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Time-symmetric initial data for binary black holes in numerical relativity

Luc Blanchet*
Gravitation et Cosmologie (GReCO), Institut d’Astrophysique de Paris–C.N.R.S., 98 bis boulevard Arago, 75014 Paris, France

and Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
~Received 22 April 2003; published 15 October 2003!

We look for physically realistic initial data in numerical relativity which are in agreement with post-
Newtonian approximations. We propose a particular solution of the time-symmetric constraint equation, ap-
propriate to two momentarily static black holes, in the form of a conformal decomposition of the spatial metric.
This solution is isometric to the post-Newtonian~PN! metric up to the 2PN order. It represents a nonlinear
deformation of the solution of Brill and Lindquist, i.e. an asymptotically flat region is connected to two
asymptotically flat~in a certain weak sense! sheets that are the images of the two singularities through
appropriate inversion transformations. The total Arnowitt-Deser-Misner massM as well as the individual
massesm1 and m2 ~when they exist! are computed by surface integrals performed at infinity. Using second
order perturbation theory on the Brill-Lindquist background, we prove that the binary’s interacting mass-
energyM2m12m2 is well defined at the 2PN order and in agreement with the known post-Newtonian result.
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I. MOTIVATION AND RELATION TO OTHER WORKS

The numerical computation of the collision of two blac
holes is of paramount importance for the observation
gravitational waves by the network of laser-interferomet
detectors. When investigating this problem the ten Eins
field equations are separated into~i! four constraint equations
that are to be satisfied by some initial data given on an in
three-dimensional Cauchy hypersurface, and~ii ! six hyper-
boliclike equations describing the dynamical evolution of t
gravitational field on neighboring hypersurfaces. The Bia
chi identities guarantee that the constraint equations are
isfied on neighboring hypersurfaces if they are on the ini
hypersurface. There are infinitely many ways that the ini
data can be chosen to represent the starting state of the
lution of black holes. It is widely admitted that the proble
of choosing physically realistic initial conditions for the co
lision of two black holes has not yet been solved. There
been a lot of concern in the literature@1# for knowing what
would really motivate physically a particular choice of initi
data.

Let us consider the problem oftime-symmetricinitial
data, which are physically appropriate to two momenta
static black holes, i.e. with zero initial velocities. The d
namical evolution of time-symmetric data describes the s
sequenthead-oncollision of the two black holes. In this
situation the constraint equations reduce to the Hamilton
or scalar constraint equationR50 ~in vacuum—the case ap
propriate to black holes!, with R being the three-dimensiona
scalar curvature. Considering as usual@2–4# a conformal de-
composition of the spatial metric~spatial indicesi , j , . . .
51,2,3),

g i j 5C4g̃ i j , ~1.1!

whereg i j is the physical metric andg̃ i j denotes the confor
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mal ~unphysical! metric, we obtain the Lichnerowicz@2#
equation, which is an elliptic-type equation to be satisfied
the conformal factorC. In the time-symmetric case tha
equation becomes

D̃C5
C

8
R̃. ~1.2!

The scalar curvatureR̃ and LaplacianD̃ are the ones assoc
ated with the conformal metricg̃ i j . The interest of the con-
formal decomposition is that by solving Eq.~1.2! we gener-
ate a physical solutiong i j of the constraint equation startin
from any choice for the conformal metricg̃ i j ~a priori!.
Therefore the problem of initial conditions resides in t
choice of a physically well-motivated conformal metricg̃ i j .

The simplest choice of initial conditions~one motivated
by simplicity rather than by physics! is the one for whichg̃ i j
equals the flat metricd i j . In that case Eq.~1.2! reduces to the
flat-space Laplace equation. Some exact solutions, appro
ate to~momentarily static! black holes, have been obtaine
by Misner@5# and Lindquist@6#, and Brill and Lindquist@7#.
The solution of Brill and Lindquist@for which the conformal
factorCBL takes the form of Eq.~3.2b!# is particularly inter-
esting: it describes the ‘‘geometrostatics’’ of two black hole
consisting of three asymptotically flat regions connected
two Einstein-Rosen bridges~actually, the solution is known
for N black holes!. The one region containing the two throa
is supposed to represent our Universe, while the two sh
expanding behind it are associated with the two black ho
The beauty of the Brill-Lindquist solution is that not only
the total Arnowitt-Deser-Misner~ADM ! mass-energyM of
the binary computed ‘‘at infinity,’’ so are the two individua
massesm1 and m2 of the black holes. One can use, for in
stance, standard surface integrals extending on topolog
two-spheres at infinity. The binary’s geometrostatic ene
~i.e. the gravitational interacting or binding energy, in t
center-of-mass frame! is therefore computed unambiguous
asE/c25M2m12m2.
©2003 The American Physical Society02-1



e-
a

ia
at

so
n

l-
ian

th
o

he
a

m

e-
-
int
e
ro
ia
ck

ini

e
b

a
-

,
n

on

en
u

t a
th
a

ical
f
od

rid

een

st
e

ith

l
at-
et

in

for
al

ric

rder
d
of
s
of
-
e
o-

In
re-
wn

al
.

o

a-
er

fo
il

c-
the
f
ed.
ion,
g in

the
ion

LUC BLANCHET PHYSICAL REVIEW D 68, 084002 ~2003!
Yet the solution of Brill and Lindquist, despite its und
niable interest, is not ‘‘physically realistic’’ in the sense th
it differs, in the limit c→1`, from the three-metric found
for a post-Newtonian solution. Indeed the post-Newton
metric generated by two point particles is known to devi
from conformal flatness at the 2PN order~see, e.g. Ref.@8#!.1

In consequence both the Brill-Lindquist metric and the as
ciated binding energyE disagree with the post-Newtonia
results from the 2PN order.

A compelling motivation for constructing physically rea
istic initial data is the agreement with the post-Newton
approximation when c→1`. Recall that the post-
Newtonian theory provides some explicit expressions for
metric, equations of motion and energy of binary systems
point particles. The post-Newtonian metric is valid in t
binary’s ‘‘near zone’’~size of near zone is much less than
gravitational wavelength!, but has been proved to come fro
the reexpansion whenc→1` of a ‘‘global’’ ~post-
Minkowskian-type! solution, defined everywhere in spac
time, including the wave zone@9#. Furthermore, in the post
Newtonian approach the modeling of black holes by po
like particles—i.e. technically by Dirac delta functions in th
stress-energy tensor—is rather well justified. We shall p
vide below some further evidence that the ‘‘post-Newton
masses’’ of point particles are indeed identical to the bla
hole masses.2

It has been suggested@11# ~see also@12#! that, in order of
taking into account the post-Newtonian physics into the
tial data, one should adopt for theconformalmetric g̃ i j di-
rectly a post-Newtonian solution. In such a proposal one
pects that by correcting the post-Newtonian solution
means of a conformal factorC4 ~computed numerically!,
one will somehow be able to ‘‘compensate’’ in the physic
metric g i j ~i.e., in fact, to cancel out! the systematic higher
order post-Newtonian error terms that are neglected ing̃ i j .

There has been other proposals for realistic initial data
particular built on the relaxation of the assumption of co
formal flatness@1#. One of these is to use forg̃ i j a linear
combination of two~boosted versions of! Kerr-Schild met-
rics @13,14#. It is not known if the physical metric which is
generated in this way from the numerically computed c
formal factor, is consistent with post-Newtonian~e.g. 2PN!
calculations.

On the other hand, we should remark that to which ext
the hypothesis of conformal flatness introduces some
physical spurious~and numerically important! effects re-
mains an issue. Indeed, relaxing this hypothesis may no
ways be a panacea. A quite different idea for settling
initial conditions of two black holes is to solve numerically
subset of the Einstein field equations~the four constraint

1In this paperc andG denote the speed of light and the gravit
tional constant. As usual thenPN order means the terms of ord
1/c2n whenc→1`.

2See also, in a similar context, the matching of a 1PN solution
the orbital motion of point particles to two perturbed Schwarzsch
black holes@10#.
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equations plus one evolution equation!, under the two pre-
mises of conformal flatness and the existence of a hel
Killing symmetry @15,16#. Despite the conformal flatness o
the spatial metric, the latter calculation gives results in go
agreement with post-Newtonian predictions@16–18#. Never-
theless, we think that it is important, at some stage, to get
of the hypothesis of conformal flatness.

We emphasize, furthermore, that the agreement betw
numerical relativity@15,16# and post-Newtonian theory@16–
18# holds up to the very relativistic regime of the innermo
circular orbit ~ICO!, where the orbital velocities are of th
order of 50% of the speed of light.3 In Refs. @17# it is sug-
gested that the result for the ICO of two black holes w
comparable masses, at the 3PN approximation,4 is likely to
be close to the ‘‘exact’’ solution, within 1% of fractiona
accuracy or better. This constitutes a motivation for advoc
ing that the black-hole initial conditions, which are to be s
~presumably! around the location of the ICO, should be
agreement with post-Newtonian theory.

In the present paper we propose an alternative way
incorporating the post-Newtonian information into the initi
data of black-hole binaries~in the time-symmetric case!. We
find, in Sec. II, a simple expression for the conformal met
g̃ i j , which is such that the correspondingphysicalmetricg i j
is isometric~i.e. differs by a coordinate transformation! to
the standard post-Newtonian spatial metric at the 2PN o
in the limit c→1`. At the same time, the solution is define
globally in space, with a global structure similar to the one
Brill and Lindquist. Our solution is not ‘‘exact,’’ but exists a
a certain non-linear perturbation, investigated in Sec. III,
the Brill-Lindquist solution, playing here the role of a ‘‘back
ground’’ metric. Most importantly, in Sec. IV we investigat
the asymptotic structure of the solution, and compute ‘‘ge
metrically’’ the massesM and m1 ,m2, i.e. by surface inte-
grals performed in their respective domains at infinity.
Sec. V the binary’s interacting energy, deduced from the p
vious masses, is proved to be in agreement with the kno
post-Newtonian energy up to the 2PN order.~We shall find,
however, that the definition we adopt for the two individu
massesm1 andm2 makes sense only up to the 2PN order!

II. CONFORMAL DECOMPOSITION OF THE SPATIAL
METRIC

A. Definition of the conformal metric

The conformal metric we propose, appropriate to tw
black holes of massesm1 and m2 ~to agree later with the

r
d

3The ICO is defined by the minimum of the binary’s energy fun
tion for circular orbits. It represents a useful reference point for
numerical@15,16# and 3PN@17# calculations because for both o
them the ICO is well-defined and can be meaningfully compar
However, the radiation reaction terms are neglected in its definit
so the ICO probably does not have a rigorous physical meanin
a context of exact radiative solutions.

4We mean the standard Taylor-expanded form of
approximation—without using any post-Newtonian resummat
techniques.
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‘‘geometrical’’ masses!, located at the singular pointsy1 and
y2, and momentarily at rest (v15v250), is

g̃ i j 5d i j 2
8G2m1m2

c4

]2g

]y1
^ i]y2

j &
. ~2.1!

The function g introduced here represents an element
‘‘kernel’’ playing an important role in post-Newtonian calcu
lations@19–23#. It depends on the ‘‘field’’ pointx, on the one
hand, and on the pair of ‘‘source’’ pointsy1 , y2, on the other
hand; it is defined by

g~x;y1 ,y2!5 ln~r 11r 21r 12!, ~2.2!

where r 15ux2y1u and r 25ux2y2u are the distances to th
black holes, andr 125uy12y2u is their separation. The func
tion g satisfies, in the sense of distributions~i.e. for all values
of x, including the singular pointsy1 andy2),

Dg5
1

r 1r 2
, ~2.3!

whereD denotes the usual flat-space Laplacian with resp
to the field pointx. In Eq.~2.1! the derivatives are taken wit
respect to the two source points.5 The carets around the in
dices refer to the symmetric and trace-free~STF! projection:
T^ i j &[

1
2 (Ti j 1Tji )2 1

3 d i j Tkk ; so the trace of the metric~2.1!
is normalized to beg̃ i i 53. It is of course quite natural~and
useful in practice! to impose that the deviation of the confo
mal metric from flat space be trace-free.

Our proposal is to generate, by means of numerical te
niques ~i.e. with the help of elliptic solvers!, a conformal
factor C solving the constraint equation~1.2! corresponding
to the particular choice of conformal metric~2.1!. The metric
g i j 5C4g̃ i j we obtain in this way will incorporate the pos
Newtonian~2PN! physics of the initial state of the head-o
collision of two black holes.6 The latter assertion will now be
proved, for the rest of the paper, with the help of analy
perturbation methods.

B. Relation with the post-Newtonian metric

The first result shows that the ‘‘near-zone’’ behavior of t
solution ~i.e. r /c→0) is physically sound.

Theorem 1.The post-Newtonian expansion~when c→
1`) of the solutiong i j 5C4g̃ i j of the constraint equation
~1.2!, whereg̃ i j is defined by Eq.~3!, differs from the stan-

5The following explicit formula holds:

igj[
]2g

]y1
i ]y2

j
5

n12
i n12

j 2d i j

r 12~r 11r 21r 12!
1

~n12
i 2n1

i !~n12
j 1n2

j !

~r 11r 21r 12!
2

.

Here, n1
i 5(xi2y1

i )/r 1 , n2
i 5(xi2y2

i )/r 2 and n12
i 5(y1

i 2y2
i )/r 12.

See Ref.@8# for further discussion and formulas concerning t
function g.

6See Refs.@24,25# for numerical calculations of the head-on co
lision of black holes; see also Ref.@26# for a post-Newtonian cal-
culation.
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dard post-Newtonian spatial metric, calculated by stand
post-Newtonian methods, by a mere change of coordinate
the 2PN order, i.e.

g i j 5gi j
2PNuv15v2501] ij j1] jj i1OS 1

c6D . ~2.4!

To be precise, by gi j
2PN we mean the spatial metric inhar-

monic coordinates, when truncated at the 2PN order, whic
is given by Eq.~7.2c! in Ref. @8#. As indicated in Eq.~2.4!,
we must set the particles’ velocitiesv1 andv2 to zero in the
post-Newtonian metric in order to conform with the assum
tion of time symmetry. The remainderO(1/c6) stands for the
neglected 3PN and higher-order terms.

The proof of Theorem 1 is easily achieved on the basis
a post-Newtonian iteration of Eq.~1.2!. At the 2PN order,
this equation becomes

DC52
G2m1m2

c4
] i j ~ ^ igj &!1OS 1

c6D , ~2.5!

where we denoteigj[]2g/]y1
i /]y2

j . The most general solu
tion reads as

C5c2
G2m1m2

2c4
DS g

3
1

r 11r 2

2r 12
D1OS 1

c6D , ~2.6!

wherec represents a solution of the homogeneous equa
~i.e. Dc50).7 By comparing with the post-Newtonian me
ric @see Eq.~7.2c! in Ref. @8# in which v15v250], we
readily find that the latter solution is uniquely specified,
the 2PN order, as being

c511
Gm1

2c2r 1
S 12

Gm2

2c2r 12
D 1

Gm2

2c2r 2
S 12

Gm1

2c2r 12
D

1OS 1

c6D . ~2.7!

Also uniquely determined is the expression of the vectorj i
in Eq. ~2.4!, which represents an infinitesimal gauge tran
formation. At the 2PN order it takes the expression

j i5
G2m1

2

4c4

n1
i

r 1
1

G2m2
2

4c4

n2
i

r 2
1OS 1

c6D , ~2.8!

where n1[(x2y1)/r 1 and n2[(x2y2)/r 2. The system of
spatial coordinates employed in the present paper, i.e. w

7We employ the notational shorthand D[]2/]y1
i /]y2

i ~so that
Dg5 igi). Notice the useful relations

Dg5
1

2r 1r 2
2

1

2r 1r 12
2

1

2r 2r 12
,

] i j ~ igj !5DF 1

2r 1r 2
1

1

2r 1r 12
1

1

2r 2r 12
G .
2-3
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corresponds to a conformal metric of the particular form d
played by Eq.~2.1!, is thereby determined, and related up
the 2PN order to the harmonic coordinate system use
Ref. @8#, by the coordinate changedxi5j i ~with j i5d i j j j ).

Summarizing this section, we have found a conformal
composition of the metricg i j that is in agreement with the
post-Newtonian metric up to the 2PN order. Notice, howev
that the conformal metric we propose is not unique, beca
we can always add higher-order terms~e.g. 3PN! to Eq.
~2.1!. A contrario, this means that with the metric~2.1! one
should not expect Theorem 1 to hold at the 3PN order
beyond. At the 3PN order, for instance, the conformal me
will be more complicated than the simple expression~2.1!.

III. PERTURBATION OF THE BRILL-LINDQUIST
SOLUTION

Having checked the near-zone structure of the metric,
us investigate some of itsglobal properties, when it is
viewed as a solution of the constraint equation~1.2! that isa
priori valid everywhere on a space-like hypersurface. F
this purpose, we impose thatg i j is a non-linear perturbation
of the exact solution of Brill and Lindquist@7#—which is
conformally flat (g̃ i j

BL5d i j ). This will mean that the topol-
ogy of our solution is identical to the topology of the Bril
Lindquist solution, i.e. be ‘‘three-sheeted,’’ in contrast wi
the two-sheeted topology of the Misner-Lindquist soluti
@5,6#.

A. Hierarchy of perturbation equations

Let us write Eq.~2.1! in a more transparent form,g̃ i j
5d i j 1bsi j , where

b[2
8G2m1m2

c4
, ~3.1a!

si j [
]2g

]y1
^ i]y2

j &
~such thatsii 50!. ~3.1b!

It is helpful to view the non-linear perturbation we want
consider, as being generated by the ‘‘seed’’ or ‘‘generatin
function si j , and to interpret the parameterb as the magni-
tude of that perturbation. In the following,b will play the
role of a ‘‘bookkeeping’’ parameter, allowing us to label th
successive non-linear perturbation orders. Besides the
conformally flat piece of the metric brought about bysi j , it
is evident that we must also introduce a perturbation in
conformal factor. We pose

C5c1s, ~3.2a!

c511
a1

r 1
1

a2

r 2
, ~3.2b!
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where c denotes the Brill-Lindquist conformal factor@7#,
parametrized by two constantsa1 anda2 ~in the case of two
particles!. The quantitys denotes a certain perturbation o
c.

With full generality—within the present perturbativ
framework—we look for the expression ofs in the form of
an infinite power series inb, solving the equation~1.2!:

s5 (
n51

1`

bns (n) . ~3.3!

We insist that in our approach the Brill-Lindquist solutio
plays the role of thebackgroundmetric ~it depends solely on
a1 anda2), while the functionsi j yields a non-linear defor-
mation of this background, perturbatively ordered by t
bookkeeping parameterb. For a given choice ofsi j , we
expect that the resulting solution is unique~at least in a sense
of formal power series inb). Becauseb involves two mass
factorsm1 andm2, so it is proportional toG2, the perturba-
tion series we look for is like a ‘‘double’’ post-Minkowskian
expansion, going ‘‘twice as fast’’ as the usual pos
Minkowskian expansion whenG→0. Considering this se-
ries on the point of view of a post-Newtonian reexpansio
we see that each non-linear order brings in a new factor 1c4,
so that our perturbation series can be said to go by—q
efficient indeed—steps of 2PN orders.

Let us compare our definitions~3.2!–~3.3! with the results
~2.6! and~2.7! provided by the agreement with the 2PN me
ric. We find that the constantsa1 ,a2 are determined with
relative 1PN accuracy,

a15
Gm1

2c2 F12
Gm2

2r 12c
2

1OS 1

c4D G and 1↔2, ~3.4!

and that with this accuracy they agree with the prediction
the Brill-Lindquist solution.8 In addition, we find that the
perturbations in the conformal factor is given by the secon
term in the right side of Eq.~2.6!, which comes in only at the
2PN order—it is purely linear inb. Hence,

s (1)5
1

16
DS g

3
1

r 11r 2

2r 12
D1OS 1

c2D , ~3.5!

with all higher-orders (n)’s being negligible with this ap-
proximation. Actually, Eqs.~3.4! and ~3.5! correspond to a
particular ‘‘sharing’’ of the terms betweena1 ,a2 on the one
hand, ands (1) on the other hand, since we can always add
s (1) some ‘‘homogeneous’’ terms;1/r 1 and;1/r 2 without

8We recall thata1
BL and a2

BL in the case of the Brill-Lindquist
solution are related to the masses by the exact relations

a1
BLF11

a2
BL

r 12
G5

Gm1

2c2
and 1↔2,

a1
BL1a2

BL5
GM

2c2
.

2-4
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changing the equation fors (1) . It is obvious that such a
sharing is physically irrelevant. However, we shall forbid
different sharing of terms by adopting below the prescript
~which represents simply a convenient choice! that s (1) and
all subsequent iterations solve the equation for the confor
factor in the sense of distributions. Some results more c
plete than Eqs.~3.4! and ~3.5! will be obtained below.

By inserting the perturbation ansatz~3.3! into the con-
straint equation~1.2!, and by identifying each of the coeffi
cients of the successive powers ofb in both sides of the
equation, we obtain a hierarchy~indexed by nPN) of
Poisson-type equations:

Ds (n)5S (n)@s (1) , . . . ,s (n21)#, ~3.6!

where we recall thatD[] i] i . The nth-order source term
S (n) depends on the solutions of the preceding iterati
s (1) , . . . ,s (n21) , on the ‘‘generating’’ functionsi j and on
the ‘‘background’’ conformal factorc. Notice thatc satisfies
the equation Dc524p(a1d11a2d2), where, e.g. d1
[d(x2y1) denotes the Dirac function at the pointy1. Ob-
viously we may include the equation for the background c
formal factor into our hierarchy of equations by posingC
5(n50

1` bns (n) , with s (0)5c and S (0)524p(a1d1

1a2d2).

B. Analytic closed form of the linearized solution

To the linearized order the perturbation equation re
explicitly

Ds (1)5
1

8
c] i j si j 1] j si j ] ic1si j ] i j c. ~3.7!

Interestingly, this equation turns out to be solvable in a
lytic closed form. We find that theunique solution of Eq.
~3.7!, which is valid in the sense of distributions and tends
zero at spatial infinity~i.e. whenr[uxu→1`), is

s (1)5
1

16
DS g

3
1

r 11r 2

2r 12
D1a1H H1

2
1

K1

32
2

1

32
DS 1

r 2
lnF r 1

r 12
G D

1
9

32
DS ln r 1

r 12
D1

Dg

12r 1
1

1

4
D1S g

r 12
D2

1

32
D2S g

r 12
D

2
1

24r 1r 12
2

1
1

32r 2r 12
2 J 1a2$1↔2%. ~3.8!

Besides the already met shorthand D[]2/]y1
i /]y2

i , we de-
note the Laplacians with respect to the source points byD1

[]2/]y1
i /]y1

i and D2[]2/]y2
i /]y2

i . In Eq. ~3.8!, the two
terms proportional toa1 anda2 are deduced from each othe
by label exchange 1↔2. The solution involves the specia
functionsH1 andK1 ~and 1↔2) which were introduced in
Refs. @8,21# for solving some elementary equations~in the
sense of distributions! in the problems of equations of mo
tion and wave generation at the 2PN order. We have
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DH152 igj] i j S 1

r 1
D , ~3.9a!

DK152D2S ln r 1

r 2
D , ~3.9b!

in which igj[]2g/]y1
i /]y2

j . The functionsH1 andK1 admit
the closed-form expressions given by Eqs.~3.48!–~3.51! in
Ref. @21#, or equivalently by Eqs.~6.3!–~6.5! in Ref. @8#; for
the present purpose we adopt the formulas9

H15D1F g

2r 12
1DS r 11r 12

2
gD G2DS ln r 12

r 1
D2

3

2
DS ln r 1

r 12
D

2
r 2

2r 1
2r 12

2
1

1

2r 1
2r 12

2
1

2r 1r 12
2

, ~3.10a!

K15DS 1

r 2
lnF r 1

r 12
G D2

1

2r 1
2r 2

1
1

2r 2r 12
2

1
r 2

2r 1
2r 12

2
.

~3.10b!

Anyway, we find that the exact solution of the linearize
perturbation equation is

s (1)5
1

16
DS g

3
1

r 11r 2

2r 12
D1a1H 1

2
D1F g

r 12
1DS r 11r 12

2
gD G

2
1

2
DS ln r 12

r 1
D2

15

32
DS ln r 1

r 12
D1

Dg

12r 1
2

1

32
D2S g

r 12
D

2
15r 2

64r 1
2r 12

2
1

1

4r 1
2r 12

2
1

64r 1
2r 2

2
7

24r 1r 12
2

1
3

64r 2r 12
2 J

1a2$1↔2%. ~3.11!

Let us quote also, for completeness, the fully explicit fo
obtained by expanding all the derivatives in this result:

s (1)5
1

96r 1r 2
1

r 11r 2

64r 12
3

1
1

192r 12
S 1

r 1
1

1

r 2
D2

1

64r 12
3 S r 1

2

r 2

1
r 2

2

r 1
D 1a1H 2

1

4r 1
3

2
13

64r 12
3

2
1

24r 1r 12
2

2
5

192r 1
2r 12

1
5

192r 1
2r 2

2
r 1

32r 2r 12
3

1
3

64r 2r 12
2

2
1

24r 1r 2r 12
1

r 2

4r 1r 12
3

9We notice here~since it was not noticed in Refs.@21,8#! that K1

can also be given an interesting form in connection with a sim
elementary kernelk1, viz.

Dk15
1

r1
2r2

,

K15DS 1

r 2
lnF r1

r12
G2k1D .
2-5
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2
15r 2

64r 1
2r 12

2
1

r 2

4r 1
3r 12

1
15r 2

2

64r 1
2r 12

3
1

r 2
2

4r 1
3r 12

2
2

r 2
3

4r 1
3r 12

3 J
1a2$1↔2%. ~3.12!

The terms obtained by settinga15a250 in Eqs.~3.11!
or ~3.12! contribute at the 2PN order in the conformal fact
and they are in agreement with Eq.~3.5!. The other terms,
proportional toa1 or a2, will not contribute before the 3PN
order~becausea1 anda2 carry a factor 1/c2 in front!. There-
fore, only a small part of the linearized approximation, t
one given by the former terms in Eq.~3.11!, is necessary in
the proof of Theorem 1. As a matter of fact, the non-line
perturbation we consider contains much more informat
than a mere post-Newtonian~2PN! expansion. Theorem 1
does not constitute a very stringent requirement on the n
linear solution of the perturbation equations.

A point we make by writing the linear solutions (1) into
the primary form~3.8!, involving the intermediate function
H1 andK1, is that the latter functions do enter in the po
Newtonian metric at the 3PN order—with the same num
cal coefficients as predicted by Eq.~3.8!. This can be in-
ferred from the expression of the 3PN spatial metric given
Eq. ~111! in Ref. @9#, which contains the particular non-linea
potential calledX̂, together with the way that the potentialX̂
contains the functionsH1 andK1 as calculated by Eq.~6.11!
in @8#. Thus, although our solution agrees with po
Newtonian calculations up to the 2PN order only, it do
contain some correct 3PN features.

C. Quadratic and higher-order approximations

At the level of the second-order perturbation (}b2) the
equation reads

Ds (2)5
1

8
s (1)] i j si j 1] j si j ] is (1)1si j ] i j s (1)1

1

8 S si j Dsi j

22si j ] i]ksjk2] j si j ]ksik1
3

4
]ksi j ]ksi j

2
1

2
]ksi j ] isjkDc1S 2si j ]ksjk2sjk]ksi j

1
1

2
sjk] isjkD ] ic2siksjk] i j c. ~3.13!

At the next level, cubic order, the equation will be made
the same terms as in Eq.~3.13! but with the replacement
s (1)→s (2) and c→s (1) , together with many other term
that are purely cubic insi j , and so on for the higher-orde
equations.

We shall see in Sec. IV that in order to prove the agr
ment with the 2PN binary’senergy~in contrast with the 2PN
metric!, we need the full information content about the li
earized solution given by Eqs.~3.11!–~3.12!, and also a cru-
cial piece coming from thesecond-orderperturbation, solu-
tion of Eq. ~3.13!. In the case of non-linear perturbation
(n>2), it is in general impossible to find a solution in an
08400
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n-
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lytic closed form. Fortunately, what we shall need is only
control the expansion ofs (2) at spatial infinity~i.e. in the far
zone,r→1`). And thiscanbe achieved, without disposin
of the exact expression ofs (2) , from the knowledge of the
far-zone expansion of the corresponding source-termS (2) .
More generally, the far-zone expansion of the solutions (n)

for any n can be obtained on condition that the far-zo
expansion of its sourceS (n) has been determined beforeha
~say, by induction onn).

The method is issued from the investigation, in Re
@27,28#, of the multipole expansion of the solution of a Poi
son equation with a non-compact-support source~i.e. whose
support isR3). In the present context, the multipole expa
sion is completely equivalent to the far-zone expansi
when r→1`. Following Eq. ~C9! in Ref. @28#, we obtain
the ~formal! multipole expansion ofs (n) in the form10

M~s (n)!5FPH D21@M~S (n)!#

2
1

4p (
,50

1`
~2 !,

,!
]LS 1

r D E
R3

d3yyLS (n)~y!J ,

~3.14!

where the calligraphic letterM refers to the multipole or
equivalently the far-zone expansion. The first term in t
right side of Eq.~3.14! represents the effect of integratin
‘‘term by term’’ the multipole expansion of the sourceS (n)

~this term exists only in the case of non-compact-supp
sources, because the multipole expansion of a comp
support function is zero!. The second term in Eq.~3.14! is
parametrized by the ‘‘multipole moments’’ associated w
the solution, which are given by some definite integrals
tending over the non-compact supportR3 of S (n) . The sym-
bol FP acts on both terms of Eq.~3.14!, and stands for a
certain operation of taking thefinite part, defined in Refs.
@27,28# by means of a process of complex analytic contin
ation ~with parameterBPC). The finite part has proved to
play a crucial role, in the case of non-compact-supp
sources likeS (n) , in order to ensure the well definiteness
the integrals giving the multipole moments in Eq.~3.14!.
Notice that Eq.~3.14! has been proved, in Refs.@27,28#, to
hold in the case of a regular source@i.e. C`(R3)]. Neverthe-
less, in the presence of the singular pointsy1 and y2, the
formula ~3.14! can still be applied, but only in the case o
that solutions (n) for which Ds (n)5S (n) is satisfied in the
sense of distributions.

10Technical notations in Eq.~3.14! areD21 for the standard Pois-
son integral;L[ i 1••• i , for a multi-index composed of, indices;
]L[] i 1

•••] i ,
for the product of , partial derivatives; yL

[yi 1
•••yi ,

for the product of, spatial vectors. We do not write th
, summation symbols over the, indices composingL.
2-6
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IV. TOTAL MASS AND INDIVIDUAL BLACK-HOLE
MASSES

A. Asymptotic structure of the solution

A central result of the present paper concerns the ‘‘asym
totics’’ of our solution—both at spatial infinity and in th
vicinity of the two particles.

Theorem 2.~i! The metric g i j is asymptotically flat at
infinity ~when r[uxu→1`), i.e.

g i j 5d i j 1OS 1

r D . ~4.1!

~ii ! The two singular pointsy1 andy2 are the images, via
some appropriate inversions of the radial coordinates:r1
;1/r 1 andr2;1/r 2, of two ‘‘asymptotically finite’’ regions
~whenr1→1` andr2→1`), in the sense that the metric
in coordinates (r1 ,n1), behaves like

G i j ~r1 ,n1!5d i j 1p i j ~n1!1OS 1

r1
D , ~4.2!

wherep i j denotes a certain function of the angles.
Theorem 2 says that the solution is composed of an

ymptotically flat universe connected by continuity, via som
Einstein-Rosen-like bridges, to two other regions which
asymptotically finite in the sense of Eq.~4.2!. Note that,
though the metric~4.2!, unlike the corresponding Brill-
Lindquist metric, is not asymptotically flat in the vicinity o
the two particles~stricto sensu!, the violation of asymptotic
flatness is not very severe, because the metric tends tow
constant with respect tor1, and does not involve any diver
gency ‘‘at infinity’’: it remains asymptotically finite—henc
the name. On the other hand, what is very important is
the real universe, as depicted by this solution,is asymptoti-
cally flat at spatial infinity in the usual sense of Eq.~4.1!.
The global structure described by Theorem 2 represent
attractive feature, we argue, for considering the solution a
physically well-motivated initial state of binary black hole

The asymptotic flatness whenr→1` follows from the
far-zone expansion of the generating function~3.1b!, which
is easily checked to start atsi j 5O(1/r ). Using this fact we
find that the source term for the linearized perturbation—
the right side of Eq.~3.7!—behaves likeS (1)5O(1/r 3).
With the help of Eq. ~3.14! we readily obtain s (1)
5O(1/r ), as can also be checked directly with our exa
results~3.11!–~3.12!. Then, similarly, we deduce, by induc
tion on the non-linear ordern @using Eq.~3.14! at each step#,
that s (n)5O(1/r ) for any n. So s5O(1/r ), and the result
follows.

The main point about Theorem 2 is the behavior of
solution in the vicinity of the two particles. Whenr 1→0, we
find that si j admits aboundedexpansion~i.e. si j does not
enlarge whenr 1→0), of the type

bsi j 5« i j ~n1!1O~r 1!, ~4.3!

where« i j is a function ofn15(x2y1)/r 1, the direction of
approach to the singularity@« i j is given by Eq.~A3a!#. From
Eq. ~4.3!, the linearized source termS (1) whenr 1→0 is like
08400
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e
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someS (1)5O(1/r 1
3). Now by integrating ‘‘term by term’’

the expansion ofS (1) , we get a similar expansion, but whic
starts at the orderO(1/r 1). Clearly, the solutions (1) , when
r 1→0, will be composed of the latter expansion, which re
resents a particular solution, and augmented by a poss
homogeneoussolution, solving the~source-free! Laplace
equation. However, because our original Poisson equa
Ds (1)5S (1) is satisfied in the sense of distributions, the on
possible homogeneous solution we can add is one of the
‘‘regular at the origin,’’ taking the form of a sum of STF
products x̂L[STF(xi 1

•••xi ,
). Because it is regular when

r 1→0, this homogeneous solution does not modify the le
ing singular behavior ofs (1) , that we have therefore prove
to be given by s (1)5O(1/r 1). And, again, this can be
checked with Eqs.~3.11!–~3.12!. The argument is easily gen
eralized to any non-linear ordern ~by induction onn), thus
we conclude that the non-linear perturbations diverges
whenr 1→0, but not faster thans5O(1/r 1). As a result, the
expansion of the conformal factorC5c1s is of the type

C5
z~n1!

r 1
1O~r 1

0!, ~4.4!

wherez depends on the unit directionn1 but not onr 1. From
this we deduce thatg i j 5C4g̃ i j behaves dominantly when
r 1→0 like

g i j ~x!5S z~n1!

r 1
D 4

@d i j 1« i j ~n1!1O~r 1!#. ~4.5!

See Eq.~A4a! for the expression ofz(n1) at linearized order.
Let us now perform some inversion of the radial coor

nater 1. We consider the coordinate change, valid in a nei
borhood of the particle 1, that is defined byx→(r1 ,n1),
where

r15
z2~n1!

r 1
. ~4.6!

First we havedxi5dr1
i , where r 1

i [(r 1 ,n1), because the
particle is at rest:v1

i 50. Then, the coordinate transformatio
r 1

i →r1
i [(r1 ,n1) involves simply the change of the radia

variable given by Eq.~4.6!, with the angular partn1 being
unchanged.11 We compute

dr1
i 5S z

r1
D 2

~d i j 22n1
i n1

j 12n1
i x j !dr1

j , ~4.7a!

x j[~d jk2n1
j n1

k!
] ln z

]n1
k

. ~4.7b!

~Notice thatn1
j x j50.! We then find that, in the new coordi

nate systemr1
i 5(r1 ,n1), the metric, sayG i j , admits when

11More general coordinate transformations, involving a change
the unit directionn1, are also possible.
2-7
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r1→1` the boundedexpansion announced in Eq.~4.2!, in
which the quantityp i j (n1) reads

p i j [24n1
( ix j )14x ix j1~dki22n1

kn1
i 12n1

kx i !

3~d l j 22n1
l n1

j 12n1
l x j !«kl . ~4.8!

It is such thatn1
i n1

j « i j 5n1
i n1

j p i j . @See also Eqs.~A5b! and
~A6!.# This completes the proof of Theorem 2.

B. The ADM mass

Because the metric is asymptotically flat at spatial infin
~Theorem 2!, the binary’s total ADM mass is given by th
usual surface integral on a topological 2-sphere at infinit

M5
c2

16pG
lim

r→1`
E dSi~] jg i j 2] ig j j !, ~4.9!

wheredSi is the outward surface element on the surface
infinity (dSi5dVr 2ni in the case of a coordinate sphere!. To
be more explicit aboutM, we recall from Sec. IV A that
some functionsAi j andX of the unit directionn5x/r exist
so that, whenr→1`,

bsi j 5
Ai j ~n!

r
1OS 1

r 2D , ~4.10a!

s5
X~n!

r
1OS 1

r 2D . ~4.10b!

HereAi j is simply linear inb, while X is in the form of a full
non-linear series inb: X5bX(1)1b2X(2)1••• ~see also the
Appendix!. In terms of these functionsM is given by

M5
c2

G H 2~a11a2!1E dV

4p F2X1
1

2
ninjAi j G J .

~4.11!

The first term is identical to the result in the Brill-Lindqui
solution.

The computation of Eq.~4.11! is quite straightforward a
the level of the linearized approximation, thanks to the
closed-form expression~3.11!. However, our aim will be the
computation of the 2PN energy in Sec. V, and we can as
tain beforehand~by counting the required powers ofG), that
among all the terms contributing to the 2PN energy th
must be one coming from thesecond-orderperturbation, so-
lution of Eq. ~3.13!. We find that this particular non-linea
term is to be computed only inM ~not in the individual
massesm1 ,m2). It comes from that part ofs (2)—or, more
precisely, of its leading order coefficientX(2) ~when r→
1`)—which does not involve the constantsa1 anda2, i.e.
the part which would be the analogue of the first term ins (1)
as given by Eq.~3.11!. The other parts, proportional toa1 or
a2, appear at the 3PN order at least.

We succeeded in obtaining this non-linear term thanks
the method described by Eq.~3.14!. First, one can check tha
the source term behaves likeS (2)5O(1/r 4), so there is no
08400
t

r-

e

o

direct contribution, computed ‘‘term by term’’ from the ex
pansion of the source term, to the multipole expansion at
orderO(1/r ): i.e. the first term in the right side of Eq.~3.14!
is at leastO(1/r 2). The looked-for non-linear contribution i
therefore given directly by the value of the ‘‘mass mon
pole’’ of s (2) , i.e. the integral appearing in the second te
of Eq. ~3.14! for ,50. So,

s (2)52
1

4pr ER3
d3yS (2)~y!1OS 1

r 2D . ~4.12!

The integral ~4.12! can be computed analytically,12 and
yields the following contribution to the ADM mass:

2X(2)52
1

2pER3
d3yS (2)~y!5

1

128r 12
3

1O~a!,

~4.13!

where the remainderO(a) indicates that the terms propo
tional to a1 or a2 ~in this second-order perturbation}b2),
are not to be considered for the present calculation.
thereby obtainM with sufficient accuracy for controlling the
energy at the 2PN order.13 The result reads

M5
c2

G H 2~a11a2!1
b~a11a2!

24r 12
2

1
b2

r 12
3 F 1

128
1O~a!G1O~b3!J . ~4.14!

The cubic and higher-order perturbationsO(b3) are ne-
glected. See the Appendix for the explicit expansion coe
cients needed in this computation.

C. The black-hole masses

The situation as concerns the two individual massesm1
and m2 is less easy than with the ADM mass because
dispose only of the notion of ‘‘asymptotic finiteness’’ in th
vicinity of the particles, described by the fall-off proper
~4.2!. Nevertheless, we wish to find an appropriate conc
for the black-hole masses. What we shall do is todefine m1
by the same formula as for the ADM massM, but using the
coordinate systemr1

i 5(r1 ,n1) in the limit where r1→
1`. Accordingly we pose

m15
c2

16pG
lim

r1→1`
E dS1

i S ]G i j

]r1
j

2
]G j j

]r1
i D and 1↔2,

~4.15!

12This integral is convergent, thus it is unnecessary to includ
finite-part operationFP ~for notational simplicity we skip the
multipole-expansion symbolM).

13This means, by the way, that the relative accuracy onM itself is
actually 3PN—because of the rest-mass contribution.
2-8
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whereG i j (r1 ,n1) denotes the metric in the coordinatesr1
i ,

with r1 being shown in Eq.~4.6!, and where the outward
surface element readsdS1

i 5dV1r1
2n1

i in the case of a coor
dinate sphere.

BecauseG i j is not asymptotically flat in the usual sens
due to the term withp i j in Eq. ~4.2!, the mass defined by th
previous integral will be typically unbounded~i.e. m1 will in
general tend toward infinity liker1). Therefore, the defini-
tion ~4.15! does nota priori make sense. A possibility would
be to discard the divergent part (}r1) of the mass, and
thereby to consider only the finite part of the integral in E
~4.15!, i.e. the coefficient of the zeroth power ofr1 in the
expansion at infinity. This could represent an appropri
postulate for the mass in a general situation@the finite part
prescription would be similar to theFP present in Eq.
~3.14!#. However such a ‘‘finite part’’ process imposed in
the definition of the mass appears to represent~until more
convincing justification is proposed! a somewhat artificial
and ad hoc recipe.14 Gladly enough, we shall not need t
invoke anyad hocfinite part because we shall prove that
we restrict ourselves to the computation of the binary’s
ergy at the 2PN order, which represents anyway the maxi
order at which our solution is physically relevant, the mas
m1 and m2 needed in this computationare perfectly well
defined.

To computem1 andm2, we must control the expansion o
the metric whenr 1→0 to one order beyond Eqs.~4.3! and
~4.4!. Let us pose

bsi j 5« i j ~n1!1r 1m i j ~n1!1O~r 1
2!, ~4.16a!

C5
z~n1!

r 1
1h~n1!1O~r 1!. ~4.16b!

@The expressions of the coefficients are relagated to E
~A3! and ~A4! in the Appendix.# It is straightforward to de-
rive from this the expression of the metricG i j in the coordi-
nate system (r1 ,n1), taking into account the term;1/r1 in
Eq. ~4.2!:

G i j 5S 114
zh

r1
D @d i j 1p i j #1

z2

r1
k i j 1OS 1

r1
2D , ~4.17!

where k i j 5(dki22n1
kn1

i 12n1
kx i)(d l j 22n1

l n1
j 12n1

l x j )mkl .
Then, by inserting it into Eq.~4.15!, we obtain

m15
c2

G
lim

r1→1`
E dV1

4p F2
1

4
r1p j j 12hz~11n1

i n1
j « i j !

1
1

2
z2n1

i n1
j m i j G . ~4.18!

14The ADM mass, given by the surface term that arises in
Hamiltonian, has been obtained even for space-times that are
asymptotically flat@29#. However, it seems difficult to apply thi
result in the present case, notably because of our lack of knowle
of the lapse function N in the vicinity of the particles~after radial
inversionr 1→r1 of the coordinates!.
08400
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Here,p j j denotes the trace of the quantity~4.8!, and we have
used the facts that n1

i n1
j p i j 5n1

i n1
j « i j and n1

i n1
j k i j

5n1
i n1

j m i j , together with the useful cancellation of the a
gular integral

E dV1

4p
n1

i n1
j « i j ~n1!50, ~4.19!

which can be checked from Eq.~A3a! in the Appendix.
We observe that Eq.~4.18! contains a term proportional to

r1, with p j j as a factor, which can anddoesmake the mass
to become infinite in the limitr1→1` @indeed, see Eq
~A7!#. As suggested above, such an infinite term could
removed by some procedure of taking the finite part~whose
meaning woulda priori be quite unclear!, but we find that
this infinite term is in fact ‘‘negligible’’ for the present pur
pose, becausep j j starts only at non-linear order inb,

p j j 54x jx j14~n1
kx l1n1

kn1
l x jx j !«kl5O~b2!.

~4.20!

@See also the expression~A6!.# Therefore we get, at the lin
earized level, a finite expression for the mass~formally!:

m15
c2

GE dV1

4p F2hz~11n1
i n1

j « i j !1
1

2
z2n1

i n1
j m i j G1O~b2!.

~4.21!

This expression is sufficient to control the 2PN ener
The non-linear correctionsO(b2) are infinite but will not be
needed in this paper. In a sense, they do not belong to
‘‘realm’’ of the present solution, which is limited to the phys
ics at the 2PN approximation: i.e. agreement with the 2
metric in the near-zone, and internal consistency of the
ymptotics up to the 2PN order as regards the energy con
of the solution~see Sec. V!.15 As for the linearized terms in
Eq. ~4.21!, they are dealt with thanks to the explicit resu
~3.11!, and we get

m15
2c2a1

G F11
a2

r 12
1

b

48r 12
2 S 12

25a2

r 12
D1O~b2!G

and 1↔2. ~4.22!

By setting b50 into Eq. ~4.22!, we reproduce the resul
valid in the case of the Brill-Lindquist solution.

V. THE BINARY’S GEOMETROSTATIC ENERGY

With the masses being defined and computed ‘‘geome
cally’’ in Sec. IV, we get the opportunity of an interestin
consistency check of our solution, concerning t
‘‘geometrostatic’’ energy that is associated with tho

e
ot

ge

15Recall that our proposal for binary black-hole initial data is
adopt the conformal metric~2.1! and to deduce the conformal facto
C from it by numericalmethods. The presentanalytic investigation
@including the theoretical definition of the mass~4.15!# is aimed at
verifying the physical soundness of this proposal.
2-9
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masses. Indeed, in Theorem 1 we recovered the 2PN m
in the near zone, therefore we know the coordinate trans
mation dxi5j i between our presently used coordinate s
tem and the harmonic one. The gauge transformation ve
has been obtained in Eq.~2.8!. Therefore it is possible to
control, without ambiguity—because we determined the
ordinate transformation—the binary’s interacting energyE
up to the same 2PN order. If our solution has anything
gent ~physically speaking!, the latter energy should be i
complete agreement with the post-Newtonian result at
2PN order known from Refs.@30–33#.

Theorem 3.The binary’s interacting energy, deduced fro
those masses~4.9! and ~4.15! computed by surface integra
at infinity, i.e.

E

c2
5M2m12m2 , ~5.1!

gives back the energy calculated by standard post-Newto
methods at the 2PN order~after invoking the same coordi
nate transformation as in Theorem 1!.

The ADM mass has been previously obtained in the fo
~4.14!, while the massesm1 and m2 follow from the result
~4.22!. The corresponding energyE reads then

E5
c4

G H 2
4a1a2

r 12
S 12

25b

48r 12
2 D 1

b2

r 12
3 F 1

128
1O~a!G

1O~b3!J . ~5.2!

As we said above, this formula is accurate enough to get
control of the 2PN approximation. We also remarked tha
this order the energy is well defined~i.e. finite!.

Our task is to expand that energy whenc→1`, using the
facts thata1 ,a25O(1/c2) andb5O(1/c4) @actually, we al-
ready applied the post-Newtonian approximation when ar
ing that the remainderO(a) is negligible#. Also, we know
thatb is given by Eq.~3.1a!. We first invert Eq.~4.22!, in an
iterative post-Newtonian way, so as to obtaina1 ,a2 with
relative 2PN accuracy. The result is

a15
Gm1

2c2 F12
Gm2

2r 12c
2

1
G2m2~5m113m2!

12r 12
2 c4

1OS 1

c6D G and 1↔2. ~5.3!

At the 1PN order, we are consistent with the Brill-Lindqu
prediction and with what is given by Eq.~3.4!. But, quite
naturally, we find that Eq.~5.3! differs from the Brill-
Lindquist result at the 2PN order.16

16In the case of the Brill-Lindquist solution we have

a1
BL5

Gm1

2c2 F12
Gm2

2r 12c
2

1
G2m2~m11m2!

4r 12
2 c4

1OS 1

c6D G .
08400
ric
r-
-
or

-

-

e

an

ll
t

-

Substituting Eq.~5.3! back into Eq.~5.2!, we then arrive,
after suitable post-Newtonian expansion, at the expressio
the 2PN energy in terms of the two ‘‘physical’’ individua
masses:

E52
Gm1m2

r 12
1

G2m1m2~m11m2!

2r 12
2 c2

2
G3m1m2~m1

2119m1m21m2
2!

4r 12
3 c4

1OS 1

c6D . ~5.4!

It is composed of the standard Newtonian potential ene
~for static black holes!, augmented by 1PN and 2PN corre
tions. The result, however, is not yet the one we want
prove, because the particles’ separationr 12 corresponds to
our particular coordinate system. If we want to compareE
with the post-Newtonian prediction, we must take into a
count the coordinate transformation~in the ‘‘near zone’’! that
was determined in Theorem 1.

The required link betweenr 12 and the particles’ separatio
R12 in harmonic coordinates is readily obtained with the he
of Eq. ~2.8!, which permits us to compute the shift of th
world lines that is induced by the coordina
transformation.17 We get

r 125R122
G2~m1

21m2
2!

4R12c
4

1OS 1

c6D . ~5.5!

The result we find after replacing Eq.~5.5! into Eq. ~5.4!,
and effecting the post-Newtonian reexpansion@the replace-
ment is to be made only into the Newtonian term of E
~5.4!#, is

E52
Gm1m2

R12
1

G2m1m2~m11m2!

2R12
2 c2

2
G3m1m2~2m1

2119m1m212m2
2!

4R12
3 c4

1OS 1

c6D .

~5.6!

Most satisfactorily, we discover that Eq.~5.6! is in complete
agreement with the prediction for the 2PN energy in h
monic coordinates, calculated in Refs.@30–33#. The expres-
sion we end up with is the same as given by Eq.~B6! in Ref.
@32#—in which, of course, one must set the two particle
velocities to zero.

17We discard an infinite ‘‘self-term’’ when considering th
coordinate-transformation vectorj i(x) at the singular location of
the two particles. Thus, from Eq.~2.8!, which is valida priori only
outside the singularities, we obtain the shift vector

ji~y1!5
G2m2

2

4c4

n12
i

r 12
1OS 1

c6D .

In other words we consider only the finite part ofj i(x) when x
→y1 ~in Hadamard’s sense!.
2-10
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The latter agreement is interesting, but we said that i
quite mandatory if our solution makes sense. Technic
speaking, it necessitated the control of the metric up
second-order perturbation theory on the Brill-Lindqu
background@cf. the crucial contribution of Eq.~4.13! to the
ADM mass#. Furthermore, the result~5.6! can be said to
check the global character of the solution~notably the as-
ymptotics therein!—because the physical masses have b
computed by surface integrals at infinity. Alternatively,
shows the relevance at 2PN order of the definition~4.15! we
adopted for the black-hole individual masses.

Finally, let us comment that Theorem 3 tells us someth
about the physical tenets at the basis of the usual p
Newtonian approximation when it is applied to the descr
tion of black holes. Indeed, the ‘‘post-Newtonian’’ mass
m1 andm2, which parametrize the post-Newtonian iteratio
are introduced as being the coefficients of Dirac delta fu
tions in the Newtonian density of point-like particles@9#.
Now, we have just seen that in fact these post-Newton
masses agree~within the present approach at least, i.e. in t
time-symmetric situation, and up to the 2PN order! with the
‘‘geometrostatic’’ masses which are associated with so
Einstein-Rosen-like bridges. We view this as a confirmat
that the post-Newtonian calculations, which treat forma
the compact objects by means of delta-functi
singularities,18 are appropriate to the description of syste
of black holes~as long as theorbital motion of the black
holes can be considered to be ‘‘slow’’ in the post-Newton
sense, i.e. in the so-called inspiralling phase of black-h
binaries!.
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APPENDIX: RELEVANT EXPANSION FORMULAS

In this appendix we provide the explicit expressions of
various coefficients in the expansion formulas introduced
Sec. IV for the computation of the masses.

For the ADM mass we need the dominant term, wher
→1`, in the generating functionsi j and the solution of the
linear-order perturbation for the conformal factor@see Eqs.
~4.10!#. They are given by

Ai j 5
b

2r 12
n12

^ i n12
j & , ~A1a!

bX(1)5
b

r 12
H 2

1

32F ~n•n12!
22

1

3G1
1

48

a11a2

r 12
J , ~A1b!

18For instance, the calculation of the 3PN equations of motion
compact binaries reported in Ref.@33#.
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where n5x/r and n125(y12y2)/r 12 ~with n•n12 denoting
the ordinary scalar product!. The second-order perturbatio
coefficient was already computed in Eq.~4.13!:

b2X(2)5
b2

r 12
3 F 1

256
1O~a!G . ~A2!

For the massesm1 and m2 we require the expansion
when r 1→0 of si j and the conformal factor to one orde
beyond the dominant term@see Eqs.~4.16!#. For si j we have

« i j 5
b

r 12
2 S n12

^ i n12
j & 2

1

2
n1

^ in12
j & D , ~A3a!

m i j 5
b

r 12
3 Fn12

^ i n12
j & S 2n1•n122

3

4D
1n1

^ in12
j & S 3

4
n1•n121

3

4D2
1

4
n1

^ in1
j &G . ~A3b!

For the conformal factor

z5a1F11
b

r 12
2 S 2

1

2
~n1•n12!

21
5

24
n1•n121

1

6D G1O~b2!,

~A4a!

h511
a2

r 12
1

b

r 12
2 F2

1

24
n1•n121

1

48
1

a1

r 12
S 1

4
~n1•n12!

3

1
5

32
~n1•n12!

22
5

24
n1•n122

5

96D
1

a2

r 12
S 2

1

24
n1•n122

25

48D G1O~b2!. ~A4b!

The quantitiesx i and p i j defined by Eqs.~4.7b! and ~4.8!
read~at linear order inb)

x i5
b

r 12
2 S n1•n122

5

24D @2n12
i 1~n1•n12!n1

i #1O~b2!,

~A5a!

p i j 5
b

r 12
2 S n12

^ i n12
j & 2

1

3
n1

^ in12
j & 2

1

6
~n1•n12!n1

^ in1
j &D1O~b2!.

~A5b!

Note that at linear orderp i j is trace-free. Its trace arises on
at second order inb,

p j j 5
b2

r 12
4 S 2

1

6
n1•n121

5

144D @~n1•n12!
221#1O~b3!.

~A6!

At this order the angular average ofp i j is nonzero,

E dV1

4p
p j j 52

5

216

b2

r 12
4

1O~b3!. ~A7!f
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