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Parametric amplification of metric fluctuations through a bouncing phase
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We clarify the properties of the behavior of classical cosmological perturbations when the Universe expe-
riences a bounce. This is done in the simplest possible case for which gravity is described by general relativity
and the matter content has a single component, namely, a scalar field in a closed geometry. We show in
particular that the spectrum of scalar perturbations can be affected by the bounce in a way that may depend on
the wave number, even in the large scale limit. This may have important implications for string motivated
models of the early Universe.
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I. INTRODUCTION Unfortunately, one can show that the process of adding up
more and more high curvature corrections does not lead to

Although the idea that the Universe could have experi-convergence towards a single solution, i.e. this solution ex-
enced a bounce in its remote past is [d¢2], it has recently  plicitly depends on the choice of the stringy correctiph3].
come under new scrutinf3—6] with the advent of string This means that, at each order, the bouncing scale factor
motivated scenarios of the pre big bang kj@¢gB]. The main  looks completely different from the scale factor obtained at
reason for this renewed interest is the fact that the moshe previous order. Nevertheless, at a fixed order in the string
popular extensions of the standard model of high energgorrections, one can in principle compute how the perturba-
physics, such as string or M theory, when applied to cosmoltions propagate through the bounce. The main disadvantage
ogy, i.e., in a four dimensional time dependent backgroundopf the procedure is that it renders the computation extremely
can lead to solutions with bouncing scale fact(sse, e.g. complicated and only numerical calculations are available to
Refs.[3,6,7] and references thergin make the problem tractable.

A crucial property to decide whether these new models An important point to be noticed is that, as already men-
can be turned into realistic alternatives to the inflationarytioned above, most models assume that the spatial sections
paradigm which, so far, has been so successful is the behasire flat all the time whereas, at the bounce, the curvature
ior of cosmological perturbations around these bouncingerm is expected to play a crucial role. Therefore, it seems
backgrounds. In particular, an important test is to calculatehat for a bouncing universe, one cannot just throw away the
the evolution of the power spectrum of primordial fluctua- curvature term because it does not play a significant role as it
tions through the bounce in order to see whether it can bés the case for an inflationary universe. In fact, in that regard,
made close to scale invariance, i.e. if there is any possibilitythe situation is the opposite of inflation: during the final
given the prebounce era, to get a Harrison-Zel'dovich powestages of inflation, one can safely assume flat spatial sections
spectrum. because the three-curvature is getting more and more negli-

From a technical point of view, the previous question is agible as time passes, whereas even though the curvature may
nontrivial problem. Simple models, based on general relativbe negligible either in the remote past or in the future of the
ity with flat spatial section$8], lead to the existence of a bounce, it has almost certainly no reason to be so in general.
curvature singularity at the bounce itself and therefore do not A way out of the previous difficulties, which would per-
seem to represent viable physical models. In addition, it ignit to undertake a tractable analytical calculation of the
difficult to understand how meaningful a perturbative power spectrum, is the following. Far from the bounce, one
scheme around a singular solution would (see however usually considers the situation for which the curvature is
Ref.[9]), so we shall assume that the question of the calcusmall, even though the implementation of this particular
lation of the cosmological perturbations cannot be addressgobint may not be in itself a trivial task. In this case, one can
in this way (see Ref[10] for more detailed discussiondn  consider that, during the contracting and expanding phases,
fact, it is believed that, in the vicinity of the bounce, string the spatial sections are essentially flat so that the well known
corrections become importafif]. Typically, these correc- results stemming from the theory of cosmological perturba-
tions add to the gravity sector terms such &2, tions can be straightforwardly applied. Then, the main ques-
R#WRW“, whereR,,,,, is the Riemann tensor arilthe  tion becomes the effect of the bounce itself on the pre-
curvature scaldrll], and higher order terms in the curvature. bounce power spectrum. Technically, this problem can be
The effect of these terms is, except in some specific instancdsrmulated as follow$14]. Before the bounce, the perturba-
[9], to smooth out the singularifyL 2] (see also Ref.7]); this  tions are characterized by two modes, a domindenoted
is, from a physical point of view, satisfactory and expectedby D) and a sub-dominar(S) one. Withk representing the

comoving wave number of a given Fourier mode, we write

the k dependence of these modesixs(k) andS_(k). In
*Electronic address: jmartin@iap.fr the same manner, after the bounce, one decomposes the per-
"Electronic address: peter@iap.fr turbation asD , (k) and S, (k). The effect of the bounce is
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then entirely encoded into the form of the transition matrixthat, as we show below, this implies the existence of a new

T(k) defined by phase. Therefore our closed geometry bounce can be viewed
as an example of a transition connecting the contraction
D, Ty, T\ (D_ phase to the expanding phase with flat spatial sections, as
S, = T,y Tyl | S @ already considered in the literature.

This article is organized as follows. In the following sec-
The mode of interest is of course the dominant mode in th&ion, We set the precise model and derive the basic equations
expanding phase, D (K)=Tyy(k)D_(K) + T1o(K)S_(K). both for the background and the perturbations. We then dis-
This equation corr(’esp+onds tolla ger;ermmo%je mi;(ing »  cuss how one can model a bounce in this framework and

i.e. the dominant mode after the bounce is a general linedierive an explicit form for the potential of the scalar part of

combination of the dominant and sub-dominant modes bet-_he classical perturl_aatiqnjsardgen po_tentiailvvhose proper-
fore the bounca. ties we then examine in details. This leads us to the main

A priori, various different situations can occur: the domi- calculation of this article, namely that of the transfer matrix

nant mode in the contracting phase could acquire a scaf@ Ed: (1). We show that this matrix depends krin a non-
invariant spectrum which is not conveyed to the dominant'Vial way provided that the null energy conditi¢NEC) is
mode in the expanding phase because it turns outThat very close to being violated at the bounce. This illustrates, by
=0 and T1,#0 (“k-mode inversion,” the scale invariant means of a speuflc ‘?X?mp'e’ that the ger_leral argument ac-
piece is passed to the “wrong mode” in the expandingcord'”g to which the limited but nonvanishing bounce dura-
phaseg; this is for instance what occurs if one applies thetlon C.OU"?' not affect the spectrum c_)f Ipr(lge. longer that the
usual Israel junction conditions, known to apply for otherdura.tlon |ts_eI} wgvelength modes, IS mcorrept. We conclude
cosmological transitions, at the bounce pdits] by discussing this result, also showing that in the case under
Another possibility is that the dominant mode in the con-consideration, the propagation of gravitational wattessor
tracting phase be scale invariant but that this property is lo odfe3 Is qualitatively d]!ffferer&t gf trr‘]at gf scalar modes since
through the bounce due to a nontriviablependence of the the former are never affected by the bounce.
coefficient T,;. Note that the opposite situation may also
occur, for which the spectrum is initially not scale invariant Il. BASIC EQUATIONS
but is turned into it because of a nontriviadependence of We assume that the background model is given by a

the transition matrix. In fact, the common view ConcemingFriedmann-LemAane-Robertson-WaIker(FLRW) universe
these last possibilities is that, for scales of astrophysical inl—e '

terest today, the bounce, lasting a short time, is expected t0

have no noticeable effect on those large scfdsThis is

sometimes argued to come from general arguments such as ds?=a?( 7)
“causality,” a point which is discussed thoroughly in Ref.

[16]. For instance, this is a basic assumption in the perturba- v

tion spectrum calculations in the pre big bang scenffio . .
Technically, this means that the transfer matrix is assumqu this equation, the constant param_el@rcan always be
rescaled such thd€=0,=1 and describes the curvature of

not to depend ork [14]. Within this framework, the goal th fal . The timeis th ; i lated
reduces to finding situations for which a scale invariant spec: € spatial sections. 1he timgis the conformal ime refate

trum is produced in the contracting phase, and to ensure thg? thehcosmic time bytd:la(f?)d”' Thedn:ﬁ\tter is descrijped
this spectrum is passed to the dominant mode in the expan y a homogeneous scalar field7) an € corresponding

ing phase, i.e. to insure that the matching conditions at thENErgy density and pressure respectively read

dr?

—dp’+

+r2(de?+sinf0de?) |.

r2

bounce do not imply &-mode inversion. ,2 ,2
The present article aims at examining whether the as p=-——+V(e), p=-=—V(g). 3
sumption that the transfer matrix ksindependent is generi- 2a

cally valid or not. For this purpose, we need to specify a

class of models where bouncing solutions are possible an@l prime denotes a derivative with respect to conformal time.
which allows simple analytical treatment of the perturbationsThe functionV(¢) represents the potential of the scalar field.
through the bounce. We choose general relativity, positivéEinstein equations relate the scale factor to the energy den-
curvature spatial sectiofsee the remarks aboyeand de- sity and pressure of the scalar field according to

scribe the matter content by a scalar field; a similar strategy

was used in Refl5]. We do not assume anything relative to 3 24 )= 4
what happens away from the bounce, and in particular one az( )=«p, )
could envisage that there the curvature is negligible; note
1
- —(2H +H*+K)=x«p, (5)

We have introduced the notatiork‘mode mixing” in order to a
emphasize that this mode mixing is valid for a fixed Fourier mode
and should not be confused with the mode mixing coming fromwhere we have definett=a’/a and x=8x/mp, mp, being
nonlinearities which involves modes with different wave numbers.the Planck mass. The quantipy p is then given by
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2 2 0’2 accordingly consider only values ofsuch than>1. In fact,
k(p+p)= —2H2F= —Z(HZ—H’HC):K—Z. (6) for the relevant cosmological parameters discussed above,
a a a one finds that the values ofcorresponding to characteristic
distance scales of cosmological interest now, namely
10 2h~ ! Mpc=Dpen=10°h"! Mpc, range between 30 and
3% 10° for the largest possible value of the total density now.

From the above equation, we see that the funcii¢m) is
defined byl'=1—"H'/H?+KIH?. It is directly related to

the equation of state parameter=p/p by the following N : ; )
relation w=(2I'/3)(1+K/H?)1—1. The functionT(7) R’é;ﬁ;‘?ﬂ”ﬁ@ié&'“e 6o, 1.01, we find than is be

educes 0 5 consantfo constant equaton of stae 214 X he scalar peruoatons are cescrved by the four fnc
P ) tions, ¢, B, ¢ andE and, from them, it is possible to con-

bounce, the Hubble parameter vanish#s:0, while 74 struct two gauge-invariant quantities, called the Bardeen po-
>0, and therefore the only way to preserve the null energy, wials and defined b§20,21]
condition p+p=0 is to haveK>0. This is why, in this ' ’
article, we restrict ourselves to the case- 0, i.e. the spatial 1 a’
sections are 3-spheres. Let us also notice that, being givena &=¢+—-[a(B—E')]’, ¥=¢y——(B—E'). (9
. L . a a
bouncing scale factoa(#), it is sufficient to check thal’
=0 at all times in order for the scale factor to be a solution

of the Einstein equations with a single real scalar field. the case for a scalar fisldwe haved = Notice that the
A universe with closed spatial sections is characterized by . < Bordeen potentials is the same whatever the cur-

two funda.mental lengths. The_ first length is the .HUbeevature of the spatial sections is. This is related to the fact
length defined by =a’/a’=a/a=H"* (a dot denoting @ that, even ifK>0 (or K<0), the FLRW metric remains
derivative with respect to cosmic tint¢ and the second one conformally flat and the components of the perturbed Weyl
is the curvature radius;, =a/ JIK]. The flat limit is recov-  tensor remain unchanged. Then, Stewart lemma guarantees
ered when(_>¢_ as revealed by the equatiofi—{| that the Bardeen potentials are still defined by the same

—p2/p2 - ; . equationg 22].
€H/€c’ where() is the ratio of the total energy densjijto For the matter sector, the scalar field is written @s

the critical energy density. When it comes to numerical ap-, 5o(7,x) where 8¢(7,x') represents the inhomogeneous
plications, let us recall that one can safely assume the pre,cyations. These fluctuations can be described by the
ferred+0\(/)§lue [17] Ho=100h kms *Mpc ! with gauge invariant quantitge®= ¢+ o' (B—E').

=0.71 003, leading to a Hubble distance scale now of * The fy|l set of Einstein equations can be written in terms
~300th™* Mpc ~4.2+0.2 Gpc.  Moreover, with Qo of the gauge invariant quantitiés and 5¢@ only. Combin-
=1.02£0.02, one has a curvature length, namely the scalgyg these equations permits to derive a master equation for

factor as measured nos8], of orderag=15h"* Gpc(with  the Bardeen potentigfor ¢’ #0) which reads
K=1), the limit coming from the maximum allowed value

For simple form of matter with no anisotropic stre#isis is

for Qo at oneo level. " "
At the perturbed level, and in the presence of density®”+2| H——|®'+|\n(n+2)+2| H'-H— —2K| |P
perturbations only, the metric takes the following form ¢ ¢
ds?=a?(7){—(1+2¢)dn’+24,Bdydx! =0. (10
+[(1—24¢) 7i(j3)+ 2V,9;E]dx'dx'}, (7)  This equation can be cast into a more convenient form. For

this purpose, one introduces a new gauge-invariant quantity,
where 7i(j3) is the metric of the spatial sections and the sym-u, related to the Bardeen potenti&l by
bol Vi denotes the covariant derivative associated with the

three-dimensional metric. The eigenfunctiohgx’) of the K s 3k H
Laplace-Beltrami operator on the spatial sections satisfy the o= §(P+ p)*u= o 2, 11

; a“g
equation

Af,=—n(n+2)f ®) where the functiory is defined by
n n»
1/2

wheren is an integer. Note at this point that it is because of 1 v 1 3K 113 2 17
our normalization with a dimensionful scale fac&fr;), and Talptp Kpa’ Talor/ - (12)

hence dimensionless coordinateg '), implying a dimen-
sionless operator itself, that the eigenvalued adre dimen-  Then, the equation of motion for the quantitytakes the
sionless integer numbers; with a different convention, i.eform
with a dimensionless, one would hajjA]=L"2 and an ex-

tra factor«?;2 would appear in the right hand side of E§).

!

4 —_— e — f— 2 =
The modes1=0, corresponding to a homogeneous defor- u"+ n(n+2) 0 sk(1 Cs) u=0. (13
mation, andn=1, being nothing but a global motion of the
center of the 3-sphere, are pure gauge mgdés we will In the above equation, one has
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p’ 1 o second time derivative of some functios (n the flat casg
cis —=-3 1+2—/, (14 over the same function because of the presence of the term
P He —3/C(1—c§) in the time-dependent frequency. This has for
for the scalar field, when use is made of the Klein-Gordorconsequence that, on “super-horizon” scales where the term
equation n(n+2) is negligible, the solutions are not easily found con-
trary to the flat case where they are just6 and u
, , ,dV(e) = 0fdr/ 6°.
¢"+2He' +a do =0. (19 So far, we have discussed the quantityhich is, up to

some background functions, the Bardeen potential. In the
The quantitycg of Eq. (14) can, in some regimes, be inter- framework of cosmological perturbations, there exists an-
preted as the sound velocity. Let us now see how the flat caggher important variable, usually denoted that we now
is recovered. The tern#”/ ¢ is of order?, namely¢"/6 consider. This quantity is important because its flat case
~a’/¢2. This is a rigorous statement if the scale factor is aequivalent naturally appears when one studies cosmological
power law of the conformal time, which explains the usualPerturbations of quantum-mechanical origin. In other words,
confusion between the potential and the Hubble scale. Hth.hIS_ quantllty' Is Interestlng for setting up physmally well-.
ever, this identification suffers from important exceptions,mOt'Vated |n|_t|f_;1I_ conditions whenever the curvature is negli-
particularly relevant in the present context; see the discugdiPle. Its definition reads
sion in Sec. V C. Then the above equation can be re-written

—a _ qo' IC(,D,
as v= Se@+ - .
1-c? H HET
) 472 1 3 ) 1_3/C—S
u’+a —————(1—cS) u=0, (16) n(n+2)

2 2 2
AN (19)
where we have used that the physical wavelength of a modeor X=0, it reduces to the well-known definition. The pres-
is N(n)=2ma(n)/yn(n+2). In the Iimit€C>€H, the last ence of the facton(n+2) in the definition above suggests
term of the equation becomes negligible. Then the equatioRowever that this variable, in th€+#0 case, is not the ca-
of motion foru reduces ta” +[n(n+2)— #"/#Ju=0 where  nonical field that should be quantized to get initial condi-
now 6 denotes the function defined previously in Eg2)  tions. This quantity involvesse(®) and . Since they are
but without the term proportional t& (one can also show related by the perturbed Einstein equations, there is in fact
that, in the limit considered here, this term becomes neglionly one degree of freedom as expected. The equation of
gible). Therefore, we have recovered the standard equatiofnotion forv reads

valid for £=0. .
Note that in the flat limit for whichiC=0, the mode num- v"+|n(n+2)— =——3K(1-c?)|v=0, (19)
ber n(n+2) that appears in Eq13) appears to be a large z s
number, and even more so wh&n-1, as is the case in the here th itz is defined b
usual cosmological calculations based on a period of inflal/Nere the quantity Is defined by
tion for which the approximatiok®<1 is often done, per- a0’
mitting an expansion in powers &?. This is not inconsis- 7= ¢ _ (20)
tent though, because aftexd e-folds of inflation have / 1—c2
happened, in a closed situation for instance, one exgects H 1_3K_S
—1~e 2N with N>55 to set the scales, and hence a gigan- n(n+2)

tic value for the scale factor normalizatioano=H51(Q ] ] ) ) )
—1)~Y2 However, one then assumes, rightly, that the uni-This equation was obtained previously in Ré23]. The

verse is almost flat, and chooses in general a different nors-?rmet_ rema;k "’tl_s Ifc_)r thﬂt’ eqlljza}/'[/iorz ap_plitehs: :cln tthﬁ:;&d? :he
- _ -1 o effective potential is not only”/z (as in the flat cagebut is
malization for the scale factor, namely=H, -, which is dpb h e ¥ qditi he effect
many orders of magnitude below what it ought to be. Thecorrec.te y the-3(1 Cs) term. In addition, the effective
relevant wave numbers, seen as eigenvalues of the Laplaceotential now depends on the wave numbethrough the
Beltrami operator, then must scale correspondingly, i.e. thegiuantityz This has to be contrasted with the effective poten-

are reduced by the amount tial for u, 0"/0, which is n—independent.
Having defined the various quantities needed to study the
n(n+2)—k?*=n(n+2)(Q—1), 17 evolution of cosmological perturbations through a bouncing

o o _ ) phase, we now turn to the description of the bounce itself.
which is, indeed, much smaller than unity in any inflationary

scenario.

The equation of motion for the quantity Eq. (13), has
the traditional form of a parametric oscillator equation, i.e. of In this section, we define precisely the behavior of the
a “time-independent” Schidinger equation. However, in the scale factor during the bouncing epoch, then discuss its rela-
caseK+#0, the effective potential cannot be written as thetion with the following eras of standard cosmology and de-

IIl. MODELING THE BOUNCE
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rive the relevant perturbation potentials. B A

A. The de Sitter—like bounce \

Once the background is fixed, the effective potentials for \
the quantitiesu andv are completely specified. In this sec-
tion, our aim is therefore to discuss how one can model the
scale factor of a bouncing universe. At this point, one should
notice the differencegand similaritieg with inflation. In an g
inflationary universe, the behavior of the scale factor is 1E
known: essentially, this iax|»| 2, i.e. the de Sitter phase. g
However, one can also treat slightly more complicated back-
grounds by means of an expansion around this de Sitter so- /M6
lution. This expansion is characterized by the so-called slow-
roll parameter§24], which are constrained to be small. The  FIG. 1. Scale factors as functions of the conformal timeor-
de Sitter solution also exists in the bounce @& and, as  responding to the de Sitter—like solutifiq. (21), full line] and its
we shall see, it can be used in much the same way. Howevefarious levels of approximations stemming from E80), namely
contrary to the inflation case, there is no fundamental reasofP 0 quadratiodasheg quartic (dotted, sixth (dot-dashet and
why the background equation of state should be close t§ighth power(dot-dot-dashed The last two approximations, al-
vacuum. Despite this fact, one can nevertheless expantaough clearly better from th_e pglnt of V|_eW of the scale factor, _do
around theK=1 de Sitter spacetime and similarly define not lead to any_new_qualltatlve information as far as the evolution
parameters which control the departure from it. Obviously,Of the perturbations is concerned.
those parameters are not subject to tight constraints, and
particular are not required to be small.

For £>0, the de Sitter solutiofi25] corresponds to the
scale factol(t) = agcoshgt), which is expressed as a func- %
tion of the cosmic time, with w=1/a,. More general solu- lim(p+p)=2—, (24)
tions are obtained by relaxing this last constraint and consid- 7—0 0

ering a general value foi. These de Sitter—like solutions

are the ones we shall be concerned with in what follows: ouf "élation which we shall use in the rest of the paper to define
expansion will be based on these solutions. In terms of conY N @ solution-independent way. As emphasized before, the

an)/a,

KL energy condition at the bounce can only be satisfied
providedY >0, i.e. if | 5o|=1: indeed, one has

formal time, one can integrate the relatiady=dt to get caseny=1 corresponds to a constant s_calar field potential
and to an equation of state=—p and is thus the exact
7 counterpart of the inflationary de Sitter solution. The scalar
a(n)=ag\/1+tarf o (21)  field time derivative is now simply obtained as
1/2
where the conformal time is bounded within the range d_‘P: de :i 2Y (25)
—m/2<nylny<w/2 and the conformal time duration, is d adyp ag 7
related to the de Sitter coefficient through 7= (agw) ~* k| 1+tarf ,]_0 }

[the solution(21) is shown in Fig. 1
In order to understand the dynamics of this solution, oneBoth the field and its time derivative are displayed in Fig. 2

needs to obtain the evolution of the scalar field. It can be

integrated straightforwardly with the scale fact@d): from [ o

Egs.(4) and(5), one obtains 0.8 ——— (26)%($=00) T

(26)"%ag(de/dt)
IO
Y= %o P

where we have set— ¢, as the cosmic time— —o, i.e. as
nl no— — wl2, and we also have defined a parameter

v
n+ Eno). (22 0.6

©
S
L L L A S S B
\
\
\
|

0.2 :
B 1
Y=1- ? (23 0.0k
0 15 -10 -05 00 0.5 1.0 15
for further convenience. We shall keep this definition later on K
for more general bounces than the quasi—de Sitter ones.  FiG. 2. Behavior of the scalar field and its coordinate time
It should be noted that the parame¥y in the case of de  derivative as functions of the conformal timg (varying between
Sitter like expansiori21) is, according to the definitiof6), = — #/2 and #/2 for the overall evolution of the Universdor the

Y 4s="H°I", which is proportional tg+p. As a result, the de Sitter—like solution withy,=1.01.
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3.0

25k - el o]

K ‘102 V(¢)

151 . ' 5

L L L L L
—1.0 —0.5 0.0 0.5 1.0 1.5
(26)"*($—¢,)

—-1.5

FIG. 3. The shap€27) of the potential for the scalar field (in
units of the Planck mass~Y2=mg,/\/87) for different values of
the bounce characteristic conformal timg. The full lines are re-
spectively forn,=1.001(above and n,=1.01(below), the dashed
line corresponds tayo=1.1, and the dotted line is fopy=1.5. In

the strict de Sitter limityy— 1, the potential goes to the constant
value V(go)=3/(;<a§), which explains why thepy=1.001 seems
almost constant as it oscillates with a very small amplitude aroun

its central valud (3— 1/773) in these unitg

for a case havingy# 1 as functions of the conformal time.
It is now a simple matter to derive the corresponding po-

tential for the scalar field which solves Einstein equati@hs
and(5). It reads
H' +2(H?*+K)

, 26
(alag)? 20

KkadV(e)=
i.e., with the solution21) above,

3 V2,
KAV (g)=— +2Y sirf| ——Y " o—gg)|, (27)
70 7o

PHYSICAL REVIEW D68, 103517 (2003

limiting casezo— 1, and it isV{¥S™=3: this potential can
only interact with the modes=0 andn=1, which we al-
ready mentioned are gauge modes. This was to be expected
since the exact de Sitter solution, in this bouncing situation
as in the more usual inflationary scenario, does not amplify
scalar perturbations by any amount. We believe that this is
what happens in Fig. 4 of Ref5] in which the Bardeen
potential moden=10 is seen to oscillate while passing
through a de Sitter—like bounce, reflecting the nondomina-
tion of the potential at this point.

B. General bouncing scale factor

We now assume that the universe experiences a regular
bounce at the timgy=0. This means there exists a particular
function a(#) which can always be Taylor expanded in the
vicinity of »=0. Since we are interested in understanding
the behavior of the perturbations through the bounce, and

(Pecause the effective potentials for density perturbations in-

volve derivatives of the scale factor only up to the fourth
order, a description of the scale factor upsib only is suf-
ficient. We therefore set

2

7 v

7o

1
1+=

a( 7]):30 2

o) gl 2
%)+ﬂ(1+§)% ,

(30)

which defines the parameteaasg, the radius of the universe at
the bounce,7nq, the typical conformal time scale of the
bounce,s and&. They control the magnitude of each term of
the expansion.

For the scale factat30) to be a solution of Einstein equa-
tions with a scalar field as matter content, the functdny)
must be chosen such that is greater than unity, which is

and it is displayed in Fig. 3 with a specific choice of initial Only a necessary condition as discussed below. The param-
conditions for the field. From Figs. 2 and 3, one sees that thétersa, and 77, also provide the tangent de Sitter—like solu-
universe starts at either a maximum or a minimum of thetion (21), whereasé and & measure the deviation with re-
potential, in both cases with a nonvanishing amount of ki-spect to this de Sitter—like solution. Equati(80) represents

netic energy in the scalar field' (— 770/2)=\2Y/«.

a double expansion, both aroung=0 and around the de

One remarkable property of the above model is that théSitter—like solution discussed in the previous section since
effective potential for density perturbations remains veryé=§&=0 exactly corresponds to the smallexpansion of the
simple even ify,#1. Indeed, assuming the de Sitter like scale facto(21); this explains, among others, the factor 5/24

solution(21) and plugging it into the forni12) yields

Nzt
Oas=—\/ > —-sin —|,
a0 ¥V 2(y5—1) 7o

which, together withc2=—1/3 [this stems from Eq(14)
with the solution(21) and the scalar field22)] leads to

(28)

ds)_
Vi®=q- —,
Ul

(29

or, in other words, the potential for the variahledoes not

in this equation. The parametesand ¢ are in a certain
sense similar to the traditional slow-roll parameters. Both the
de Sitter form and its approximations are shown in Fig. 1 as
functions of the conformal time.

We now discuss how the general expansig8f) can be
related to an underlying particle physics model. The scale
factor is entirely specified once the scalar field potential
V(¢) and the initial conditions, for instance the values of the
scalar field and its first derivative at the boungs;, ¢,
have been chosen. This means that there exists a relation
between these last quantities and the parameigrsyy, 6
and ¢ characterizing the expansidB0). We now establish
what this relation is. This can be done easily by solving the

depend on time for the de Sitter—like solution. Besides, thé&Einstein equation$4) and (5) in the vicinity of the bounce.
maximum value achievable by this potential is given for theln practice, we insert the Taylor expansion of the scalar field,
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1 Let us notice that this parameter depends on the second order
@(7)=eot @on+ 5@8772+ O(7n%, (31  derivative of the potential at the bounce.

Assuming a symmetric bounce for now on, i.e. settihg
and of the scale factor, Eq30), in Egs. (4) and (5) and =0, some restrictions can be put on the numerical va[ue of
identify, order by order, the various terms appearing in theé- They stem from the fact that we demaaiy) to be posi-
resulting expressions. To zeroth order, this gives tive in the range- 7o= 7= 70 and to describe a bounce, i.e.

a’'>0 for 0<n<7q. This latter condition turns out to be

6— Kkpy? K
aSzTO), 7732 ( 1- > (320 ther require that the scale fact80) be solution of Einstein
kV(@g equation sourced by a single scalar field, we see from(@&q.

that 7 2I" must be positive. Around the bounce, this is

1)“
70
which will be positive definite in a small but finite neighbor-

as expected from Eq¢6) and (24). We see that the magni- hood of =0 provided¢é<0 in the limit Y —0 we will be

tude of the scalar field conformal time gradient at the bounceoncerned with. Combining both constraints, we arrive at
determines the value of the parameYer Typically, one ex-

pectsY <1 since the order of magnitude of the scalar field _ 1_1< -0 39

and its derivatives should be such thgt<mp, in order for 5 ¢<0. (

the field theory to make sense. If the velocity of the field - .

vanishes at the bounce, than=0. The approximation method we discuss later does not allow to

To first order, the Einstein equations yield consider very small values f@, so that in practice, we shall
use—11/5<é<—-0.1.

)—1 more stringent and implie§>—11/5. Moreover, if we fur-
2
Po

The last relation can also be re-written as
2

+0 , (37

5
T=Y--¢1-2Y (
Y=g, (33 " 2 #1720

7
7o

dv We now assume the fiducial expansi¢B0) for the
Ko <P6+agd— =0, (34 bounce through which we want to propagate the perturba-
?les tions. Let us however first examine the connection of this
bounce to the standard cosmological epochs of radiation and
N Y 128 matter domination.
KQ) QDo_aoﬁ +—=0. (35
%o UN

C. Connecting the bounce to standard cosmology

In the following, we will be mainly interested in the situation !N this section, we study how the bounce that we de-

where the bounce is symmetric, that is, we shall demand th&cribéd previously can be connected to an epoch of the stan-
5=0. Then, there are two ways of satisfying the Einsteindard hot big bang model. In particular, we study the connec-

equations. Either the kinetic energy vanishes at the bounce §Pn with a radiation dominated era. In this case, the scale
¢o#0 but theneg=0 and d//d¢|, =0. This means that factor can be written as

the bounce occurs at the minimum of the scalar field poten- a(n)=asin(n—n,), (39

tial. This also implies that, in this case, the minimum of the

potential cannot vanistW(¢o) #0, see Eq(32). If, for in- wherea, and 7, are two parameters to be fixed with the help
stance, the potential is given ()= ¢", as is the case for of the matching conditions. We match this scale factor to the
instance of the model studied in REE], then the only way bouncing scale factor given by E¢30), using the junction

to have a symmetric bounce is to satisfy the conditigh  conditions, known to be valid even in the curved spatial sec-
=0 at the bounce and, as a consequence, one necessarily @8 case, as derived in R¢R6], namely{a]=[a’]=0. The

Y =0. In the following, we will be mainly interested in the matching is performed ag= »; such thaty;< 7, in order for
second situation, i.epy#0, since we will show that ampli- our guartic approximation of the scale factor to still be mean-
tude of the spectrum is controlled by the paramatein this ~ ingful. The matching conditions imply that the Hubble pa-
case, going to the next order allows us to determine what thEameter at the matching time is given by

parametef is. The result reads

S 2
1+ £ (1+6)X

1 p—
g: 12\2 2 (2_K@62)V0[(6_K§D62)2 H( 771)_ _0 5 ’ (40)
5(2—= k@) “kV(¢o) 1+ =x°+ —(1+&)x*
2 24
d?v _
F6(—24 ko) KV (6= Kko!2)20!2 _ yvherex= nj/_7;0<1. From the above formula, one sees that
( weo ) eVl I+ (87 xee) g0 dep? it is not possible to connect the bounce to an epoch where the
L]

curvature is negligible, provided the null energy condition,
(36) which demandspy,=1 [see discussion around E@4)], is
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FIG. 4. Absolute value of the effective potent\)(#) for the perturbation variabla(#) for the de Sitter—like casgull line on both
panels, for which it is constant and for the various approximation leviitsm quadratic to eighth power of the scale fagtdihe left panel
shows the potential as obtained by using the quadaditted ling and quartiqdashed expansions of the scale factor only, whereas the right
panel presents the situation when quattdasheg, sixth (dotted and eighth(dot-dashefiterms are used. It is clear that the quadratic

approximation is qualitatively wrong and cannot be used to describe a de Sitter bounce. Theggvaluél has been used to derive these
plots.

still satisfied. As a consequence, this implies Mb?]) can- trated in Fig. 5. The calculation of the effective potential is
not be large in comparison #6=1; in fact, sincej,=1 and  €xtremely complicated even with the quartic approximation
x<1, H? is expected to be negligibly small compared to Of the scale factor. Even if it can be done in full generality
unity right after the bounce. This means that one necessaril§ince, for a scale factor given by E(0), the potential
connects the bounce to a regime where the curvature is imfu(7) reads

portant or, in other words, in a region where the sine function
appearing in the scale fact9) cannot be approximated by P2d(7)
the first term of the Taylor expansioa(7)=a,(n— 7,). The Qa24(m)’
only way to avoid this conclusion would be to violate the

null energy condition, as already noticed in Rigf] and to ~ whereP,,(n) andQy(7) are two polynomials of order 24,
have a smally, but then it would have been useless to con-in practice the calculation is not tractable. However, since in
sider the caséC=1 for modeling the bounce since this was practice we always have/ n,<1, only the first monomials

done precisely in order to satisfy this condition. Therefore are important. One can check that the following approxima-
we conclude that between the bounce and the standard h®n

big bang, another phase must necessary occur whose main

effect will be to drive’ to sufficiently large values. This is

usually the role played by a phase of inflation. VERPY ) =3 > T
With the general framework thus clarified, let us turn to dot+dyn"+dan

the evolution of the scalar gravitational perturbations through

/!

V()= +3K(1-cd)=

(41)

C0+ 027]2

(42)

the bounce by means of evaluating the effective potential for 200 -
the variableu related with the Bardeen potential through Eq.
(11). We discuss the potential for the varialklen the dis-

150 :— - Quadratic {
cussion Sec. V A below. [ - - - Quartic

— Exact

Vu(m)l

D. The potential V,(#)

The effective potential for the variablein the de Sitter—
like solution is, according to Ed29), constant in time. This
is however very specific to this particular solution, as any : 1.k
displacement away from it immediately leads to a different -1.0 -05 0.0 0.5
form of the potential. This is illustrated in Fig. 4 which /Mo

ShOW_S the _relative accuracy Qf the expanside) around_ the FIG. 5. Absolute value of the potenti#l,(#») as a function of
de Sitter—like solution21). It is also clear from the figure

) ‘ - ! rescaled conformal time/ , for 7,=1.01 as derived using either
that the expansio(B0), if pushed to sufficiently high orders the assumption that the scale factor behaves as a square root, i.e.,

in 7, gives bac_k the correct constant value over a large rangg— agVI+ (51 7)2, (full line) or Eq.(30) up to quadratidotted
of conformal times. Let us now turn to the more generaliine) and quartic order withs=0 and &= — 2/5 (dashed ling The

bounce case of Eq30). quartic approximation is extremely close to the exact solution, ex-
Arbitrary values for the parametérestricted to the range emplifying its accuracy, while the quadratic approximation appears
of interest discussed above lead to the generic shape illuse be at best qualitatively correct.

1.0
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A ] variableY introduced in Eq(23). In practice,Y must be a
tiny number in order to get a modification of the spectrum.
We have seen that this is to be expected sitide the square
of the ratio of the scalar field conformal time gradient at the
bounce to the Planck mass. The amplitud&ofontrols the
maximum value ofn below which the perturbation modes
will be affected by the bounce. The crucial point is that for
Y <1, large scales, having cosmological and astrophysical
relevance, can be modified as they evolve through the
bounce.
‘ ] Assuming for now on thaY <1, it is sufficient to Taylor
expand everything in terms of this parameter to get an accu-
K rate approximation. Fov,, one gets

V,(n) and V@ (n)

FIG. 6. The potentiaV/,(#) [full line, Eqg. (41)] and its approxi- 5¢
mation stemming from Eq42) V(@) 7) (dot-dashed lingin full Vo=— 2= —(3-58€)+0O(Y). (49
details with the same parameters as in Fig 5. Also shown is the 2Y

parabolic approximation that will be used in Sec. IV(dashed . . Lo . .
line), the various conformal times involved in the calculations in theAnOther interesting quantity is the time, for which V,

text, as well as a pictorial definition of the regions I, Il and Il used =0, see Fig. 6. This time is given byz_ Co/c, which
for the matching of the perturbations also in Sec. IV A. The model€@ds to

n(n+2) interacts, in this example, only with the central part of the N
potential. 7=\ — 5—§+ O(Y37?), (50

is extremely good, see Fig. 6. In this expression, we have . . o
only kept the first two monomials at the numerator and thelhe above equations means that, in the liffit-0, the
first three ones at the denominator. The coefficiersitsand ~ Width of the potential goes to zero while its height increases

di's can be written as unboundedly. Finally, let us describe the wings of the poten-
tial. The position of the wings can be derived from the con-
Co=27n3(m5—1)(2— 1055+ 873 +5¢), (43)  dition V=0 (5#0). This gives

_ 6 2_ 4 1

+ 73(11+ 35¢), (44)
and the Taylor expansion i reads
do=1275( 75— 1) (45) v
=/~ = +0(Y¥). 52
0= 1273( 73— 1)(~ 3+ 377~ 5¢) (46) M= N T g OO 52
dy=—1+ 15778(4+ £)+5£(16+15¢)— mz)(59+ 95¢). One sees thay,, =27, at first order inY . Therefore,n,, also

(47) 9oes to zero whel tends to zero. The height of the wings
is just given byV,(7,) and can be expressed as
Equipped with Eq(42), we can now compute the height and

th.e position of the central peak and of the wings. Let us start V= — ﬁ + ( 34 Eg +O(Y). (53)
with the central peak. The absolute value\gf( ) at =0 6Y 3
is given by _ . .
The height of the wing also diverges as one approaches the
3¢, 2-1072+87i+5¢ violation of the null energy condition and, at first ordefnin
0:_°: 20 5 0 ) (48) one hasV,/V,=3. This concludes the description of the
do 275(m5—1) perturbation potential with which we now examine the fate

) _ _of the perturbations themselves.
The most important property of the above formula is that it

diverges asyo—1. It is shown in Ref[16] that this property
also holds in the casé+ 0, and is therefore generic, i.e. not
restricted to symmetric bounces. We have seen previously The purpose of this section, which is also our main result,
that the values oh of astrophysical interest are such timat is to show that the transfer matrix of Eq. (1) may depend

>1. Therefore, a necessary condition for the bounce to afen the wave numbaenm in a way which we derive. We found
fect the spectrum of the fluctuations is thg§ be close to that two completely different and independent methods, one
one. As already discussed, the physical interpretation is thdtased on a piecewise expansion of the potential and the other
one must be very close to a violation of the null energyassuming the potential to behave mathematically as a distri-
condition. In this case, it is more convenient to work with thebution rather than a simple function in the limit—0, lead

IV. CALCULATION OF THE TRANSFER MATRIX

103517-9
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to comparable results, both for the final spectrum itself and u;(n, )=A,(n)f;(n, ) +B;(n)g;i(n,7), i=LILIII.
its magnitude. We examine these methods in turn. (55

A. Method I: Piecewise solution approach Before and after the interaction with the barrier, the solution

When trying to evaluate the transfer matrix of Eq)  are plane waves,
with the potentiaV(7) derived in the previous section, one

immediately faces a difficulty, namely that unfortunately, 1 _ 1 .
even with the simple form given by E¢42), the equation of f,(m= \/——ef'k”, 9,,(m= \/——e'k”, (56)
motion of the variablel is not integrable analytically. How- ' 2k ' 2k

ever, one can find piecewise solutions. For a mode which

interacts only with the central peak of the barrier, i.e. whichwhere we have introduced the quantisz yn(n+2) and the

is above the wings, the potential is essentially zero|fgr  normalization is chosen such as to simplify further calcula-
> 7,. This corresponds to regions | and Il in Fig. 6. In the tions (unit Wronskian. In region I, one has an even and an
central region, region Il in Fig. 6 corresponding tg| odd mode, i.e.

<7,, we model the bounce by a parabola with a minimum

at —Vo_and which vr_;mis_hes ap=* n,. To summarize, our f(—p)=Ff(n), g(—n)=-g (7). (57)
piecewise potential is given by g . t ”

0, N<" 7z, For the moment, we do not specify whbltlt( n) and g”(n)
n\? are since we are trying to keep the calculation as general as
V(=3 —Vo1- P O 17~1<"7z, (54  possible(for example, we could imagine other parametriza-

tion of the potential in the central region for whitp andgII
would be different Our goal is to predict whah andB

In each region, the function is the sum of two modes and are. For this purpose, we matchand its derivativeu’ at
can be expressed as n=* 7,. Straightforward calculations lead to

0, n>1n,.

o o P —2iKn,( v i
AIII 1 . _fll+|kfll _gll+|kgll gII_Ikgll e I ”(gll+|kgll) AI
=W € - : . , (59
ikW(n) e 2kt +ikf ) e Z7x(g+ikg )| | f/—ikf e ZK7a(f+ikf ) || B

where W(n) is the Wronskian of the functiorﬁII and g, Equation (59) can be solved exactly in terms of cylinder

namelyW(n)=f g’—f’g . In the previous expressions, all Parabolic functiong27]. Since the potential is symmetric,
1= 1= H
the solutions can always be chosen to be even and odd. The

the functions are expressed at the pojat 5, (we have used explicit expression of the even and odd solutions are respec-
the parity properties of the l‘unctiohII and g“). The above P P P

tivel

matrix is general and is parametrized by only four numbers: Y
f”, g, fII and g, - Any model permlt.tlng to calculate what - . 0 11 \/V_o
these numbers are allows us to estimate the transfer matrix  f (7)=e Vo727, F, CRiL 7|, (6D
on the bounce given above. 7z

We now use the parabolic model introduced before. If we
perform the following cha-nge of | vanat?le, 7 0 ()= e Tori2n). . z+§;§;\/v—0772>, 62
= 7,/(2Vo)x, then the equation of motion far in re- y 2 4°2" n,

gion |l takes the form
where ;F; is the Kummer confluent hypergeometric func-
tion. As already mentioned previously, these functions and
u=0, (59)  their derivatives must be evaluated at 7, and then ex-
panded in the paramet&t. The first step is to calculate the
parametetr. This gives

x2+
7t

d’u
dx?

where the parameter is given by

1 {—61+5[—53+8n(n+2)]¢}
- Y Y?).
| 0 - 2 200282 Hons

1

R

nn+2)
Vo

(63
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Using this expansion and that ¥f and 5,, one obtains at

first order inY
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propagate through the bounce without being modifigd4].
Besides, we see that the amplitude is divergenY agpes to
zero. However, one should remember that we are not inter-

1) 2-y2 1 1 2 ested in the spectrum ofitself but rather in the spectrum of
f,(m)=e 1F1 T’E'E +O(Y™) the Bardeen potentiab. The relation betwee® andu, Eq.
(12), together with Eq(24), leads to the remarkable result
=0.798+ O(Y?), (64)  that the terms ifY’ cancel out exactly and that the resulting
spectrum isY -independent, and thus perfectly finite even in
v 6—\/5 3 1 s the Y—0 Ilimit. Finally, the £ dependence of the overall
9,(n)= \/?e ke 8 ,E'E Y amplitude is also predicted by this calculation. As expected,
¢ there is no net effect in the lim§— 0 at which the bounce is
+0O(Y¥?) effectively de Sitter and thus can amplify no amount of per-
turbation. In this last case, the calculation leading to (Z6)
0.422 .., 5 is not accurate enough and should be done at a higher order
==Y+ 0(Y??), (65 in Y since the leading order vanishes; one should then find
that the transition matrix is essentially the idenfite Sittej
I m rrection vanishing in the limit—0.
, _\/_—5571/(2@ 221 1 plus some correction vanishing in the limit—0
f”(ﬂz)_ 2 € ! _\/ElFl 3 151_ o .
\/E B. Method II: Distributional approach
10_\/5 3 1 1 We show in this section that the previous result can be
+(\/§—1)1F1< 5= | understood in very simple terms and that the result of the
8 2"\2) |yt previous section can be reproduced by a back-of-the-
+O(Y1?) 66) enyelope calculatio_n. Thg crucial observation is tha_t the
' height of the potential/,, diverges asy goes to zero while
0.71—F its width shrinks to zero. This suggests that there is some-
_ +O(YY?), (67) thing like a Diracs-function at play: To study this point we
Y12 calculate the integral of the potential. One gets
1 . 6-2 3 1 *w ~aide= [P\ taeR)
g (7= 2o U2 (6_3@1&( sf’i'ﬁ) f_m[vu(r) 4]dr= f_no V@Y 1) dr (71)
_ _5772§ 1/2 o

+0O(YY?), (69)
=0.878+ O(Y?). (69)

Thus the potential can be re-written as

Vu(n)=—=CyAy(n), (73
where the constar€y is given by Cy=[ —572£/(8Y)]*?

The expression for the derivatives can be easily recovereg,q \vhere the functiom\y(7) is a representation of the
if one uses the following expression giving the derivative yio s.function.i.e

of a Kummer hypergeometric function,;F;(«,/,2)
=(alB) 1F1(a+1,8+12), where a prime in this context
means a derivative with respect to the argumerdf the

hypergeometric function.

lim Ay (%)= d(n). (74
Y—0

The next step consists in inserting these relations into thé & cértain sense, the potentig|(») possesses divergences

general form of the transfer matrix and then in expanding theWorst” than a Dirac 5-function. The equation of motion of
resulting expression in the parame¥r The result reads e quantityu can now be written as

4 [ —¢& 1 1)1
T,=—0.62 —
v=-06 n(n+2)
°Note that even though we seid—0 in this section, this is

-1 -1 Y1/2 :
Several remarks are in order at this point. First, the formulgere|y 4 computational artifact allowing an easy calculation of the

above applies only for the modes actually interacting witheffect. The true value of must be nonvanishing, although tiny, so

the potential, namely those havingn+2)<V,, otherwise, the calculation of this section is accurate only for those modes
T, is obviously the identity. Note also that, in the former interacting with the potential. Therefore, the presence of the Dirac
case, the transfer matrix isdependent. This means that the distribution in no way implies the existence of a singular behavior

bounce affects the spectrum and therefore dispravpgo-  either of the potentiaV/,(7) or of the modesi(7) themselves as
ri any general argument stating that the spectrum shoulbng asY #0.

u"+[n(n+2)+Cyd(n)Ju=0, (75
(70)
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i.e. a well-known equation in the context of quantum me- 200 F . I P E
chanics. The matching conditions afel]=0 and [u’] g ‘ P 1
= —Cyu(0), thelast one coming from an integration of the
equation of motion across a thin shell aroune-0. This
reduces to

AIII + BIII =A|+ BI, (76)
~100 ¢
A -B =A-B Cv (A+B) (77) :
n Il I b /n(n+2) I 1”7 72005
. ) ) . -1.0 ~0.5 0.0 0.5 1.0
Straightforward algebraic manipulations lead to the follow- /%
ing transfer matrix, under the assumption that the second _ _
term of the last equation dominates over the first siige FIG. 7. Construction of the potential§, andV, for the pertur-
o asY—0, bation variabless andv in the special case of the square root form
for the scale factor as in Fig. for Eq. (30) with §=0 and é=
_57725 1 1 1 —2/5, the corresponding curves being visually undistinguisfable
To=—i\/s07—= )— (78 with 7,=1.01. According to Eqs(13) and(19), the potentials de-
3n(n+2)\ -1 —1/y? pend on three possible terms, nameéli 6, 3K(1—c2) andZz'/z,

o ) . respectively plotted as the dashed, dotted, and dot-dashed curves.
It is interesting to compare E70) with Eq. (78). The nuU-  The potential foru is also shown as the full line. The pole at
merical coefficient in the above equation i6/5/(4v2) =0 in eitheré”/6 and 3C(1—c2) appears with opposite sign but is
=1.242, to be compared with the coefficient 0.624 found inotherwise the same, so there is an exact compensation, so that the
Eq. (70). The difference is approximatively a factor 1/2 in full potential is everywhere well-behaved. This is clearly not pos-
the amplitude. This difference can be interpreted in the folsible for the potentiaV,, since there are more poles ifVz than
lowing way. When the matrix transfer is computed using thethere are in &(1-c2), so no compensation can occur at these
matching procedure, one uses the parabola formula for theoints, but also the pole ay=0 appear with the same sign; the
potential and one neglects the wings of the potential. Thepotential for the functiorv follows z"/z, up to small corrections

area of the central part of the potential is given by and was therefore not plotted here.
7 10 4.2 (+7 P . .
ZVU(T)dT: | 052 V2 ov(app)( dr. that the terms appearing in the potential for the variahle
- 45Y 37 ), ¢ namely
(79 ”
_ _ A2
We see that there is factor2/(3) between the area below Vo(m)= z +3K(1-cy), (80)

the central part and the area below the whole potential in-

cluding the wings. Since the matching proce(_:iure is Sensitivg oy ar compensate each others, as was found to be the case
to the central part only whereas the calculation of the Dirag,, V, of Eq. (41), so the resulting potential is divergent at
o-function is sensitive to the whole potential, we thereforeg, . points which, furthermore, depend on the wavelength
expect a factor 42/(3m) between the corresponding tWo jyqex n, This provides a first hint that is not the correct
amplitudes. We have ¥2/(3m)=0.600 and hence we re- yariable to work with, and indicates that as one approaches
correct amplitude is the one given by the Diradunction  ceases to be the good quantum variglstee e.g. Refi21]).
calculation and is=1.25. In the present context, it is easy to show thaindv are

related by the following relation:
V. DISCUSSION

We now complete the description of the propagation of 1 (a\/F)’
perturbations through a general relativistic bounce by some v=- > u'+ \/—
considerations regarding the variableandv, the spectrum / 1- Cs avl
of tensor modes and a comparison with other known transi- “Mn(n+2)

tions in cosmology.

ul. (81

We know from the previous considerations thids continu-
ous and thati” may have a finite jump ay=0 providedY

An interesting issue, debated at length in the literaturas small enough. From the above equation, we conclude that
[3-6], is how the variablesu and v behave as they go the variablev possesses divergences during the bounce.
through the bounce. As a first step towards understandinghese divergences are given by the zeros of the argument of
what is the variable that is the most useful, let us constructhe square root at the denominator of the previous equation.
the potentials for both, as in Fig. 7. It is clear from this figuren other wordsp diverges when

A. U versusv
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n(n+2)
s - 3

2 (82

as found in Fig. 7.
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Sinceé<0 and n,>1, this means that the maximum value
for the potential is less than 22£B.14 in all cases of physi-
cal interest. In other words, and since in these units the cos-
mologically relevant modes are those havimg 1, the po-

Some remarks are in order at that point. First, an interestential is dominated at all times during the bounce itself, and

ing feature is that =0 at the bouncéhence is regularand

therefore cannot lead to tensor mode production. There is

that the divergences occur before and after the bounce bifierefore a qualitative difference between the tensor and the
not at the bounce itself even though its potential actuallyscalar modes since the latter can be affected by the bounce
diverges at this point. This is because the effective velocityrovided the NEC is almost violated, while the former are
of sound diverges at the bounce. Secondly, the time at whichever affected, regardless of the underlying parameter val-
v divergences is-dependent as can clearly be seen from EqUES.

(82). Thirdly, the physical interpretation of this divergence is

subtle. Ifv had the usual interpretatidne. the variable that
is canonically quantizedthe divergence would clearly be a

problem. Roughly speaking, this would mean explosive par-
ticle creations and, as a consequence that there is a ba
reaction problem. More seriously, this divergence would be
at odd with the fact that the Bardeen potential remains finit

and small. As already discussed below E4g8), there are
reasons to believe that, in the cake=1, the variablev

introduced before is not the variable that appears in the ac-
tion for cosmological perturbations. This last variable should

remain finite during the bounce.

B. Density perturbations versus gravitational waves

The evolution of the tensorial modes of perturbations

=ah, whereh is, roughly speaking, the amplitude of the

gravitational wave, stems from the relatif26,28§|

a//
nn+2)—K— E}“:O'

M+ (83

i.e. an equation similar to that valid for the scalar modes bu

with a potential simply given by,=K+a"/a. Within the
framework of our bouncing solution, this is

5 7\2
L+3(148)| o
0
Vh=1+? 7 > 5 7 7 (84)
014+ -|—| +=(1+ —)
2170 T2\,

which can be simply analyzed as follows.

As direct calculation reveals, the potentig| of Eq. (84)
has either a single maximum located st 0 if the expan-
sion parameteé<—4/5, or a minimum aty=0 and two
maxima at the pointg., given by

, 2 ,\5(56+68-1

nmang UN) 1+¢ ) (89

provided —6/5< £< —4/5. In the latter case, the maximum
value attained by the gravitational wave potential is

151+¢) ) 4

1 —_— f==é{=—-—,

VAL 2+ \/5(54—65) 5 5
h 2
7o

1, otherwise.

(86)

C. Comparison with other transitions

In order to make a comparison of our bouncing era to

C(%ther known transitions, we first consider below the radiation

to matter transition under the hypothesis that this occurs, as

eobservation demands, at some timg, such that the three-

space curvature is negligible. In other words, we study this
transition with<C=0. The scale factor can be given the form

=l

where b;=b,=2-1 is chosen such that(n= 7.
=a,q. We have emphasized the two different normalization
factorsb,; andb, because they play a different role in the
potentials for eithet or v. Indeed, the potential far in this
case is &yT')"/(ayT), which, for a purely radiation domi-
nated universdi.e. with b,=0 andb,#0), is identically
vanishing, = whereas the potential foru is
[(ayT) 11"/[(ayT) "], which in the same situation would
pe~2/n2. During the transition however, the presence of an
amount of matter, however tiny, leads to a nonvanisligg

and hence a nonzero diverging term for small conformal
times ~b§/(2b1neqn): the radiation dominated universe
represents a singular limiting case. This means that both po-
tentials are large already at small times, deep into the radia-
tion era, and the approximatickf<Vg_, is accurate both
before and after the transition and for both variables. This
accounts for the fact that the Bardeen potential changes dur-
ing the transition, but only insofar as the amplitude is con-
cerned, leaving its spectrum unaltered. This is because, in
this situation, there is no potential crossing: the modes are
always below the barrier. Figure 8 illustrates this fact and
summarizes the situation by showing a sketch of the pertur-
bation potentialVg,, together with the evolution of the
gravitational potential.

Another situation of cosmological interest to compare the
bounce with is a phase of quasi-exponential inflation fol-
lowed by preheating and the subsequent epoch of radiation
domination. When only one field is present, the potentials for
eitheru or v are essentially undistinguishable and both coin-
cide numerically with the inverse Hubble si#?, as shown
schematically in Fig. 9. For more than one field, the situation
is qualitatively different and cannot be understood by means
of a simple potential29]. For a given wave numbedy, the
spectrum is frozen when the wavelength hits the potential,
which is often phrased, because of the similarity with the

2

7 +2by

a( n)=ae{ b§<7]—

eq

(87)

103517-13



J. MARTIN AND P. PETER PHYSICAL REVIEW D68, 103517 (2003

T T this contex{16] and the phrase “potential crossing” should
be used instead.

VI. CONCLUSIONS

In this section, we summarize the main results obtained
above and discuss them in a more general framework.

Assuming general relativity as the theory describing
gravitation during a bouncing stage happening in the early
universe, letting the matter content be in the form of a scalar
field, and restricting attention to the closed spatial section
case in order to satisfy the null energy condition, we were
able to develop a general formalism by expanding any
n bouncing scale factor around tie=1 de Sitter—like bounc-
ing solution. This expansion is characterized by two param-
etersé and ¢ which, in some sense, are the counterparts of
the slow-roll parameters in the usual inflationary models
[24]. Because this expansion permits a general calculation of
the potential for the primordial scalar gravitational perturba-
tions, this allows to fully determine the structure of their
evolution as they propagate across the bounce.
. . The potentialV, obtained is radically different from the
Hubble scale, as “horizon exit{see Ref[15] for a more  Hypple scale at the relevant times. This has to be contrasted

contexy. As illustrated in Fig. 9, the crucial difference be- 5imost identical.

tween the two situations, namely preheating and bounce tran- ap important conclusion of this work is that a bounce
sitions, is that in the latter case the potential and the Hubblghase, even a short one, can affect large scales of perturba-
scale behave in completely different ways whereas they cokigns. General arguments aiming at showing the contrary
respond in the former, at least in the region of potentiaknerefore suffer from our counter-example. The bounce itself
crossing. Far from the bounce itself, however, the potentials part of the mechanism described in the Introduction, so

tends to#? again, in a fashion similar to what happens that the transfer matrix we obtained participates to the one of
during inflation. We conclude that in the bounce case, theg=q. (1) through

potential is the quantity that matters and the Hubble scale is
irrelevant for the calculation of the amplification of pertur-

Ven(n)

FIG. 8. The effective potentia/g.(7) for the perturbation
variablesu(#) or v(#) for the radiation to matter transition, de-
rived from the scale factor given by E(B7). This log-log sketch
shows the potentidfull line) for either of the variable&hey differ
by numerical factonsas well as the exact solutigfor k=0) for the
Bardeen potentialdashed lingas a function of conformal time.

bations. As a consequence, for practical calculatory pur- lim TT5 k™1 T5, (89
poses, the phrase “Hubble crossing” appears misleading in m0—1
L e
e 3R
F—— Um)

U(n), #° and k*

E initial |
£ conditions

V,(m), ¥ and k*

E Inflation Era R.D.E.

FIG. 9. Left panel: Effective potential and inverse horizon siz& ? relative to the scal&? of the perturbations in inflation models as
functions of the conformal timeg. The inflation phase, in this sketch, is smoothly linked with the radiation dominated éR@df). The
times at which the effect of the potential is comparable with the scalé?-eU are seen to be essentially the times at which the scale enters
and exits the horizon, i.&k~H, and are hence labeled “h.c.,” standing for horizon crossing. The primordial power spe@m®Rg is
understood to be the spectrum that is obtained in the phase for which the modes are frozen and indicated by an arrow. The actual power
spectrum, in such a model, also needs to pass the radiation to matter domination transition later on. Right panel: Effectivd/pateatial
inverse horizon sizét 2 relative to the scalk? of the perturbations in the bounce model as functions of the conformabjiriiéae difference
with the inflation case is striking.
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be verified in each particular situation. For instance, in the
pre big bang case, one would need to model the bounce
occurring in the Einstein frame, in which our formalism is
well suited, to see what the behavior\gf is in this context.
Therefore, and unfortunately, one consequence of the failure
of any general argument preventing any alteration of the
spectrum is that one needs to explicitly model a regime in
which higher order string corrections are dominant. Avoiding
this was the main interest of the general argument in ques-
tion.

We also obtained that the relevant propagation variable is
L not v, whose flat space equivalent is commonly used for
_— \ﬁ‘h - guantization, i.e. for setting up the initial conditions, but

. rather the intermediate variable directly related to the
Bardeen potential. This is to be compared with what was

FIG. 10. The effective potentiad,(#) for the perturbation vari- recently obtained in Ref6], based on a completely different
ablesu(#) for our bounce model when one connects this bouncetheory of gravity, in which neither variable happens to be
transition to both a previous contracting phase on one side and toounded at the bounce.
the usual radiation dominated phase later on the other side. The spectrum of gravitational wave cannot be affected by

propagating through these bounces. This exemplifies the fact
where thek dependence stems from the soluti@®) and the  that there is no fundamental reason according to which scalar
unknown matricesT;, and T, refer to the unknown parts and tensor modes should propagate similarly through a
sketched in Fig. 10. The coefficients one is interested inbounce. _
namely T;; and T;,, giving the amplitude of the growing The picture that emerges for the construction of a com-
mode in the expanding phase as functions of the modes iRléte model of the universe is shown in Fig. 10 and consists
the contracting phase, accordingly can depend.dn addi- i @ regime in which quantum field theory in a time-
tion, it is important to notice that, as shown in Rigf6], this ~ dependent background is well suited, as is the case for in-
mechanism does not violate causality; a similar statemeritance in many string motivated scenar(asg]; this first
was also emphasized in R¢80]. phase allows an easy calculation of a spectrum of perturba-

Paradoxically, obtaining a spectral modification at thetion that would be sort of pre-primordial. Then, unless the
bounce is possible provided the bounce lasts the minimgfurvature was always important in this first period, it is fol-
amount of conformal time compatible with the NEC preser-lowed by an unknown epoch which connects to the bounce
vation. Nevertheless, the assumption of no effect can be judtself, which should also be followed by yet another un-
tified provided the constrain,— 1#1 is satisfied, or in the known epoch in order for the curvature to be negligi6].
pure de Sitter case having,=1 strictly. This last situation This reveals the most important difference between bouncing
is what happens in models in which the bounce takes plac&cenarios and inflation, namely the need for a high curvature
for a vanishing value of the scalar field kinetic enefgy, ~ Phase, which we have seen may drastically modify the physi-
whereas the former case implies a kinetic energy densyy @l predictions.
the scalar field itselffor the scalar field comparable to the
Planck scgle, which may render the semi-classical field ACKNOWLEDGMENTS
theory dubious.
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