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Parametric amplification of metric fluctuations through a bouncing phase

Jérôme Martin* and Patrick Peter†
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We clarify the properties of the behavior of classical cosmological perturbations when the Universe expe-
riences a bounce. This is done in the simplest possible case for which gravity is described by general relativity
and the matter content has a single component, namely, a scalar field in a closed geometry. We show in
particular that the spectrum of scalar perturbations can be affected by the bounce in a way that may depend on
the wave number, even in the large scale limit. This may have important implications for string motivated
models of the early Universe.
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I. INTRODUCTION

Although the idea that the Universe could have expe
enced a bounce in its remote past is old@1,2#, it has recently
come under new scrutiny@3–6# with the advent of string
motivated scenarios of the pre big bang kind@7,8#. The main
reason for this renewed interest is the fact that the m
popular extensions of the standard model of high ene
physics, such as string or M theory, when applied to cosm
ogy, i.e., in a four dimensional time dependent backgrou
can lead to solutions with bouncing scale factors~see, e.g.
Refs.@3,6,7# and references therein!.

A crucial property to decide whether these new mod
can be turned into realistic alternatives to the inflation
paradigm which, so far, has been so successful is the be
ior of cosmological perturbations around these bounc
backgrounds. In particular, an important test is to calcu
the evolution of the power spectrum of primordial fluctu
tions through the bounce in order to see whether it can
made close to scale invariance, i.e. if there is any possibi
given the prebounce era, to get a Harrison-Zel’dovich pow
spectrum.

From a technical point of view, the previous question i
nontrivial problem. Simple models, based on general rela
ity with flat spatial sections@8#, lead to the existence of
curvature singularity at the bounce itself and therefore do
seem to represent viable physical models. In addition, i
difficult to understand how meaningful a perturbati
scheme around a singular solution would be~see however
Ref. @9#!, so we shall assume that the question of the ca
lation of the cosmological perturbations cannot be addres
in this way ~see Ref.@10# for more detailed discussions!. In
fact, it is believed that, in the vicinity of the bounce, strin
corrections become important@7#. Typically, these correc-
tions add to the gravity sector terms such asR2,
RmnrlRmnrl, whereRmnrl is the Riemann tensor andR the
curvature scalar@11#, and higher order terms in the curvatur
The effect of these terms is, except in some specific instan
@9#, to smooth out the singularity@12# ~see also Ref.@7#!; this
is, from a physical point of view, satisfactory and expect
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Unfortunately, one can show that the process of adding
more and more high curvature corrections does not lea
convergence towards a single solution, i.e. this solution
plicitly depends on the choice of the stringy corrections@13#.
This means that, at each order, the bouncing scale fa
looks completely different from the scale factor obtained
the previous order. Nevertheless, at a fixed order in the st
corrections, one can in principle compute how the pertur
tions propagate through the bounce. The main disadvan
of the procedure is that it renders the computation extrem
complicated and only numerical calculations are available
make the problem tractable.

An important point to be noticed is that, as already me
tioned above, most models assume that the spatial sec
are flat all the time whereas, at the bounce, the curva
term is expected to play a crucial role. Therefore, it see
that for a bouncing universe, one cannot just throw away
curvature term because it does not play a significant role a
is the case for an inflationary universe. In fact, in that rega
the situation is the opposite of inflation: during the fin
stages of inflation, one can safely assume flat spatial sect
because the three-curvature is getting more and more n
gible as time passes, whereas even though the curvature
be negligible either in the remote past or in the future of
bounce, it has almost certainly no reason to be so in gen

A way out of the previous difficulties, which would pe
mit to undertake a tractable analytical calculation of t
power spectrum, is the following. Far from the bounce, o
usually considers the situation for which the curvature
small, even though the implementation of this particu
point may not be in itself a trivial task. In this case, one c
consider that, during the contracting and expanding pha
the spatial sections are essentially flat so that the well kno
results stemming from the theory of cosmological pertur
tions can be straightforwardly applied. Then, the main qu
tion becomes the effect of the bounce itself on the p
bounce power spectrum. Technically, this problem can
formulated as follows@14#. Before the bounce, the perturba
tions are characterized by two modes, a dominant~denoted
by D) and a sub-dominant~S! one. Withk representing the
comoving wave number of a given Fourier mode, we wr
the k dependence of these modes asD2(k) and S2(k). In
the same manner, after the bounce, one decomposes the
turbation asD1(k) andS1(k). The effect of the bounce is
©2003 The American Physical Society17-1
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then entirely encoded into the form of the transition mat
T(k) defined by

S D1

S1
D 5S T11 T12

T21 T22
D S D2

S2
D . ~1!

The mode of interest is of course the dominant mode in
expanding phase, D1(k)5T11(k)D2(k)1T12(k)S2(k).
This equation corresponds to a general ‘‘k-mode mixing,’’
i.e. the dominant mode after the bounce is a general lin
combination of the dominant and sub-dominant modes
fore the bounce.1

A priori, various different situations can occur: the dom
nant mode in the contracting phase could acquire a s
invariant spectrum which is not conveyed to the domin
mode in the expanding phase because it turns out thatT11
50 and T12Þ0 ~‘‘ k-mode inversion,’’ the scale invarian
piece is passed to the ‘‘wrong mode’’ in the expandi
phase!; this is for instance what occurs if one applies t
usual Israel junction conditions, known to apply for oth
cosmological transitions, at the bounce point@15#.

Another possibility is that the dominant mode in the co
tracting phase be scale invariant but that this property is
through the bounce due to a nontrivialk dependence of the
coefficient T11. Note that the opposite situation may al
occur, for which the spectrum is initially not scale invaria
but is turned into it because of a nontrivialk dependence o
the transition matrix. In fact, the common view concerni
these last possibilities is that, for scales of astrophysical
terest today, the bounce, lasting a short time, is expecte
have no noticeable effect on those large scales@7#. This is
sometimes argued to come from general arguments suc
‘‘causality,’’ a point which is discussed thoroughly in Re
@16#. For instance, this is a basic assumption in the pertu
tion spectrum calculations in the pre big bang scenario@7#.
Technically, this means that the transfer matrix is assum
not to depend onk @14#. Within this framework, the goa
reduces to finding situations for which a scale invariant sp
trum is produced in the contracting phase, and to ensure
this spectrum is passed to the dominant mode in the exp
ing phase, i.e. to insure that the matching conditions at
bounce do not imply ak-mode inversion.

The present article aims at examining whether the
sumption that the transfer matrix isk-independent is generi
cally valid or not. For this purpose, we need to specify
class of models where bouncing solutions are possible
which allows simple analytical treatment of the perturbatio
through the bounce. We choose general relativity, posi
curvature spatial section~see the remarks above!, and de-
scribe the matter content by a scalar field; a similar strat
was used in Ref.@5#. We do not assume anything relative
what happens away from the bounce, and in particular
could envisage that there the curvature is negligible; n

1We have introduced the notation ‘‘k-mode mixing’’ in order to
emphasize that this mode mixing is valid for a fixed Fourier mo
and should not be confused with the mode mixing coming fr
nonlinearities which involves modes with different wave numbe
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that, as we show below, this implies the existence of a n
phase. Therefore our closed geometry bounce can be vie
as an example of a transition connecting the contrac
phase to the expanding phase with flat spatial sections
already considered in the literature.

This article is organized as follows. In the following se
tion, we set the precise model and derive the basic equat
both for the background and the perturbations. We then
cuss how one can model a bounce in this framework
derive an explicit form for the potential of the scalar part
the classical perturbations~Bardeen potential! whose proper-
ties we then examine in details. This leads us to the m
calculation of this article, namely that of the transfer mat
of Eq. ~1!. We show that this matrix depends onk in a non-
trivial way provided that the null energy condition~NEC! is
very close to being violated at the bounce. This illustrates,
means of a specific example, that the general argument
cording to which the limited but nonvanishing bounce du
tion could not affect the spectrum of long~i.e. longer that the
duration itself! wavelength modes, is incorrect. We conclu
by discussing this result, also showing that in the case un
consideration, the propagation of gravitational waves~tensor
modes! is qualitatively different of that of scalar modes sin
the former are never affected by the bounce.

II. BASIC EQUATIONS

We assume that the background model is given by
Friedmann-Lemaıˆtre-Robertson-Walker~FLRW! universe,
i.e.

ds25a2~h!F2dh21
dr 2

12Kr 2
1r 2~du21sin2udf2!G .

~2!

In this equation, the constant parameterK can always be
rescaled such thatK50,61 and describes the curvature
the spatial sections. The timeh is the conformal time related
to the cosmic time by dt5a(h)dh. The matter is described
by a homogeneous scalar fieldw(h) and the corresponding
energy density and pressure respectively read

r5
w82

2a2
1V~w!, p5

w82

2a2
2V~w!. ~3!

A prime denotes a derivative with respect to conformal tim
The functionV(w) represents the potential of the scalar fie
Einstein equations relate the scale factor to the energy d
sity and pressure of the scalar field according to

3

a2
~H 21K!5kr, ~4!

2
1

a2
~2H81H 21K!5kp, ~5!

where we have definedH[a8/a andk[8p/mPl
2 , mPl being

the Planck mass. The quantityr1p is then given by

e

.

7-2



d
h

rg

en

ion

b
le

e

ap
pr

o

a

e

it

m
th

th

o

i.e

or
e

ove,
c
ely
d
w.

nc-
-
po-

cur-
act

eyl
tees
me

us
the

s

for

For
tity,

PARAMETRIC AMPLIFICATION OF METRIC . . . PHYSICAL REVIEW D 68, 103517 ~2003!
k~r1p!5
2

a2
H 2G5

2

a2
~H 22H81K!5k

w82

a2
. ~6!

From the above equation, we see that the functionG(h) is
defined byG[12H8/H 21K/H 2. It is directly related to
the equation of state parameterv[p/r by the following
relation v5(2G/3)(11K/H 2)2121. The functionG(h)
reduces to a constant for constant equation of state an
zero in the particular case of the de Sitter manifold. At t
bounce, the Hubble parameter vanishes,H50, while H8
.0, and therefore the only way to preserve the null ene
condition r1p>0 is to haveK.0. This is why, in this
article, we restrict ourselves to the caseK.0, i.e. the spatial
sections are 3-spheres. Let us also notice that, being giv
bouncing scale factora(h), it is sufficient to check thatG
>0 at all times in order for the scale factor to be a solut
of the Einstein equations with a single real scalar field.

A universe with closed spatial sections is characterized
two fundamental lengths. The first length is the Hubb
length defined by,

H
[a2/a85a/a[̇H21 ~a dot denoting a

derivative with respect to cosmic timet) and the second on
is the curvature radius,,

C
[a/AuKu. The flat limit is recov-

ered when,
C
@,

H
as revealed by the equationu12Vu

5,
H

2/,
C

2, whereV is the ratio of the total energy densityr to
the critical energy density. When it comes to numerical
plications, let us recall that one can safely assume the
ferred value @17# H05100h km s21 Mpc21 with h
50.7120.03

10.04, leading to a Hubble distance scale now
;3000h21 Mpc ;4.260.2 Gpc. Moreover, with Vnow
51.0260.02, one has a curvature length, namely the sc
factor as measured now@18#, of ordera0*15h21 Gpc ~with
K51), the limit coming from the maximum allowed valu
for Vnow at ones level.

At the perturbed level, and in the presence of dens
perturbations only, the metric takes the following form

ds25a2~h!$2~112f!dh212] iBdhdxi

1@~122c!g i j
(3)12¹i] jE#dxidxj%, ~7!

whereg i j
(3) is the metric of the spatial sections and the sy

bol ¹i denotes the covariant derivative associated with
three-dimensional metric. The eigenfunctionsf n(xi) of the
Laplace-Beltrami operator on the spatial sections satisfy
equation

D f n52n~n12! f n , ~8!

wheren is an integer. Note at this point that it is because
our normalization with a dimensionful scale factora(h), and
hence dimensionless coordinates (h,xi), implying a dimen-
sionless operator itself, that the eigenvalues ofD are dimen-
sionless integer numbers; with a different convention,
with a dimensionless, one would have@D#5L22 and an ex-
tra factor,

C

22 would appear in the right hand side of Eq.~8!.

The modesn50, corresponding to a homogeneous def
mation, andn51, being nothing but a global motion of th
center of the 3-sphere, are pure gauge modes@19#: we will
10351
is
e

y

a

y

-
e-

f

le

y

-
e

e

f

.

-

accordingly consider only values ofn such thatn.1. In fact,
for the relevant cosmological parameters discussed ab
one finds that the values ofn corresponding to characteristi
distance scales of cosmological interest now, nam
1022h21 Mpc&Dcosm&103h21 Mpc, range between 30 an
33106 for the largest possible value of the total density no
For a reasonable value ofVnow;1.01, we find thatn is be-
tween 60 and 63106.

The scalar perturbations are described by the four fu
tions, f, B, c and E and, from them, it is possible to con
struct two gauge-invariant quantities, called the Bardeen
tentials, and defined by@20,21#

F[f1
1

a
@a~B2E8!#8, C[c2

a8

a
~B2E8!. ~9!

For simple form of matter with no anisotropic stress~this is
the case for a scalar field!, we haveF5C. Notice that the
form of the Bardeen potentials is the same whatever the
vature of the spatial sections is. This is related to the f
that, even ifK.0 ~or K,0), the FLRW metric remains
conformally flat and the components of the perturbed W
tensor remain unchanged. Then, Stewart lemma guaran
that the Bardeen potentials are still defined by the sa
equations@22#.

For the matter sector, the scalar field is written asw
1dw(h,xi) wheredw(h,xi) represents the inhomogeneo
fluctuations. These fluctuations can be described by
gauge invariant quantitydw (gi)[dw1w8(B2E8).

The full set of Einstein equations can be written in term
of the gauge invariant quantitiesF anddw (gi) only. Combin-
ing these equations permits to derive a master equation
the Bardeen potential~for w8Þ0) which reads

F912S H2
w9

w8
D F81Fn~n12!12S H82Hw9

w8
22KD GF

50. ~10!

This equation can be cast into a more convenient form.
this purpose, one introduces a new gauge-invariant quan
u, related to the Bardeen potentialF by

F[
k

2
~r1p!1/2u5

A3k

2

H
a2u

u, ~11!

where the functionu is defined by

u[
1

a S r

r1pD 1/2S 12
3K

kra2D 1/2

5
1

a S 3

2G D 1/2

. ~12!

Then, the equation of motion for the quantityu takes the
form

u91Fn~n12!2
u9

u
23K~12c

S

2!Gu50. ~13!

In the above equation, one has
7-3
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c
S

2[
p8

r8
52

1

3 S 112
w9

Hw8
D , ~14!

for the scalar field, when use is made of the Klein-Gord
equation

w912Hw81a2
dV~w!

dw
50. ~15!

The quantitycS of Eq. ~14! can, in some regimes, be inte
preted as the sound velocity. Let us now see how the flat c
is recovered. The termu9/u is of orderH 2, namelyu9/u
;a2/,

H

2. This is a rigorous statement if the scale factor is
power law of the conformal time, which explains the usu
confusion between the potential and the Hubble scale. H
ever, this identification suffers from important exception
particularly relevant in the present context; see the disc
sion in Sec. V C. Then the above equation can be re-wri
as

u91a2F4p2

l2
2

1

,
H

2
2

3

,
C

2
~12c

S

2!Gu.0, ~16!

where we have used that the physical wavelength of a m
is l(h)52pa(h)/An(n12). In the limit ,

C
@,

H
, the last

term of the equation becomes negligible. Then the equa
of motion foru reduces tou91@n(n12)2u9/u#u50 where
now u denotes the function defined previously in Eq.~12!
but without the term proportional toK ~one can also show
that, in the limit considered here, this term becomes ne
gible!. Therefore, we have recovered the standard equa
valid for K50.

Note that in the flat limit for whichK50, the mode num-
ber n(n12) that appears in Eq.~13! appears to be a larg
number, and even more so whenV→1, as is the case in th
usual cosmological calculations based on a period of in
tion for which the approximationk2!1 is often done, per-
mitting an expansion in powers ofk2. This is not inconsis-
tent though, because afterN e-folds of inflation have
happened, in a closed situation for instance, one expecV
21;e22N, with N.55 to set the scales, and hence a gig
tic value for the scale factor normalizationa05H0

21(V
21)21/2. However, one then assumes, rightly, that the u
verse is almost flat, and chooses in general a different
malization for the scale factor, namelya05H0

21, which is
many orders of magnitude below what it ought to be. T
relevant wave numbers, seen as eigenvalues of the Lap
Beltrami operator, then must scale correspondingly, i.e. t
are reduced by the amount

n~n12!→k25n~n12!~V21!, ~17!

which is, indeed, much smaller than unity in any inflationa
scenario.

The equation of motion for the quantityu, Eq. ~13!, has
the traditional form of a parametric oscillator equation, i.e.
a ‘‘time-independent’’ Schro¨dinger equation. However, in th
caseKÞ0, the effective potential cannot be written as t
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second time derivative of some function (u in the flat case!
over the same function because of the presence of the
23K(12c

S

2) in the time-dependent frequency. This has f
consequence that, on ‘‘super-horizon’’ scales where the t
n(n12) is negligible, the solutions are not easily found co
trary to the flat case where they are justu5u and u
5u*dt/u2.

So far, we have discussed the quantityu which is, up to
some background functions, the Bardeen potential. In
framework of cosmological perturbations, there exists
other important variable, usually denotedv, that we now
consider. This quantity is important because its flat c
equivalent naturally appears when one studies cosmolog
perturbations of quantum-mechanical origin. In other wor
this quantity is interesting for setting up physically we
motivated initial conditions whenever the curvature is neg
gible. Its definition reads

v5
2a

A123K
12c

S

2

n~n12!

F dw (gi)1
w8

H F2
Kw8

H 3G
FG .

~18!

For K50, it reduces to the well-known definition. The pre
ence of the factorn(n12) in the definition above sugges
however that this variable, in theKÞ0 case, is not the ca
nonical field that should be quantized to get initial con
tions. This quantity involvesdw (gi) and F. Since they are
related by the perturbed Einstein equations, there is in
only one degree of freedom as expected. The equation
motion for v reads

v91Fn~n12!2
z9

z
23K~12c

S

2!Gv50, ~19!

where the quantityz is defined by

z[
aw8

HA123K
12c

S

2

n~n12!

. ~20!

This equation was obtained previously in Ref.@23#. The
same remark as for theu equation applies: in theKÞ0 the
effective potential is not onlyz9/z ~as in the flat case! but is
corrected by the13K(12c

S

2) term. In addition, the effective
potential now depends on the wave numbern through the
quantityz. This has to be contrasted with the effective pote
tial for u, u9/u, which isn-independent.

Having defined the various quantities needed to study
evolution of cosmological perturbations through a bounc
phase, we now turn to the description of the bounce itse

III. MODELING THE BOUNCE

In this section, we define precisely the behavior of t
scale factor during the bouncing epoch, then discuss its r
tion with the following eras of standard cosmology and d
7-4
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rive the relevant perturbation potentials.

A. The de Sitter–like bounce

Once the background is fixed, the effective potentials
the quantitiesu andv are completely specified. In this se
tion, our aim is therefore to discuss how one can model
scale factor of a bouncing universe. At this point, one sho
notice the differences~and similarities! with inflation. In an
inflationary universe, the behavior of the scale factor
known: essentially, this isa}uhu21, i.e. the de Sitter phase
However, one can also treat slightly more complicated ba
grounds by means of an expansion around this de Sitter
lution. This expansion is characterized by the so-called sl
roll parameters@24#, which are constrained to be small. Th
de Sitter solution also exists in the bounce case@25# and, as
we shall see, it can be used in much the same way. Howe
contrary to the inflation case, there is no fundamental rea
why the background equation of state should be close
vacuum. Despite this fact, one can nevertheless exp
around theK51 de Sitter spacetime and similarly defin
parameters which control the departure from it. Obvious
those parameters are not subject to tight constraints, an
particular are not required to be small.

For K.0, the de Sitter solution@25# corresponds to the
scale factora(t)5a0cosh(vt), which is expressed as a func
tion of the cosmic timet, with v51/a0. More general solu-
tions are obtained by relaxing this last constraint and con
ering a general value forv. These de Sitter–like solution
are the ones we shall be concerned with in what follows:
expansion will be based on these solutions. In terms of c
formal time, one can integrate the relationadh5dt to get

a~h!5a0A11tan2S h

h0
D , ~21!

where the conformal time is bounded within the rang
2p/2,h/h0,p/2 and the conformal time durationh0 is
related to the de Sitter coefficientv throughh05(a0v)21

@the solution~21! is shown in Fig. 1#.
In order to understand the dynamics of this solution, o

needs to obtain the evolution of the scalar field. It can
integrated straightforwardly with the scale factor~21!: from
Eqs.~4! and ~5!, one obtains

w5w01A2Y

k S h1
p

2
h0D , ~22!

where we have setw→w0 as the cosmic timet→2`, i.e. as
h/h0→2p/2, and we also have defined a parameter

Y[12
1

h0
2

~23!

for further convenience. We shall keep this definition later
for more general bounces than the quasi–de Sitter ones

It should be noted that the parameterY, in the case of de
Sitter like expansion~21! is, according to the definition~6!,
YdS5H 2G, which is proportional tor1p. As a result, the
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null energy condition at the bounce can only be satisfi
providedY.0, i.e. if uh0u>1: indeed, one has

lim
h→0

~r1p!52
Y

a0
2

, ~24!

a relation which we shall use in the rest of the paper to de
Y in a solution-independent way. As emphasized before,
caseh051 corresponds to a constant scalar field poten
and to an equation of stater52p and is thus the exac
counterpart of the inflationary de Sitter solution. The sca
field time derivative is now simply obtained as

dw

dt
5

dw

adh
5

1

a0 H 2Y

kF11tan2S h

h0
D GJ

1/2

. ~25!

Both the field and its time derivative are displayed in Fig

FIG. 1. Scale factors as functions of the conformal timeh cor-
responding to the de Sitter–like solution@Eq. ~21!, full line# and its
various levels of approximations stemming from Eq.~30!, namely
up to quadratic~dashed!, quartic ~dotted!, sixth ~dot-dashed! and
eighth power~dot-dot-dashed!. The last two approximations, al
though clearly better from the point of view of the scale factor,
not lead to any new qualitative information as far as the evolut
of the perturbations is concerned.

FIG. 2. Behavior of the scalar field and its coordinate tim
derivative as functions of the conformal timeh ~varying between
2p/2 andp/2 for the overall evolution of the Universe! for the
de Sitter–like solution withh051.01.
7-5
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for a case havingh0Þ1 as functions of the conformal time
It is now a simple matter to derive the corresponding p

tential for the scalar field which solves Einstein equations~4!
and ~5!. It reads

ka0
2V~w!5

H812~H 21K!

~a/a0!2
, ~26!

i.e., with the solution~21! above,

ka0
2V~w!5

3

h0
2

12Y sin2FA2k

h0
Y21/2~w2w0!G , ~27!

and it is displayed in Fig. 3 with a specific choice of initi
conditions for the field. From Figs. 2 and 3, one sees that
universe starts at either a maximum or a minimum of
potential, in both cases with a nonvanishing amount of
netic energy in the scalar fieldw8(2ph0/2)5A2Y/k.

One remarkable property of the above model is that
effective potential for density perturbations remains ve
simple even ifh0Þ1. Indeed, assuming the de Sitter lik
solution ~21! and plugging it into the form~12! yields

udS5
1

a0
A 3

2~h0
221!

sinS h

h0
D , ~28!

which, together withcs
2521/3 @this stems from Eq.~14!

with the solution~21! and the scalar field~22!# leads to

Vu
(dS)542

1

h0
2

, ~29!

or, in other words, the potential for the variableu does not
depend on time for the de Sitter–like solution. Besides,
maximum value achievable by this potential is given for t

FIG. 3. The shape~27! of the potential for the scalar fieldw ~in
units of the Planck massk21/25mPl /A8p) for different values of
the bounce characteristic conformal timeh0. The full lines are re-
spectively forh051.001~above! andh051.01~below!, the dashed
line corresponds toh051.1, and the dotted line is forh051.5. In
the strict de Sitter limith0→1, the potential goes to the consta
value V(w)53/(ka0

2), which explains why theh051.001 seems
almost constant as it oscillates with a very small amplitude aro
its central value@(321/h0

2) in these units#.
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limiting caseh0→1, and it isVu
(dS,max)53: this potential can

only interact with the modesn50 andn51, which we al-
ready mentioned are gauge modes. This was to be expe
since the exact de Sitter solution, in this bouncing situat
as in the more usual inflationary scenario, does not amp
scalar perturbations by any amount. We believe that thi
what happens in Fig. 4 of Ref.@5# in which the Bardeen
potential moden510 is seen to oscillate while passin
through a de Sitter–like bounce, reflecting the nondomi
tion of the potential at this point.

B. General bouncing scale factor

We now assume that the universe experiences a reg
bounce at the timeh50. This means there exists a particul
function a(h) which can always be Taylor expanded in th
vicinity of h50. Since we are interested in understandi
the behavior of the perturbations through the bounce,
because the effective potentials for density perturbations
volve derivatives of the scale factor only up to the four
order, a description of the scale factor up toh4 only is suf-
ficient. We therefore set

a~h!5a0F11
1

2 S h

h0
D 2

1dS h

h0
D 3

1
5

24
~11j!S h

h0
D 4G ,

~30!

which defines the parametersa0, the radius of the universe a
the bounce,h0, the typical conformal time scale of th
bounce,d andj. They control the magnitude of each term
the expansion.

For the scale factor~30! to be a solution of Einstein equa
tions with a scalar field as matter content, the functiona(h)
must be chosen such thath0 is greater than unity, which is
only a necessary condition as discussed below. The par
etersa0 andh0 also provide the tangent de Sitter–like sol
tion ~21!, whereasd and j measure the deviation with re
spect to this de Sitter–like solution. Equation~30! represents
a double expansion, both aroundh50 and around the de
Sitter–like solution discussed in the previous section si
d5j50 exactly corresponds to the smallh expansion of the
scale factor~21!; this explains, among others, the factor 5/
in this equation. The parametersd and j are in a certain
sense similar to the traditional slow-roll parameters. Both
de Sitter form and its approximations are shown in Fig. 1
functions of the conformal time.

We now discuss how the general expansion~30! can be
related to an underlying particle physics model. The sc
factor is entirely specified once the scalar field poten
V(w) and the initial conditions, for instance the values of t
scalar field and its first derivative at the bounce:w0 , w08 ,
have been chosen. This means that there exists a rela
between these last quantities and the parametersa0 , h0 , d
and j characterizing the expansion~30!. We now establish
what this relation is. This can be done easily by solving
Einstein equations~4! and ~5! in the vicinity of the bounce.
In practice, we insert the Taylor expansion of the scalar fie

d

7-6
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w~h!5w01w08h1
1

2
w09h

21O~h3!, ~31!

and of the scale factor, Eq.~30!, in Eqs. ~4! and ~5! and
identify, order by order, the various terms appearing in
resulting expressions. To zeroth order, this gives

a0
25

62kw08
2

2kV~w0!
, h0

25S 12
k

2
w08

2D 21

. ~32!

The last relation can also be re-written as

Y5
k

2
w08

2, ~33!

as expected from Eqs.~6! and ~24!. We see that the magni
tude of the scalar field conformal time gradient at the bou
determines the value of the parameterY. Typically, one ex-
pectsY!1 since the order of magnitude of the scalar fie
and its derivatives should be such thatw08!mPl in order for
the field theory to make sense. If the velocity of the fie
vanishes at the bounce, thenY50.

To first order, the Einstein equations yield

kw08S w091a0
2 dV

dw U
w0

D 50, ~34!

kw08S w092a0
2 dV

dw U
w0

D 1
12d

h0
3

50. ~35!

In the following, we will be mainly interested in the situatio
where the bounce is symmetric, that is, we shall demand
d50. Then, there are two ways of satisfying the Einst
equations. Either the kinetic energy vanishes at the bounc
w08Þ0 but thenw0950 and dV/dwuw0

50. This means tha
the bounce occurs at the minimum of the scalar field pot
tial. This also implies that, in this case, the minimum of t
potential cannot vanish,V(w0)Þ0, see Eq.~32!. If, for in-
stance, the potential is given byV(w)}wn, as is the case fo
instance of the model studied in Ref.@5#, then the only way
to have a symmetric bounce is to satisfy the conditionw08
50 at the bounce and, as a consequence, one necessari
Y50. In the following, we will be mainly interested in th
second situation, i.e.w08Þ0, since we will show that ampli-
tude of the spectrum is controlled by the parameterY. In this
case, going to the next order allows us to determine what
parameterj is. The result reads

j5
1

5~22kw08
2!2kV2~w0! H ~22kw08

2!V0@~62kw08
2!2

16~221kw08
2!kV~w0!#1~62kw08

2!2w08
2

d2V

dw2U
w0

J .

~36!
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Let us notice that this parameter depends on the second o
derivative of the potential at the bounce.

Assuming a symmetric bounce for now on, i.e. settingd
50, some restrictions can be put on the numerical value
j. They stem from the fact that we demanda(h) to be posi-
tive in the range2h0<h<h0 and to describe a bounce, i.e
a8.0 for 0,h,h0. This latter condition turns out to be
more stringent and impliesj.211/5. Moreover, if we fur-
ther require that the scale factor~30! be solution of Einstein
equation sourced by a single scalar field, we see from Eq~6!
that H 2G must be positive. Around the bounce, this is

H 2G.Y2
5

2
j~122Y!S h

h0
D 2

1OF S h

h0
D 4G , ~37!

which will be positive definite in a small but finite neighbo
hood ofh50 providedj,0 in the limit Y→0 we will be
concerned with. Combining both constraints, we arrive a

2
11

5
,j,0. ~38!

The approximation method we discuss later does not allow
consider very small values forj, so that in practice, we sha
use211/5,j&20.1.

We now assume the fiducial expansion~30! for the
bounce through which we want to propagate the pertur
tions. Let us however first examine the connection of t
bounce to the standard cosmological epochs of radiation
matter domination.

C. Connecting the bounce to standard cosmology

In this section, we study how the bounce that we d
scribed previously can be connected to an epoch of the s
dard hot big bang model. In particular, we study the conn
tion with a radiation dominated era. In this case, the sc
factor can be written as

a~h!5arsin~h2h r!, ~39!

wherear andh r are two parameters to be fixed with the he
of the matching conditions. We match this scale factor to
bouncing scale factor given by Eq.~30!, using the junction
conditions, known to be valid even in the curved spatial s
tion case, as derived in Ref.@26#, namely@a#5@a8#50. The
matching is performed ath5h j such thath j!h0 in order for
our quartic approximation of the scale factor to still be mea
ingful. The matching conditions imply that the Hubble p
rameter at the matching time is given by

H~h j!5
x

h0

11
5

6
~11j!x2

11
1

2
x21

5

24
~11j!x4

, ~40!

wherex[h j /h0!1. From the above formula, one sees th
it is not possible to connect the bounce to an epoch where
curvature is negligible, provided the null energy conditio
which demandsh0>1 @see discussion around Eq.~24!#, is
7-7
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FIG. 4. Absolute value of the effective potentialVu(h) for the perturbation variableu(h) for the de Sitter–like case~full line on both
panels!, for which it is constant and for the various approximation levels~from quadratic to eighth power of the scale factor!. The left panel
shows the potential as obtained by using the quadratic~dotted line! and quartic~dashed! expansions of the scale factor only, whereas the ri
panel presents the situation when quartic~dashed!, sixth ~dotted! and eighth~dot-dashed! terms are used. It is clear that the quadra
approximation is qualitatively wrong and cannot be used to describe a de Sitter bounce. The valueh051.01 has been used to derive the
plots.
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still satisfied. As a consequence, this implies thatH(h j) can-
not be large in comparison toK51; in fact, sinceh0.1 and
x!1, H 2 is expected to be negligibly small compared
unity right after the bounce. This means that one necess
connects the bounce to a regime where the curvature is
portant or, in other words, in a region where the sine funct
appearing in the scale factor~39! cannot be approximated b
the first term of the Taylor expansion,a(h).ar(h2h r). The
only way to avoid this conclusion would be to violate th
null energy condition, as already noticed in Ref.@4# and to
have a smallh0 but then it would have been useless to co
sider the caseK51 for modeling the bounce since this wa
done precisely in order to satisfy this condition. Therefo
we conclude that between the bounce and the standard
big bang, another phase must necessary occur whose
effect will be to driveH to sufficiently large values. This is
usually the role played by a phase of inflation.

With the general framework thus clarified, let us turn
the evolution of the scalar gravitational perturbations throu
the bounce by means of evaluating the effective potential
the variableu related with the Bardeen potential through E
~11!. We discuss the potential for the variablev in the dis-
cussion Sec. V A below.

D. The potential Vu„h…

The effective potential for the variableu in the de Sitter–
like solution is, according to Eq.~29!, constant in time. This
is however very specific to this particular solution, as a
displacement away from it immediately leads to a differe
form of the potential. This is illustrated in Fig. 4 whic
shows the relative accuracy of the expansion~30! around the
de Sitter–like solution~21!. It is also clear from the figure
that the expansion~30!, if pushed to sufficiently high order
in h, gives back the correct constant value over a large ra
of conformal times. Let us now turn to the more gene
bounce case of Eq.~30!.

Arbitrary values for the parameterj restricted to the range
of interest discussed above lead to the generic shape i
10351
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-

n

-

,
hot
ain

h
r

.

y
t

ge
l

s-

trated in Fig. 5. The calculation of the effective potential
extremely complicated even with the quartic approximat
of the scale factor. Even if it can be done in full general
since, for a scale factor given by Eq.~30!, the potential
Vu(h) reads

Vu~h![
u9

u
13K~12cS

2!5
P24~h!

Q24~h!
, ~41!

whereP24(h) andQ24(h) are two polynomials of order 24
in practice the calculation is not tractable. However, since
practice we always haveh/h0!1, only the first monomials
are important. One can check that the following approxim
tion

Vu
(app)~h!53

c01c2h2

d01d2h21d4h4
, ~42!

FIG. 5. Absolute value of the potentialVu(h) as a function of
rescaled conformal timeh/h0 for h051.01 as derived using eithe
the assumption that the scale factor behaves as a square roo
a5a0A11(h/h0)2, ~full line! or Eq. ~30! up to quadratic~dotted
line! and quartic order withd50 andj522/5 ~dashed line!. The
quartic approximation is extremely close to the exact solution,
emplifying its accuracy, while the quadratic approximation appe
to be at best qualitatively correct.
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is extremely good, see Fig. 6. In this expression, we h
only kept the first two monomials at the numerator and
first three ones at the denominator. The coefficientsci ’s and
di ’s can be written as

c052h0
2~h0

221!~2210h0
218h0

415j!, ~43!

c2549148h0
6155j150j2218h0

4~615j!

1h0
2~11135j!, ~44!

d0512h0
4~h0

221!2 ~45!

d2512h0
2~h0

221!~2313h0
225j! ~46!

d4521115h0
4~41j!15j~16115j!2h0

2~59195j!.
~47!

Equipped with Eq.~42!, we can now compute the height an
the position of the central peak and of the wings. Let us s
with the central peak. The absolute value ofVu(h) at h50
is given by

V05
3c0

d0
5

2210h0
218h0

415j

2h0
2~h0

221!
. ~48!

The most important property of the above formula is tha
diverges ash0→1. It is shown in Ref.@16# that this property
also holds in the casedÞ0, and is therefore generic, i.e. n
restricted to symmetric bounces. We have seen previo
that the values ofn of astrophysical interest are such thatn
@1. Therefore, a necessary condition for the bounce to
fect the spectrum of the fluctuations is thath0 be close to
one. As already discussed, the physical interpretation is
one must be very close to a violation of the null ener
condition. In this case, it is more convenient to work with t

FIG. 6. The potentialVu(h) @full line, Eq. ~41!# and its approxi-
mation stemming from Eq.~42! Vu

(app)(h) ~dot-dashed line! in full
details with the same parameters as in Fig 5. Also shown is
parabolic approximation that will be used in Sec. IV A~dashed
line!, the various conformal times involved in the calculations in t
text, as well as a pictorial definition of the regions I, II and III us
for the matching of the perturbations also in Sec. IV A. The mo
n(n12) interacts, in this example, only with the central part of t
potential.
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variableY introduced in Eq.~23!. In practice,Y must be a
tiny number in order to get a modification of the spectru
We have seen that this is to be expected sinceY is the square
of the ratio of the scalar field conformal time gradient at t
bounce to the Planck mass. The amplitude ofY controls the
maximum value ofn below which the perturbation mode
will be affected by the bounce. The crucial point is that f
Y!1, large scales, having cosmological and astrophys
relevance, can be modified as they evolve through
bounce.

Assuming for now on thatY!1, it is sufficient to Taylor
expand everything in terms of this parameter to get an ac
rate approximation. ForV0, one gets

V052
5j

2Y
2~325j!1O~Y!. ~49!

Another interesting quantity is the timehz for which Vu

50, see Fig. 6. This time is given byhz
252c0 /c2 which

leads to

hz5A2
Y

5j
1O~Y3/2!. ~50!

The above equations means that, in the limitY→0, the
width of the potential goes to zero while its height increas
unboundedly. Finally, let us describe the wings of the pot
tial. The position of the wings can be derived from the co
dition Vu850 (hÞ0). This gives

hw
2 52

1

c2d4
@c0d46Ac2d4~c2d02c0d2!1c0

2d4
2#, ~51!

and the Taylor expansion inY reads

hw5A2
4Y

5j
1O~Y3/2!. ~52!

One sees thathw.2hz at first order inY. Therefore,hw also
goes to zero whenY tends to zero. The height of the wing
is just given byVu(hw) and can be expressed as

Vw52
5j

6Y
1S 31

5

3
j D1O~Y!. ~53!

The height of the wing also diverges as one approaches
violation of the null energy condition and, at first order inY,
one hasV0 /Vw.3. This concludes the description of th
perturbation potential with which we now examine the fa
of the perturbations themselves.

IV. CALCULATION OF THE TRANSFER MATRIX

The purpose of this section, which is also our main res
is to show that the transfer matrixT of Eq. ~1! may depend
on the wave numbern in a way which we derive. We found
that two completely different and independent methods,
based on a piecewise expansion of the potential and the o
assuming the potential to behave mathematically as a di
bution rather than a simple function in the limitY→0, lead

e

e
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to comparable results, both for the final spectrum itself a
its magnitude. We examine these methods in turn.

A. Method I: Piecewise solution approach

When trying to evaluate the transfer matrix of Eq.~1!
with the potentialVu(h) derived in the previous section, on
immediately faces a difficulty, namely that unfortunate
even with the simple form given by Eq.~42!, the equation of
motion of the variableu is not integrable analytically. How
ever, one can find piecewise solutions. For a mode wh
interacts only with the central peak of the barrier, i.e. wh
is above the wings, the potential is essentially zero foruhu
.hz . This corresponds to regions I and III in Fig. 6. In th
central region, region II in Fig. 6 corresponding touhu
,hz , we model the bounce by a parabola with a minimu
at 2V0 and which vanishes ath56hz . To summarize, our
piecewise potential is given by

Vu~h!5H 0, h,2hz ,

2V0F12S h

hz
D 2G , 2hz,h,hz ,

0, h.hz .

~54!

In each region, the functionu is the sum of two modes an
can be expressed as
ll

rs
t
at

w

10351
d

,

h

ui~n,h!5Ai~n! f i~n,h!1Bi~n!gi~n,h!, i 5I,II,III.
~55!

Before and after the interaction with the barrier, the solut
are plane waves,

f
I,III

~h!5
1

A2k
e2 ikh, g

I,III
~h!5

1

A2k
eikh, ~56!

where we have introduced the quantityk[An(n12) and the
normalization is chosen such as to simplify further calcu
tions ~unit Wronskian!. In region II, one has an even and a
odd mode, i.e.

f
II
~2h!5 f

II
~h!, g

II
~2h!52g

II
~h!. ~57!

For the moment, we do not specify whatf
II
(h) and g

II
(h)

are since we are trying to keep the calculation as genera
possible~for example, we could imagine other parametriz
tion of the potential in the central region for whichf

II
andg

II

would be different!. Our goal is to predict whatA
III

andB
III

are. For this purpose, we matchu and its derivativeu8 at
h56hz . Straightforward calculations lead to
FA
III

B
III

G5
1

2ikW~n!
e2ikhzF 2 f

II
81 ik f

II
2g

II
81 ikg

II

e22ikhz~ f
II
81 ik f

II
! e22ikhz~g

II
81 ikg

II
!
G •F g

II
82 ikg

II
e22ikhz~g

II
81 ikg

II
!

f
II
82 ik f

II
e22ikhz~ f

II
81 ik f

II
!
GFA

I

B
I

G , ~58!
r
,
The
ec-

c-
nd

e

where W(n) is the Wronskian of the functionf
II

and g
II
,

namelyW(n)5 f
II
g

II
82 f

II
8g

II
. In the previous expressions, a

the functions are expressed at the pointh5hz ~we have used
the parity properties of the functionf

II
and g

II
) . The above

matrix is general and is parametrized by only four numbe
f

II
, g

II
, f

II
8 and g

II
8 . Any model permitting to calculate wha

these numbers are allows us to estimate the transfer m
on the bounce given above.

We now use the parabolic model introduced before. If
perform the following change of variable, h

[Ahz /(2AV0)x, then the equation of motion foru in re-
gion II takes the form

d2u

dx2
2S x2

4
1a Du50, ~59!

where the parametera is given by

a52
1

2
hzAV0F11

n~n12!

V0
G . ~60!
:

rix

e

Equation ~59! can be solved exactly in terms of cylinde
parabolic functions@27#. Since the potential is symmetric
the solutions can always be chosen to be even and odd.
explicit expression of the even and odd solutions are resp
tively

f
II
~h!5e2AV0h2/(2hz)

1F1S a

2
1

1

4
;
1

2
;
AV0

hz
h2D , ~61!

g
II
~h!5he2AV0h2/(2hz)

1F1S a

2
1

3

4
;
3

2
;
AV0

hz
h2D , ~62!

where 1F1 is the Kummer confluent hypergeometric fun
tion. As already mentioned previously, these functions a
their derivatives must be evaluated ath5hz and then ex-
panded in the parameterY. The first step is to calculate th
parametera. This gives

a52
1

2A2
1

$26115@25318n~n12!#j%

200A2j2
Y1O~Y2!.

~63!
7-10
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Using this expansion and that ofV0 andhz , one obtains at
first order inY

f
II
~hz!5e21/(2A2)

1F1S 22A2

8
,
1

2
,

1

A2
D 1O~Y1/2!

.0.7981O~Y1/2!, ~64!

g
II
~hz!5

1

A25j
e21/(2A2)

1F1S 62A2

8
,
3

2
,

1

A2
D Y1/2

1O~Y3/2!

.
0.422

A2j
Y1/21O~Y3/2!, ~65!

f
II
8~hz!5

A25j

2
e21/(2A2)F2A2 1F1S 22A2

8
,
1

2
,

1

A2
D

1~A221! 1F1S 102A2

8
,
3

2
,

1

A2
D G 1

Y1/2

1O~Y1/2!, ~66!

.2
0.711A2j

Y1/2
1O~Y1/2!, ~67!

g
II
8~hz!5

1

6
e21/(2A2)F ~623A2! 1F1S 62A2

8
,
3

2
,

1

A2
D

1~3A221! 1F1S 142A2

8
,
5

2
,

1

A2
D G

1O~Y1/2!, ~68!

.0.8781O~Y1/2!. ~69!

The expression for the derivatives can be easily recove
if one uses the following expression giving the derivati
of a Kummer hypergeometric function,1F18(a,b,z)
5(a/b) 1F1(a11,b11,z), where a prime in this contex
means a derivative with respect to the argumentz of the
hypergeometric function.

The next step consists in inserting these relations into
general form of the transfer matrix and then in expanding
resulting expression in the parameterY. The result reads

Tu.20.624iA 2j

n~n12!S 1 1

21 21D 1

Y1/2
. ~70!

Several remarks are in order at this point. First, the form
above applies only for the modes actually interacting w
the potential, namely those havingn(n12)<V0, otherwise,
Tu is obviously the identity. Note also that, in the form
case, the transfer matrix isn-dependent. This means that th
bounce affects the spectrum and therefore disprovesa prio-
ri any general argument stating that the spectrum sho
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propagate through the bounce without being modified@7,14#.
Besides, we see that the amplitude is divergent asY goes to
zero. However, one should remember that we are not in
ested in the spectrum ofu itself but rather in the spectrum o
the Bardeen potentialF. The relation betweenF andu, Eq.
~11!, together with Eq.~24!, leads to the remarkable resu
that the terms inY cancel out exactly and that the resultin
spectrum isY-independent, and thus perfectly finite even
the Y→0 limit. Finally, the j dependence of the overa
amplitude is also predicted by this calculation. As expect
there is no net effect in the limitj→0 at which the bounce is
effectively de Sitter and thus can amplify no amount of p
turbation. In this last case, the calculation leading to Eq.~70!
is not accurate enough and should be done at a higher o
in Y since the leading order vanishes; one should then
that the transition matrix is essentially the identity~de Sitter!
plus some correction vanishing in the limitY→0.

B. Method II: Distributional approach

We show in this section that the previous result can
understood in very simple terms and that the result of
previous section can be reproduced by a back-of-t
envelope calculation. The crucial observation is that
height of the potentialVu diverges asY goes to zero while
its width shrinks to zero. This suggests that there is som
thing like a Diracd-function at play.2 To study this point we
calculate the integral of the potential. One gets

E
2`

1`

@Vu~t!24#dt.E
2h0

1h0
Vu

(app)~t!dt ~71!

5S 25p2j

8Y D 1/2

1O~Y0!. ~72!

Thus the potential can be re-written as

Vu~h!52CYDY~h!, ~73!

where the constantCY is given byCY[@25p2j/(8Y)#1/2

and where the functionDY(h) is a representation of the
Dirac d-function,i.e.

lim
Y→0

DY~h!5d~h!. ~74!

In a certain sense, the potentialVu(h) possesses divergence
‘‘worst’’ than a Dirac d-function. The equation of motion o
the quantityu can now be written as

u91@n~n12!1CYd~h!#u50, ~75!

2Note that even though we sendY→0 in this section, this is
merely a computational artifact allowing an easy calculation of
effect. The true value ofY must be nonvanishing, although tiny, s
the calculation of this section is accurate only for those mo
interacting with the potential. Therefore, the presence of the D
distribution in no way implies the existence of a singular behav
either of the potentialVu(h) or of the modesu(h) themselves as
long asYÞ0.
7-11
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i.e. a well-known equation in the context of quantum m
chanics. The matching conditions are@u#50 and @u8#
52CYu(0), thelast one coming from an integration of th
equation of motion across a thin shell aroundh50. This
reduces to

A
III

1B
III

5A
I
1B

I
, ~76!

A
III

2B
III

5A
I
2B

I
2

CY

iAn~n12!
~A

I
1B

I
!. ~77!

Straightforward algebraic manipulations lead to the follo
ing transfer matrix, under the assumption that the sec
term of the last equation dominates over the first sinceCY

→` asY→0,

Tu52 iA 25p2j

32n~n12!S 1 1

21 21D 1

Y1/2
. ~78!

It is interesting to compare Eq.~70! with Eq. ~78!. The nu-
merical coefficient in the above equation ispA5/(4A2)
.1.242, to be compared with the coefficient 0.624 found
Eq. ~70!. The difference is approximatively a factor 1/2
the amplitude. This difference can be interpreted in the
lowing way. When the matrix transfer is computed using
matching procedure, one uses the parabola formula for
potential and one neglects the wings of the potential. T
area of the central part of the potential is given by

E
2hz

1hz
Vu~t!dt5A2

100j

45Y
5

4A2

3p E
2h0

1h0
Vu

(app)~t!dt.

~79!

We see that there is factor 4A2/(3p) between the area below
the central part and the area below the whole potential
cluding the wings. Since the matching procedure is sensi
to the central part only whereas the calculation of the Di
d-function is sensitive to the whole potential, we therefo
expect a factor 4A2/(3p) between the corresponding tw
amplitudes. We have 4A2/(3p).0.600 and hence we re
cover approximatively the factor 1/2 mentioned above. T
correct amplitude is the one given by the Diracd-function
calculation and is.1.25.

V. DISCUSSION

We now complete the description of the propagation
perturbations through a general relativistic bounce by so
considerations regarding the variablesu andv, the spectrum
of tensor modes and a comparison with other known tra
tions in cosmology.

A. u versusv

An interesting issue, debated at length in the literat
@3–6#, is how the variablesu and v behave as they go
through the bounce. As a first step towards understand
what is the variable that is the most useful, let us constr
the potentials for both, as in Fig. 7. It is clear from this figu
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that the terms appearing in the potential for the variablev,
namely

Vv~h![
z9

z
13K~12cS

2!, ~80!

never compensate each others, as was found to be the
for Vu of Eq. ~41!, so the resulting potential is divergent
some points which, furthermore, depend on the wavelen
index n. This provides a first hint thatv is not the correct
variable to work with, and indicates that as one approac
the bounce, or as the curvature becomes non-negligiblv
ceases to be the good quantum variable~see e.g. Ref.@21#!.

In the present context, it is easy to show thatu andv are
related by the following relation:

v52
1

A123K
12c

S

2

n~n12!

Fu81
~aAG!8

aAG
uG . ~81!

We know from the previous considerations thatu is continu-
ous and thatu8 may have a finite jump ath50 providedY
is small enough. From the above equation, we conclude
the variablev possesses divergences during the boun
These divergences are given by the zeros of the argume
the square root at the denominator of the previous equat
In other words,v diverges when

FIG. 7. Construction of the potentialsVu andVv for the pertur-
bation variablesu andv in the special case of the square root for
for the scale factor as in Fig. 5@or Eq. ~30! with d50 and j5
22/5, the corresponding curves being visually undistinguishab#
with h051.01. According to Eqs.~13! and ~19!, the potentials de-
pend on three possible terms, namelyu9/u, 3K(12cS

2) and z9/z,
respectively plotted as the dashed, dotted, and dot-dashed cu
The potential foru is also shown as the full line. The pole ath
50 in eitheru9/u and 3K(12cS

2) appears with opposite sign but i
otherwise the same, so there is an exact compensation, so tha
full potential is everywhere well-behaved. This is clearly not po
sible for the potentialVv , since there are more poles inz9/z than
there are in 3K(12cS

2), so no compensation can occur at the
points, but also the pole ath50 appear with the same sign; th
potential for the functionv follows z9/z, up to small corrections
and was therefore not plotted here.
7-12
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c
S

2512
n~n12!

3
, ~82!

as found in Fig. 7.
Some remarks are in order at that point. First, an inter

ing feature is thatv50 at the bounce~hence is regular! and
that the divergences occur before and after the bounce
not at the bounce itself even though its potential actua
diverges at this point. This is because the effective velo
of sound diverges at the bounce. Secondly, the time at w
v divergences isn-dependent as can clearly be seen from E
~82!. Thirdly, the physical interpretation of this divergence
subtle. Ifv had the usual interpretation~i.e. the variable that
is canonically quantized!, the divergence would clearly be
problem. Roughly speaking, this would mean explosive p
ticle creations and, as a consequence that there is a b
reaction problem. More seriously, this divergence would
at odd with the fact that the Bardeen potential remains fin
and small. As already discussed below Eq.~18!, there are
reasons to believe that, in the caseK51, the variablev
introduced before is not the variable that appears in the
tion for cosmological perturbations. This last variable sho
remain finite during the bounce.

B. Density perturbations versus gravitational waves

The evolution of the tensorial modes of perturbationsm
[ah, where h is, roughly speaking, the amplitude of th
gravitational wave, stems from the relation@26,28#

m91Fn~n12!2K2
a9

a Gm50, ~83!

i.e. an equation similar to that valid for the scalar modes
with a potential simply given byVh5K1a9/a. Within the
framework of our bouncing solution, this is

Vh511
1

h0
2

11
5

2
~11j!S h

h0
D 2

11
1

2 S h

h0
D 2

1
5

24
~11j!S h

h0
D 4 , ~84!

which can be simply analyzed as follows.
As direct calculation reveals, the potentialVh of Eq. ~84!

has either a single maximum located ath50 if the expan-
sion parameterj<24/5, or a minimum ath50 and two
maxima at the pointshmax given by

hmax
2 5

2

5
h0

2
A5~516j!21

11j
, ~85!

provided26/5<j<24/5. In the latter case, the maximu
value attained by the gravitational wave potential is

Vh
max511

1

h0
2 H 15~11j!

21A5~516j!
, if2

6

5
<j<2

4

5
,

1, otherwise.
~86!
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Sincej,0 andh0.1, this means that the maximum valu
for the potential is less than 22/7.3.14 in all cases of physi-
cal interest. In other words, and since in these units the c
mologically relevant modes are those havingn@1, the po-
tential is dominated at all times during the bounce itself, a
therefore cannot lead to tensor mode production. Ther
therefore a qualitative difference between the tensor and
scalar modes since the latter can be affected by the bou
provided the NEC is almost violated, while the former a
never affected, regardless of the underlying parameter
ues.

C. Comparison with other transitions

In order to make a comparison of our bouncing era
other known transitions, we first consider below the radiat
to matter transition under the hypothesis that this occurs
observation demands, at some timeheq such that the three
space curvature is negligible. In other words, we study t
transition withK50. The scale factor can be given the for

a~h!5aeqFb2
2S h

heq
D 2

12b1S h

heq
D G , ~87!

where b15b25A221 is chosen such thata(h5heq)
5aeq. We have emphasized the two different normalizati
factorsb1 and b2 because they play a different role in th
potentials for eitheru or v. Indeed, the potential forv in this
case is (aAG)9/(aAG), which, for a purely radiation domi-
nated universe~i.e. with b250 and b1Þ0), is identically
vanishing, whereas the potential for u is
@(aAG)21#9/@(aAG)21#, which in the same situation would
be;2/h2. During the transition however, the presence of
amount of matter, however tiny, leads to a nonvanishingb2,
and hence a nonzero diverging term for small conform
times ;b2

2/(2b1heqh): the radiation dominated univers
represents a singular limiting case. This means that both
tentials are large already at small times, deep into the ra
tion era, and the approximationk2!VR-M is accurate both
before and after the transition and for both variables. T
accounts for the fact that the Bardeen potential changes
ing the transition, but only insofar as the amplitude is co
cerned, leaving its spectrum unaltered. This is because
this situation, there is no potential crossing: the modes
always below the barrier. Figure 8 illustrates this fact a
summarizes the situation by showing a sketch of the per
bation potentialVR-M together with the evolution of the
gravitational potential.

Another situation of cosmological interest to compare
bounce with is a phase of quasi-exponential inflation f
lowed by preheating and the subsequent epoch of radia
domination. When only one field is present, the potentials
eitheru or v are essentially undistinguishable and both co
cide numerically with the inverse Hubble sizeH 2, as shown
schematically in Fig. 9. For more than one field, the situat
is qualitatively different and cannot be understood by me
of a simple potential@29#. For a given wave numberk, the
spectrum is frozen when the wavelength hits the poten
which is often phrased, because of the similarity with t
7-13
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Hubble scale, as ‘‘horizon exit’’~see Ref.@15# for a more
detailed discussion of this point, and Ref.@16# in the bounce
context!. As illustrated in Fig. 9, the crucial difference be
tween the two situations, namely preheating and bounce t
sitions, is that in the latter case the potential and the Hub
scale behave in completely different ways whereas they
respond in the former, at least in the region of poten
crossing. Far from the bounce itself, however, the poten
tends toH 2 again, in a fashion similar to what happe
during inflation. We conclude that in the bounce case,
potential is the quantity that matters and the Hubble scal
irrelevant for the calculation of the amplification of pertu
bations. As a consequence, for practical calculatory p
poses, the phrase ‘‘Hubble crossing’’ appears misleading

FIG. 8. The effective potentialVR-M(h) for the perturbation
variablesu(h) or v(h) for the radiation to matter transition, de
rived from the scale factor given by Eq.~87!. This log-log sketch
shows the potential~full line! for either of the variables~they differ
by numerical factors! as well as the exact solution~for k50) for the
Bardeen potential~dashed line! as a function of conformal time.
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this context@16# and the phrase ‘‘potential crossing’’ shou
be used instead.

VI. CONCLUSIONS

In this section, we summarize the main results obtain
above and discuss them in a more general framework.

Assuming general relativity as the theory describi
gravitation during a bouncing stage happening in the ea
universe, letting the matter content be in the form of a sca
field, and restricting attention to the closed spatial sect
case in order to satisfy the null energy condition, we we
able to develop a general formalism by expanding a
bouncing scale factor around theK51 de Sitter–like bounc-
ing solution. This expansion is characterized by two para
etersd and j which, in some sense, are the counterparts
the slow-roll parameters in the usual inflationary mod
@24#. Because this expansion permits a general calculatio
the potential for the primordial scalar gravitational perturb
tions, this allows to fully determine the structure of the
evolution as they propagate across the bounce.

The potentialVu obtained is radically different from the
Hubble scale at the relevant times. This has to be contra
with the inflationary paradigm for whichH 2 and Vu are
almost identical.

An important conclusion of this work is that a bounc
phase, even a short one, can affect large scales of pertu
tions. General arguments aiming at showing the contr
therefore suffer from our counter-example. The bounce its
is part of the mechanism described in the Introduction,
that the transfer matrix we obtained participates to the on
Eq. ~1! through

lim
h0→1

T}T?
,
•k21

•T?
. , ~88!
s

ters

tual power
ial
FIG. 9. Left panel: Effective potentialU and inverse horizon sizeH 2 relative to the scalek2 of the perturbations in inflation models a
functions of the conformal timeh. The inflation phase, in this sketch, is smoothly linked with the radiation dominated epoch~RDE!. The
times at which the effect of the potential is comparable with the scale, i.e.k2;U are seen to be essentially the times at which the scale en
and exits the horizon, i.e.k;H, and are hence labeled ‘‘h.c.,’’ standing for horizon crossing. The primordial power spectrum~PPS! is
understood to be the spectrum that is obtained in the phase for which the modes are frozen and indicated by an arrow. The ac
spectrum, in such a model, also needs to pass the radiation to matter domination transition later on. Right panel: Effective potentVu and
inverse horizon sizeH 2 relative to the scalek2 of the perturbations in the bounce model as functions of the conformal timeh. The difference
with the inflation case is striking.
7-14
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where thek dependence stems from the solution~78! and the
unknown matricesT?

, and T?
. refer to the unknown parts

sketched in Fig. 10. The coefficients one is interested
namely T11 and T12, giving the amplitude of the growing
mode in the expanding phase as functions of the mode
the contracting phase, accordingly can depend onk. In addi-
tion, it is important to notice that, as shown in Ref.@16#, this
mechanism does not violate causality; a similar statem
was also emphasized in Ref.@30#.

Paradoxically, obtaining a spectral modification at t
bounce is possible provided the bounce lasts the mini
amount of conformal time compatible with the NEC pres
vation. Nevertheless, the assumption of no effect can be
tified provided the constrainth021!” 1 is satisfied, or in the
pure de Sitter case havingh051 strictly. This last situation
is what happens in models in which the bounce takes p
for a vanishing value of the scalar field kinetic energy@5#,
whereas the former case implies a kinetic energy density~not
the scalar field itself! for the scalar field comparable to th
Planck scale, which may render the semi-classical fi
theory dubious.

This can be particularly important in view of the strin
motivated potential alternatives to inflation of the pre b
bang kind if it turns out that these models might lead to su
spectral corrections as discussed above. This condition n

FIG. 10. The effective potentialVu(h) for the perturbation vari-
ablesu(h) for our bounce model when one connects this bou
transition to both a previous contracting phase on one side an
the usual radiation dominated phase later on the other side.
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be verified in each particular situation. For instance, in
pre big bang case, one would need to model the bou
occurring in the Einstein frame, in which our formalism
well suited, to see what the behavior ofVu is in this context.
Therefore, and unfortunately, one consequence of the fai
of any general argument preventing any alteration of
spectrum is that one needs to explicitly model a regime
which higher order string corrections are dominant. Avoidi
this was the main interest of the general argument in qu
tion.

We also obtained that the relevant propagation variabl
not v, whose flat space equivalent is commonly used
quantization, i.e. for setting up the initial conditions, b
rather the intermediate variableu, directly related to the
Bardeen potential. This is to be compared with what w
recently obtained in Ref.@6#, based on a completely differen
theory of gravity, in which neither variable happens to
bounded at the bounce.

The spectrum of gravitational wave cannot be affected
propagating through these bounces. This exemplifies the
that there is no fundamental reason according to which sc
and tensor modes should propagate similarly through
bounce.

The picture that emerges for the construction of a co
plete model of the universe is shown in Fig. 10 and cons
in a regime in which quantum field theory in a time
dependent background is well suited, as is the case for
stance in many string motivated scenarios@7,8#; this first
phase allows an easy calculation of a spectrum of pertu
tion that would be sort of pre-primordial. Then, unless t
curvature was always important in this first period, it is fo
lowed by an unknown epoch which connects to the bou
itself, which should also be followed by yet another u
known epoch in order for the curvature to be negligible@16#.
This reveals the most important difference between bounc
scenarios and inflation, namely the need for a high curva
phase, which we have seen may drastically modify the ph
cal predictions.
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