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Defining perturbations on submanifolds

Karim A. Malik, Maria Rodrguez-Martnez, and David Langlois
GRECO, Institut d’Astrophysique de Paris, CNRS, 98bis Boulevard Arago, 75014 Paris, France
(Received 12 May 2003; published 17 December 2003

We study the definition of perturbations in the presence of a submanifold, such as, e.g., a brane. In the
standard theory of cosmological perturbations, one compares quantities at thesadieate pointsn the
nonperturbed and the perturbed manifolds, identified Vizoaunique mapping between the two manifolds. In
the presence of a physical submanifold one needs to modify this definition in order to evaluate perturbations of
guantities at the submanifold location. As an application, we compute the perturbed metric and the extrinsic
curvature tensors at the brane position in a general gauge.
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[. INTRODUCTION background metric. We also allow for a metric with non-
trivial backgroundg,,, which is not related to the GN gauge
The theory of cosmological perturbations is a cornerstongimply by a first order coordinate transformation.
of the study of the early Universe, since most of the acces- The core of the problem is that, in the standard theory of
sible information from this epoch is believed to be containedcosmological perturbations, the perturbation for any quantity
in the cosmological fluctuations that are observed in the cods defined by comparing the perturbed and unperturbed val-
mic microwave background and, more indirectly, in the largeuesat the same coordinate poinin brane cosmology, or in
scale structures. As a consequence, an important step in tfct in any model where one or several submanifolds have
elaboration of an early Universe model is to be able to dea$ome specific physical role, one wishes instead to define per-
with the origin and the early evolution of cosmological per- turbations by comparing quantities the same physical lo-
turbations. A recent picture suggested revived the idepto ~ CUS
describe our Universe as that of a branewoﬂd, i'e_' a sub- In the next section we discuss the definition of perturba-
manifold, where ordinary matter is confined or embedded irfions on a manifold and study how this definition is affected
a higher dimensional spacetirfie2]. In a cosmological con-  if & submanifold is present. In Sec. Ill we apply these notions
text, and for one extra dimension, this picture has led tdo a five dimensional5D) metric tensor as an example in the
brane cosmology, which was shown to deviate from standar@raneworld scenario. In Sec. IV we then turn to the problem
cosmology at high energyd—7. of calculating the extrinsic curvature tensor of the brane. We
Soon after these progresses in homogeneous brane cdnclude in the last section.

mology, several works were started to tackle the difficult
problem of cosmological perturbations in this context. One Il. THEORY
can distinguish three main approaches in these various for-
malisms. One approach was to use directly a doubly gauge- We consider the following situation: a spacetiowe cor-
invariant formalism to describe the perturbations in the bulkresponding to the perturbation of a reference spacetirhe
and in the brang8-11]. Another approach was to use a and a submanifold in M, which can be seen as the pertur-
covariant formalisnj12-14. Finally, the most common ap- phation of an unperturbed submanifadn M. We then wish

proach has been to generalize the standard metric based fQ§ gefine meaningful(linean perturbations for tensorial
malism[15-29, which has been used in standard cosmologygyantities defined on the submanifold.

for a long time[30—32. For detailed reviews on braneworld

perturbations se¢33]. In the present work, we adopt the , )

latter approach, which has the advantage to be of more direct A. Standard linear perturbation theory

access and to be more familiar to people who have already [et us ignore at this stage the submanifddand let us

studied the standard theory of cosmological perturbations ifecall some basic principles of the standard theory of linear

four dimensions. perturbations in general relativifd0—32. The starting point
The specific purpose of the present work is to present hovk o endow the unperturbed manifoltit of dimensionN

one can describ_e the brane perturbat_ionsajw gaugecho- _with a coordinate system which we ca® (where A
sen in thebulk Since this particular point has generated mis-_q5 N—1), which is usually chosen according to the

takes and confusion in the literature, we believe it is worth- . — -~ .
while to consider this question with some attention. symmetries ofM so that the explicit form of the metric is as
The usual approach to calculate tensorial quantities in thé'm_l_pk:e as p;ostsmlg. to introd . trical |

braneworld scenario is to adopt a suitable gauge in the bult<3 € next step 1S to Introduce, in a geometrical language
and then to transform to the Gaussian nort@\) gauge to 4], an identification between the unperturbed and perturbed
impose the junction conditions. One can then transform thé&anifolds, i.e., a mapping: M— .M, which establishes a
guantities back from the GN to the original gauge. In thisone-to-one correspondence between the pointsvbfand
work, we give the end result of this procedure for a generalM. The identification is not unique and thus chosen arbi-
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trarily at first order in the perturbations. The mappieg

naturally induces from the coordinate system\ih a coor-
dinate system inM.
One then defines the perturbation of a tenbas

ST(X)=T(x)—T(x), (1)

wherex stands for a givEn set of coordinat@shich define
both a point inM and in M via the mapping whereT is the
full tensor defined inM andT is the corresponding “unper-

turbed” quantity defined in the reference spacetife In
other words, one defines the perturbation by comparing the
values of the tensorat the same coordinate poirite., at the
pair of points identified by the mapping.

As stressed above, the identification mapping is somewhat
arbitrz_iry ar_ld one must Consider_slight modifications_ (.)f this FIG. 1. The mappingp, which takes the background manifold
mapping(slight so that one stays in the domain of validity of — ) . .
the perturbative approaghto get the generic picture. A ‘M t© the perturbed manifold\, and the internal mapping,
change of mapping can be interpreted as a change of COomt?_etween the perturbed manifold and itself. To ték® S we need
nates in the perturbed spacetinvé, which we write as and

XA XA= XA+ SXA, 2) ordinate system defined lay, this can be written in the form

xA=x"+€", i.e., A maps a point ofp(S) with coordinates
which means that thghysical pointwith the old coordinates x* onto a point ofS with coordinates<®+ €”.
x* has the new coordinates'+ ox*. One can now define a meaningful perturbation for tenso-
The change of any tensor under the coordinate transfoiial quantities defined at the submanifold location,

mation (2), evaluatedat the same old and new coordinates -
(and thus at different physical pointss given by the Lie SsT(X)=TM\[(P)D—T(p), (6)
derivative with respect to the vector fieltk” [35], o

- wherex stands for the coordinates pf which is a point of

AT=T(X) = T(X) ==L 5T, (3 S, When the quantityT is in fact defined everywheréout

one wants to use the perturbation of its value at the location
of the submanifolyl the defining expression above can be
decomposed into

Equation(3) gives for the change of a covariant two-tensor
under a transformatio(®)

Qas=Qns—£xQns. (4)

or, substituting for the Lie derivativésee, e.g.[35]),

SsTX)=TA[S(P))—T((p))+T(p(p)—T(p), (7)

where one can recognize in the last two terms the usual defi-
Opg=0Qnp— 5XC&CQAB_(aAaxc)QCB_(aBé\XC)QAC'( ) ?#ion om:jthe linear perturbation. Reintroducing coordinates,
5 is reads

B. Perturbations on a submanifold OsT(X)=T(x+€)=T(X)+T(x)

Let us now take into account the submaniféldWe start =rIaT+ST(x), (8
by introducing the unperturbed submanifafdin the refer-

ence manifoldM. In general, there is no reason for the
mapping¢ to leave the submanifold invariant, i.e., we have

in generale(S)# S, as shown in Fig. 1. Of course, one can
always choose a special subclass of mappings which d
leave invariant this submanifold but this corresponds to

restricted choice of coordinate systems. Note that the GN
coordinate system, defined below in Sec. IV B, belongs to

this subclass. We now apply the results found in the previous section to

If one wishes to define perturbations for quantities existthe metric tensor of a braneworld. After briefly reviewing
ing only at the geometrical locus of the submanifold, onehow the perturbed metric tensor changes under a first order
therefore cannot use the above definition, BiJ. A neces-  coordinate transformation we show how the definition of the
sary additional step is to define another mappingetween  perturbation of the metric tensor changes in the presence of a
the image ofS and the realS, i.e.,\:¢(S)—S. In the co-  particular submanifold, the brane.

where we have used the Taylor expansiof @f+ €). Equa-

tion (8) is an adequate definition of the perturbation of a

tensorial quantity in the presence of a submanifold, if we

impose the restriction that the perturbation has to be at the
hysical locus of the submanifold.

Ill. THE METRIC OF A BRANEWORLD

123517-2
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A. Standard perturbed metric tensor and change The background part of the metric tensor is given by
under a gauge transformation

N AdxB= —n2dt2+a2s. dxidx + b2dv2
We study a 5D metric with maximally symmetric flat ds’=gagdx’dx A+ atgdxdx’ +bdy”, (9)
three-subspacesee, for exampld,24,28) and include only where the metric factors, a, andb are functions of coordi-
scalar perturbations, that is, perturbations that transform likeate timet and extra dimensiog. The metric tensor, includ-

scalars on spatial three-sections. ing linear perturbations, is
|
—n?(1+2A) a’B; nA,
Uas=0pp+ 0gpp= a’B a’[(1+2R) 8+ 2E ] a’By ; , (10)
nA, a’By ; b2(1+2A,,)

where the scalar metric potentiads B, R, E, By, A,, and  the metric at the brane position as a result of this displace-

A,y are functions of the coordinated=[t,x',y]. ment. This displacement is embodied in the relation
To find the change of the metric tensor under the first R
order coordinate transformation defined by B2}, we apply XA=xA+ et (13

Eq. (5) to the metric tensog,g, given in Eq.(10). This _ _ o
gives the perturbed metric tensor in the new coordinate syshere thee” are associated with the mappingintroduced

tem: earlier. In the general case tk® are decomposed into de-
. - o grees of freedom tangential and orthogonal to the brane ac-
89as= 09ap— OX dcOns— (Ia0X°)gcp— (950X )dac, cording to(see, e.9.[23])
(11)
= g"eﬁ+ nh, (14

where&x’*z[ét,&x’I ,0y]. Since we are only working to lin-
ear order, the Lie derivative with respect to the first ordenyheren” is the normal vector to the brane” is a basis of
vector 6x* only acts on the background part of the metric vectors tangential to the brane, apg=0, . . _ﬂ,g_
Jas- From Eq.(8) it follows that the perturbed metric at the
The transformation behavior of the scalar metric pertur{osition of the brane is given by
bations is therefore
, 8s9ne=€“dcUasT 0Gns - (19
. .n ! ~ n .
A=A—ot——ot— -0y, B=B+—dt—dx, In our model the only relevant degree of freedomedis the
a four-component, the perturbation of the brane position in the
. ) extra dimension, which we denote b= &(t,x'), see Fig. 2.
BR— Eét— a_5y E—E-ox, The other degrees Qf freedogt, tangential to Fhe b_rane,
a a correspond to mappings that leave the brane invariant, and
we are therefore allowed to choo&é=0.

_ b2. ~ b2 The perturbed metric in the presence of the brane is thus
Ay:Ay+n5t’—Fé‘y, Bysz—éx’—géy, given by
b b/ 8s9as= 09as+ {N*9a0as= 0Gap+ £daOps.  (16)
Ayy: Ayy_ B ot— F 5y_ 5y ' (12) Gaussian normal gauge Other gauge
- \ " brane
B. Perturbed metric tensor in the presence of a submanifold
brane
The above definition of the perturbed metric, Ed0), / e
does not depend on the presence of a submanifold and is
defined everywhere in the bulk. However, our spacetime
contains a brane and we are interested in computing the per- (
turbed metric on thiphysicalhypersurface, i.e., we need to N N
evaluate it on the brane. Y \ Y

In our model the homogeneous brane is fixed x4t
=const, but after being perturbed, it is in general displaced FIG. 2. The brane in Gaussian norm@ft) and a different
from this location. We would like to describe the change incoordinate system.

123517-3
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Note that since we only work to linear order in the perturba- _ . b’
tions, and the perturbatiofis first order, the additional part Na=Na+dsna=b| =& —§&; 1+ A+ it (22
in the perturbed metric tens@d,g,g only includes deriva-
tives of the packground metric. . Substituting the background metric, E®), and the back-
The metric tensor at the position of the brane is therefor%round normal vector, Eq20), into the definition of the
given by extrinsic curvature tensor, Eq18), we get for the compo-
s = nents of the extrinsic curvature tensor at zeroth order
9as=9aB™ 0s9aB (17
- 2 N 2 41
wheregag is the background metric. Koo= — % n_, Ej :% a—b‘i,— ] (23)
n a

IV. EXTRINSIC CURVATURE o .
To get the extrinsic curvature tensor up to first order at the

In this section we calculate the extrinsic curvature tensop ition of the branek ag=Kag+ 06K a5, We have to use
in the presence of a submanifold. The extrinsic CurVat“r‘%erturbed quantities defined on the brane, i.e., the perturbed
K g describes the local bending of the brane along the extra,

. . o L9 etric g4, defined in Eq.(17), and the perturbed normal
dimension. In the braneworld scenario this bending is deter\'/ector (22). Substituting into Eq.(18) then gives for the

mined by the local matter distribution on the brane through
the junction condition$36]. components of the perturbed padiK ag,

The extrinsic curvature tensor is defined @ee, e.g.,

2 ’ ’
[35]) o n*l N n 1.
. 0sKoo=— F A +2FA— FAyy-f- ﬁAy
Kag=hg(®Vcng), (18
- _ ) b2, [ b n n” n'b" n’?
wheren® is the unit vector normal to the bran@)V , is the + | &+ 25— =&+ ——— F+ — €1
5D covariant derivative, anth,g is the projection tensor, n n n.n n
defined ahpg=0gag—Nahg -
We shall study the case of a static brane, i.e., a brane that 1 a2 _ a’ n
is not moving with respect to the background coordinate sys- §sKq = oy B'—By+2—B— Ay
tem. The unit vecton” is spacelike and thus subject to the a a
constraint .
- a b
nan”=1. (19 £ a b ¢ a
)
In the following section we calculate the extrinsic curva-
ture tensor in an arbitrary gauge up to first order in the per- S ' A +b2;
turbations. As a check, we then calculate the extrinsic curva- 9S™04 |y F(n y+ D7),
ture tensor in the GN gauge and transform the expressions
found in this gauge to an arbitrary gauge. 5 , 1
a a a )
SKij=—{ R — —A,+ — —(nA,+b?¢)
A. Calculating K 55 in an arbitrary gauge ST b { a " pza Y
The constraint, Eq.19), together with background metric, a’ a2 a'b’
Eq. (9), give the unit normal vector to the brane at zeroth +(—+ — - —> g] 5}
order as a a ab
nA= -1 a2 a’_ b2
M=[00,b71], (20 +_[E,_BY+Z_E__ ] |
b a a2’
ij

As pointed out above, we consider a brane that is nonmoving

and hence the time component?q{ is zero. 14
The perturbed normal vector at the brane position can be _ta 2 _
. . 4= — + i =0.
computed by using the perturbed version of E), OsKis=p 7 (AByTD8) 1, 95K4=0 24

A ALB —
2NN+ N N7559a8=0. @D B. Starting from Gaussian normal gauge
It is important to stress that one has to us@,g in the In the following section we outline the calculation of the
above equation and nég g defined in Eq(10), since one is  extrinsic curvature tensor in the GN gauge. To get the com-
perturbing Eq.(19) definedon the brane We therefore get ponents of the extrinsic curvature tensor in an arbitrary
for the normal vector to the brane at the position of the brangauge, we then have to transform these results to an arbitrary
up to first order gauge which we shall do in the following section.

123517-4
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1. Calculating the extrinsic curvature tensor
in a Gaussian normal gauge

We begin by computing the extrinsic curvature tensor in a

PHYSICAL REVIEW D58, 123517 (2003

The components therefore change as

K o= K go— 31K go8t — K o8y — 25tK o,

slightly more general gauge than the GN gauge, so that we

can still work directly with the background metric defined in

Eqg. (9), denoting quantities in this gauge by a “hat.”

In our nearly GN gauge the metric has a particularly

simple form

044=b?, 04,=0, (25
which is in terms of the scalar metric perturbations

A,=0, A,,=0, B,=0. (26)

The brane is located §t=0, i.e., there is no perturbation in

the brane position

£=0. 27)

R0i = ROi - &,iEOO_ Sx,kiki )

From the definition of the hat gauge, E@6), and the
transformation behavior of the metric perturbations, @4),
it follows that the hat gauge only restricts theerivatives of
the coordinate transformatiodx”, i.e., the degrees of free-
dom orthogonal to the brane, but leaves the gauge transfor-
mations on the brane, that is, tangential to it, arbit{@4).
We can solve Eq926) and(12) for 6t’, 8x’, and sy’ and
get

b2
X' =By~ Y,

Note that to go from this gauge to the GN, one only needs to

putb=1.
The normal vector to the brane in this gauge is

nA=[0,0,b71], (28

and the definition of the extrinsic curvature tensor, B@),
simplifies to

1 9.
KAB:EEQAB fOI‘ A,B¢4,

Kaa=Kag=0. (29)

The extrinsic curvature is therefore in components

. n2 ’ " ~
KOOZ_F F‘FZFA'FA' ,
. @l a’r3+ 19,
0= att P
. a’[(la’  a'. .. ., al.
ij:F §+2§R+R 5ij+E,ij+2§E.ij . (30)

.1 b2.
ot ——HAy-l- ?éy'

, b_ b
by ZAyy—Bé\t—H&/. (33)

We now substitute the expression for the extrinsic curva-
ture tensor in the nearly GN gauge, Eg§0), into Eq. (32),
use the expressions for the change of the scalar metric po-
tentials under a coordinate transformation, B®), together
with Eg. (33) and the expression for the background part of
the extrinsic curvature tensor, E@23), and get after a
straightforward but tiresome calculation the extrinsic curva-
ture in an arbitrary gauge. But we are not completely there,
yet. As pointed out in Sec. Il A, a gauge transformation
leaves the coordinate point unchanged. Hence the extrinsic
curvature tensor is still at the coordinate position of the brane
in the nearly GN gauge at=0 and we therefore have to
shift it to the physical position of the perturbed braneyat
=¢. We can do this by using a Taylor expansion Kofg
aroundy=0, and get

Kagly—¢=Kagly—o+€“Kag.c. (34)

Again the components in the GN gauge are obtained by put-

ting b=1.

2. Transforming the extrinsic curvature to an arbitrary gauge

We can now transform the extrinsic curvature tensor in
the hat gauge, Eq30), to an arbitrary gauge by using the
transformation rules of the tensor components themselve
Eq. (5), and by the transformation rules of the metric poten-

tials, Eq.(12).

where, see Eq14) above,e”=[0,0,£] is the shift between
the coordinate systems in which the brane igy&t0 andy
=¢.

The final piece of information that we need for the com-
plete extrinsic curvature tensor in an arbitrary gauge is the

gelation betweensy and ¢, since the expression we have

derived so far still containgy and its time derivatives. The
relation is readily found by calculating the change of the

Under a first order coordinate transformation the extrinsid’0rmal vector defined above in E@®2) under an infinitesi-

curvature tensor changes according to &)

Kas=Kag— XCicKap— (900X Kcp— (5B5XC)EAC(-3 )
1

mal coordinate transformatiodx”®, which is given byn,
=na—£58Nn, [35]. We therefore find for the transform-
ation behavior of & under an infinitesimal coordinate
transformation

123517-5
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"é: £+ 8y (35) gauge freedom. Of course it is always possible to start in the

' GN coordinate system and then transform to a different

and since in the nearly GN gauge-0, we get gauge, but this in itself is nontrivial, as we have shown as
' well.

Sy=—&. (36) As an example, we have calculated the perturbed metric

tensor for a braneworld scenario at the position of the brane.

Hence we get the same expression for the components ¢fsing this result we then calculated the perturbed extrinsic

the perturbed curvature tensor in an arbitrary gauge, that igurvature tensor at the brane position. We have also shown
Eqg. (24), by transforming from the nearly GN gauge as by how to calculate the extrinsic curvature tensor in the GN

direct calculation, as expected. gauge and its transformation into an arbitrary gauge.
In Ref.[10] Mukohyama uses a doubly gauge-invariant
V. CONCLUSIONS formalism to investigate the perturbed junction conditions in

i i L i braneworld cosmology. In his formalism the gauge transfor-

In this paper we have studied the definition of first orderations on the submanifold, or brane, are allowed to differ
perturbations in the presence ofa sybmanifold. Perturba‘gior‘ﬁom the gauge transformations in the bulk spacetime. This
in standard cosmological perturbation theory can be definegqgjtional freedom is not required for most applications and
via a mapping¢ of tensorial quantities between a back- pakes the formalism difficult to use. If we limit the gauge
ground manifoldM and a perturbed manifold1. The in-  transformations in the bulk and on the brane to be identical,
troduction of a submanifold, or hypersurfacg,into the the doubly gauge-invariant formalism and our approach give
spacetime does not present a problem in itself, since it doage same results.
not affect the definition of the perturbations. A problem  Although the examples given in this paper are concerned
might arise, if we require the perturbations to be restricted tavith the definitions of perturbations on the brane in a five-
the submanifold, since in generai(S)#S. This problem  dimensional bulk, it has some connections with the question
can be alleviated either by choosing a particular coordinat@f the hypersurface matching in standard #8¥] or the
system, e.g., a GN one, which enforces the correct mappinguestion of the matching of perturbations across a cosmo-
between the submanifold in the background and its perturbelgical bouncg 38]. In these cases, one finds a physical hy-
image, or by leaving the coordinate system unrestricted, bupersurface and although this hypersurface is timelike, instead
then using a second mappingwhich takes the image of the Of spacelike as the brane, our approach could be certainly
submanifold,¢(S), to the correct position of the submani- useful.
fold, i.e., \[#(S)]=S.

The usage of a non-GN gauge requires care in defining
perturbations at the physical position of the submanifold, as
we have demonstrated. Although the problem of defining The authors would like to thank Helen Bridgman, David
perturbations on a submanifold does not arise if we work inMatravers, Alain Riazuelo, Filippo Vernizzi, and David
a GN coordinate system or gauge from the outset, as alreadyfands for useful discussions. K.M. is supported by a Marie
pointed out, one looses in this case the freedom to adopt @urie Fellowship under the contract No. HPMF-CT-2000-
particularly suitable gauge for the problem or a gauge thaf0981. Algebraic computations of tensor components were
simplifies the calculations, by having “used up” some of the performed using the&RTENSORIIpackage for Maple.
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