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Elliptical beams in CMB temperature and polarization anisotropy experiments:
An analytic approach

P. Fosalbd, O. Dore™ and F. R. Bouchét
Institut d’Astrophysique de Paris, 98bis, boulevard Arago, F-75014 Paris, France
(Received 20 July 2001; published 15 February 2002

We present an analytic approach to the estimation of beam asymmetry effects in cosmic microwave back-
ground(CMB) temperature and linear polarization anisotropy experiments. We derive via perturbative expan-
sions simple and accurate results for the case of an elliptical Gaussian window. Our results are applied to
investigate the effect of beam ellipticity in the estimation of full-sky polarization correlation functions and the
covariance matrix of power spectra. The relevance of this effect is also discussed by forecasting errors includ-
ing beam asymmetry for current and future cosmic microwave backgr(CivdB) experiments.
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[. INTRODUCTION ization anisotropy observations.
The paper is organized as follows: in Sec. Il we present
As high-resolution cosmic microwave backgrou@vB) our analytic approach and derive the spherical harmonic
experiments explore smaller fluctuations in the temperaturgansform of the total intensity beam. A detailed discussion
anisotropy with high sensitivity, a better understanding ofof the effect of ellipticity to first order is provided in Sec. IIl.
systematic effects is required to make more accurate medhese results are validated numerically in Sec. IV. Results
surements. These systematics have a direct impact on tf@r linear polarization experiments are given in Sec. V. We
ability we have to improve the process of CMB data analysigmplement this formalism to calculate full-sky polarization
at the level of map making, power spectrum estimation an(g;orre_latlt_)n functions in Sec. VI._ Errors in temperature_ and
ultimately in constraining cosmological parameters. polarization power spectra are discussed in S_ec. VII. F|_nallyl,
A common simplifying assumption in CMB data analysis we present a general discussion and our main conclusions in
. . . . ec. VIII.
is to take the experimental beam response, i.e., the |socor§—
tours of constant beam response, to have a perfectly axisym-
metric orcircular shape with a Gaussian profile. This theo-
retical approximation introduces systematic errors in the
statistical analysis at angular scales comparable to the beam- et us consider the beam resporBgto the total intensity
width, o. Consistently, it bias estimates probing multipole sky distribution in a CMB temperature anisotropy experi-
orders|~1/o in the spherical harmonic analysise., the  ment. For single-dish experiments with high spatial resolu-
generalization of flat-space Fourier analysis for full-sky sig-tion, the beam geometry can be accurately described in the
nalg of CMB experiments. flat-sky approximation. Within this approximation, an ellip-
As far as the main lobe is concerned, experimental beartical Gaussian window function can be expressed in Carte-
responses fooff-axis detectors are well known to exhibit Sian coordinates,
asymmetricshapes very well described by an elliptical shape
with a Gaussian profile, as discussed for several experiments _ _
in the literature, e.g., Planckl,2], Maxima-1 [3] and B(X'y)_BO(Ua’Ub)eXF{
Python-V[4]. However, the effect of beam asymmetry has
been investigated only recently and the approach taken up where we definer, and o, as the beam widths in the major
now has relied on semi-analyfié] or full numerical integra- (X) and minor(y) axis, and the normalization is given by
tion [1,3]. Bo(oa,0p)=1/(2mo0p).
In this paper we shall introduce an analytic approach to The Fourier transform of the flat-sky elliptical window is
address the problem of beam asymmetry in CMB experisimply given by
ments. In particular, we conveniently describe an elliptical )
Gaussian window in terms of a perturbative expansion B(k, .k )=exr{ _ KyTp
around a circular Gaussian one. As it will be shown below, Xy 2 2
this description allows a simple and intuitive discussion of
the beam harmonic transform, the full-sky correlation andwherek, andk, are the modes along the major and minor
covariance matrices for both total intensity and linear polaraxis of the ellipse, respectively. However, the Fourier analy-
sis is only accurate for small patches of the $kg., patches
covering an area of a few degr smalley.

1. BEAM SPHERICAL HARMONIC TRANSFORM:
TOTAL INTENSITY
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*Email address: fosalba@iap.fr For full-sky CMB analysis we shall introduce a decompo-
"Email address: dore@iap.fr sition of the window function in the spherical harmonic basis
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+l vanishing harmonic transformwhich readgsee Appendix A
B(6,4)=2, > bmYim(6,0) (3)  for the key steps of the derivatipn
I m=-—I
2 2n! B
b = N m O e Lime?) (®)

wherel~ /@ is the multipole order and,,,, are the coeffi-
cients of the harmonic transform,
where z=1262%/2, N, is the normalization of the spherical
harmonics(see Appendix A and L{“)(z) denotes thevth
b|m=J dQB(60,4)Y}(6,0) (4)  order Laguerre polynomials of parameter{see Eq.(A18)
for explicit forms|.
) . ) . ) Replacing Eq(8) into Eqg.(7) one gets the final expres-
whered() =sin ddédé is the differential solid angle. Above, sjon for the harmonic transform of the elliptical beam
we have rewritten the elliptical window functid®( 6, ¢) in

the (plana) polar coordinates,x= 6cos(@—w) and y _ )
= 6 sin(¢—w), bim=0"Nie ZZO Y,mL () ™2, C)

©

62 where we defineN|,=N,_/By, Bo=By/(270?), and
5(0,¢)=Boexr{—ﬁf(¢)} By, n=(2r+m)1/[2273™2(y+ m/2)1(v+m)!]. Note that
b the circular Gaussian beam is recovered whenO, in
which case only them=0 contribution is non-zerobp,
=N,o exd —1%0%/2] 8., 0. Combining the conjugation rule for
spherical harmonicsh}y,=(—1)"b,_,, (where non-zeran
contributors are even for an elliptical bepand the reality
condition of the beam transfornty.=b,,,, one sees that
%hat both negative and positive modes have the same har-

wheref(¢)=1— y cos(¢—w) describes the deviations from
a circular(or axisymmetri¢ Gaussian window and the ellip-
ticity parametery=1— (o, /07,)? is defined within the range
1>x=0. We have introduced an arbitrary phasewhich
defines the orientation of the major axis of the elliptical
beam in polar coordinates. The circular Gaussian window i . .

monic transformb, _,=b,,,. Therefore, in what follows, we

thus recovered for the limiting cage=0. hall ~0 without | f lit
However, the above integral for the spherical harmonic® & assumen=o without loss ot generaiity. .
Equation(9) is one of the main results of this paper. This

transform of the elliptical Gaussian window E@) has no ; ; ;
exact analytic solution and one has to resort to semi—analytigquat'on demonstrates that the leading order correction to the
circular Gaussian window from a givem mode (for m

approaches or full numerical integration to evaluatéséde, ) oo
epgp [4)) 9 & >0) is of order@(x™?). In other words, contributions from

In this section we shall show that E6®) can be solved higher m modes to the elliptical window function can be
analytically by introducing a convenient Taylor expansion ofidentified as higher order corrections to the circular Gaussian

the elliptical (non-axisymmetric window around a circular window.

(axisymmetri¢ one. This perturbative expansion yields a se- For high resolunon expgnmentg,<1 rad, the el!lpt|cal :
ries in powers of the ellipticity parametg beam harmonic transform is dominated by the axisymmetric

or circular contribution to the window functign.e., them

=0 mode. It is important to realize that the circular mode no
longer has a Gaussian profile due to ellipticity corrections
[seev#0 terms in Eq(9)]. To leading order in the smai
expansiori =0 in Eq.(9)], contributions fronm>0 modes
+0(x® are highly suppressed,

2 02
B(ﬁ,(l)): Bo ex;{ - Eg‘l‘ﬁ){ C0§(¢—w)

2

6
~By B(0)+X2—OZB(6)CO§(¢—w)

© bim= Yomx™(a1)™Nige™ "2, m=2,46... (10

Therefore non-circulathigherm) modes only have a non-
where the first term corresponds to a circular Gaussian beanegligible contribution to the harmonic transform with re-
B(6) =exd — #*20*] of beam widthay, (the minor axis of  spect to the circulari=0) mode whenr?l2~1/y, which is
the ellipse; we shall denote,= o in what follows for sim-  well beyond the peak of the window function. The peak of
plicity) and Bo=[fdQB(#,¢$)] * is the beam normaliza- the window is determined from the leading order contribu-
tion. tion to b, Eq. (12). In fact, the peak location and width can

The above expansion of the window function in real spacealso be accurately estimated fromeffectivecircular Gauss-
Eq. (6) leads to an analog expansion in harmonic space. ian window of width,oqs;=o(1+ x/4) 2

n
bim= 2>, b{ % =b{9+b{x+0(x?) (7) This is due to the azimuthal symmetry of the elliptical geometry,
" ' which is realized in the cég factor of f(¢) in Eq. (5).
2Higher-order corrections in the perturbative expansion, (8.
Thenth order term of the harmonic transform can be exactlyi.e., higher-order terms im and m only modify significantly this
integrated. In particular, only evem modes have a non- definition for very large ellipticitiegy=1.
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022 = (1= x14)12 (11) O = 10" x= 0.30 (oy/0= 1.2)

LI A EL L L L B

since y<1. Note also that the window function peaks at ]
increasingly higherl multipoles as one considers higher
(non-circulaj m modes. This is in agreement with recent 15 E
numerical result§4] and provides a simple demonstration
for them. - . \ 1
0.1

Ill. FIRST ORDER ANALYSIS: SLIGHTLY ELLIPTICAL

BEAMS i
QE 0.01 E
For most current and future experiments, such as Boomer- E 3
ang[5], MAXIMA-1 [6] and PlancK 7], the beam is only L m=0 leading order
slightly elliptical, i.e., the widths of the majoro(;) and mi- 10 + first correction \\

nor axis () of the beam differ by less than 20%, 1.2 '
=g,/lo=1 (x<0.3). X :
In this limit, a first order ellipticity correction to the cir- el e 1 L
. . . . 0 1000 2000 3000
cular Gaussian beam would give an accurate approximation Multipole 1
to the actual beam harmonic transform, which yields for the
modesm=0 andm=2, FIG. 1. Ellipticity corrections to the harmonic transform for a
slightly elliptical beam, with ellipticity y=0.3 and resolution

2.2 X 0 =10'. (Solid lines Leading order termgfor m=0 andm
bio=Njoe ™" /2{ 1- Z|202 +O(x%) (12) :Fg)H.MThe firs(t correctiog to the c?rculan(:O) rﬁode(dashed ling
is of the same order and peaks at the same multipole as the leading
% - order term for the non-circulamf{=2) mode(dot-dasheq
bio=Njo5 120%™ "7+ O(x?) (13
8 for the linear polarizatiorisee Sec. ¥, we shall concentrate
. here on the total intensity window as the results for polariza-
which shows that tion are a straightforward generalization of the total intensity
ones.
b|2=)§(|202b|o+ O(x? (14) First of all, we shall test whether the perturbative series

Eq. (8) is accurate and how fast it converges to the numerical
. o _ solution. This analysis is done in Sec. IV A. In addition, we
From this equation it is straightforward to see that Jor  gpg|| see in Sec. IV B to what extent thealing solutiorfor

<1 the leading order contribution from time=2 mode isa  ho higherm modes of the window, Eq10), is a good ap-
fe;/vz percent of that frorm=0 at the peak of the window roximation to the exact solution. As will be discussed in
ol pea=1/2 [see Eq(11)]. . . Sec. IV C, prescriptions for an accurate computation of the

However, notice that for the circular mode of the window, window function from the perturbative solutions naturally
Eqg. (12), the linear correction to the circular Gaussian win- |ead to a criteria as to how many higheron-circulaj m

dow [the second term in Eq12)] is of the same order and modes have to be included in a consistent analysis of ellip-
peaks at the same multipole as the leading term in the nonycal windows.

circular (m=2) mode[see Eq(13)]. Therefore, both correc-
tions have to be included to compute the harmonic transform
of the elliptical beam consistently. This is illustrated in Fig. 1 _
for an elliptical beam withy=0.3 (o,/o=1.2) and frypuu To test our approach, we shall compare the analytic re-
=10, sults, Eq.(9), to a full numerical integration of Eq4) using
Similarly, for highly elliptical beams, higher ordgrcor- & Runge-Kutta method of fifth ord¢B]. The fast conver-
rections to the circular mode become non-negligible and@@nce of the analytical expansion is illustrated in Fig. 2.
consequently higher non-circular modes have to be incorpdndeed, in this figure we consider for one single beam size,
rated to calculate the harmonic transform accurately. Explicifrwam= v8In20=10", two different values of the ellipticity
expresssions for the window function up to second order ifParameter,x: x=0.75 (0,/0=2.0) and x=0.30 (oa/0
the ellipticity are given in Appendix A, EqA20). This result ~ =1.2) shown in the left and right panels, respectively. The
arises naturally in the perturbative approach to the harmonigpper panels display the expansiaff} for variousn. In both

A. Probing the convergence

analysis of elliptical beams. situations, the convergence is seen to take place for rather
small n. Comparing these two columns we see also that, as
IV. NUMERICAL INVESTIGATIONS expected, the greater the beam ellipticitys, the higher the

number of terms needed to reach the convergence. Both
In this section we shall validate the analytic results prethese statements will be discussed quantitatively below.
sented in the previous sections regarding the total intensity The lower panel illustrates this statement by drawing in-
window. Although the same validation has been carried oustead the ratio of the individualth order terms to the Oth
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X= 0.75(3,/0=2.0) By =10 x= 0.30(0,/0=1.2) B =10'
8 [T T [ e e
i ___n=0 (Gauss)|
........ n=1 ]
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FIG. 2. Probing the convergence. Considering two different eI—t

lipticities of a given beam of width9gyyy=10", we plot in the
upper panel thath order expansion df,,, and in the lower panel,
the ratio of thenth order correction to the Oth one. Both plots
illustrate the fast convergence of tlyeexpansion.

order oneg(for the same values af as in the upper panels of
Fig. 2.

B. Higher m modes contribution

An analogous behavior as the one illustrated above for the

m=0 mode convergence is seen foi= 0. We note here that
odd m modes are null and that onty=0 modes are consid-

ered since negative modes have exactly the same harmon

transform,b,,=b,_,, (see Sec. )l Assuming this conver-
gence, we now examine the amplitude of the highenodes

contribution, as they were derived analytically in Sec. II.
This is illustrated in Fig. 3 for a beam of the same width, i.e.

0 1000 2000 3000
Multipole 1

FIG. 3. Higherm modes in the elliptical window spherical
transform.

PHYSICAL REVIEW D65 063003

Orwum=10", and for 3 different values ofy, namely y
=0.17 (o,/0=1.1), x=0.30 (04/0=1.2), and x
=0.41 (o,/0=1.3). We plot here thath order expansion
of by, for m=0,2,4 wheren is high enough so that this
expansion is fully converged.

The scalings demonstrated in E40) are clearly visible.
First we check thamm>0 modes amplitude scales asl{™,
making them not only sub-dominaust a few percent con-
tribution to the beam transform as compared to circular mode
m=0) but also shifting their peak to highkasm increases.
Second we also check the scaling with the elliptici’?,
which clearly implies that the smallgr, the more drastically
them>0 modes are suppressed.

A direct comparison with the approximasealing solu-
tion for the higherm modes Eq(10), is shown in Fig. 4. In
particular, the plot shows both the fully converged expansion
of thesem=0,2,4 modes and thecaling solutionfor rather
small values of the ellipticityy. We see that both the peak
position and the amplitude are pretty well reproduced. There-
fore the scaling solution, Eq10), is found to be a satisfac-
tory description of such sub-dominant terms in the descrip-
ion of the elliptical beam transform. Note, however, that the
larger the beam ellipticityy, the worse this approximation
turns out to be.

C. Prescriptions for an accurate analysis

As was shown above, the convergence of the perturbative
development is fast enough so that very few terms of the
expansion are needed. To quantify this convergence and to
define some useful prescriptions, we compare it to exact nu-

10

i

10-3
Oy = 10°
10_4 | x= 0.17 (o, /0= 1.1) x= 0.30 (0,/0=1.2)
full pert. full pert.
— — — approx — — — approx
10—5 IIIIIIIIIIIIIlII IIIIIIIIIIIIIIII

0 1000 2000 30000 1000 2000 3000
Multipole I Multipole I

FIG. 4. Probing an approximate computation fof, for m
=2,4. Considering one beam of wid#h,y=10", we plot both
the converged expansion bf,, and an approximate evaluation of it
as defined in Eq.(10). The left panel corresponds tg
=0.17 (0,/0=1.1), and the right one tg=0.30 (05/0=1.2).

In both situations, the peak position and its amplitude are well
reproduced.
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TABLE |. Required number of terms in the ellipticity expansion, Eq8), to achieve a precision greater
than 1% up td .= 5l peax for beams of differen®gyv and ellipticity x.

x (0al0) 0.17(1.1) 0.30(1.2) 0.40(1.3) 0.49(1.4) 0.55(1.5)
Orwim | peak 548 531 519 509 502
10 n 2 3 4 6 6
Orwhm | neak 1097 1063 1039 1020 1005
5’ n 2 3 4 6 7
merical integration and determine the ordeof the b, ex- Following standard notatior(see, e.g.,[14-1§), the

pansion needed in order to obtain an agreement better th&tokes parameters of the beam are decomposed in the spin-2
1% up t0lyax= 5l peak: Wherel e,y denotes the maximum  spherical harmonics basis, Y, as

of the window function as defined in E@ll). Some pre-

scriptions are summarized in Table I, where we write this 1 .

order for two different beams of full width half maximum, —(Q=i0)=2 (b Fib)+2Yim (15
Oewum=5" and 10 and a set of reasonable ellipticities. V2 m

Even if we see that naturally the greater the ellipticity, the
greater is the required, as a matter of fact, in most of
practical situations(see Sec. VIIJ, 3 terms at most are
needed.

Note that this criteria is very stringent and if we require,
say, only a 2% accuracy at the peak level, only 1 ellipticity
correction is needed foy<0.3, i.e.,o,/o<1.2.

The numbers presented in this table lead to another re-
quirement. Indeed, as was discussed in Sec. llntheorder  from which it follows that
correction to them=0 mode is of the same order as the
leading order contribution to thew=n mode (m even [see 1
Egs. (9) qnd (101 Th.us to be_ s'el'f—conS|ste.n|ﬂ,1e hlghes§ bﬁn:—j dO[(Q—i0), Y, +(Q+i0)_,Y5,],
perturbative order, n, in the ellipticity corrections to the cir- 242
cular (m=0) mode of the window, |, should match the
highest-m mode considered for an accurate computation of —j o o
the full beam transform, h. For example, Table | implies bﬁn:_\/—J dO[(Q—iU),Yin—(Q+iU) _,Y},
that to handle properly the elliptical beam effects at a 1% 2v2 an
precision tilll 4= 5l peak, €.9., for a beam obgyy=10,

we have to includen=2 mode fory=0.17 or 0.30, while \yhere the above expressions assume that the available power
one has to includen=2,4 modes fory=0.40, and so forth. {5 gach of the modes3,C) is 1/2 of the total intensityi.e.,
we assume fully polarized detectors, with no sensitivity to
V. BEAM SPHERICAL HARMONIC TRANSFORM: circular polarization Note that thisG (gradienj andC (curl)
LINEAR POLARIZATION components of the linear polarization are simply linked to
Sthe E andB ones, respectively, in the following way,

Equivalently, the harmonic transform of a linearly polarized
beam in terms of the so-called gradier™ and curl “C”
components reads

1 - _
b%iibﬁnzﬁf dQQFi0)., Y}, (16)

The CMB radiation is expected to be linearly polarized a
caused by Thomson scattering of CMB photons off hot elec-
trons primarily at the surface of last scatterisge[9—12)) bffy=—2b5, bi,=—2bf,; (18)
while the foreground Galactic emission is observed to be ) ] ) o
linearly polarized as welisee, e.g.[13] for recent reviews Se€[19] for a pedagogical discussion of tBeB polarization
and references thereirThus we shall focus here on the de- modes. For a pure co-polar bedire., for an ideal optical
tection of linearly polarized radiation and neglect circularSystem and telescope, sei]), we have
polarization in what follows.

The case for a linearly polarized beam with an elliptical Q=iU=-B(g,¢)e*%? (19
shape can be treated in an analog way to the formalism de-
veloped in Sec. Il for the total intensity beam. whereB( 0, ¢) is defined as in Eq5). Equation(19) reflects

Linearly polarized radiation can be conveniently de-the spin-2 nature of linear polarization in thé, ¢) basis.
scribed in terms of the so-called Stokes parameémﬂdo Let us evaluate the harmonic transform of the linearly

(note that we us& to denote beam parameters, as oppose olarized beam. U;ing the parity symmetries for an elliptical
to sky parameters(). Stokes parameters of a plane wave are eam(see Appendix B

related to the amplitudes of the electric field of the wave in c G c s

two directions orthogonal to the wave propagation direction. bm=ibiy, b n=—ib, (20)

063003-5
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and the generdjintrinsic to the definition of th&s,C com- N
: ; G 10 ~12622 4 _ X 12 2 2
ponentsy parity transformations, b=~ ﬁe ale 11— ZI o |+ 0(x%) (25
b m=b, P=G,C (2D) N
X 2 2
hs = — 10 X125267120%12 4 (12 26
one realizes that the harmonic transform of linear polariza- 228 7 X (29

tion can be fully determined from one of the two components
alone, sayG. Moreover, both negative and positive modesand therefore,
have the same harmonic transform. Thus, in what follows,

we shall assumen=0 without loss of generality. c_Xi2 2.6 2
In full analogy with the total intensity computatiaisee biz=g "o biz+ O(x) @7
Sec. I) we introduce a perturbative expansion of the ellipti-
cal beam, and the same expressions hold for negative modebyas
=bC,. This is in full analogy with the scaling relation be-
X" tween highem modes found for the total intensity window,
bS =2 bEM = =bCO+bCMy+0(x?). (22  Eq.(14.

=
. n Whenever the beam ellipticity is fairly large, one has to

) ] ] ~consider higher-order corrections in the ellipticity to com-
This expansion can be exactly integrated for any order in apyte accurately the window function. Explicit expresssions
analogous way to the total intensity case and yiét#® Ap-  for the window function up tsecond ordein the ellipticity
pendix B for the basic steps of the computajion are given in Appendix B, EqB22).

©

bl(?nzo-mile%eiZE y,,'m,zLE,mfz)(Z))(”m/zfl 23 VI. FULL-SKY POLARIZATION CORRELATION MATRIX
v=0 Linearly polarized radiation is described by the total in-
tensity T and the Stokes paramete@sand U. If the CMB
where we defineNCG = —12™M,,/(4\/2B,), and the coeffi- polarized radiation is Gaussian distributed, one neaqsi-
cients y, n—» are the same as those defined for the totabri, six statistical quantities to characterize correlations
intensity Eq.(8). The normalizatiorM,, is given in Appen- among them. It is more convenient to use linear combina-
dix B along with the basic notation for the spin-2 harmonics.tions of the Stokes parameters with different parity proper-
Note that, up to the normalizatidkl,%, the linear polar- ties, the so-calle& (or gradientG) andB (or curl C) modes,
ization beam transform Eq23) is formally the same as the for which only four correlations are non-vanishing. Namely
total intensity one, Eq(8), with the index for them modes  the correlation betweek and T modes and the three auto-
shifted bym—m~—2. This shift is introduced by the differ- correlations.
ence in the spin indeg between the linearly polarized beam  Following [21] we will consider the correlation matriM

s=2 [see Eq(19)] and the total intensity beas=0. between two arbitrary measurements in the sky
In particular, Eq.(23) shows thathe m=2 mode domi-
nates the harmonic transform of the linearly polarized ellip- (TaT2)  (TaQy) 0
tical beam Note that for a circular Gaussian beamp=0) M(ny,n)=| (T1Q2) (Q1Qy) 0 (29
only the m=2 mode is non-vanishing. To leading order in 0 0 (U,U,)

the ellipticity expansiof »=0 in Eg. (23)] one finds that

contributions fromm=>2 modes are subdominant: where 1,2 denote the directions,n, in the sky. The cross

terms(T,U,)=(Q,U,)=0 as required by symmetry under
parity transformationgsee, e.g.[17]).

The entries of the correlation matrix are defined as fol-
lows:

m/2—1(0|)m—2 Nig e—lzazlz (24)

242

with m=4,6, . . .. Inparticular, one finds the same suppres- _/p* (A o
sion of highem modes with respect tm= 2, in full analogy (P1P2) = (Peri(N, 01)Peri(Nz,02)),
to the results for the total intensity E(LO). Also, the linear
polarization window function peaks at increasingly higher Peff(ﬁ,w)=J dQD(¢,0,0)P*P (29
multipoles as one considers higlamodes, as was the case
for the total intensity window.

The expressions for the first non-zerocontributors (n
=2 andm=4 mode$ up to the first ellipticity correction are

bl?n: — Yom-2X

where P is the result of convolving the polarized beam
P=T,0,U with the sky,P=T,Q,U.

In this formalism the “scanning strategy” of a given ex-
periment is obtained by specifying the Euler angles as a

3Note that these conjugation rules are consistent \iff{ and fu[‘Ction of time t, (4(1),6(1),w(t)), where n
[20], and are inconsistent by a factor ()™ with respect td21]. =n(6(t),p(t)) gives the pointing direction of the beam and
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w(t) is the rotation angle around the pointing direction (aﬁ:aﬁm,):CFénrﬁmmr, P=T,G,C (39

which specifies the orientation of an asymmetric bearg.,
the major axis orientation for an elliptical Gaussian bpam and we have introduced the “2-point window functions”
with respect to a fix reference orientatipgg., w(t=0)].

Accordingly, the rotation operatdd (¢, 6,w) acts on the bPP = E D', bP*bP', P=T.G (40)
beam so that it takes all possible orientations with respect to L MMM M ’
a fix reference frame in the sky22,18. Simple scanning ) N
strategies allow a convenient decomposition of the rotatiofvhere hereafter we drop the tilde to denote beam quantities
matrix D(¢(t),0(t),w(t)) for the implementation of fast (i.e., we takeP— P) to ease notation. We note that the first
methods to compute the full-sky convolutid22,18. In non-vanishing contributions to the total intensb)T{nzb,m
what follows we shall suppress the time dependence of thenter atm=0, while linear polarization beants, have the
Euler angles to simplify notation. first non-zero contributor fronm=2.

Decomposing the polarization field in spin harmonics one  The rotation matrixD',, ., above readfsee Eq(2) in Sec.
finds the following expressions for the Stokes parameters of 7 1 gng Eq(5) in Sec't/l4h{|7.2 of23]]

the beam convolved with the skgee Eq(5) of [22] and Eqg.
(39 of [18]} D= wz,ﬁ,y—wl)=d'MfM<ﬂ>e—”M’<“‘wz>+M<7‘(‘°M)
41

— I * ¥
Terr=2 [Dmu(.0,0)*blyam B0 \here the Euler anglesy(8,7y) of the resulting rotation ma-

trix are[EqQ. (6) in Sec. 4.7.2 of23]; see alsd4]],
Qert=22 [Dhw(,60,0)1* b af (3D cota= oS0, COl ¢p;— ¢h,) — COt B, SN 0,6SC 1 — )

COSB=C0S#, c0SH,+SiNh, SinO,cSd pq— p5)
Uett=22 [Diyu( .6, 0)1* bt af, (32) .
Coty=Cc0Ss64 Cot( b1 — ¢p,) — COt O5 SiN H,CSA b1 — p5)

42
where we define aj,=(a,m+a_om)/2y2 and iaf, 42

=(a2,|m—a_2,|m)/2\/§. and the orientation of the beam at pixels 1 and 2 is given by

Note that for the linear polarization paramet€dJ, an  w; andw,. Theirreducible rotation matricegsee Eq(2.17)
overall factor of 2 accounts for the fact that bathandC  of [24] and Eq.(4) in Sec. 4.3.1 of23]] read
modes contribute equally to the transform of an elliptical
beam.

The polarization correlation matrix can be easily com-
puted making use of symmetry properties of the rotation ma-
trices and the addition theorem of rotatiofsee Appendix X (€osBl2)? "M 2 (sinp/2)H M (43
0,

La+mrd=m+m!(-m!]H
tt(l+n=-t)!(l=-m—t)! (t+m—n)!

d'nm(/s)=2 (1)

where t is summed up for all values which yield non-
negative factorials. These matrices give the dependence of
<T1T2>:2| b/'C/ (33)  the polarization correlation functions on the separation

lag) angle in the skyB=n;-n,. Thus, predictions for the
polarization correlation matrix for cosmological models of
(T1Q,)=2> b/Cc]C (34)  the sky signal convolved with an elliptical window assuming
! a particular scanning strategy are given by E@, (23),
(42), and (43). The polarization correlation matrix thus ob-

(T1U,)cCl®=0 (35  tained can be used to compute the likelihood functions and
the Fisher information matrix for a given sky realization of a
(Q.U 2>ocCIGC:O (36 cosmological model convolved with an elliptical beam.
Slightly elliptical beams
(QuQz) =43 bfeCP (37) Iny &b

Provided the beam ellipticity is smalj(1) a first order
ellipticity correction to the circular Gaussian beam vyields a
good approximation to the elliptical beam transfofsee
Sec. lll). Consistently, one can expand the polarization cor-
relation functions to first order in the ellipticity expansion.
where we have used the fact tHaf°=CF¢=0 as follows For this purpose, first we need to write out explicitly the
from the general property that tHieG harmonic coefficients ~first terms of the 2-point window,
of a field transform differently under parity than tkehar- P’ | upLp’ R
monics. The power spectra are defined as b =Dogbiobio + Dodiobyp +- - (44)

<u1u2>=42I bPeC’ (38)
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where we have taken the real part of the 2-point function as
we want to compute the polarization correlation functions

that are observable and therefore real. Equaidah for the

case of the total intensityR=T) is in agreement with Eq.

(33) in [14]. Introducing the expansion of th&-poind win-
dowsb/,, to first order in the ellipticity Eqs(12), (13), (25),

and(26) into Eq. (44) one obtains the following expressions

for the correlation functions:

21+1

—|20'2

(T{Ty)= E cl

Doo+ |202(D|02_ D o)}

+0(x?) (49)

—(T1Q2)= ﬁEl c'®

X
Do+ g120%(Dogt D'22—4D'02>}

21+1
X(W o) (46)
1f21+1

<Q1Q2>:EI CG Dzz"‘_l2 2(Db,—2Db,) (? ~120%
+O(X2) (47)
I 12141} 2,

<U1U2>:2| CF_DI22+Z|202(D|24_2D|22)_ T :
+0(x?) (48)

where the sum involving the rotation matric%M, is re-
stricted tol=M+M’, and

D o= dool B) = Pi(cosp)

Do,=doA B)[COS 2x+COSs 2y]

D5,=db(B)cos Aa+ y)
+(=1)'dyf(m—B)cos Aa—y)

D s= doa( B)[ COS 4x+ COS 4y]

Db,=db,(B)[cog2a+47y)+cod4a+2y)]
+(—1)'dyy(7— B)[cog2a—4y) +cod4a—27)]
(49

where we have to replace— a— w,,y— y— w; to intro-

duce the beam orientation in the above equations, as det
mined by Eq(41). We have used the symmetry properties of

the d-rotation matricegsee Sec. 4.4, Ed1), in [23]]
dun(B)= (=DM My (B),

du-m(B8)=(—1)"Mdyy. (7= B),
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TT Correlation Function

0.8 x= 0.30

Gaussian e
Linear correction — _ _ _

0.6 | , .
Gaussian + Linear

0.4 -

<T T (8)>

opl o b
8/c,

FIG. 5. Temperature correlation function for a slightly elliptical
beam. It assumes a flat power spectr@ys const.(Short dashed
line) Correlation function for a circular Gaussian beathong
dashed ling Linear ellipticity correction assuming the beam scans
the sky in ecliptic latitude and a fixed beam orientation in the sky.
(Solid) Total correlation function(Gaussian+ linear correctioh
Thick lines assumey=0.3 (o,/0c=1.2) while thin lines corre-
spond toy=0.17 (o0,/0=1.1).

and the reality condition on the correlations functions. The
irreducible d;,, matrices can be expressed in terms of Leg-
endre polynomials by relating the previous to the spimar-
monics[see Eqs(3.4), (3.11) in [25]],

| 4
dsm(IB): 2|+1 sYim(8,0)

(50
Fors=0,2 one get$see Eqs(A4) and(B2)],
do(B) =\ Pl cosf),
om (I+m)!
| (I=2)11-mt
dom(B) =2 m—zH (cospB) (51)

and _,P["(cosp) are given in Eq.(B4). This explicitly
shows that the ellipticitfasymmetry of the window func-

tion introduces a dependence of the correlation functions on
the scanning strategy, as parametrized by the angles
(a,B,7). We stress that the above equations are appropriate
for a full-sky analysis, since the small-angle approximation
is only taken for the beam geometmyhich is of small extent

R radians.

In Fig. 5 we display the temperature correlation function
(TT) (we drop sub-indices labeling sky pixels to ease nota-
tion) for a slightly elliptical beam Eq33). We assume a flat
power spectrumC,=const. This allows us to emphasize the
effect of the window function irrespective of the underlying
cosmological model assumed. For the case shown in Fig. 5

063003-8



ELLIPTICAL BEAMS IN CMB TEMPERATURE AND . . . PHYSICAL REVIEW D65 063003

TT Correlation Function TQ Correlation Function
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E A\
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0 2 4 8 0 2 4 8
6/0, 6/co,
FIG. 6. Same as Fig. 5 but for the absolute value of the corre- FIG. 8. Same as Fig. 7 but in logarithmic scale.

lations in logarithmic scale to emphasize small residual correlations
induced by the beam at large angular separations. Only lines for 8 hecause pixels within this angular separation are seen as a
ellipticity of x=0.3 are shown for clarity. single smeared pixelAlternatively, for §= o, the ellipticity

) o _Increases the correlation between sky pixels. This correlation
we assume that the telescope scans the sky in ecliptic Iatltuclf-eakS at9=20,, where it yields a 20% correctiofior x
(Le., a=y=0) and that the beam hits a given sky pixel —g 3) to the Gaussian correlation function and decreases
always with the same orientatighe., we consider correlated monotonously for larger distances, as expected. However, a
pixels for beams aligned in the skwhich provides an upper ¢joser look(see Fig. & reveals that some small residual anti-
limit to the effect of ellipticity on the correlation functions. ~qrelations induced by the ellipticitiat the level of 10°)
This is because scanning strategies that observe a given Skymain at large distances which might be a reflection of the
pixel with a different orientation of the beam each time it |injtations of a linear order analysis. Non-linear terms in the
scans over it tend to average out the impact of beam asymyjipticity expansion are expected to cancel out these long-
metry on full-sky estimators. range correlations.

_ As seen in the plots, the linear ellipticity correction to the  Cross correlations for temperature polarization and linear
circular Gaussian window introduces an anti-correlation forpolarization auto-correlation functions are shown in Figs.
pixels separated by< o, (the major axis beam widihThis (7),(8), and (9),(10), respectively. In particular, we see that

) ) the effect of ellipticity is comparable for the temperature
TQ Correlation Function auto-correlation( TT) and cross-correlation functiod Q)
' ' =030 o017 (at most a 15% correction to the Gaussian correlationyfor
'r SN, Gaussian ] =0.3), while tends to be less significant for the linear polar-
[N\ near correction — — - — —1 izati ' f t correctiopnNotice that the
Caussian + Linar ization(QQ) (just a few percen i N
T angular scale for the transition between negative and positive
ellipticity-induced correlationgfirst and second bumps in the
logarithmic scale plotsis shifted in the correlations involv-
ing linearly polarized windows with respect to the case for
the temperaturéor total intensity discussed abovesee Figs.

5 and 6.

VII. COVARIANCE MATRIX

<T Q (8)>

In this section we shall discuss the covariance of
the power spectra for elliptical beams in the presence
of uncorrelated noise, following the standard formalism
developed for circular windows [26] (see also

FIG. 7. Cross-correlation temperature polarization. Conventions *The noise is assumed to be uncorrelated between different pixels
are the same as in Fig. 5. and between temperature and linear polarization measurements.
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QQ Correlation Function

—
x= 030 017
1} -

> Gaussian _———— m— -
® Linear correction —o— |

\ Gaussian + Linear
0.8 -\ e

<Q Q (8)>

FIG. 9. Linear polarization correlation function in terms of the
StokesQ parameter. Note that for the case shonflat power
spectrum, (QQ)=(UU). Conventions are the same as in Fig. 5.

[16,17,15, 27,21,20. In particular, we shall use this formal-

PHYSICAL REVIEW D65 063003

Similarly for linear polarization, one obtains from the lowest
m-mode contribution ifh=*=2) [17,27),

/ 2 ~ -
A(CD)= m[cf’w Y(2b%) 2] (53

sky

whereP=G,C, and for the cross-spectra

1
A(C®)= V m{(CFG)ZHCHW*(b%)*Z]

X[CP+w™(2b5) 2]} (54)

where the factor of 2 in the polarization windows accounts
for equal contributions fromm=*=2. The factorsAl and
fsky in the above expressions account for the binning in
space use@wve assumed | =75 for all experimengsand the
fraction of the sky observed by the experiment, respectively.
The weight per solid angle iwz(agixwpix)‘l while the
noise per pixebpix=s/\/tp7 depends on the detector sensi-
tivity sand the observing time per pixgl;,. The pixel solid
anglew,ix= Opwnm X Opwrm - The above expressions for the
noise associated with the power spectra estimation, Egs.
(52—(54), assume that all detectors in the experiment have
the same noise properties and main beam response.

ism to estimate error barS f0r the pOWer SpeCtI’a for e"|pt|Ca| Note that po'arization power Spectra have twice as much
window functions. For this purpose we shall assume that th@gise per pixel as the temperature spectrum since only half of

circular mode of an elliptical window, which has reon-

the total power is available to each polarization mo@eahnd

Gaussianprofile, yields an approximately unbiased estimatecy This is accounted for through the normalization of the

of the actual error bars, as we shall argue below.

The covariance of the temperature power spectﬂ),?n
can be easily computed for the circular mode={0) of the
window function[26]

2
MCH= N GrrpyarC W o) 7 (52

sky

QQ Correlation Function

AN
\\
TN T
0.01 | \/ \ - =
TN E
- i \/ \ ]
10 | | \ T
A E |, \ / E
s f ! \/
~ 104 | ” .
@ E | |
@ [ x= 0.30 |
v 10-¢ i Gaussian _———- -
§ Linear correction __ __ E
[ Gaussian + Linear
10-¢ N RS RSN |
0 2 4 8

0/c

a

FIG. 10. Same as Fig. 9 but in logarithmic scale.

window functions[see factory2 in Eq.(16)].°

We stress that the above expressions only include the
leading order in then-mode expansion of the elliptical win-
dow. However, this is a good approximation(ie., it is the
dominant term in the exact window function for elliptical
beams as discussed in Sec. lll. In principle, this analysis
could be rigorously extended to include highmmodes of
the window by computing they,,,’'s of the sky map con-
volved with the elliptical window, from which the power
spectra of the convolved map and their associated errors can
be calculatedsee Appendix A.2 ih128]). However, thorough
numerical analysef3]; see alsd1]) we show that an azi-
muthally symmetrized component of the window yields an
unbiased estimate of the power spectrum within a few per-
cent, which suggests that non-circular modes of the window
function can be safely neglected, at least for slightly ellipti-
cal beams.

Predictions for the theoretical error bars for the tempera-
ture power spectrum for current CMB experiments are
shown in Fig. 11. Experimental parameters are taken from
[29,30 (MAXIMA-1), [31,32 (Boomerang@ [33] (Ar-
cheop$ and [34] (Planck. The figures used correspond to
averages among channels and they only intend to be illustra-
tive. Note that for Archeops and Planck the experimental
numbers given are just nominal. It is seen that the pixel noise
enlarges the error bars at multipoles 1000, except for the

SAlternatively, one can define different pixel weightsfor tem-
perature and linear polarizatiow”=2w" (see, e.g.[17])
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ERRORS IN POWER SPECTRUM (SINGLE BOLOMETER)
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FIG. 11. Errors in the power spectrum estimation for current and Multipole 1

future experiments. It assumes an underlying standa@DM

model. Pairs of linegabove and under the mean power specirum FIG. 12. Errors in the power spectrum estimation from a single
show different estimates for the theoretical error bars according t¢00 GHz detector of the Planck satellite. It assumes the same ex-
different choices of the window function: short-dashed lines areP€fimental parameters as those given in Fig. (fhdttom right

predictions for a circular Gaussian window of beam width given byPane). Solid lines show the mean theoretical power spectra and
the minor axis of the ellipser, solid lines correspond to the ellip- their error bars for realizations of the sky convolved with a Gauss-

tical window to first order, Eq(12), while long-dashed lines are 1@n beam. Dashed lines show the analog error bars for the case of an
obtained from areffective circular Gaussian windoaf beam width ~ elliptical beam. The upper panel displays the temperature anisot-

Oori= a0, Whereo, is the major axis of the ellipse. In all cases, "™0PY power spectrum, the middle panel shows the cross temperature
a binning inl space is used of width| = 75. polarization(in terms of theG mode, while the bottom panel cor-

responds to the polarizatiofis(mode.
Planck satellite experiment. Main differences between error
forecasts for different experiments are due to the sky cover- Beyond these multipole§.e., for smaller scalgshe ef-
age and noise per pixdfor a single channgl It is also  fect of the ellipticity of the window becomes significant.
observed that the error bars computed for a Gaussian wirMoreover, using a circular Gaussian window clearly under-
dow underestimate those of an elliptical windfgomputed estimates error bars for elliptical beams approximately com-
according to Eq(12)]. However, to first order the error bars puted according to Eq$12) and (25) for the total intensity

for an elliptical beam can be well approximated by using anand linear polarization windows, respectively.
effective Gaussian windouf the formb,o=exd —t?c,072],

whereo, ando are the major and minor axes of the ellipses VIIl. DISCUSSION
of a constant beam response.

A detailed analysis of the expected error bars in the power As cosmic microwave backgroun@CMB) experiments
spectra estimation, including polarization for the Planck satimage the sky at finer spatial resolution with higher sensitiv-
ellite (single 100 GHz channglis summarized in Fig. 12. As ity, new relevant systematic effects have to be properly taken
discussed above, the high sensitivity of the Planck satellitgare of in the process of data analysis in order to consistently
allows a clean recovery of the CMB power spectra up to extract cosmological information down to the smallest scales
=1000 with a single channel datdexcept for the probed by the experiment. The asymmetry of the beam re-
C-polarization mode, see belowin fact, pixel noise starts sponse is becoming an increasingly important issue which
enlarging the error bars for the temperature anisotropy powetias been largely neglected until recently in CMB studies.
spectrum at=1500(see the upper panel in Fig. 1For the In this paper we have introduced an analytic approach to
cross-spectrum temperature polarizati@ rfiode one finds  describe the effect of beam ellipticity in CMB experiments.
that pixel noise becomes dominant Et1000 (see the This approach is based on a perturbative expansion around
middle panel whereas for polarizationd mode, this hap- the geometry of a circular Gaussian beam, which yields a
pens at lower multipoleb~1000 (see the lower panelWe  series expansion of the elliptical Gasusian beam in powers of
have checkedalthough this is not shown in Fig. 12 for the the ellipticity parameter. There are several advantages of in-
sake of clarity that for the polarizatiorC mode error bars troducing a perturbative approach to discuss beam ellipticity.

become pixel-noise dominatedlat 500 as the signal is typi- It provides a simple and convenient way of integrating the
cally (i.e., for standard CDM model$ound at a few percent beam harmonic transform for the total intensity and linear
level of that in theG mode. polarization.
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In most of current experiments the beam ellipticity is axes of the ellipse. Note that for slightly elliptical beams
small(we shall refer to these as “slightly elliptical beams”in (y—0), oesr~0o(1+x/4) which is approximately the
what follows, i.e., the beam full widths along the major and width of the circular mode of the elliptical windovy,, as
minor axes differ by 10—20 % at most. This implies that, indiscussed in Sec. Il. This explains why for quasi-circular
practice, the perturbative expansion truncated to low orderg/indows, o= \o,0 provides an accurate estimate of the
describes the harmonic transform with high accuracy up tg@ower spectra error bars.
very high multipoles. We shall emphasize that in our approach we introduce the

The perturbative expansion allows a simple qualitativeexperimental beam in thiéme stream while the “effective
discussion of the role that differemh modes play in the beam”in thepixel domainis the result of multiple observa-
beam transforngsee, e.g., Sec. )l In particular, the relative tions of the same sky pixel with different orientations of the
weight of these modes is assessed by working out how theyeam(and possibly with a different noise leydbr general
depend on experimental parametésy., width and elliptic-  scanning strategies. This implies that non-circular modes of
ity of the beam. This information cannot be directly ex- the effective beam are expected to cancel out to some extent
tracted from a non-perturbative solution. and therefore the “effective” circular component of the beam

The full-sky polarization correlation matrix can be most should yield an almost unbiased estimate of tBg as
simply discussed for the “slighly elliptical beams” for which shown by recent numerical analy$gee[33]). Therefore the
deviations from the circular Gaussian beam results can beominal ellipticity in the time domain will be typically larger
explicitly derived. than the final effective ellipticity on the map. In the discus-

In particular, we have obtained analytic solutions for bothsion of the estimated errors in the power-spectrum presented
the total intensity(temperature anisotropyand linear polar- in Sec. VII, we take the effective ellipticity to be the same as
ization window functions. The main results are given in Secthe one defined in the time stream and thus our estimates
I, Eq. (9) and Sec. V, Eq(23). must be taken only as upper limits to the actual effect of

Our findings show that the circulam=0) mode domi- window ellipticity.
nates the total intensity window function, although the first The issue of beam asymmetry here discussed is particu-
non-circular(higherm) modes cannot be neglected in a con-larly relevant for future high-resolution and sensitivity CMB
sistent analysis. The reason for the latter is that higher anisotropy experiments, especially those measuring also po-
modes in the beam transform can be identified amongst thi@rization, such as the Planck satellite.
higher-order corrections in the ellipticity expansion around In a future work[35], we shall validate the elliptical
the circular Gaussian window. This provides a simple explamodel for the beam asymmetry presented here in the pres-
nation for previous semi-analytic and numerical results in theence of other systematic effectson-elliptic beam distortion/
literature. asymmetry, pointing errors, other sources of noise,).etc.

For linear polarization, we found that=2 is the domi-  Such an analysis will show under which circumstances beam
nant mode but again, higher modes<£2,4,...)must be ellipticity is a major systematic effect in a realistic analysis
included to compute accurately the window function. of a CMB experiment. Some recent work along these lines

Numerical integration validates our approach and pro-has already been done for the Planck satelB@, although
vides practical prescriptions for how many terms in the perthe formalism used is only valid for small patches of the sky.
turbative expansion of the circular mode of the window have
to be taken to achieve a given accuracy. This in turn trans-
lates directly into how many non-circul@nigherm) modes
contribute non-negligibly to the window function of the el-  We would like to thank E. Elizalde, E. Hivon, R. Juszk-
liptical beam(see Sec. IV A iewicz, S. Prunet, E. Simonneau, and especially R. Stompor

We have implemented our analytic solutions for the ellip-and R. Teyssier for many useful comments and discussions.
tical window function to derive expressions for the full-sky PF acknowledges the CMBNET for financial support.
polarization correlation functions for elliptical beanisee
Sec. V). In particular, we have derived simple analytic ex-
pressions for slightly elliptical beams, taking into account the
beam orientation and scanning strategy of a given experi-
ment. We find that, for simple scanning strategies, the ellip- |n this appendix we present the key steps for the deriva-
ticity of the beam induces additional correlations of the ordettion of the spherical harmonic transform for the total inten-
of 20% for small angular separatioffew beam widthswith sty beam Eq(9). In the flat-sky limit (¢—0) the elliptical

respect to a circularly symmetric Gaussian beam. beam shape can be expressed in Cartesiay) (
Finally, we have investigated the impact of beam asym-

metry in error estimation for CMB power spectra in the pres-
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APPENDIX A: PERTURBATIVE EXPANSION OF THE
ELLIPTICAL BEAM HARMONIC TRANSFORM

2 2
: ! : X
ence of uncorrelated noise. We find that error bars for a cir- B(X,y)=Bo(0y ,ob)exp{ - y_z} (A1)
cular Gaussian window largely underestimate those of an 20, 20y

elliptical window when the pixel noise becomes dominant.

However, a good approximation to the actual error bars isvhere we definer, and o, as the beam widths in the major
given by aneffective circular Gaussiawindow of beam x and minory axes, and the normalization is given by
width oss= Vo ,0, Whereo, ando are the major and minor By(o,,0p) =1(2700p).
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For analysis on the sphere, it is more convenient to introwhereB( ) = exf — //20%], which yields an analogous se-
duce (planay polar coordinates to describe the beam, ries in harmonic space,
= ¢ cos¢ andy= 0 sin ¢,

2

)(
0 bim= E bip) - =bR+blix+0(x*)  (A10)
B(0,¢)=Boexy — 5 51(4) -
b

(A2)

The perturbative expansion EGA9) allows us to factorize
wheref(¢)=1— x cos¢ describes deviations from the cir- the 2D integrals of the beam harmonic transform &) in
cular (or axisymmetri¢ Gaussian window and the ellipticity two 1D integrals foré and ¢, respectively. Thus thath

parametery=1-—(oy/0,)? is defined within the range 1 order term of the beam transform can be expressed as fol-
=y=0. The circular Gaussian window is thus recovered fonows:

the limiting casey=0. For the sake of simplicity, we have
taken the beam to be pointing to the north pole of the sphere b{W=(—1)"N,_,l WK (A11)
(6=0).
The spherical harmonic transform of the total intensitywith
beam is defined as

(= -M( 242 *nrdann*la 19)B(6) (A12
=f dOB(6,¢)Yi(0.4) (A3) m =, n10BLO) (AL
\;vgeredﬂzdesin 6#d¢ and spherical harmonics are defined K§TI:|]): fzwdqscosznqSe*izm"’. (A13)
0
Yim(6,$)=NnP"(cos6)e'™? (A4) Making use of Eq(6.631.1 of [37] and Eqs.(13.1.27,
(13.6.9 of [38] one gets
\ 2I+1\/(I—m)! (A5)

Im= | n—m/2

v (|+m) Il(ITq):O-Zer(ZT) 7zL(m)m/2(Z) (A14)

where P[" are the Legendre polynomials and the spherical
harmonics obey the conjugation propertyY},  \with z=1202/2 and
=(—1)™Y,_,,. Replacing Eq(A4) in Eq. (A3) we get

- K(n)— 2 2n! ALE
b.m=<—1>mN|_mfo do'sin 9P| "(coso) 220 (n+ mi2)l(n—mi2)! (A19)
2m ime for m even, andkK{"=0 for m odd. The fact that oddn
X 0 d¢B(0.d)e (AB) modes do not contribute to the harmonic transform is due to
the parity symmetries of the ellipse. Thus thié order term
In the flat-sky limit (/<1 rad}>1), of the expansion EqA1l) is given by
P, ™(cosf)~1""J,(16) (A7) m_ 2T 2n! - L
i _22n+m/2N'*m(n+ mi2)1 7 e Ly ma(2)
wherelJ,, is themth order Bessel function of the first kind. In (A16)

this limit, the above integral EqA6) reads

) which replaced in Eq(A17) yields the final expression

b|m=(—1)mN|,mI’mJ-WdaeJm(l0) d¢B(6,p)em? .
0 0
(A8) bm=0"Nine 2>, v, LMy ™ (A17)
=0

In order to solve this integral analytically, we introduce a

convenient perturbative expansion of the beam in real spacéhere we defineN|, =N,_,/By, Bo=Boy/(27a?), and

in powers of the ellipticity parametey, Yom=(2v+m)l/[227732(y+ m/2)1(v+m)!1]. The first
Laguerre polynomials are

02
B(9,¢)=BOB(0)exr{xﬁcos?¢ LiM(z)=1, L{M(z)=m+1-2
=B B(H)Z (0_2>nC052n X_n (A9) (m) _1
~Bobl0) & 1| 552 o LEM(2)= S[(M+1)(m+2)+2(—4-2m+2)]
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1 where we define the spin-2 spherical harmonids as
LE(2)= LEV(2)= G{(m+ 1)(m+2)(m+3)

oY= Ml,mtzplm(cose)eimd) (BZ)
+2z[-3(m+2)(m+3)+2z(9+3m—2)]}
where
(A18)
(- )'

and higher orders can be obtained from the recurrence rela- Mim=2 a2 +2), (B3)
tion [see Eq(4.18.1 in [39]]

and we define a generalization of the Legendre polynomials

1 for spin-2 h ics,
LE{“)(Z):ﬁ[(2n—l—x+m)L§1”l)l(z) or spin-2 harmonic 2

In most practical situations the beam ellipticity is rather
small, y<<1. In these cases, one only needs to compute the
first terms(two or three terms account for the beam trans-
form up to very large multipoles with high accuracy, see Sec. —1)cosoP(cosd) — (1+m)P" 1 (cosd)]
IVC, Table |). (B4)
For example, the beam harmonic transform ugécond
order in the ellipticity expansion has non-vanishing contri- The above quantities obey the following parity conditions:
butions only from the modes1=0, 2 and 4, which read (1—m)!

cosf . m
+ (I +m)mp|,l(COSQ)+m[(|

2 3 iZPrm:(_l)m(l_’_m)'*ZPm (BS)
b|0—N|Oe_|2 2/2{ |2 2+/2 |20'2+ 1—6|40'4
(I+m)!
Ml_m:(l—m)!Mlm (86)
bia=Nig X 120261272 14 4| 1 2122
12=MNiog X\ *7 4 which imply that
2 , o Yh= oY ime dme (B7)
bja=N [4gte™ 7012 A20 . . .
14— 10728 128 (A20) which allows us to recast E¢B1) in a more convenient way,

where Njp=+/2l+1/47, and negative modegi.e., m f
=—2,—4) have to be included as they have the same har- 'm 22
monic transform as positive modes, ik, ,=b,. Similar

expressions for the harmonic transformfiist order in the

ellipticty are given in Sec. lll, Eq9.12) and(13). Note that C f dQ[(Q—i0),Y = (Q+i0)_,Y,,]e 2m.
for a circular Gaussian window,= 0, one gets, as expected, 2.2

dO[(Q—i0),Y i+ (Q+i0) _,Y|nle 2m?

bjo=N,q exd —1%¢%/2] andb,,,=0 for m+0. (B8)
For a pure co-polar bearti.e., for an ideal optical system
APPENDIX B: PERTURBATIVE EXPANSION and telescope sdé8]), we have
OF THE LINEARLY POLARIZED ELLIPTICAL BEAM
HARMONIC TRANSFORM 0=i0=—-B(g,¢)e*2¢ (B9)

The aim of this appendix is to provide a detailed deriva-
tion of the harmonic transform for linearly polarized ellipti-
cal beams, Eq(23). The spherical harmonic transform of a
linearly polarized beam can be written in terms of the Stoke

parameter) andU,

whereB(0, ¢) is defined in Eq(A2). We have assumed that
the beam response is measured in the co- and cross-polar
basis defined on the sphere,, and 0,55, according to
?;udW|g s third definition[40],

Oco=SiN¢o,+cospo,

1 ~ o~
bﬁn=mf dO[(Q—iU), Y, +(Q+il) _,Y{ 1bf,
®Note that. »Y;n=W,=iX,m, according to the notation used by
[17].

_iJ ~ o~ = e 7 " i ' !
—— L dO[©—iT),Yr — (D+i0)_,¥%] (B1)  'The —,P[" polynomials are simply related to th&y in
> 2Yim 2%im [14,17,23: .,P"(X) = Gjry(X) F Gim(X).
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Noting that the above integrals are basically the same as
those for the total intensity beam, Eq8.12) and(A13), but
whereo, ando 4 are the usual spherical polar bases. Such aeplacingm by m—2 everywhere, they can be integrated in
co- and cross-polarization basis, H®10), is obtained by the same way,

parallel transporting the local Cartesian basis defined at the
north pole,o, ando,, along great circles through the poles

Tcross= COSpTy—singo, (B10)

n—m/2+1
! )!

of the spherdsee, e.g.[18] for a discussion 1= iz e L™ 2. .(2) (B18)
Replacing Eq(B9) into Eq. (B8), one sees that the first
term in Eq.(B8) is non-vanishing only for negative modes 19 o
while the second term is non-zero for positive modes With z=170*/2 and
alone. What is more, the parity properties of fBeand C ) o
T n!
modes, K(”)— (B19

be.=ib>,, b . =—ibZ .,

bl .,=bf, P=G,C (B11)

imply that the harmonic transform of linear polarization can
be fully determined from one of the two components alone,
sayG. Moreover, both negative and positive modes have the ~'™m

same harmonic transform. Thus we shall assume0 be-

low with no loss of generality. In this case the harmonic

transform of theG mode is simply given by

Mim )
bC z—j dQB(6,¢) ,PM(cosh)e  (M-2)é
Im 2\/5 ( ¢) 2 |( )

(B12)
In the flat-sky limit (9<1 rad)>1)2
m 1 mym-+2
_oP (cosa)wz(—l) M3, 2(16) (B13
and thus,
|m+2 | )
bﬁn:(—l)msz dQB(6,$)d,,_,(16)e (M=2)¢

(B14)

Introducing the ellipticity expansion, E4A2), one can
solve the integral to any perturbative order,

\/E m (B15)
with
|m+2 -
Tl(r?’]): 2 (20.2)7nf d062n+1\]m,2(|0)8(0)
0
(B16)
_ 2m )
K= f d¢ cos"pe ' (M2)?, (B17)
0

8This corrects the expression for the small-angle limitlid]: the
pre-factorl™" 2 in Eq. (B13) corrects the pre-factai® ™ in Eq.
(4.32 of [14].

22n (n+m/2—1)!(n—m/2+1)!

for even modesn=2, andK{"=0 for m odd. Therefore the
nth order term Eq(B15) in the beam expansion is given by

2 2n!

G(n) _
M'm(n+m/2—1)!

e~ ? (m
_22n+m/2 L

" ide1(2)
(B20)
which, introduced in Eq(B15), finally gives

o0

efzzo 7y,m72LE,m72)(Z)XV+ m/2—1
(B21)

m-2p1G
blm_o' NIm

where we defindNG = —12™M,,,/(4\2B,), and the coeffi-
cients y, n—» are the same as those defined for the total
intensity Eq.(A17), except for the subindex which m—2
here instead ofn there.

For most of the actual experimental beams the ellipticity
is rather smally<<1. As discussed in Appendix A, second
order analysis of the beam ellipticity is already very accurate
to very large multipoles as compared with numerical integra-
tion shows(see Sec. IV C, Table | for specific prescriptions
depending on experimental parametef$ius, expanding the
beam harmonic transform gecond ordein y one gets non-
vanishing contributions only from the modes=2, 4, and 6,

N 3
G_ 10 o~120%2) 1 2 2, X 2 2 4,4
=— + | —1202+

b= 5 5° | | 2ot e )
N 1

b= glz 2g 102 1 1y 1_2'2"2>
N

G__ No X 4 4a-120%12

where N;o= y2| +1/47, and negative mode§.e., m=—2,
—4,—6) have to be included as they have the same har-
monic transform as positive modes, ik’ ,=bZ, . Analo-
gous expressions for the harmonic transfornflrst orderin
the ellipticty are given in Sec. V, Eq$25) and (26). Note
that for a circular Gaussian window,=0, one getsb{, ,
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=—(Njo/2y2)exg —1%6?/2] and b =0 for |m|>2. Note
that, as argued abo\eee the paragraph under E®17)],
the linearly polarized beam transform, E@22), can be

PHYSICAL REVIEW D65 063003

transform, Eq(A20), by replacing in the lattem by m—2,
and

including a multiplicative normalizing factor of
—1/(2+/2) appropriate for linear polarization modes, see Eq.

straightforwardly obtained from the total intensity beam (B1).
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