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ABSTRACT
We present the first optimal power spectrum estimation and three-dimensional deprojections for
the dark and luminous matter and their cross-correlations. The results are obtained using a new
optimal fast estimator, deprojected using minimum variance and Singular Value Decomposition
(SVD) techniques. We show the resulting 3D power spectra for dark matter and galaxies, and
their covariance for the VIRMOS-DESCART weak lensing shear and galaxy data. The survey
is most sensitive to non-linear scales kNL ∼ 1 h Mpc−1. On these scales, our 3D power spectrum
of dark matter is in good agreement with the RCS 3D power spectrum found by Tegmark &
Zaldarriaga. Our galaxy power is similar to that found by the 2MASS survey, and larger than
that of SDSS, APM and RCS, consistent with the expected difference in galaxy population.

We find an average bias b = 1.24 ± 0.18 for the I-selected galaxies, and a cross-correlation
coefficient r = 0.75 ± 0.23. Together with the power spectra, these results optimally encode
the entire two point information about dark matter and galaxies, including galaxy–galaxy
lensing. We address some of the implications regarding galaxy haloes and mass-to-light ratios.
The best-fitting ‘halo’ parameter h ≡ r/b = 0.57 ± 0.16, suggesting that dynamical masses
estimated using galaxies systematically underestimate total mass.

Ongoing surveys, such as the Canada–France–Hawaii Telescope Legacy Survey, will signif-
icantly improve on the dynamic range, and future photometric redshift catalogues will allow
tomography along the same principles.

Key words: gravitational lensing – cosmology: observations – cosmology: theory – dark
matter – large-scale structure of Universe.

1 I N T RO D U C T I O N

The recent measurements of the cosmic microwave background
anisotropies have moved physical cosmology into a new era of pre-
cision measurements (Spergel et al. 2003). The cosmic microwave
background perturbations can be cleanly computed from first prin-
ciples, and have been measured with high accuracy. This allows a
clean inference of conditions at the redshift of recombination, z ∼
1089. To complete the picture, a separate measurement of the state
of the universe at lower redshifts is required. The original WMAP
results used the distribution of optical galaxies as a proxy for the
distribution of total matter. The dominant uncertainty in such an ex-
ercise is the relationship between galaxies and total mass (Contaldi,
Hoekstra & Lewis 2003).

�E-mail: pen@cita.utoronto.ca (ULP); ttlu@astro.utoronto.ca (TL); waer-
beke@iap.fr (LvW); mellier@iap.fr (YM)

A direct measure of the dynamics of total mass is clearly desir-
able, as well as a quantitative measure of the relationship between
total mass and visible matter. Statistical weak gravitational lens-
ing provides such a handle, and direct measurements are already
providing accuracies on cosmological parameters such as σ 8 com-
parable to indirect galaxy techniques (Bacon et al. 2003; Brown
et al. 2003; Hamana et al. 2002; Hoekstra et al. 2002b; Jarvis et al.
2002; Refregier, Rhodes & Groth 2002; Van Waerbeke et al. 2002).

The gravitational field from the inhomogeneity of the dark
matter distribution disturbs the light from background galaxies
and distorts the apparent images of galaxies. When this distor-
tion is small, it is called the weak gravitational lensing. Since
gravity acts equally on all particles, gravitational lensing is a
complete probe of the total matter distribution. Gravity is dom-
inated by dark matter, which does not involve complicated gas
physics, which makes gravitational lensing relatively straightfor-
ward to calculate from analytical models and N-body simulations
(White & Hu 2000). All these advantages make weak gravitational
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lensing a powerful probe of cosmological parameters and the matter
distribution.

So far all analyses of weak lensing data have been parametric by
comparing the observed 2D correlations of shear to the predictions
of standard models. A direct optimal statistical analyses of the data
sets has so far been beyond the scope of computational resources.
Pen, Van Waerbeke & Mellier (2002) presented the first angular
power spectra obtained from inversions of the correlations functions.
Brown et al. (2003) did maximum likelihood estimation on a low
signal-to-noise ratio data set.

In this paper, we extract the 3D dark and luminous matter power
spectrum from the 2D weak lensing measurements in the VIRMOS-
DESCART survey. Similar works have been tested successfully in
inverting the 2D galaxy angular correlations to a 3D galaxy power
spectrum (Maddox et al. 1990; Baugh & Efstathiou 1993; Dodelson
& Gaztañaga 2000; Eisenstein & Zaldarriaga 2001; Dodelson et al.
2002; Maller et al. 2003). By measuring the distribution of galaxies
and dark matter from the same survey, we find a direct measure of
the cross-correlation (Hoekstra et al. 2002a).

2 DATA

The VIRMOS-DESCART data consist of four uncorrelated patches
(referred to as fields F02, F10, F14 and F22 according to their RA
position) of about 4 deg2 each and separated by more than 40◦.
The fields have been observed with the CFH12k panoramic CCD
camera, mounted at the Canada–France–Hawaii Telescope prime
focus, over the periods between 1999 January and 2001 November.
The observations and data reduction have been described in previous
VIRMOS-DESCART cosmic shear papers (Van Waerbeke et al.
2000, 2001, 2002).

The observations have been performed with the I-band filter avail-
able on the CFH12k camera with typical exposure time of one hour.
The final cosmic shear catalogue contains 392 055 galaxies with
magnitude IAB > 22 and median IAB = 23.6. Several careful checks
have demonstrated that systematic residuals are very small. How-
ever, Van Waerbeke et al. (2001, 2002) and Pen et al. (2002) have
shown that a B-mode signal still remains on scales larger than 10 ar-
cmin. Its origin is not yet understood.

The redshift distribution was modelled by the procedure described
in Van Waerbeke et al. (2001) using the photometric redshifts from
the Hubble Deep Fields (HDF). Here we performed the same anal-
yses for all the galaxies with magnitude IAB > 22. The resulting
histogram for this sample with their appropriate noise weights is
shown in Fig. 1. It was modelled from the photometric redshifts
of the Hubble Deep Fields North and South (see Van Waerbeke
et al. 2001). In the absence of any spectroscopic survey deeper than
IAB = 22 this is the best redshift estimate at the moment.

To compute the galaxy angular power spectra, the galaxy pho-
tometries were calibrated. A mask file was constructed on a grid
spaced 6.18 arcsec. For the lens plane sample, we chose a magni-
tude range 20 < IAB < 21, which contains 20657 galaxies.

3 2 D P OW E R S P E C T RU M E S T I M AT I O N

Given a reduced galaxy catalogue, the first stage in the information
compression process is to produce a 2D angular power spectrum,
which encodes all two-point information. Each galaxy has two ob-
servables: a position angle θ and axis ratio e, from which one forms
the two polarization components e1 = e cos(2θ ) and e2 = e sin(2θ ).
The data set contains close to a million degrees of freedom. A direct

Figure 1. The top histogram shows the source-weighted redshift distribu-
tion of the faint IAB > 22 catalogue modelled from the HDF. The bottom
histogram shows the bright 20 < IAB < 21 galaxy redshift distribution of the
catalogue modelled from the CFRS (see Section 4), and the dotted curve is
the fitting formula used in our analyses.

optimal power estimation requiresO(N 3) operations, which is com-
pletely intractable computationally. One could try to bin the data on
a coarse grid to reduce the computational cost (White & Hu 2000).
Current processing power allows one to deploy about 50 grid cells
on a side in such a treatment, corresponding to about 3 arcmin cells.
Such a coarse binning unfortunately looses information. Karhunen–
Loeve compression still involves an initially expensive eigenmode
expansion, which is not tractable for a data set of this size.

We applied a novel fast matrix solver, which reduces the problem
from O(N 3) to O(N log N ) while still being optimal. (Pen 2003).
The galaxy catalogue for each field is binned on to a square grid 1024
cells wide, and power is estimated directly on this grid. The power
values for the individual fields are then combined by the procedure
of Wang, Tegmark & Zaldarriaga (2002). The Fisher matrix, error
bars, and window functions are processed in Monte Carlo fashion
using 1000 realizations. The angular width of the grid was chosen
to be 3.◦01, which is a little larger than the largest dimension of any
field. For the lowest wavenumbers along the longest direction of the
grid, this introduces an artificial aliasing owing to periodic boundary
conditions. In principle this could be avoided with a two-level grid as
described in Padmanabhan, Seljak & Pen (2003), but this has not yet
been implemented on the multi-grid accelerated scheme. Since we
do not use the lowest wavenumber bin in our analysis, this should
not have a significant effect on our results. The analysis is based
on a quadratic estimator with optimal weights relative to a model
prior. We chose the parameters of the Lambda Cold Dark Matter
(LCDM) model in Table 1. Several strategic choices are made in
the process. The dark matter and galaxy power spectrum were esti-
mated independently. To estimate the cross-correlation, both must
be taken into account simultaneously. When one allows for a prior

Table 1. Cosmological models used to test the inversion.

Model 
m 
� σ 8 � h

LCDM 0.27 0.73 0.9 0.19 0.71
SCDM1 1.0 0.0 0.5 0.19 0.71
SCDM2 1.0 0.0 0.5 0.7 0.71
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correlation of dark matter with galaxies, the eigenmodes of the
power are no longer dark matter and galaxy power, but linear sums
and differences.

The priors also gave equal E and B mode weights. The signal is
known to have measurable B-mode contamination (Pen et al. 2002),
for the separation of which a symmetric weight seemed most ro-
bust. Unequal priors lead to different window functions for the two
modes, making comparisons tricky. A further potential complica-
tion is the additive white noise calibration in the power spectrum.
As described in Pen et al. (2002), the intrinsic distribution of the un-
lensed ellipticity distribution cannot be measured, so the two-point
shear correlation function at zero lag is completely unknown. This
translates into an additive white noise factor in the power spectrum.
Normally the noise is subtracted from the power spectrum estimator,
and in our case, we estimate the noise by randomly rotating galaxies.
This will cancel the correlation function at zero lag (which is invari-
ant under rotations), and determine a fixed value of the integration
constant. At large l this can lead to a systematic underestimate of
the power.

The reduced catalogues also have a statistical weight for each
galaxy, which in Gaussian analyses is equal to the inverse noise
variance. A random rotation would assign a noise equal to the ob-
served ellipticity, but such a procedure biases the estimated power
spectrum. Instead, the noise was assigned using the table lookup de-
scribed by Van Waerbeke et al. (2000). Our power spectrum analysis
thus has a different procedure for the noise and weights.

Fig. 2 is the power spectrum of cosmic shear, which represents
the fluctuations in the projected surface density

κ(n̂) = �(n̂)

�cr
, (1)

Figure 2. Spherical harmonic power spectrum. The dashed boxes indicate
the raw E-type power spectrum, while the crosses denote the B-type power.
The solid boxes with error bars are E − B, which is the quantity we used to

calculate the 3D power. Their error bars are the quadrature sum
√

σE
2 + B2.

We have shifted the solid boxes with error bars to larger l slightly, in order
to be distinguished with E-type and B-type power. The dashed straight line
is the noise. The solid curved line is the model prediction for LCDM (see
Table 1).

where

�cr = c2

4πG

Ds

Dd Dds
. (2)

�(n̂) is the surface density, n̂ is the direction on the sky. Dd, Dds

and Ds are the angular-diameter distances between the observer and
lens, lens and source, and observer and source respectively.

The dashed boxes indicate the E-type power-spectrum, while the
crosses denote the B-type power. The solid boxes with error bars
are the subtracted power E − B, which is the quantity we used to
calculate the 3D power. For the difference powers, the error bars
are calculated by the quadrature sum

√
σE

2 + B2. The B mode is
taken as a diagnostic for the error estimate, and we only added the
value to the diagonal of the covariance matrix. Correlations between
scales are not accounted for. The dashed straight line is the noise,
which dominates at small angular scales. When noise dominates, the
inverse noise-weighted two-point correlation function is an optimal
estimator. The solid curve line is the power spectrum projected by
the Limber equation from the 3D power using the code by Smith
et al. (2003). We note that the errors are dominated by the B mode,
and, eyeballing the plots, one could see up to three independent
useful power spectrum measurements.

To measure the distribution of luminous matter, we chose a mag-
nitude range which traces the redshift distribution of lenses. The
range 20 < IAB < 21 results in a differential redshift contribution
shown in Fig. 3, which is well matched to the lens weights. We used
this magnitude range to measure the galaxy power spectrum shown
in Fig. 4.

In the 2D projection, we fitted for a parametrized power spec-
trum �2 = (k/k0)n. This corresponds to a power-law correlation
function of the form ξ = (r/r0)−n, with r0 = 2[π/2 sin(nπ/2)�(2 −
n)]1/n/k0. We used two values of n: 1.8 and 1.7. For n = 1.8, the
best-fitting correlation length is k0 = 0.22 ± 0.010 h Mpc−1 for
the I-selected galaxy population at weighted redshift zm = 0.36.
The corresponding correlation length is r0 = 4.79 ± 0.22 h−1 Mpc.
The shallower slope n = 1.7 fits the data slightly better, and results
in a 17 per cent longer correlation length. The 2D galaxy power

Figure 3. The contribution to 2D power spectrum by the 3D power spectrum
from different redshifts for a fixed angular scale l = 956. The dotted line is
for the galaxies. The solid line is for the dark matter.
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Figure 4. The circles indicate the power spectrum for galaxies 20 < IAB <

21. The dashed line is the Poisson noise, and the solid line is the Limber
equation prediction for luminous matter perfectly tracing dark matter. The
dot–dashed and dotted lines are the projection of the best-fitting power spec-
tra parametrized as �2 = (k/k0)n, for n = 1.7 and k0 = 0.16 (h Mpc−1), as
well as n = 1.8 and k0 = 0.18 (h Mpc−1) respectively.

certainly appears consistent with expectations for this population of
galaxies.

We used prior weights in the galaxy power spectrum estima-
tion corresponding to the n = 1.7 dot–dashed line in Fig. 4. The
galaxy power spectrum estimation is accomplished on a signifi-
cantly masked geometry, which results in aliasing of modes. This is
described by the window function, shown in Fig. 5.

The finite sampling of the 1000 Monte Carlo simulations to com-
pute the Fisher matrix results in an expected error of about 4 per
cent on the diagonals. On the off-diagonals, this error becomes large
compared with the actual values after about the second distant bin,
since the actual correlations become quite small. We only included
the diagonal and the first off-diagonal of the Fisher matrix in all
subsequent analyses.

Computing the cross-correlation we initially used a light-traces-
mass prior. The quadratic estimator just weights the shear and galaxy
surface density individually by a Wiener filter. For a perfectly cor-
related galaxy and dark matter field, the expected cross-correlation
coefficient is 0.96, indicating that the lensing weights and galaxy
weights overlap very strongly.

The resulting power spectrum is shown in Fig. 6. It is apparent
that the cross-correlation is systematically lower than expected for
a perfectly non-stochastic galaxy distribution (dotted line).

4 D E P RO J E C T I O N

The projection of a 3D power spectrum

�2(k, z) ≡ k3

2π2
P(k, z) (3)

to a 2D angular power spectrum l(l + 1)Cl/2π is given by Limber’s
equation (Huterer 2002),

l(l + 1)

2π
Cl = π

l

∫ zs

0

�2(l/χ (z), z)w(z)2χ (z)
dχ

dz
dz. (4)

Figure 5. The window function for the 2D power spectrum of shear and
galaxies. From left to right, the lines are for l = 239, 478, 956, 1912,
3825, 7650, 15300 respectively. The windowed variable is l(l + 1)Cl/2π,
so for flat band-power more power leaks from large scales to small than vice
versa.

Figure 6. The cross-correlation between dark matter and galaxies, also
called galaxy–galaxy lensing power. The circles indicate the power spec-
trum for galaxies 20 < IAB < 21. The solid line is the Limber projection
for galaxies tracing dark matter perfectly. The dotted line is the projection
of a power-law galaxy correlation (see text) with n = 1.8, which has no
stochasticity relative to dark matter.

The comoving angular diameter distance is

χ (z) = c

∫ z

0

dz

H (z)
, (5)

where H(z) is the Hubble constant at redshift z:

H (z) = H0

[
(1 + z)2(
mz + 1) − 
�z(z + 2)

]1/2
. (6)
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For the angular diameter distance χ we used the fitting formula
from Pen (1999). The weight function w(z) is defined below for the
different categories of dark and luminous matter. For broad weight
functions, Limber’s equation (4) mixes modes significantly. A direct
deprojection is analogous to a deconvolution, which is in general
numerically unstable. Several alternatives exist to recover the un-
derlying 3D power spectrum.

All measurements of power spectra, even with full 3D
information, measure the power spectrum convolved with a
window function. One can think of the 2D measurement
an extreme case of such a window function. Each angular
wavenumber l is a sum over power spectra at different linear
wavenumbers k. This sum can be treated analogous to a window
function. The current fashion is not to attempt to deconvolve power
spectra.

Seljak (1998b) proposed such a minimum variance procedure,
which estimates power in broad bands, but with small errors. This
approach leads to estimates of power over broad windows, and is
quite robust. There is a slight model dependency in the normal-
ization of the window functions, for which we calibrate relative
to a fiducial model described below. As long as the power spec-
trum has a similar shape to the underlying model, the total ampli-
tude is unbiased. If the bins are chosen narrower than the windows,
they just become more and more correlated, but error bars remain
constant. We call the minimum variance procedure Method A. If
one considers Limber’s equation (4) to be a linear mapping L, the
minimum variance procedure weights each data point by the in-
verse noise variance, and projects it back using the transpose of L.
This gives a unique parameter-free lossless mapping, and a natu-
ral way of deprojecting the angular wavenumbers l back to linear
wavenumbers k.

This minimum variance deprojection is an even more convolved
version of the original power spectrum. One can now attempt to
deconvolve this deprojection to narrow down the window function.
As in the past literature, we stabilize this deconvolution using a
singular value decomposition. An unbounded inversion has window
functions that are delta functions, and does not need a model to
normalize. In practice, one has to introduce a cut-off, which reduces
power and will always bias the answer low. In this case, one can
recalibrate relative to a model. The number of modes that are chosen
is another new free parameter. Since significant effort had been
spent on this procedure historically, we include such an analysis for
comparison.

We now proceed to describe the specific deprojection for the
VIRMOS-DESCART angular power spectra. We modelled the non-
linear power spectrum �2 using the Smith et al. (2003) code. 
m

and 
� denote the matter density and cosmological constant den-
sity today. Whenever a quantity is redshift dependent, we explicitly
include that, for example 
m(z) and 
�(z) are the values at redshift
z.

For dark matter the lensing weight is

wdm(z) = 3

2

m H0

2g(z)(1 + z), (7)

where

g(z) = χ (z)

∫ +∞

z

dz′ns(z
′)

χ (z′) − χ (z)

χ (z′)
. (8)

ns(z) is the distribution of source galaxies, for which we use the
statistically sampled model from the HDF shown in Fig. 1.

For galaxies,

wgalaxy(z) = H (z)ng(z), (9)

where ng(z) is the lens plane galaxies distribution. We used a galaxy
distribution parametrized as

ng(z) = β

zs�
(

1+α

β

) ( z

zs

)α

exp

[
−

( z

zs

)β
]
, (10)

with fixed values α = 2 and β = 1.5, zs = 0.340. We modelled
zs = 0.340 from the Canada–France Redshift Survey (CFRS) cat-
alogue (Crampton et al. 1995; Hammer et al. 1995; Le Fevre et al.
1995; Lilly et al. 1995a,b). We used the redshift distribution of galax-
ies with 20 < IAB < 21, discarding objects of class greater than 9
or less than 2, for which redshift determinations could have been
problematic. This left us with 140 galaxies, with median redshift
zM = 0.480. The uncertainty of zM is deduced by bootstrapping the
catalogue 1000 times, resulting in a bootstrap error �zM = 0.021.
The bootstrap error may well underestimate the true error, so we
applied the same estimators to each of the five fields separately. The
resulting median redshifts and bootstrap errors are: 0000−00 field
(Le Fevre et al. 1995): 0.195 ± 0.083, 0300−00 field (Hammer et al.
1995): 0.543 ± 0.039, 1000+25 field (Le Fevre et al. 1995): 0.495
± 0.031, 1415+52 field (Lilly et al. 1995b): 0.519 ± 0.094, and the
2215+00 field (ibid): 0.341 ± 0.028 respectively. Combining the
results of those patches weighted by their inverse variances, we find
a mean median redshift 0.431 ± 0.018, which is marginally consis-
tent with the bootstrap error. Taking the difference squared between
the sample median and each field median, dividing by the sum of
the bootstrap variances, we find a χ2 = 5.8 per degree of freedom,
indicating that the bootstrap errors are probably an underestimate,
and that the true error is 2.4 times larger if taken at face value. Un-
fortunately, the standard deviation of this variance estimator from 5
fields is

√
2/(n − 1) = 71 per cent, so the true error is very poorly

known.
In terms of the parametrization (10), we have zs = 0.340. For the

cross-correlation between galaxies and dark matter, we changed the
w(z)2 in equation (4) to the product of dark matter weight function
and galaxy weight function wdm(z)wgalaxy(z).

We assumed that the 3D power spectrum evolves linearly with
redshift relative to a reference redshift zm,

�2(k, z) = �2(k, zm)

(
D(z)

D(zm)

)2

. (11)

The errors introduced by this simplification are quantified below. We
chose zm to be the redshift below which half the power originates at
the middle of our angular scales of interest, l ∼ 1000. Writing the
contributions in terms of an integrand I(z),

l(l + 1)Cl

2π
=

∫ zs

0

I (z) dz, (12)

we find from Fig. 3 that a value zm = 0.36 is close to the median
contribution for both the dark matter and galaxy distribution.

D(z) is the linear growth factor, for which we use the fitting for-
mula (Carroll, Press & Turner 1992):

D(z) = 1

1 + z

D1(z)

D1(0)
, (13)

D1(z) = 5
m(z)

2

[
(
m(z))4/7 − 
�(z)

+ (1 + 
m(z)/2)(1 + 
�(z)/70)
]−1

. (14)

We group the two-dimensional power spectrum l(l + 1)Cl/2π

into an nl dimensional vector y and the 3D power spectrum �2(k,
z) an nk dimensional vector x. Discretizing the integral (4) into a
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trapezoidal rule sum of 15 redshift slices with �z = 0.12, Limber’s
equation can be written as (Wang et al. 2002)

y = Cx + n. (15)

In our analysis, the projection matrix C also contains the effects
of the window arising from the power spectrum estimation on the
irregular grid. To relate the linear analysis of power spectra to that
of Gaussian random fields, we introduced a random noise vector n,
the covariance of which is defined to be the Fisher matrix:

〈yyt〉 − 〈y〉〈yt〉 ≡ Fi j ≡ 〈nnt〉. (16)

We used a bilinear interpolation in log k to evaluate the power spec-
trum in the integrand.

An linear estimate of x can be written as

x̃ = Py. (17)

When all equations are invertible, one could formally use

P = C−1. (18)

In general, however, nl �= nk, and the matrix C is not square, not
invertible, and even if it were square, is very ill conditioned. Then the
choice of P becomes important. We will discuss three procedures
(Tegmark 1997a,b; Tegmark & de Oliveira-Costa 2001; Wang et al.
2002). Method A, which gives minimal but correlated error bars
(Seljak 1998a,b) is

P1 = N1C
tF−1. (19)

A diagonal normalization matrix N1 is defined relative to a fiducial
input model power spectrum y such that y = P1y. In general, one
can measure power spectra and cross power spectra as a function of
source redshift, so for each l there could be multiple measurements
of Cl with appropriate covariances F. Owing to the limited signal-
to-noise ratio and absence of detailed source redshift information
in our survey, we only used one combined power spectrum. The
procedure is general, and can combine any number of source and
cross powers optimally.

Method C is mathematically equivalent to equation (18):

P3 = N3(CtF−1C)−1CtF−1 (20)

if Ct F−1 C is invertible. The normalization N3 is defined as for (19).
If the central term is invertible, the normalization N3 is the identity
matrix. We will use the Singular Value Decomposition (SVD) to
stabilize the problem for the general case.

The basis of SVD comes from the following linear algebra result:
Any m × n matrix F(m � n) can be decomposed to an m × n column-
orthogonal matrix U, an n × n diagonal matrix W with positive or
zero elements(the singular values), and the transpose of an n × n
orthogonal matrix V.

F = UWVt. (21)

The matrices U and V satisfy:

UtU = VtVt = 1. (22)

If the matrix F is square,then U, V, and W are all n × n square
matrices. Then the inverse of F is

F−1 = V[diag(1/w j )]U
t. (23)

However, if one of the w j is zero, or (numerically) so small that its
value is dominated by round-off error, the inverse process will be
incorrect. SVD prescribes the inverse of these ‘singular values’ to
be set to zero. We use the routines from Numerical Recipes (Press
et al. 1992) to implement this SVD.

In order to solve our problem:

Cx0 = y, (24)

we first consider the following sets of linear equations:

Fx = b, (25)

and try to invert such a equation for a square n × n matrix F, and
vectors x and b. The first question is whether b lies in the range of
F or not. If it does, then the set of equations does have one more
more solutions that may be degenerate. If b does not lie in the range,
then there is no solution. In both cases, replace those 1/w j by zero
if w j = 0 or w j is very small. We quantify smallness below. We then
calculate

x = V[diag(1/w j )]U
tb. (26)

Here V, W, and Ut are decomposed by F. This is the solution given
by SVD.

In the case of fewer equations than unknowns (m < n), the method
is also applicable, however there will be an n−m dimensional family
of solutions. We have to choose a parameter for the threshold to zero
those small w j. Different cut-offs may lead to different solutions.
To find a suitable criteria for the cut-off, we can calibrate with
simulation data.

Finally, an intermediate choice between methods A and C is
method B:

P2 = N2(CtF−1C)−
1
2 CtF−1. (27)

One might expect that an SVD cut-off is not needed for this case,
since any large eigenvalues on the square root are cancelled by small
eigenvalues of the last term.

5 R E S U LT S

5.1 Dark matter power spectrum

The deprojected 3D power spectrum x̃ from the observed angular
power is given by a linear relation s̃ = Pyob, with covariance

〈x̃x̃t〉 − 〈x̃〉〈x̃t〉 = PtFP. (28)

yob denotes the observed data, written as a nl dimensional vector. We
used nl = 7, starting at l = 236 with logarithmic bins each a factor
of two wide. In the 3D space we chose wavenumbers corresponding
to k = l/χ (zm), and added two more bins on each side for a total of
nk = 11.

The minimum variance solution for Method A is shown in Fig. 7.
Only the seven wavenumbers in the central range are plotted. Error
bars are the square roots of the diagonal elements of the matrix

E = PtFP. (29)

The off-diagonal terms of the covariance matrix can be plotted
in terms of cross-correlation coefficients,

ri j ≡ Ei j√
Eii E j j

. (30)

In Fig. 8 we show the cross-correlation coefficient for the seven
central solutions of Fig. 7. The points are clearly significantly cor-
related.

To simplify the inversion process we assumed linear evolution of
the power amplitude with redshift. We only specified the 3D power
spectrum at one independent redshift zm. The inversions are all nor-
malized relative to the prior LCDM cosmology with linear evolution,
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1000 U.-L. Pen et al.

Figure 7. The 3D power spectrum of dark matter linearly evolved to red-
shift zero, for the minimum variance method A. The dotted lines are the
input power spectrum, linearly evolved from the Smith et al. (2003) power
spectrum at zm. From bottom to top are cosmologies SCDM1, SCDM2 and
LCDM (see Table 1). The solid lines are the deprojected 3D power spectrum
from the non-linearly projected 2D power spectrum. The boxes are the power
spectrum deprojected from the measured angular power spectrum. The de-
projected lines of SCDM here were scaled with by (
SCDM/
LCDM)1.2 to
compensate the linear evolution difference.

Figure 8. The cross-correlation coefficient betweens bins of Fig. 7. From
left to right, the covariances are relative to the bin at k = 0.24, 0.48, 0.96,
1.92, 3.84, 7.68, 15.36 (h Mpc−1) respectively.

for which by construction the resulting 3D power spectrum will be
the input power. If we apply the linear process to the non-linearly
projected angular power spectrum, the results could differ. Using
the Smith et al. (2003) code we can also generate the full non-linear
power spectrum at each redshift, from which we project the 2D an-
gular power. In Fig. 7 we plotted the input power spectrum at zm as

Figure 9. The normalized window functions of dark matter for method A.
From bottom to top the k bins in Fig. 8 are shown. For clarity, the lines have
been displaced down 0.6, 0.4, 0.2, 0, −0.2, −0.4 and −0.6 units respectively.

the topmost dotted line, and the linearly recovered power spectrum
as the corresponding solid line. We find good agreement, certainly
better than the other sources of statistical error.

We need to know the stability to a change of cosmological pa-
rameter priors. To check cosmologies that are quite different from
the previously assumed LCDM model, we have also checked the
SCDM cosmologies listed in Table 1. In Fig. 7, the two solid lines,
from bottom up, are inverted solutions for SCDM1 and SCDM2
respectively. The dotted lines near them are the inputted 3D power
spectrum for those two models respectively. For SCDM models, the
inverted solutions are still reasonably close to the original solution,
which can be seen clearly from the figures. It shows that our inver-
sion procedure is robust, and only mildly dependent on the shape of
the power spectrum or non-linear evolution.

As described above, the minimum variance power spectrum esti-
mation from Method A results in significant smoothing of the input
power. This is described by a window function, which is shown in
Fig. 9. For our linear procedures, each band-power estimator de-
pends not only on the power in its own band, but due to geometry
also on aliased power from other bands. The response of the es-
timator is just the window function. We see the increased breadth
of each window compared with the 2D window, and there really
are only a smaller number of independent points. Owing to the low
signal-to-noise ratio of our data, we used wide logarithmic bins, and
the window functions are also averaged over the same bin sizes.

The goal of methods B and C is to reduce the width of these win-
dows by deconvolving the solution by the window. If all steps were
non-singular, method C would result in δ-function windows. For the
SVD procedure, one chooses the number of eigenvalues (also called
singular values) to include. The result will depend on the number of
modes included. In Fig. 10 we show the recovered power spectrum
as we increase the number of modes from bottom to top. The cor-
responding window functions are shown in Fig. 11. For method C
(right panel, Fig. 10), we see that increasing the number of modes
results in increasing errors, as one expects from deconvolutions.
For method B (left panel, same figure), the results are quite robust,
and no cut-off is actually needed. The window functions in Fig. 11
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The deprojected 3D power spectrum 1001

Figure 10. 3D power spectrum of dark matter at redshift zero. The left
panels are for method B, and the right panels are for method C. The dotted
lines are the input power spectrum, linearly evolved from the Smith et al.
(2003) power spectrum at zm. The solid lines are the deprojected 3D power
spectrum from the non-linearly projected 2D power spectrum. The boxes
are the power spectrum deprojected from the measured angular power spec-
trum. The panels from bottom to top include 1, 3, 5, 7 SVD values in their
reconstruction, respectively.

Figure 11. The normalized window function of dark matter for different
SVD cut-offs. The panels are positioned as in Fig. 10, displaced down 0.9,
0.6, 0.3, 0, −0.3, −0.6, −0.9 units respectively. At the lowest panel, only
one SVD is used, so the solution only has one degree of freedom and all
reconstructed values are linearly degenerate.

show the effect of the SVD cut-off graphically. The bottom panel
shows that if only one mode is used, all solutions are degenerate. As
one increases the number of modes used, the windows shift apart.
Method B remains stable, and results in windows that are narrower
than Method A (shown in Fig. 9). For method C, the windows be-

Figure 12. cross-correlation coefficient for the hierarchy of solutions. The
left panels are for method B, and the right panels are for method C. The panels
from bottom to top include 1, 3, 5, 7 SVD values in their reconstruction,
respectively. The successive lines have been displaced down 1.2, 0.8, 0.4, 0,
−0.4, −0.8, −1.2 units respectively.

come ill-behaved, and one does not obtain a good window structure
for any number of modes.

The covariance of bins shows the linear structure of the solutions.
As before, we can define the cross-correlation coefficients between
bins. The cross-correlation coefficients of Method A are shown in
Fig. 8. For Method B and C, if only one singular value is used, all
modes are linearly dependent, so the cross- correlation coefficient
is unity as can be seen in Fig. 12. Method B decorrelates the bins,
making the statistical interpretation of the results particularly sim-
ple. The very high correlation between points in Method C shows
that one never really recovers more than two independent modes
regardless what cut-off one chooses. The full deconvolution does
not lead to meaningful results.

The top left panel in Fig. 10 is most readily compared to the liter-
ature. It is deconvolved but still stable. We see the three bins centred
at k = 0.96 which have good signal to noise. The covariance matrix
in Fig. 12 tells us that the three points are statistically uncorrelated.
The top left panel in the window function Fig. 11 has a width of
about two bins. While one might wonder how the bins can overlap
spatially and still be uncorrelated, this is not a contradiction: the 2D
projected power spectrum sums over many independent 3D modes.
In the deprojection, each bin can still depend on different modes of
the same absolute wavenumber. This gives as a series of statistically
independent estimators of powers which probe the same physical
length scales.

Tegmark & Zaldarriaga (2002) plotted a 3D estimate for the lin-
ear dark matter power as probed by RCS. In the Hamilton paradigm
(Hamilton et al. 1991), the non-linear structure on a given scale
comes from the gravitational collapse of a larger scale. In an
isotropic collapse, one expects the non-linear wavenumber to be
given by the cube root of the density times the linear wavenumber,
kNL = (1 + �2(kNL))1/3k. Our three best points at kNL = 0.48, 0.96,
1.92 h Mpc−1 map to k = 0.29, 0.37, 0.53 h Mpc−1, which is compa-
rable the converted linear length-scales measured by the RCS data.

C© 2003 RAS, MNRAS 346, 994–1008

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/346/3/994/983072 by guest on 09 June 2023



1002 U.-L. Pen et al.

Figure 13. Linearized CMB and RCS comparison power spectrum from Tegmark & Zaldarriaga (2002). The open boxes are the VIRMOS-DESCART power.
They are mutually uncorrelated. The solid boxes are a combination of CMB powers. The crosses are RCS points. The lensing data sets are linearly decompressed
and evolved to z = 0 (see text for details). The solid line is the linear LCDM model.

We then used the Peacock & Dodds (1996) prescription to map the
non-linear power to a linear power. The mapping was done relative
to the fiducial LCDM model.

The resulting combined cosmic microwave background (CMB)
and weak lensing data are shown in Fig. 13. Our horizontal error
bars are derived from the half width of the window function (top left
panel of Fig. 11). The error bars have been rescaled to the Tegmark
& Zaldarriaga (2002) convention of 20 per cent to 80 per cent using a
Gaussian model. The CMB data, courtesy of Max Tegmark, includes
all the experiments compiled in Tegmark & Zaldarriaga (2002) as
well as the recent WMAP data (Tegmark, private communication).
We see good agreement between two completely different lensing
data sets (RCS and VIRMOS-DESCART), as well as a good fit to the
standard cosmological model. The residual differences could well
arise from the subtleties in modelling the PD96 prescription, since
we see a better fit to the same model using the Smith et al. (2003)
algorithm in the non-linear power shown in the top left panel of
Fig. 10. Unfortunately the newer, more accurate non-linear formulae
are difficult to invert from non-linear to linear power heuristically.

The CMB data can be predicted from first principles to exquisite
accuracy. The weak lensing is similarly predictable from first prin-
ciples, and only limited by the accuracy of simulations. These are
currently not a limiting step, but do need to improve to match
newer lensing data sets. Both CMB and weak lensing data sets
are observationally challenging to obtain, but theoretically very
clean to interpret and are unlikely to contain astronomical un-
certainties. We expect ongoing surveys such as the CFHT legacy
survey (http://www.cfht.hawaii.edu/Science/CFHLS/) to bring the

measurement of non-linear power to a precision era, for which we
can then perform precision cosmology without invoking complex
poorly understood radiative phenomena.

5.2 Galaxy and cross power spectra

The galaxy and cross power spectra are obtained completely analo-
gously. The results for Method A are shown in Figs 14 and 15, and
corresponding window functions are Figs 16 and 17. We compare
our results with that obtained by inverting angular power spectra
from 2MASS (Maller et al. 2003), APM (Eisenstein & Zaldarriaga
2001) and SDSS (Dodelson et al. 2002). For comparison with APM,
we used table 4 of Eisenstein & Zaldarriaga (2001) and used their
(C−1

P )1/2 as error bars. In order to compare this with our result, the
power of APM has been linearly evolved from z = 0.11 to zero
in Fig. 14, which is analogous to our analysis. For SDSS, we use
the data in table 2 of Dodelson et al. (2002). We used the error
bar not including redshift errors, and linearly evolved every bin to
redshift zero. The median weight redshifts were taken from table 1
of Dodelson et al. (2002) given by the SDSS photo-z values. We
combined the results of the four magnitudes bins weighted by the
inverse variances.

The VIRMOS-DESCART galaxies clearly show more power than
the SDSS or APM data set. For reference, Fig. 14 also shows the
dark matter power (solid line) and the best-fitting n = 1.8 power law
to the angular power spectrum (dot–dashed line). In the inversion,
we used the normalization coefficients N of the dark matter, which
can introduce a bias for a power spectrum of different slope. The
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The deprojected 3D power spectrum 1003

Figure 14. The 3D power spectrum of galaxies at redshift zero, for the minimum variance method A. The dotted line is the input power spectrum, linearly
scaled from the Smith et al. (2003) power spectrum at zm = 0.36. The solid line is the deprojected 3D power spectrum from the non-linear projected 2D power
spectrum. The crosses are the power spectrum deprojected from the measured angular power spectrum. The shaded region is covering the deprojected 3D
power spectrum when the input redshift zs varies over the bootstrap uncertainty from 0.325 to 0.355. Boxes are the power spectrum from APM (Eisenstein
& Zaldarriaga 2001), small circles from 2MASS (Maller et al. 2003), and large solid circles from SDSS (Dodelson et al. 2002). The dot–dashed line is the
parametrized power spectrum (k/(0.18 h Mpc−1))1.8. The dashed line is the projection/deprojection of this power law power spectrum.

result of projecting and deprojecting the power law is shown as the
long-dashed curve, which is in general agreement with the input
power.

To put the result in perspective, the best-fitting correlation length
(described in Section 3) is r0 = 4.79 ± 0.22 (h−1 Mpc) at me-
dian redshift zm = 0.36 for fixed power law index n = 1.8. This
is similar to correlation lengths found in CNOC2 (Shepherd et al.
2001), where the correlation length varied from r0 ∼ 3.4 − 5.5 h−1

Mpc depending on galaxy population and redshift. The different
power in APM and SDSS might just be a reflection of different
galaxy types. The 2MASS galaxies, which are also infrared se-
lected like the VIRMOS-DESCART, are in better agreement. We
also note that overestimating galaxy distances overestimates the in-
ferred power, and the nominal bootstrap uncertainty is reflected in
the hashed region around the solid line in Fig. 14. If we estimate
the SDSS correlation length to be 0.3 h Mpc−3 linearly evolved
at z = 0, we infer a correlation length r0 = 3 h−1 Mpc, which is
at the low range for the CNOC2 sample. We should note that the
overall redshift calibration could be off by more than the bootstrap
error. The redshift distribution of galaxies is also broad, and we
assumed a linear evolution model for the clustering, which might
not be what the galaxies actually do. In principle this evolution can
be measured from the data itself by modelling the galaxies at dif-
ference magnitude cut-offs, which is the subject of a future paper.
In any case, this comparison puts forwards the central role of red-

shift information for a correct cosmological interpretation of the
data.

The cross power spectrum from LCDM (Table 1) is shown in
Fig. 15 as the dot–dashed line. The dashed line near it is the depro-
jected power spectrum from the non-linear projection of the new
cross power. The two lines are still close to each other, which means
the inversion process for the cross power spectrum is also robust.

Just as for dark matter, each of the bins has correlations. Qualita-
tively, they are similarly behaved to that of the dark matter. We only
show the cross-correlation coefficient for method A in Fig. 18.

With the full set of deprojected 3D power spectra of galaxies �2
gal,

dark matter �2
dm, and their cross-correlation �2

cross, we can directly
measure the derived quantities ‘bias’ b and ‘stochasticity’ r (Pen
1998). The bias is

b =
√

�2
gal

�2
dm

(31)

which is shown in Fig. 19. The upper error bars are obtained by
using the 1σ upper value for �2

gal divided by the 1σ lower value of
�2

dm, and analogously for the lower error bar. From the definition,
bias is dependent on the cosmology. The galaxy–dark matter cross-
correlation coefficient is also directly measurable,

r = �2
cross√

�2
dm�2

gal

. (32)
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1004 U.-L. Pen et al.

Figure 15. The 3D power spectrum of the cross-correlation of galaxy and
dark matter at redshift zero, for method A. The box is the power spectrum
deprojected from the angular power spectrum. The dotted line is the original
power spectrum, linearly evolved from the Smith et al. (2003) power spec-
trum at zm = 0.36. The solid line is the deprojected 3D power spectrum from
the non-linearly projected 2D power spectrum. The dot–dashed is the cross
power for non-stochastic galaxies where the bias is adjusted to give a power
law correlation, and the dashed line is the corresponding deprojection.

Figure 16. The window function of galaxies, for method A. From bottom
to top are for k = 0.24, k = 0.48, k = 0.96, k = 1.92,k = 3.84, k = 7.68,
k = 15.36 (h Mpc−1), which have been moved down 0.6, 0.4, 0.2, 0, −0.2,
−0.4, −0.6 units respectively.

The dark matter power has the largest error bar. One can take the
ratio of cross and galaxy power, which has smaller errors. We call
this the ‘galaxy halo parameter’ h, defined as

h ≡ r

b
= �2

cross

�2
gal

. (33)

It is shown in the bottom panel of Fig. 19. The error bars are drawn
using the procedure described above. This halo parameter is also de-

Figure 17. Window function of the cross-correlation of galaxy and dark
matter, for method A. The meaning of the lines and signs are the same as in
Fig. 16.

Figure 18. Cross-correlation coefficient using method A for the galaxy and
the galaxy–dark matter cross-correlation. The top panel is for the galaxy,
and the bottom panel is for the galaxy–dark matter cross-correlation. The
meaning of lines is the same as in Fig. 8.

pendent on cosmology, but the galaxy–dark matter cross-correlation
coefficient is independent.

We fitted a constant average value for b from the minimum in χ2

for Method B:

χ 2 = 1

N

N∑
i=1

[
�2

gal(ki ) − b2�2
dm(ki )

]2

σ 2
gal(ki ) + b2σ 2

dm(ki )
, (34)

sampled at six wavenumbers ki = 0.24, 0.48, 0.96, 1.92, 3.84, 7.68 h
Mpc−1. Since the covariances are negligible, we neglected them. The
variance of b is taken from �χ 2,

�σχ2 =
√

2√
N

= 1

2

d2χ2

db2
(δb)2. (35)
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Figure 19. The top panels are bias of galaxies versus dark matter, for
method A and B from left to right. The middle panels are cross-correlation
coefficients of galaxy and dark matter, for method A on the left, and method
B on the right. The bottom panels are the ‘galaxy halo parameter’. The dotted
lines in the right panels are best-fitting values and the shaded region show
the formal uncertainty: b = 1.24 ± 0.18, r = 0.75 ± 0.23, h = 0.57 ± 0.16.
In our linear evolution model, the results are redshift-independent.

We apply the same procedure to solve for r and h. Formally, we find
b = 1.24 ± 0.18, r = 0.75 ± 0.23, and h = r/b = 0.57 ± 0.16 with
χ2 = 1.20, 0.51, 0.86 per d.o.f. for six degrees of freedom, consistent
with the expected standard deviation of 0.6. Just as the bias measure-
ments are subject to systematic redshift calibration uncertainties, the
cross-correlation results could also depend on such issues. Future
surveys with photometric redshifts signficantly reduce this problem.

The resulting bias b is larger than that found from comparing
VIRMOS-DESCART with RCS (Hoekstra et al. 2002a). That study
found b = 0.71+0.06

−0.04 and r = 0.57+0.08
−0.07. The cross-correlation coeffi-

cient r is consistent. The apparent discrepancy in the bias b should
not be overinterpreted. This earlier comparison was in 2D projec-
tion. Furthermore, RCS galaxies are red R selected, which can be a
different population. Within the SDSS galaxies on our scales of k ∼
1 h Mpc−1 the power for galaxies varies by a factor of 4 between the
18–19 and the 21–22 magnitude bin. Similarly, the 2MASS power
(Maller et al. 2003) is closer to our derived value than the R-selected
SDSS galaxies. One clearly needs to exercise care when convert-
ing the parameter fits from one sample of galaxies to another one,
as galaxies selected in different colours will have quite different
clustering properties.

Our bias, cross-correlation and halo parameters were all estimated
in 3D space. One could have also attempted a parametric estimation
on the 2D projected power. For an optimal inversion process if one
takes the covariances between scales into account, the results will
be the same. The single biggest source of larger error is that we
added the B-mode power to the error budget. Our model of sample
variance in the optimal 2D power will also give a larger sample
variance error. The reason for that is the underestimate of error
on the 2-point correlation function. The previous sample variance
errors were estimated using an effective contiguous area. The masks
and source clustering will increase the sample variance, since the
same area is now non-uniformly sampled. In Fig. 2, one sees that at
l up to 1000, sample variance makes up half the error budget (the

dashed line is the noise, which exceeds the signal at l ∼ 1000). At
the end of the day we do have about twice the error bar, coming
from this combination of factors.

We had checked the effects of redshift binning, and at 15 there was
about a per cent change compared to an infinite number of slices.
The redshift evolution is parametrized, so the finer the redshift bins
are the more accurate it gets. In the linear evolution model, the
redshifts scale the same for the galaxies and dark matter, so that
cancels exactly and is redshift invariant.

One expects galaxies and dark matter to be well correlated on
linear scales when �2 < 1 for both galaxies and dark matter, which
is not well probed by the angular scales of the current data. Newer
larger surveys should significantly improve on the angular scale
coverage. When the two fields are well correlated, there is no sample
variance in the measurements of r and b, which is reflected in the
full joint estimation Fisher matrix. Using the current data, however,
the errors in large scales are dominated by a B mode, which is not
easily modelled.

6 C O M PA R I S O N W I T H T H E O RY

In this section we will discuss the results of the study in the con-
text of theories and other surveys. Measuring the relation between
the distribution of light and that of dark matter has significant cos-
mological consequences, as discussed in the introduction. In the
other direction, the theory of galaxy formation requires observa-
tional constraints to be tested. While physical cosmology originated
thirty years ago in the paradigm that stars account for all the mass in
the Universe, today’s picture is very different. The universe appears
dominated by very mysterious dark energy accounting for about
70 per cent of the energy density of the Universe. The second most
important energetic contribution is dark matter, accounting for an-
other 27 per cent. Ordinary baryonic matter accounts for another 3
per cent. The visible stars account for less than 0.3 per cent. Op-
tical power spectra of galaxies measure the distribution of this 0.3
per cent of matter, which may or may not be a good tracer of the
hundredfold more abundant dark matter. The challenge to galaxy
formation models is to understand the distribution and kinematics
of that small fraction of visible stars.

Different galaxies are composed of different stellar populations.
Galaxies of different types cluster differently. Empirically it is
known that red (early) type galaxies cluster more strongly than blue
(late) type galaxies. The goal of the theory of galaxy formation is
to quantify the distribution of visible galaxies, i.e. the distribution
of visible light. This distribution is quantified by various statisti-
cal properties. At the two-point level, theories of galaxy formation
can be tested by predicting the two point statistics measured in this
paper: auto and cross-correlations. This correlation is a function of
colour, morphology and redshift.

Semi-analytic studies generically predict (Somerville et al. 2001)
earlier type (red elliptical) galaxies to be more strongly biased than
late type (blue spiral) galaxies. Qualitatively, one might expect the
VIRMOS-DESCART I-band selected galaxies to be systematically
redder than SDSS or RCS galaxies, and therefore more clustered
(i.e. more biased). Here we should keep in mind that the rest-frame
colours at our median-weighted redshift zm ∼ 0.36 are significantly
bluer, so RCS/SDSS R bands are closer to rest-frame V , while
VIRMOS-DESCART I shifts into the rest frame R. Comparison
with APM or 2MASS is furthermore complicated by the significant
difference in redshift distributions: these latter two surveys are much
shallower with median redshifts of 0.11 and 0.07 respectively. In
our comparison plot shown in Fig. 14, the different redshifts were
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scaled using a linear evolution model. Linear evolution assumes
that clustering increases owing to gravitationally induced motions.
In biasing models, the clustering is enhanced by creating the ob-
jects in a more clustered fashion, such that the gravitational motions
have a smaller fractional effect. A biased population is expected
to evolve more slowly. The 2MASS galaxies actually have signifi-
cantly more power than our VIRMOS-DESCART sample. Should
the picture hold that the redder surveys select for earlier type galax-
ies, Somerville et al. (2001) predict an increasing bias as one goes
from blue to red, which is from APM to RCS/SDSS to VIRMOS-
DESCART to 2MASS. The stochasticity as parametrized by the
cross-correlation coefficient r was predicted to be less population
dependent, which is what we observe.

These qualitative statements are not easy to quantify. One would
need to have a common measure of galaxy morphological classifi-
cation into early and late types, and correct for evolutionary effects.
Empirically, a careful study of the CNOC2 survey (Shepherd et al.
2001) showed the strong dependence of the clustering amplitude
on the galaxy types. The relative evolution of each population was
rapid, and the early types were much more clustered than the late
types.

Kochanek, Pahre & Falco (2000) did a morphological breakdown
of the 2MASS population, and also a comparison with several other
surveys. According to their estimates, the bright 2MASS sample
consists of a mixture of about half early- and half late-type galax-
ies, while APM and other blue selected surveys have 20 per cent
early 80 per cent late-type galaxies. This is likely the origin for the
larger power in the 2MASS survey, especially on small non-linear
scales. Brinchmann et al. (1998) measured the CFRS galaxy mor-
phologies with HST , and also find about equal early- and late-type
galaxies in our magnitude range. The CFRS galaxies are selected
by similar colours as VIRMOS-DESCART, so we expect 2MASS
and VIRMOS-DESCART to yield similar results. The difference in
redshift distribution opens up some leeway, but our results are in
general consistent.

The observable statistics do not end at the two-point function.
The full three-point function and windowed skewness for the dark
matter has been measured to better than 10 per cent accuracy (Pen
et al. 2003; Bernardeau, Mellier & van Waerbeke 2002). The cross
skewness to luminous matter has 4 moments (Pen 1998), which are
all directly measurable and provide additional constraints on galaxy
formation models.

We note at this point that our model for power spectrum inversion
was designed with dark matter evolution in mind, which is physically
well understood from first principles. We naively applied this model
to the galaxy and cross-correlation power using the same assump-
tions, that light traces mass and that the stochasticity is small. Our
results obtained under these assumptions show that the assumptions
are only partially true: the optical galaxies are biased, and there is
evidence for stochasticity. The galaxy halo parameter h was incon-
sistent with unity, ruling out a mass traces light model. When light
does not trace mass, as we have found, our linear evolution model
used to deproject the galaxies is not a unique interpretation of the
galaxy power. One could have many different plausible mechanisms
which can lead to the same observed data set, but with quite different
underlying properties. Even within a magnitude range, one is mea-
suring a mixture of nearby intrinsically faint galaxies and distant
intrinsically bright galaxies. It is likely that these two populations
have different power, and do not evolve by any simple parametrized
model. In the future, photometric redshifts will allow separation of
several of these effects, and give a systematic parametrized hierar-
chical measure for galaxy formation.

7 T H E G A L A X Y – DA R K M AT T E R
C O N N E C T I O N

Mathematically, all two-point statistics encode the same informa-
tion. When we observe the distribution of dark matter and galaxies,
all two point information is described by two power spectra and
one cross spectrum. One can also construct derivatives of these
quantities, and non-linear combinations, for example the bias and
cross-correlation coefficient shown in the previous sections.

Historically, the paradigm to understand dark matter was not on
this equal footing, but rather centred on visible galaxies. One could
measure the luminosity and number density of galaxies. A popular
strategy was to attempt to measure the mass concentration associated
with the light. The mass concentration is known to have a larger
spatial extent than the light, which was parametrized as the radial
halo mass distribution which we call the ‘halo profile’. If one could
measure all the mass associated to haloes, one could in multiply the
number density of galaxies by the mass of the haloes to measure the
mass in the universe. Of course there could also be mass that is not
associated with visible galaxies, so that would still only represent
a lower limit to the mass density of the Universe. We can connect
these two viewpoints, which are different interpretations of the same
numbers.

Several approaches exist to measure the halo mass. Perhaps the
most direct is galaxy–galaxy lensing. One defines a halo profile
H(r), and considers each galaxy to have a halo, such that the dark
matter distribution is the convolution of the position of galaxies
described by a density distribution ρ gal, which may be a sum of
δ-functions. One further assumes that all dark matter is associated
with such haloes. Galaxies of different morphologies, luminosity
or colour may have different haloes, and one can perform a full
segregated measurement. The formalism remains the same, so we
only consider one universal galaxy class. One then tries to fit for
this universal halo profile. Apart from noise weights, all analysis
proceed as follows. The distribution of ‘halo’ dark matter is

ρhalo ≡
∫

ρgal(x
′)H (|x − x ′|) d3x ′. (36)

If one sums the tangential shear to each galaxy, and stacks all such
galaxies, one has cross-correlated the dark matter field (36) with the
galaxy field,

ξt (r ) = 〈ρgal(x)ρDM(x + r )〉
ρ̄galρ̄DM

. (37)

In the halo model, one equates ρ halo = ρDM. Formally, this yields
the cross-correlation of the galaxy position with the associated halo
mass. This is equivalent to Fourier transforming, and multiplying
both sides of equation (36) by the galaxy density,

�2
cross(k) = �2

gal(k)h(k). (38)

We have absorbed the normalization coefficients into the dimension-
less halo profile n̄h(r ) ≡ H (r ) with n̄ = ρ̄DM/ρ̄g. Inverse Fourier
transforming and applying equation (33) we find

H (r ) ≡ n̄h(r ) = 4πn̄

∫
r (k)

b(k)

sin(kr )

kr
k2 dk. (39)

The halo profile is mathematically equivalent to the Fourier trans-
form of the cross-correlation coefficient divided by the bias,
and requires only measurements of the galaxy auto-correlation
and the galaxy–dark matter cross-correlation functions. It is the
Fourier transform of our ‘galaxy halo parameter’ h defined in
equation (33).
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Formally, one could derive a mass from the halo profile H(r), and
compare this to masses of haloes. This interpretation is parameter-
dependent, since the normalization in (39) depends on the mean
density of galaxies, which depends on the flux limits of the survey.
The deeper a survey looks, the more faint galaxies one finds, so the
gravitating mass is divided by more galaxies. Similarly it is tricky to
extrapolate (39) to obtain a value of the total cosmological density.
One only measures the mass correlated with galaxies, and there
could be more mass that does not correlate: for example, if r < 1,
the halo may underestimates total mass.

Since all two-point statistics are equivalent, measurement of
‘halo profiles’ always measure the mass–light cross-correlation. Fit-
ting to a universal profile is mathematically equivalent to equa-
tion (39). If one knows the mean number density of galaxies,
one could use this relation to infer the mean density of matter
ρ̄DM = ρ̄gal4π

∫
h(r )r 2 dr = ρ̄galh(k = 0) (Wilson et al. 2001).

We see that the results can under- or overestimate the total matter,
depending on the the correlation properties of galaxies and dark
matter. For the fiducial 
0 = 0.27 model used in our analysis, the
VIRMOS-DESCART halo parameter is h = 0.57 ± 0.16, implying
that about 
halo = h
0 ∼ 0.15 is in dark matter correlated with
I-selected galaxies. This is consistent with the low inferred values
of 
halo in the literature (Wilson et al. 2001; Seljak 2002).

A popular interpretation of the dark matter distribution has been
in terms of halo models (Guzik & Seljak 2002). When describ-
ing the distribution of galaxies, one also needs to specify the
cross-correlation of galaxies relative to these haloes. These cross-
correlation coefficients must be calibrated to the observed values of
the ‘galaxy halo parameter’ h(r).

8 C O N C L U S I O N S

We have presented the first full optimal analyses of 2D and de-
projected 3D power spectra of dark matter and galaxies. We used
weak gravitational lensing from the VIRMOS-DESCART survey,
and their relation to the galaxy distribution in the same data set.
The survey is sensitive to 0.37 < k < 2.88 h Mpc−1 and probes the
regime of non-linear clustering. We have compared the results of
three different deprojection procedures, and found that our method B
based on partial deconvolution is simultaneously robust, has narrow
window functions, and mostly uncorrelated error bars. Full inver-
sion is unstable, as might be expected, and a cut with SVD results
in a highly tangled window function. No choice of cut-off leads
to a meaningful 3D power spectrum for this full inversion, as mea-
sured by the covariance matrix of the solution. For the galaxy power
spectrum, the inversion is more stable, but still noisy.

We tested the effects of incorrect model priors. While the true
power is very non-linear, using a linear evolution model relative to
the median redshift does not introduce a large error. For the dark
matter power spectrum, the errors are dominated by the B-mode and
shot noise. For the galaxy and cross-correlation power spectrum
the noise is significantly smaller, and redshift distribution errors
dominate.

The deprojected dark matter distribution is consistent with that
expected from the standard WMAP � cosmologies with σ 8 = 0.9.
The results agree well with deprojected RCS lensing data and the
CMB linearly evolved power spectrum. The galaxy distribution is
similar to the 2MASS galaxies, but more clustered than that found
by APM and SDSS. This may be due to the different colour band
selection. Using the cross-correlation we confirm earlier results that
galaxies and dark matter are indeed distributed stochastically on
non-linear scales.

We have quantified the bias and cross-correlation coefficient
b = 1.24 ± 0.18, r = 0.75 ± 0.23. A less noisy combination of
the parameters that can be measured is the ‘galaxy halo parameter’
h = r/b = 0.57 ± 0.16. These parameters describe the relation be-
tween dark and luminous matter, and are the key uncertainties in the
interpretation of galaxy–galaxy lensing.

All error analyses used Gaussian assumptions. Most of the regime
is noise dominated, for which Gaussianity is a good approxima-
tion. For the sample variance this potentially underestimates errors
(Hu & White 2001). We plan future analyses to quantify this effect
using N-body simulations. The upcoming Canada–France–Hawaii
Telescope Legacy Survey weak lensing survey should significantly
improve on all measurements, and probe to larger scales. At larger
scales one will be able to measure bias and stochasticity without
being affected by finite field size sample variance.
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