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Defining perturbations on submanifolds
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GRECO, Institut d’Astrophysique de Paris, CNRS, 98bis Boulevard Arago, 75014 Paris, France
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We study the definition of perturbations in the presence of a submanifold, such as, e.g., a brane. In the
standard theory of cosmological perturbations, one compares quantities at the samecoordinate pointsin the
nonperturbed and the perturbed manifolds, identified via a~nonunique! mapping between the two manifolds. In
the presence of a physical submanifold one needs to modify this definition in order to evaluate perturbations of
quantities at the submanifold location. As an application, we compute the perturbed metric and the extrinsic
curvature tensors at the brane position in a general gauge.
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I. INTRODUCTION

The theory of cosmological perturbations is a cornerst
of the study of the early Universe, since most of the acc
sible information from this epoch is believed to be contain
in the cosmological fluctuations that are observed in the c
mic microwave background and, more indirectly, in the lar
scale structures. As a consequence, an important step i
elaboration of an early Universe model is to be able to d
with the origin and the early evolution of cosmological pe
turbations. A recent picture suggested~or revived the idea! to
describe our Universe as that of a braneworld, i.e., a s
manifold, where ordinary matter is confined or embedded
a higher dimensional spacetime@1,2#. In a cosmological con-
text, and for one extra dimension, this picture has led
brane cosmology, which was shown to deviate from stand
cosmology at high energy@3–7#.

Soon after these progresses in homogeneous brane
mology, several works were started to tackle the diffic
problem of cosmological perturbations in this context. O
can distinguish three main approaches in these various
malisms. One approach was to use directly a doubly gau
invariant formalism to describe the perturbations in the b
and in the brane@8–11#. Another approach was to use
covariant formalism@12–14#. Finally, the most common ap
proach has been to generalize the standard metric based
malism@15–29#, which has been used in standard cosmolo
for a long time@30–32#. For detailed reviews on braneworl
perturbations see@33#. In the present work, we adopt th
latter approach, which has the advantage to be of more d
access and to be more familiar to people who have alre
studied the standard theory of cosmological perturbation
four dimensions.

The specific purpose of the present work is to present h
one can describe the brane perturbations forany gaugecho-
sen in thebulk. Since this particular point has generated m
takes and confusion in the literature, we believe it is wor
while to consider this question with some attention.

The usual approach to calculate tensorial quantities in
braneworld scenario is to adopt a suitable gauge in the b
and then to transform to the Gaussian normal~GN! gauge to
impose the junction conditions. One can then transform
quantities back from the GN to the original gauge. In th
work, we give the end result of this procedure for a gene
0556-2821/2003/68~12!/123517~7!/$20.00 68 1235
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background metric. We also allow for a metric with no
trivial backgroundg44, which is not related to the GN gaug
simply by a first order coordinate transformation.

The core of the problem is that, in the standard theory
cosmological perturbations, the perturbation for any quan
is defined by comparing the perturbed and unperturbed
uesat the same coordinate point. In brane cosmology, or in
fact in any model where one or several submanifolds h
some specific physical role, one wishes instead to define
turbations by comparing quantitiesat the same physical lo
cus.

In the next section we discuss the definition of perturb
tions on a manifold and study how this definition is affect
if a submanifold is present. In Sec. III we apply these notio
to a five dimensional~5D! metric tensor as an example in th
braneworld scenario. In Sec. IV we then turn to the probl
of calculating the extrinsic curvature tensor of the brane.
conclude in the last section.

II. THEORY

We consider the following situation: a spacetimeM cor-
responding to the perturbation of a reference spacetimeM̄
and a submanifoldS in M, which can be seen as the pertu
bation of an unperturbed submanifoldS̄ in M̄. We then wish
to define meaningful~linear! perturbations for tensoria
quantities defined on the submanifold.

A. Standard linear perturbation theory

Let us ignore at this stage the submanifoldS and let us
recall some basic principles of the standard theory of lin
perturbations in general relativity@30–32#. The starting point
is to endow the unperturbed manifoldM̄ of dimensionN
with a coordinate system which we callxA ~where A
50, . . . ,N21), which is usually chosen according to th
symmetries ofM̄ so that the explicit form of the metric is a
simple as possible.

The next step is to introduce, in a geometrical langua
@34#, an identification between the unperturbed and pertur
manifolds, i.e., a mappingf:M̄→M, which establishes a
one-to-one correspondence between the points ofM̄ and
M. The identification is not unique and thus chosen ar
©2003 The American Physical Society17-1
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trarily at first order in the perturbations. The mappingf

naturally induces from the coordinate system inM̄ a coor-
dinate system inM.

One then defines the perturbation of a tensorT as

dT~x!5T~x!2T̄~x!, ~1!

wherex stands for a given set of coordinates~which define
both a point inM and inM̄ via the mapping!, whereT is the
full tensor defined inM andT̄ is the corresponding ‘‘unper
turbed’’ quantity defined in the reference spacetimeM̄. In
other words, one defines the perturbation by comparing
values of the tensorsat the same coordinate point, i.e., at the
pair of points identified by the mappingf.

As stressed above, the identification mapping is somew
arbitrary and one must consider slight modifications of t
mapping~slight so that one stays in the domain of validity
the perturbative approach! to get the generic picture. A
change of mapping can be interpreted as a change of co
nates in the perturbed spacetimeM, which we write as

xA→ x̃A5xA1dxA, ~2!

which means that thephysical pointwith the old coordinates
xA has the new coordinatesxA1dxA.

The change of any tensor under the coordinate trans
mation ~2!, evaluatedat the same old and new coordinate
~and thus at different physical points!, is given by the Lie
derivative with respect to the vector fielddxA @35#,

DT[T̃~x!2T~x!52L dxAT. ~3!

Equation~3! gives for the change of a covariant two-tens
under a transformation~2!

Q̃AB5QAB2£dxCQAB , ~4!

or, substituting for the Lie derivative~see, e.g.,@35#!,

Q̃AB5QAB2dxC]CQAB2~]AdxC!QCB2~]BdxC!QAC .
~5!

B. Perturbations on a submanifold

Let us now take into account the submanifoldS. We start
by introducing the unperturbed submanifoldS̄ in the refer-
ence manifoldM̄. In general, there is no reason for th
mappingf to leave the submanifold invariant, i.e., we ha
in generalf(S̄)ÞS, as shown in Fig. 1. Of course, one ca
always choose a special subclass of mappings which
leave invariant this submanifold but this corresponds to
restricted choice of coordinate systems. Note that the
coordinate system, defined below in Sec. IV B, belongs
this subclass.

If one wishes to define perturbations for quantities ex
ing only at the geometrical locus of the submanifold, o
therefore cannot use the above definition, Eq.~1!. A neces-
sary additional step is to define another mappingl between
the image ofS̄ and the realS, i.e., l:f(S̄)→S. In the co-
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ordinate system defined byf, this can be written in the form
x̂A5xA1eA, i.e., l maps a point off(S̄) with coordinates
xA onto a point ofS with coordinatesxA1eA.

One can now define a meaningful perturbation for ten
rial quantities defined at the submanifold location,

dST~x!5T„l@f~ p̄!#…2T̄~ p̄!, ~6!

wherex stands for the coordinates ofp̄, which is a point of
S̄. When the quantityT is in fact defined everywhere~but
one wants to use the perturbation of its value at the loca
of the submanifold!, the defining expression above can
decomposed into

dST~x!5T„l@f~ p̄!#…2T„f~ p̄!…1T„f~ p̄!…2T̄~ p̄!, ~7!

where one can recognize in the last two terms the usual d
nition of the linear perturbation. Reintroducing coordinat
this reads

dST~x!5T~x1e!2T~x!1dT~x!

5eA]AT1dT~x!, ~8!

where we have used the Taylor expansion ofT(x1e). Equa-
tion ~8! is an adequate definition of the perturbation of
tensorial quantity in the presence of a submanifold, if
impose the restriction that the perturbation has to be at
physical locus of the submanifold.

III. THE METRIC OF A BRANEWORLD

We now apply the results found in the previous section
the metric tensor of a braneworld. After briefly reviewin
how the perturbed metric tensor changes under a first o
coordinate transformation we show how the definition of t
perturbation of the metric tensor changes in the presence
particular submanifold, the brane.

FIG. 1. The mappingf, which takes the background manifol

M̄ to the perturbed manifoldM, and the internal mappingl,

between the perturbed manifold and itself. To takeS̄ to S we need
f andl.
7-2
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A. Standard perturbed metric tensor and change
under a gauge transformation

We study a 5D metric with maximally symmetric fla
three-subspace~see, for example,@24,28#! and include only
scalar perturbations, that is, perturbations that transform
scalars on spatial three-sections.
rs

sy

e
ric

ur

d
m
p
o

ce
in

12351
e

The background part of the metric tensor is given by

ds25ḡABdxAdxB52n2dt21a2d i j dxidxj1b2dy2, ~9!

where the metric factorsn, a, andb are functions of coordi-
nate timet and extra dimensiony. The metric tensor, includ-
ing linear perturbations, is
gAB[ḡAB1dgAB5S 2n2~112A! a2B,i nAy

a2B, j a2@~112R!d i j 12E,i j # a2By,i

nAy a2By,i b2~112Ayy!
D , ~10!
ce-

-
ac-

e

the

,
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hus
where the scalar metric potentialsA, B, R, E, By , Ay , and
Ayy are functions of the coordinatesxA5@ t,xi ,y#.

To find the change of the metric tensor under the fi
order coordinate transformation defined by Eq.~2!, we apply
Eq. ~5! to the metric tensorgAB , given in Eq. ~10!. This
gives the perturbed metric tensor in the new coordinate
tem:

d̃gAB5dgAB2dxC]CḡAB2~]AdxC!ḡCB2~]BdxC!ḡAC ,
~11!

wheredxA5@dt,dx,
i ,dy#. Since we are only working to lin-

ear order, the Lie derivative with respect to the first ord
vector dxA only acts on the background part of the met
ḡAB .

The transformation behavior of the scalar metric pert
bations is therefore

Ã5A2 ḋt2
ṅ

n
dt2

n8

n
dy, B̃5B1

n2

a2
dt2 ḋx,

R̃5R2
ȧ

a
dt2

a8

a
dy Ẽ5E2dx,

Ãy5Ay1ndt82
b2

n
ḋy, B̃y5By2dx82

b2

a2
dy,

Ãyy5Ayy2
ḃ

b
dt2

b8

b
dy2dy8. ~12!

B. Perturbed metric tensor in the presence of a submanifold

The above definition of the perturbed metric, Eq.~10!,
does not depend on the presence of a submanifold an
defined everywhere in the bulk. However, our spaceti
contains a brane and we are interested in computing the
turbed metric on thisphysicalhypersurface, i.e., we need t
evaluate it on the brane.

In our model the homogeneous brane is fixed atx4

5const, but after being perturbed, it is in general displa
from this location. We would like to describe the change
t

s-

r

-

is
e
er-

d

the metric at the brane position as a result of this displa
ment. This displacement is embodied in the relation

x̂A5xA1eA, ~13!

where theeA are associated with the mappingl introduced
earlier. In the general case theeA are decomposed into de
grees of freedom tangential and orthogonal to the brane
cording to~see, e.g.,@23#!

eA[zmem
A1znA, ~14!

wherenA is the normal vector to the brane,em
A is a basis of

vectors tangential to the brane, andm50, . . . ,3.
From Eq. ~8! it follows that the perturbed metric at th

position of the brane is given by

dSgAB5eC]CgAB1dgAB . ~15!

In our model the only relevant degree of freedom ofeA is the
four-component, the perturbation of the brane position in
extra dimension, which we denote bye4[j(t,xi), see Fig. 2.
The other degrees of freedomzm, tangential to the brane
correspond to mappings that leave the brane invariant,
we are therefore allowed to choosezm[0.

The perturbed metric in the presence of the brane is t
given by

dSgAB5dgAB1znA]AḡAB5dgAB1j]4ḡAB . ~16!

FIG. 2. The brane in Gaussian normal~left! and a different
coordinate system.
7-3
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Note that since we only work to linear order in the perturb
tions, and the perturbationj is first order, the additional par
in the perturbed metric tensorj]4ḡAB only includes deriva-
tives of the background metric.

The metric tensor at the position of the brane is theref
given by

gAB
S 5ḡAB1dSgAB , ~17!

whereḡAB is the background metric.

IV. EXTRINSIC CURVATURE

In this section we calculate the extrinsic curvature ten
in the presence of a submanifold. The extrinsic curvat
KAB describes the local bending of the brane along the e
dimension. In the braneworld scenario this bending is de
mined by the local matter distribution on the brane throu
the junction conditions@36#.

The extrinsic curvature tensor is defined as~see, e.g.,
@35#!

KAB5hA
C~ (5)

“CnB!, ~18!

wherenB is the unit vector normal to the brane,(5)
“A is the

5D covariant derivative, andhAB is the projection tensor
defined ashAB[gAB2nAnB .

We shall study the case of a static brane, i.e., a brane
is not moving with respect to the background coordinate s
tem. The unit vectornA is spacelike and thus subject to th
constraint

nAnA51. ~19!

In the following section we calculate the extrinsic curv
ture tensor in an arbitrary gauge up to first order in the p
turbations. As a check, we then calculate the extrinsic cu
ture tensor in the GN gauge and transform the express
found in this gauge to an arbitrary gauge.

A. Calculating KAB in an arbitrary gauge

The constraint, Eq.~19!, together with background metric
Eq. ~9!, give the unit normal vector to the brane at zero
order as

n̄A5@0,0,b21#. ~20!

As pointed out above, we consider a brane that is nonmov
and hence the time component ofn̄A is zero.

The perturbed normal vector at the brane position can
computed by using the perturbed version of Eq.~19!,

2n̄AdSnA1n̄An̄BdSgAB50. ~21!

It is important to stress that one has to usedSgAB in the
above equation and notdgAB defined in Eq.~10!, since one is
perturbing Eq.~19! definedon the brane. We therefore get
for the normal vector to the brane at the position of the br
up to first order
12351
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nA5n̄A1dSnA5bF2 j̇,2j ,i ,11Ayy1
b8

b
jG . ~22!

Substituting the background metric, Eq.~9!, and the back-
ground normal vector, Eq.~20!, into the definition of the
extrinsic curvature tensor, Eq.~18!, we get for the compo-
nents of the extrinsic curvature tensor at zeroth order

K̄0052
n2

b

n8

n
, K̄ i j 5

a2

b

a8

a
d i j . ~23!

To get the extrinsic curvature tensor up to first order at
position of the brane,KAB5K̄AB1dSKAB , we have to use
perturbed quantities defined on the brane, i.e., the pertu
metric gAB

S , defined in Eq.~17!, and the perturbed norma
vector ~22!. Substituting into Eq.~18! then gives for the
components of the perturbed part,dSKAB ,

dSK0052
n2

b H A812
n8

n
A2

n8

n
Ayy1

1

n
Ȧy

1
b2

n2 F j̈1S 2
ḃ

b
2

ṅ

n
D j̇G1Fn9

n
2

n8

n

b8

b
1

n82

n2 GjJ ,

dSK0i5H 1

2

a2

b FB82Ḃy12
a8

a
B2

n

a2
AyG

2 j̇1S ȧ

a
2

ḃ

b
D jJ

,i

,

dSK045
1

b

n8

n
~nAy1b2j̇ !,

dSKi j 5
a2

b H R82
a8

a
Ayy1

1

n2

ȧ

a
~nAy1b2j̇ !

1S a9

a
1

a82

a2
2

a8b8

ab D jJ d j
i

1
a2

b H E82By12
a8

a
E2

b2

a2
jJ

,i j

,

dSKi45
1

b

a8

a
~a2By1b2j! ,i , dSK4450. ~24!

B. Starting from Gaussian normal gauge

In the following section we outline the calculation of th
extrinsic curvature tensor in the GN gauge. To get the co
ponents of the extrinsic curvature tensor in an arbitr
gauge, we then have to transform these results to an arbi
gauge which we shall do in the following section.
7-4
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DEFINING PERTURBATIONS ON SUBMANIFOLDS PHYSICAL REVIEW D68, 123517 ~2003!
1. Calculating the extrinsic curvature tensor
in a Gaussian normal gauge

We begin by computing the extrinsic curvature tensor i
slightly more general gauge than the GN gauge, so that
can still work directly with the background metric defined
Eq. ~9!, denoting quantities in this gauge by a ‘‘hat.’’

In our nearly GN gauge the metric has a particula
simple form

ĝ445b2, ĝ4m50, ~25!

which is in terms of the scalar metric perturbations

Ây50, Âyy50, B̂y50. ~26!

The brane is located atŷ50, i.e., there is no perturbation i
the brane position

ĵ50. ~27!

Note that to go from this gauge to the GN, one only need
put b51.

The normal vector to the brane in this gauge is

n̂A5@0,0,b21#, ~28!

and the definition of the extrinsic curvature tensor, Eq.~18!,
simplifies to

K̂AB5
1

2b

]

] ŷ
ĝAB for A,BÞ4,

K̂A45K̂4B50. ~29!

The extrinsic curvature is therefore in components

K̂0052
n2

b Fn8

n
12

n8

n
Â1Â8G ,

K̂0i5
a2

b Fa8

a
B̂1

1

2
B̂8G

,i

,

K̂ i j 5
a2

b F S a8

a
12

a8

a
R̂1R̂8D d i j 1Ê,i j8 12

a8

a
Ê,i j G . ~30!

Again the components in the GN gauge are obtained by
ting b51.

2. Transforming the extrinsic curvature to an arbitrary gauge

We can now transform the extrinsic curvature tensor
the hat gauge, Eq.~30!, to an arbitrary gauge by using th
transformation rules of the tensor components themsel
Eq. ~5!, and by the transformation rules of the metric pote
tials, Eq.~12!.

Under a first order coordinate transformation the extrin
curvature tensor changes according to Eq.~5!:

K̃AB5K̂AB2dxC]CK̄AB2~]AdxC!K̄CB2~]BdxC!K̄AC .
~31!
12351
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The components therefore change as

K̃005K̂002] tK̄00dt2K̄008 dy22ḋtK̄00,

K̃0i5K̂0i2dt ,i K̄002 ḋx,
kK̄ki ,

K̃ i j 5K̂ i j 2] tK̄ i j dt2K̄008 dy22dx,i
k K̄k j . ~32!

From the definition of the hat gauge, Eq.~26!, and the
transformation behavior of the metric perturbations, Eq.~12!,
it follows that the hat gauge only restricts they derivatives of
the coordinate transformationdxA, i.e., the degrees of free
dom orthogonal to the brane, but leaves the gauge trans
mations on the brane, that is, tangential to it, arbitrary@24#.
We can solve Eqs.~26! and ~12! for dt8, dx8, anddy8 and
get

dx85By2
b2

a2
dy,

dt852
1

n
Ay1

b2

n2
ḋy,

dy85Ayy2
ḃ

b
dt2

b8

b
dy. ~33!

We now substitute the expression for the extrinsic cur
ture tensor in the nearly GN gauge, Eq.~30!, into Eq. ~32!,
use the expressions for the change of the scalar metric
tentials under a coordinate transformation, Eq.~12!, together
with Eq. ~33! and the expression for the background part
the extrinsic curvature tensor, Eq.~23!, and get after a
straightforward but tiresome calculation the extrinsic curv
ture in an arbitrary gauge. But we are not completely the
yet. As pointed out in Sec. II A, a gauge transformati
leaves the coordinate point unchanged. Hence the extri
curvature tensor is still at the coordinate position of the bra
in the nearly GN gauge aty50 and we therefore have t
shift it to the physical position of the perturbed brane ay
5j. We can do this by using a Taylor expansion ofKAB
aroundy50, and get

KABuy5j5KABuy501eCKAB,C , ~34!

where, see Eq.~14! above,eA5@0,0,j# is the shift between
the coordinate systems in which the brane is aty50 andy
5j.

The final piece of information that we need for the com
plete extrinsic curvature tensor in an arbitrary gauge is
relation betweendy and j, since the expression we hav
derived so far still containsdy and its time derivatives. The
relation is readily found by calculating the change of t
normal vector defined above in Eq.~22! under an infinitesi-
mal coordinate transformationdxA, which is given byñA
5nA2£dxBnA @35#. We therefore find for the transform
ation behavior of j under an infinitesimal coordinat
transformation
7-5
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j̃5j1dy, ~35!

and since in the nearly GN gaugeĵ50, we get

dy52j. ~36!

Hence we get the same expression for the componen
the perturbed curvature tensor in an arbitrary gauge, tha
Eq. ~24!, by transforming from the nearly GN gauge as
direct calculation, as expected.

V. CONCLUSIONS

In this paper we have studied the definition of first ord
perturbations in the presence of a submanifold. Perturbat
in standard cosmological perturbation theory can be defi
via a mappingf of tensorial quantities between a bac
ground manifoldM̄ and a perturbed manifoldM. The in-
troduction of a submanifold, or hypersurface,S into the
spacetime does not present a problem in itself, since it d
not affect the definition of the perturbations. A proble
might arise, if we require the perturbations to be restricted
the submanifold, since in generalf(S̄)ÞS. This problem
can be alleviated either by choosing a particular coordin
system, e.g., a GN one, which enforces the correct map
between the submanifold in the background and its pertur
image, or by leaving the coordinate system unrestricted,
then using a second mappingl which takes the image of th
submanifold,f(S̄), to the correct position of the subman
fold, i.e., l@f(S̄)#5S.

The usage of a non-GN gauge requires care in defin
perturbations at the physical position of the submanifold,
we have demonstrated. Although the problem of defin
perturbations on a submanifold does not arise if we work
a GN coordinate system or gauge from the outset, as alre
pointed out, one looses in this case the freedom to ado
particularly suitable gauge for the problem or a gauge t
simplifies the calculations, by having ‘‘used up’’ some of t
tt

t.

s.
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gauge freedom. Of course it is always possible to start in
GN coordinate system and then transform to a differ
gauge, but this in itself is nontrivial, as we have shown
well.

As an example, we have calculated the perturbed me
tensor for a braneworld scenario at the position of the bra
Using this result we then calculated the perturbed extrin
curvature tensor at the brane position. We have also sh
how to calculate the extrinsic curvature tensor in the G
gauge and its transformation into an arbitrary gauge.

In Ref. @10# Mukohyama uses a doubly gauge-invaria
formalism to investigate the perturbed junction conditions
braneworld cosmology. In his formalism the gauge transf
mations on the submanifold, or brane, are allowed to dif
from the gauge transformations in the bulk spacetime. T
additional freedom is not required for most applications a
makes the formalism difficult to use. If we limit the gaug
transformations in the bulk and on the brane to be identi
the doubly gauge-invariant formalism and our approach g
the same results.

Although the examples given in this paper are concer
with the definitions of perturbations on the brane in a fiv
dimensional bulk, it has some connections with the ques
of the hypersurface matching in standard 4D@37# or the
question of the matching of perturbations across a cos
logical bounce@38#. In these cases, one finds a physical h
persurface and although this hypersurface is timelike, inst
of spacelike as the brane, our approach could be certa
useful.
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