFC is
satisfied to a better accuracy since the relation between log Ep and
the photon fluence is quasi-linear in the considered interval.

6 T I M E L AG S

Norris et al. (2000) have shown that time-lags between different
energy channels correlate with spectral hardness and possibly also
with the burst peak luminosity. GRBs are distributed in a trian-
gular domain of the time-lag–hardness ratio diagram (the hardest
bursts having the shortest time-lags; see Fig. 6) and the time-lag–
luminosity relation obtained from six bursts with known redshifts
takes the form

L51 � 130

(
�t31

0.01 s

)−1.14

, (36)

where �t31 is the time-lag between BATSE channels 3 and 1, and
L51 is the luminosity in units of 1051 erg s−1. In our model, we
estimate time-lags by cross-correlating profiles in different energy
channels obtained from equation (9). The first factor in equation (9)
is

ψ(t) = FE(t)

Ep(t)
, (37)

which behaves as t2x+y−1.5 during pulse decay. The sign of �= 2x +
y − 1.5 is of great importance in determining the time tmax of maxi-
mum count rate and the related time-lags. If � < 0 the function ψ(t)
has a maximum at some early time tm before decreasing as t� while
it steadily increases for � > 0. The second factor in equation (9) is
ϕ(Ep) so that tmax is the solution of the implicit equation

ψ̇(tmax)

ψ(tmax)
+ Ėmax

p

Emax
p

d log ϕ

d log Ep

∣∣∣
Emax

p

= 0, (38)

where Emax
p and Ėmax

p are the values of Ep and its time derivative
at t = tmax. Since in most pulses the evolution of Ep precedes the
count rate, Ėmax

p is negative. If the low-energy slope of the Band

Figure 7. Time lag–luminosity correlation predicted by our model com-
pared with Norris et al. (2000) results for six GRBs with known redshifts.
The lines correspond to the three cases already considered in Fig. 6.

spectrum α � −1, the derivative d log ϕ/d log Ep|Ep
max is positive

(see Fig. 1) and equation (38) then shows that ψ̇(tmax) > 0 which,
for � < 0, leads to

tmax < tm, (39)

which provides a strict upper limit on the time-lags between different
energy channels

�t < tm. (40)

(If α > −1, d log ϕ/d log Ep|Ep
max can be weakly negative at large

Ep but even in this case tmax never greatly exceeds tm.)
When � � 0, no constraint such as equation (40) applies and

the time-lags can be quite large. Daigne & Mochkovitch (1998),
who adopted x = y = 1

2 (� = 0), obtained lags of several seconds
between BATSE channels 1 and 3 (or 4) for a pulse lasting approx-
imately 10 s, while currently observed values are in the range 10−2

to a few 10−1 s. Moreover, for � > 0 the time-lags increase with
pulse hardness, in contradiction with the observations.

Conversely, with x = y = 1
4 the time-lags are short (�t31 � 0.5

s) even for long pulses and they decrease with increasing hardness.
Fig. 6 shows the time-lag–hardness ratio relation given by our model
superimposed to the Norris et al. (2000) results for BATSE bursts.
The thick grey lines in Fig. 6 correspond to sequences of pulses of
comparable duration (t90 ∼ 10 s) obtained with similar distributions
of the Lorentz factor (a slow shell with �0 = 100 decelerating a
fast wind with �1 = 300, 400 or 600) and a varying value of the
(isotropic) injected power (from 5 × 1051 to 1054 erg s−1). Even if
differences in duration and redshift will contribute to add scatter to
their distribution it appears that synthetic pulses populate the same
triangular domain as observed ones.

We finally checked whether our model was able to reproduce
the time-lag–luminosity correlation (equation 36). When x = y =
1/4, we do find that the lags decrease with increasing luminosity.
This is a consequence of the HIC and the time-lag–hardness ratio
relation discussed above. The results are shown in Fig. 7 where
the three lines correspond to the wind cases with �1 = 300, 400
and 600 already considered in Fig. 6. It can be seen that there is an
overall agreement between the model predictions and equation (36).
However, at low luminosities and large time-lags we obtain a rather
wide strip instead of a single relation such as equation (36). If this
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592 F. Daigne and R. Mochkovitch

is confirmed by the analysis of more GRBs with known redshifts,
the time-lag–luminosity correlation will still be useful for statistical
studies of large burst samples but may be quite inaccurate to estimate
the luminosity of a specific event.

7 C O N C L U S I O N

We have developed a simple model where GRB pulses are produced
when a rapid part of a relativistic outflow is decelerated by a com-
paratively slower shell. We do not solve the true hydrodynamical
problem but rather assume that the slow shell ‘accretes’ the fast
moving material, which allows one to obtain an analytical solution
for the dissipated power Ė . During pulse decay Ė ∝ t−3/2 as Ė ∝ t−3

when the evolution is fixed by shell geometry. To compute the spec-
tral evolution of our synthetic pulses we parametrize the peak energy
as Ep ∝ ρxε y�, where ρ, ε c2 and � are, respectively, the post-shock
values of the density, dissipated energy (per unit mass) and Lorentz
factor. At late times, we obtain Ep ∝ t−(2x+y), which constraints

x and y since in most observed bursts Ep ∝ t−δ� with δ� � 1.5.
The synchrotron process with standard equipartition assumptions
corresponds to x = 1/2 and y = 5/2 (i.e. 2x + y = 3.5) and gives
a much too steep spectral evolution. One has then to suppose that
the equipartition parameters αe, αB and ζ vary with ρ or/and ε to
reduce x and y (a possible alternative being that energy is radiated
by another process – different from the synchrotron one – but which
can still be approximated by equation 33).

We have considered the case x = y = 1/4 and the resulting pulses
then have temporal and spectral properties in excellent agreement
with the observations. They follow both the HIC and the HFC during

the decay phase and the time-lags between energy channels decrease
with increasing pulse hardness and peak luminosity. We therefore
conclude that if GRB pulses are produced by internal shocks, their
temporal and spectral properties are probably governed by the hy-
drodynamics of the flow rather than by the geometry of the emitting
shells.
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