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The multipolar-post-Minkowskian approach to gravitational radiation is applied to the problem of the gen-
eration of waves by the compact binary inspiral. We investigate specifically the third post-Newt8Risn
approximation in the total energy flux. The new results are the computation of the mass quadrupole moment of
the binary to the 3PN order, and the current quadrupole and mass octupole to the 2PN order. Wave tails and
tails of tails in the far zone are included up to the 3.5PN order. The recently derived 3PN equations of binary
motion are used to compute the time derivatives of the moments. We find perfect agreement to the 3.5PN order
with perturbation calculations of black holes in the test-mass limit for one body. Technical inputs in our
computation include a model of point particles for describing the compact objects, and the Hadamard self-field
regularization. Because of a physical incompleteness of the Hadamard regularization at the 3PN order, the
energy flux depends on one unknown physical parameter, which is a combination of a pararmetae
equations of motion, and a new parametazoming from the quadrupole moment.

DOI: 10.1103/PhysRevD.65.064005 PACS nuntder04.25.Nx, 04.30.Db

[. INTRODUCTION tended the computation of tails at the dominant 1.5PN order
[28—30), and the contribution of tails generated by the tails
Inspiraling compact binaries are systems of two neutrorthemselvegso-called “tails of tails” at the 3PN order was
stars and/or black holes undergoing an adiabatic orbital desbtained in Ref[27]. However, unlike the 1.5PN, 2.5PN and
cay by gravitational radiation emission. These systems cor3.5PN orders that are entirely composed of tail terms, the
stitute an important target for the gravitational-wave detec3PN approximation involves also, besides the tails of tails,
tors such as the Laser Interferometric Gravitational Wavemany non-tail contributions coming from the relativistic cor-
Observatory (LIGO) and VIRGO. The currently favored rections in the multipole moments of the binary.
theory for describing the binary inspiral is the post- The present paper is devoted to the computation of the
Newtonian approximation. Since inspiraling compact bina-multipole moments, chiefly the quadrupole moment at the
ries are very relativistic the Newtonian descriptiG@orre- 3PN order, in the case where the binary’s orbit is circular
sponding to the quadrupole approximajiois grossly (the relevant case for most inspiraling binayie#/e reduce
inadequate for constructing the theoretical templates to bsome general expressions for the multipole moments of a
used in the signal analysis of detectors. In fact, from severadlowly-moving extended systef21] to the case of a point-
measurement-accuracy analydds-9] it follows that the particle binary at the 3PN order. The self-field of point-
third post-Newtoniart3PN) approximation, corresponding to particles is systematically regularized by means of Hada-
the order 1¢® when the speed of light— +, constitutes a mard’s concept of “partie finie” [31-33. The time-
necessary achievement in this field. Note that the 3PN apderivatives of the 3PN quadrupole moment are computed
proximation is needed to compute the time evolution of thewith the help of the equations of binary motion at the 3PN
binary’s orbital phase, that depends via an energy balancerder in harmonic coordinateéthe coordinate system chosen
equation on the total gravitational-wave energy flux. The enfor this computation The 3PN equations of motion have
ergy flux is therefore a crucial quantity to predict. been derived recently by two groups working independently
Following the earliest computations at the 1PN levelwith different methods: Arnowitt-Deser-MisneftADM-)
[10,17 (at a time where post-Newtonian corrections were ofHamiltonian formulation of general relativity34—3§, and
purely academic intergstthe energy flux generated by com- direct post-Newtonian iteration of the field equations in har-
pact binaries was determined to the 2PN ofde&2—16, by  monic coordinates[40—44. There is complete physical
means of a formalism based on multipolar and postequivalence between the results given by the two approaches
Minkowskian approximation§17-21, and independently [38,44]. We shall find that our end result for the energy flux
using a direct integration of the relaxed Einstein equationst the 3.5PN order is in perfect agreement, in the test-body
[14,22,23 (see also Refd.24,25). Since then the calcula- limit for one body, with the result of black-hole perturbation
tions have been extended to include the nonlinear effects aheory, which is currently known up to the higher 5.5PN
tails at higher post-Newtonian orders. The tails at the 2.5PNMpproximation[45—47 (see Ref.[48] for a review. In a
and 3.5PN orders were computed in R¢f6,27] (this ex-  separate work49] we report the computation of the 3.5PN-
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accurate orbital phase which constitutes the crucial compo- ct

nent of the theoretical template of inspiraling binaries. =[g|TH + e-c M (2.2p
One conclusion of the investigation of the equations of

motion of compact binaries is that from the 3PN order the

model of point-particlegdescribed by Dirac distributions Y .

might becgme Shysically incompletey, in the sense that th he_reDz 7""9,9, and where we hfye introduced the ef-

equations involve one undetermined coefficienfy . in the  1€ctve Stress-energgpseudoliensor7“” of the matter and

ADM-Hamiltonian formalism[34—39 (see, however39]) gravitational f?elds in. harmonic coordina’Fes: The matter
and\ in the harmonic-coordinate approd@0—44. Techni-  Stress-energy is degcrlbeq by~ and the gravitational stress-
cally this is due to some subtle features of the self-field requenergy by the nonlinear interaction tert*”. The latter is
larization in the manner of Hadamard. In the present papefiven in terms of the metric by the exact expression

we shall be led to introduce a second undetermined coeffi-
cient, calledd, coming from our computation of the 3PN
quadrupole moment. However, we shall find that the total
energy flux contains only one unknown parameter, which is a
certain linear combination of and\ entering the 3PN co-

1
ARY= —hP7g0 he 4 3, 79,0 + 5 gk g, .0\ hP 70 h

efficient. All other terms in the flux up to the 3.5PN order are —-g**g,,0h""d,h™*—g""g,,,d\h*73, h "
completely specified. 1
The plan of this paper is as follows. Sections II-1V are +gpagxfaxhﬂp87hw+ g(zgﬂpgm_gwgpa)

devoted to the basic expressions of the moments we shall
apply. Section V presents the needed information concerning
our point-particle model, and Secs. VI-IX deal with the
computation of all the different types of terms in the required
multipole moments. Section X explains our introduction of . . ,
the 6-ambiguity. Finally we present our results for the mo- BOth the matter and gravitational contributions 4" de-
ments and energy flux in Secs. XI and XII. The intermediatg®®nd on the fieldh, with the gravitational term\** being at
values for all the terms composing the moments in the casteast quadratic ith and its space-time derivatives.

x(zg)\fgﬂr_gTeg)\ﬂ')&ph)\ﬂ.aa—hTe- (23)

of circular orbits are relegated to the Appendix. The multipole moments of slowly-moving sources are in
the form of some functionals of tHéormal) post-Newtonian
Il. EXPRESSIONS OF THE MULTIPOLE MOMENTS expansion of the pseudo-tenset”; we denote the formal

post-Newtonian expansion with an overbar, s@'”

In this section we give a short summary of the expressions- pN(7#*). It is convenient to introduce the auxiliary nota-
of multipole moments in the post-Newtonian approximation.tjon

The moments describe some general isolated sources that are
weakly self-gravitating and slowly-moving, i.e., whose inter-

nal velocities are much smaller than the speed of light: 00 i ~0i )
<c. In this paper we order all expressions according to the 3= > 2i=—; =7 (2.9
formal order in 1¢, and we pose)(n)=0O(1/c"). In addi- c ¢

tion, the moments ara priori valid only in the case where

the source is continuou§for instance a hydrodynamical

fluid); however, we shall apply these moments to the case dfrom a general studj20,21] of the matching between the
point-particles by supplementing the above expressions witkxterior gravitational field of the source and the inner post-
a certain regularization ansatz based on Hadamard’s concefewtonian field, we obtain some “natural” definitions for
of “partie finie” [31-33. We adopt a system of harmonic thelth order mass-typel () and current-typeJ, ) multipole

coordinates, which means moments of the source. The physics of the isolated source, as
seen in its exterior, is extracted from these multipole mo-
a,h*"=0, (218 ments when they are connected, in a consistent way, to the
oy , observables of the radiative field @vlinkowskian future
h#r=[g|¥2g#— 7, 210y infinity, given in this formalism by the so-called radia-

tive multipole moments. The connection betwdgrandJ,

and the mass-typdJ; ) and current-type\(,) radiative mo-

ments at infinity involves up to say the 3.5PN order many

tail effects and even a particular “tail-of-tail” effect arising

specifically at 3PN. All these effects are know27] and

therefore will not be investigated here but simply added at

the end of our computation in Sec. Xll. Here we focus our

167G attention on the rgduction to poir!t—particle b!naries of the
T, (2.29  9eneralsource multipole moments(in symmetric-tracefree

4 form), whose complete expressions are given by

where g#” and g denote respectively the inverse and the
determinant of the covariant metmyg,, , and wheren*" de-
notes the Minkowski metric with signature2. The Einstein
field equations, relaxed by the harmonic-coordinate condi
tion, take the form of d’Alembertian equations for all the
components of the field variable,

Oh#r=
c
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1 integral as a Laurent expansion wher-0 and pick up the
I (t)= FP[ d3x|3‘<|5f dzi §(2)% X finite part(in short FR_), or coefficient of the zeroth power
B=0 -1 of B in that expansion. This finite part is in fact equivalent to

4(21+1) the Hadamard “partie finieT31].

_2—5I+1(Z)5\(iLii Thus, the moments deperal priori on the constanty
co(I+1)(21+3) introduced in this analytic continuation process. This con-
stant can be thought of as due to the “regularization” of the

+ 2(21+1) 5I+2(Z)5\(i'Lii' field at inf_inity; the moments will depend explicitly omn,

ct(l+1)(1+2)(21+5) = when the integral develops a polar partBat 0 due to the

behavior of the integrand whem| — +«. As we shall see,

the source moments start depending explicitly gfrom the

. 3PN order. However, we know that the metric is actually

J ()= Fpsab<i|f d3X|7<|Bf dz[ 52K _1=a30 independent of, [more premselyro c_ance_ls out between
B=0 -1 the two terms of the multipole expansion given by E311)

in Ref.[21]]. Indeed, as a good check of the calculation, we

X (x,t+2z[x|/c), (2.59

21+1 . : shall see that because of non-linear tail effects in the wave
B maﬂ(z)xbba;bc zone the constant, is canceled out, so the physical energy
flux does not depend on it.
X (x,t+2z]x|/c). (2.5b To the 1PN order the expressiof®.59 and (2.5b are

equivalent to some alternative forms obtained earlier in Refs.
S : : _ [17] and [18], respectively. The multipole moments in the
posed ofl indices; a product of spatial vectors<'=x; is o0 (2 5 were derived in[20] up to the 2PN order, and
denotedx, =x; Xi,...x;; the symmetric-tracefre€STF) part shown subsequently if21] to be in fact valid up to any
of that product is denoted using a hag:=STF(x.), for = post-Newtonian ordefformally). On the other hand, both
instance ;= XX; — %_5“ b X = XXX s(x Skt Xdi  Egs.(2.53 and(2.50 reduce to the expressions obtained in
+Xid;j); the STF projection is also denoted using angulairef, [50] in the limit of linearized gravity, where we can
br?ckets surrounldlng the indices, €.84=X(j), X(ivj)  replacer®” by the compact-support matter tenddt’ (hence
= 2(Xvj+Xpi) =56 X eij denotes the usual Levi- o is ng need in this limit to consider a finite paNote
Civita symbol ooo= +1); t_h_e dots refer to t_he time differ- -+ the source multipole momertsandJ, parametrize, by
ent|at|or:. Th?j matther den;m% Edl ’ an.dEij In EC}S‘ (2}? definition, the linearized approximation to the vacuum metric
?re ;'-,_\va gate : at .t € pt))osmon and at timet+z|x|/c. The outside the sourci21], but take into account all the nonlin-
unction 4(z) is given by earities due to the inndnear-zongfield of the source. The
(21+ 1)1 1 nonlinearities in the exterior field can be obtained by some
o(z2)= —Z,T(l—z%'; f dzs(z2)=1. (2.6)  specific post-Minkowskian algorithiisee Ref[21] for proof
' -1 and details The inclusion of these nonlinearities permits
This function tends to the Dirac distribution whens +. ~ One€ to relate the source momeiifsandJ_ to the radiative

Each of the terms composirig andJ, is to be understood in  On€sU, andV, . Some other source moment , X, , Y,

the sense of post-Newtonian expansion, and computed usir?d Z,_ should also be taken into accouisee Ref[21] for
the (infinite) post-Newtonian series iscussiol, but these parametrize(bnearized gauge trans-

formation and do not contribute to the radiation field up to a

Our notation is as followd. =i4i,...i; is a multi-index com-

1 d26,(2)S(x,t+ 2|x|/ high post-Newtonian order. We shall check that these mo-
1 1(2)S(x, c) ments do not affect the present calculation.

- i (21+ 1! o 9\

T & 22+ 2j+ 1) M Gt Sxb- @D IIl. DEFINITIONS OF POTENTIALS

Our first task is to work out the expressiofs5) to the
3PN order in the case of and 2PN order in the case d&f .
In this paper we shall use some convenient retarded poten-

part is crucial because the integrals have a non-compact suﬁgls’ ?nd the.n, from 'Fhese,. th? corresponding “instanta-
port due to the gravitational contribution in the pseudo-"€0US” potentials. For insertion into the pseudo-tensdf
tensor, and would be otherwise divergent at infinishen  (and, most importantly, its gravitational pakt“”) we need
|[x|—+<). The integral involves the regularization factor the components of the metrib*” developed to post-
[X|B=|x/r,|B, whereB is a complex number and, denotes Newtonian order®(8, 7, 8. By this we mean®(8)

an arbitrary length scale. It is defined by complex analytic=0(1/c®) in the 00 andij components of the metric, and
continuation for anyB e C except at isolated poles i, in-  O(7)=0O(1/c”) in the G components. With this precision
cluding in general the value of interdBt=0. We expand the the metric reads

Finally the symbol FE_, in front of the integrals in Egs.
(2.5 refers to a specific finite part operation defined by ana
lytic continuation(see Ref[21] for the detail$. Such a finite

064005-3
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4 2 8 4
h%0=— =V- —(W+4V )~ Z+2X+VW+ 3v3
+0(8), (3.1a
hoi= 3Vim s(RHVV)+0(7) (3.1b
—_ 4 1 .\ 16/, 1
h __F WJ_§5ijW —Eg Z'l E Z +O(8)
(3.10

PHYSICAL REVIEW D65 064005

1 2G d®Q
V:U+2—2(91X @F+24C4atp+0(5)
(3.69
1 2
Vi:Ui+ﬁatXi+O(3)’ (36b)
- G o|3Q,J 1
i=Yi~ 50 a8 202(70(” 2Kij+(’)(3),
(3.60

where the instantaneous potentials are given by the Poisson-
type integrals

The potentials are generated by the components of the matter

tensorT#" or, rather, using a notation similar to EQ.4), by
T00+ Tii TOi
cz YT

oy =T (3.2

g=

The potentialV is a retarded version of the Newtonian po-

tential and is defined by the retarded intedrj]* acting on
the sourcer,

3
[x—yl/c).

(3.3

y
x—y TVt

V(x,t)=D§1{—4wGa}sef
To the 1PN order we have the potentimwndwij (together

with the spatial trac&V=W;;), which are generated by the
current and stress; and o;;, respectively,

Vi=0xH-47Gay}, (3.4a
Wll:Dal{_47TG(O'|J_5|JUkk)_(9|V&]V} (34b)
To the 2PN order there are the potentll,s ZIJ , X (and

alsoZ=Z;;) whose expressions read

X= DRl[ —47G o V+W;; a5V + 2V, 0,0,V + Vv
3
+ E((9IV)2—2(9ivjajvi], (3.59

. 3
Ri:DR:l{ —4’7TG(O'iV_O'Vi)_25kV(9in_ E(ﬂV(%V] y

(3.5h
2”‘ = Dé:[{ _47TG(U|] - 6” Ukk)v_ 2(9(|V(7tvl)
+ o’?in&ij+ A [?kvj - 2‘3(|ka3’kV])
3
= 8V m( AV m= dnVid — 7 Gij (aIV)Z] . (350

U=A"Y-4xGo}= Gf| a(y,1), (3.79
Ui=A"Y-47Go}), (3.70
UIJZAil{_47TG(O'|J_5”0'kk)_a|U(9JU}’ (37d

=2A’1U=Gf d’y|x—yla(y,t), 3.7

:ZA_1U|; (3.7e
X|J :ZA—luij , (37f)
P=24A*2U:Gf dy|x—y[a(y,1), 3.79

In addition, the Newtonian precisiaf(1) is required for the

other potentialX, R; andZ;; . For simplicity in the notation,
we shall keep the same names for the Newtonian approxima-
tions to these potentials, henceforth redefined as

5<=A1{ —47Goy;U+U;;d5U+2U;,0,U+U U

3
+§(atU)2—2aiujajui , (3.8a
. 3
Ri=A1{ —47G(oU—oU;)—24UdU,— Eatuaiu],
(3.8b

2ij :Al{ _4’7TG(O'ij - 5ij0-kk)U_Za(iU&tUj)—’_&iUkajUk

3 2
7 8i(aV)7. (3.80

Finally the “odd” terms in Eqs(3.6) (having an odd power
of 1/c in factor are simple functions of time parametrized by

Qlj(t):f d3X(Xin_X25ij)O'(X,t), (393

Next we expand the retardations and define some associated

instantaneous potentials. The highest-order expansion
needed for the/ potential, up toO(5), while O(3) is suffi-

is Q)= f dBxa(x,1). (3.9

cient for V; and\ivij . We write these expansions in the form (Beware thatQ# Q;; .)

064005-4
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IV. NOMENCLATURE OF TERMS cording to the value of the summation indgin Eq. (2.7):
The post-Newtonian metri¢3.1) is inserted into the for instapce theStype term denoted Sl ig defiped by the set
pseudo-tensof2.2b), in which notably the term\~”, given of terms inl_ coming fr_om the “scalar’E_ln wh|ch we have
by Eq.(2.3), is developed up to quartic ordef. Making use gsed the formuld2.7) with only the contrlbgtlon of the index
of the formula(2.7) we obtain the source momeriig(t) and | =0 (there are ndtype terms inJ, ); similarly we denote
J.(t) as some functionals of all the retarded potentials, and®y Sll, using Roman letters, tHgterms corresponding tp
then, of all the “instantaneous” potentials defined by Eqgs.=1 (these terms involve a factor® and a second time-
(3.6)—(3.9). We transform some of the terms by integration derivative; and for_ instance VIl denotes the set _of terms in
by parts, being careful to take into account the presence diothl, andJ, coming from the “vector”; and which have
the analytic continuation factd®|®. The surface terms are ]=2. With this notation the mass moment to the 3PN order
always zero by analytic continuatidstarting from the case Can be written as
where the real part dB is a large negative numbemotice
that we use the Leibniz rule, which is surely valid in the case | =SI+SH+SHI+SIV+VI+VII +VII +TI+TII+ O(7).
of potentials corresponding to smodftuid) sources. How- (4.9
ever, when we shall insert for the potentials some singular
expressions corresponding to point-like particles, and shalror simplicity’s sake we omit writing the multi-indelx on
replace the derivatives by some appropriate distributional deeach of these separate pie¢é®re can be no confusion from
rivatives, the Leibniz rule will no longer be satisfied in gen-the context Second, the numerous terms are numbered ac-
eral. This will be a source of some indeterminacy discussedording to their order of appearance in the following formu-
in Sec. X. las. For instance the piece Sl which is part of the mass mo-
We find that the moments are quite complicated, so it ianent (4.1) will be composed of the terms @), SI(2), etc;
useful to devise a good nomenclature of terms. First, wesimilarly VII is made of terms VI(1) and so on. The num-
distinguish inl_ andJ, the contributions which are due to bering of terms is indicated in round brackets at the right of
the source densitieX, 3;, andX;; [see Eq.(2.9], and we each term in Eq(4.2) (it should not be confused with, e.g., a
refer to them as scald®), vector (V) and tensofT) respec- differentiation or a power The explicit expressions of all the
tively. Furthermore, we split each of these contributions acseparate pieces formirlg are as follows:

1 4U 1
= 3y|5| B (1) _ 2y(2) . ___ yaa3) ) A = 92 _(5) _ 2(6)
2 1 2G d®Q
9).9.1).() — 3\(8) _ 2.N(9) _ (10_ - — (11
T e VGV T e @ AU T e AU T s A(Ula) T 3 o
1 d®Q;; 12 16 8 2 4
+—2Wc5(&ﬁU) dtsll +?0’Uaua(13)+ Fo_aau2(14)+ ?O’aaatz)((ls)‘f' ?UjkO'jk(le')_ 7TGC6 Uiﬁi&?)(u?)

1 1 1 .. 1
— —5 8 (Fxi) (0:0U) 0 = 5= (95 U0) (5 xi) 0+ —5 5 (U)K = o5 (a2 x) U 2

1
+ 5——5U,0°U2+ Ud2U o —

27Gc®

2
aiVjax* — —5 s U(aU)?®0

27Gc? 27Gce 7wGcP

29 _

6 (27) 12 (28) 4 ( 8 (30) 2 2(3Y

1 4
~ 58 (WVaa dbUp )+ —=5 31U U+ —=5 UUiaa U = —=5 2,970 % — —=5U5UaU; 0

4 . 8 . 1
~ 5 (WAVRE+ —=5 U9 R ¥~ A(UHEI— A(UPUpp) 40— —=5 A(U%7x) Y

37GcP 7Gc®

1
~ a7 a S MIXIEX) P = 55 S AP = =5 A(Uaadi X)W = == 5 A3 xaal) ™

L ) .
+ 5—=s A(K2U) 49— A(UX)9 = — =5 A(UZ,0) %

27TGCG A(Uaaubb)(47)+

A(UjUj0 19 =

47GcP 27Gc? 7Gc® 7GcP

(4.29

064005-5
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1 4U 2 1
= 3y|%|B 25 (1) — aa(2) _ ) 113 2 (4 2(5)
2 21+3 1 21+3
6) 27 NS 2 20 (8 S 11929
+ 7_rGC4f9inf9jUi( } pareys ] % U2 )_—ZZWGC a3, (U?)|x] %% — U?3;(|x| %) ]® - 7TGC4XLU(9tX( )

1 21+3
. AaTA 2 2 2 (10)_
21TGC4(9'[&'(U&‘X)|X| U(?t)(a(|X| ] 7TGC4

1
X UUaa = 5 a3,(UUlX %,

A2+3) s

—UU 5005 (|x| %) ]2 — 3,68 XL

37aa AlaUAIXPR = U2ai([x2%0)1 (4.2b)

1 2(21+5)
— 3 B 4¢, (l)_ 23 2(2)
Sl= gt 232 +5), fd X[%|°d, [|X| 2z X&U
1 2y |45 2 45 \1(3)
~s-cedla X% = U2 ([x[*%) ]t (4.29
Siv= ! fd"‘XIXI X% 3P0, (4.20
48c8(21+3)(21+5)(2l +7)B '
—4(21+1) N 2 2 1
At eI 0 S oU,O+ @) 4 (5)
VI CZ(I+1)(2|+3)B Of d X|X| Xa|_07t 20' U O'U GC2 07ka73Uk 47TGC2 o7tU0aU
1 2 1 4 2 2
~ 552U, )<6>+ a2x' 7+ ?aaUZ(S)— Fo&?;{;g)— ?oRa<1°>+ ?uaasgﬂu ?Uakok(lz)
2 (13) 1 2. (14 1 2 (15) 21 1(16)
+aUkoac T o= 2 U dadixc ™+ 2WGC4((7k<91X)(<9aUk) t 5 God YadtV
+ ia U(9,02%) 7+ (93x)9,U1® — ! Ua?U, 19+ ! 4,Ua,U 20
8mGch Tt At 8mGct Tt/ 2wGe* Tt a 7Gct Tt Ttra
2 (21) 3 (22 (23 3 (24)
~ 5@ Uk P 52 UaUaU P — — =5 UaUaU P+ 5 UdU U
2 & (25_ T 20 26, - @_ 1 (28, T (29
TG W aR™ =~ —=aUndigUa ™+ —= g dlUadU " = —=2 dUidaUi ™ + —==2 U9 Uk
1 .
o 2 (30) __ 2 (31) __ 2 (33
1 (34) 1 (35)
562 AUl T+ o= AUal0 (4.2¢
—2(21+1) - , 2 2 1
_ ol oD (2) _ (3) (4)
VI C4(|+1)(2|+3)(2|+5)B Ojd X|X| (?t |X| T4 +07(raU Ezﬂua +mﬁkuaauk
3 | 21+ 1 e 26 \(D)
g2 %UdaV ?XaLUU Wﬁ[ﬁ(UUa)M Ka—UU0i(|x[*%a) 1" 1, (4.2f)
—(21+1) J Be 4.5 a
_ (1)
VIl = st D3y @5 @+, ) KX PRa x50, (4.29
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Tl= 2l ) fd3x|x|Bx 0H T+ ia UdpU@ + : u®— . U
S+ D)2 +5), abLdt | Ta T+ g VAU Gz o G 01Uy
2.,(5) 2 (6) 1 (7) 2 (8) (9)
+ mﬁ(au ﬁb)é’t)( + mﬁ(au ﬂtUb) - mﬂau k(?bUk + m(g(aUkakU b) - mA(Uan) y
(4.2h
21+1 1
Bg 2.4 (1) (2) i
Tl = ST D+ 22+ 5@ 7). Jd X|X| PR 41| X| at{aab +477G EAVENVEA (4.2
In the case of the 2PN current moment we write similarly

J =VI+VII+VIII +TI+ T+ O(5). 4.3

The expressions of these separate pieces have the same structure as the corregpmdiingrms in the 3PN mass moment
I . The differences lie only in the over-all coefficient, in the number of time-derivatives, and in the presence of a Levi-Civita
symbol. We have

Vl=— FPJ d3X|X|Be 4 XL-1=p {same as in the curly brackets of Hg.20)}, (4.49
VIl = ! fd Eq4.2 4.4b
= 2@ ), X[X|Peap<i X -1-p0; {same as in Eq4.20)}, (4.4b
3 B|y|4
VIl = 8c4(2l+3)(2l+5 fd X[X[P|X[ "€ ap<i K- 1-pd; {same as in Eq4.29}, (4.49
21+1 3
TI= W Jd X|X| €ac<i X|_ 1>pcdy {same as in Eq.4.2h}, (4.49
T = 21+l fd3 Eq4.2
- 204(|+2)(2|+3)(2|+5)B X|X| |X| 8ac<||XL l>bC(?t {Same as in q I)}

(4.4

We explained that we denote the terms in the previous formulas &), 81(2), ..., S(50), SlI(1), ..., TII(2).! Our
convention is that this notation means that the terms involve their complete coefficient in front; for instance,

SI(5)=— pores 4FPJ d3x|%|Bx U5 U, (4.53
1
Sli(14) = m i fd3x|x|5ata[a(u3)|x|2 —U3a(Ix1% )1, (4.5
2(21+1)
)= eI+ D1 +2) (@ +5),. J KR Raoi 1l daUnUid (4:50

The notation means also that the terms include all the post4.53: this is a 2PN term since it carries a factoc/Thus,

Newtonian corrections relevant to obtain the 3PN order inin the mass quadrupolg; we need to compute &) with

the energy flux. Consistently with that order we shall have tolPN relative precision, while in the mass octupbjg the

compute the mass quadrupole momgpto the 3PN order, Newtonian precision is sufficierithe term S(5) does not

the mass octupolg;, and current quadrupol; to the 2PN exist in the current momenitsNote also that a term such as

order only. Look for instance at the term(S)I given by Eq.  SlI(14) given by Eq.(4.5b) includes in fact two terméwhich
come from an operation by partsFurthermore, since the
different pieces(of typesV and T) composing the current

Though S(29) and S(36) cancel out among themselves, they are moments have exactly the same structure as in the mass mo-
computed and included in our presentation. ments, we employ the same notation for these terms in both
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I, andJ,_ . For instance TI7) denotes both the term in the relativity has been shown by numerous worlsze, e.g.,
mass moment as given by E@.50 and the corresponding [51]). Recently the properties of the Hadamard regularization
term in the current momeitwith a little experience there can have been re-visited and a new set of generalized functions
be no confusion Finally, in some cases we split the term (distributional form$ associated with this regularization was
into subterms according to the nature of a potential thereinnptroduced[41,42.
either “compact” or “non-compact” potential. The compact  The functionsF(x) we need to deal with are smooth on
(respectively non-compacpart of a potential is that part R® excised of the two pointg; andy,, and admit when
which is generated by a source with comp@min-compadt  =|x—y,;|—0 (and similarly wherr ,=|x—y,|—0) a singu-
support. For instance the term(S)l, which contains the po- lar expansion of the type
tentialU;; given by Eq.(3.70, is naturally split into the two
contributions VneN, F()= > r2f(n)+o(rd), (5.1
SI(5)=SI(5C) +SI(5NO), (4.6) fo=a=n
where the coefficientsf, of the various powers af; in the
expansion depend on the unit directiop= (x—y;)/r,. The
powersa of r; are real, range in discrete stdps.,a belongs

11O (NC) to some countable seg{); .n] and are bounded from below
U|]_Uij +Uij ' (4-73 . - .

(ap=a). The functions like- are said to belong to the class

where Uj; is replaced by its compadC) or non-compact
(NC) parts given by

(O A—1f_ s of functionsF (see Ref[41] for precise definitions If F and
Ui =4 H{=47Gloij = 4o} .79 G belong toF so do the ordinarypointwise productFG and
Ui(]_NC)ZA—]_{_é,iU(?jU}. 4.70 the ordinary gradien#;F. The Hadamard “partie finie” of

at the location of particle 1 is defined as

We shall split similarly all the terms containing the potentials do

Uij» Xij» R, Zj andX. This splitting into C and NC parts (F)1= f 4—; 1fo(ny), (5.2

is fairly obvious from the expressions of the potentials: for

Instance, wheredQ,;=dQ(n,) is the solid angle element centered on
3 y; and of directionn;. On the other hand, the Hadamard

If{i(Nc)zAﬂ —28UdU,— =dUaU}¢. (4.9 partie finie(Pf) of the integralfdxF, divergent because of

2 the two singular pointy, andys,, is defined by

When computing the terms in the momeiisl)—(4.4) we at3 | |

shall separate them into various categories, according to théf, j d3xF = lim Jr1>ud3xF+4rr > —a)

. . . . . . . 172 3<0 a+3 r
way their computation is performed. This entails introducing u—0 | Yry>u a 1/4

some new terminology for the various classes. For instance y
we shall consider the compact-support terms likélSlor +4w|n(—)(rfF)l+ 1(_,2]_ (5.3
so-called Y-terms made of the quadratic product of two up
U-type potentialdexamples are \(#) and also SBC)], or
so-called non-compact terms like (SNC) or SII(4NC). The first term represents the integral BA excluding two
These categories of terms are defined when we tackle thespherical volumes of radius surrounding the singularities.
computation. The resulting nomenclature is complicated buThe other terms are such that they cancel out the divergent
turned out to be useful during the explicit computation andpart of the latter integral whem—0 (the symbol %-2
the many associated checks, since it delineates clearly theeans the terms obtained by exchanging the labels 1 and 2
different problems posed by the different categories of termsiotice the presence of a logarithmic term, which depends on
an arbitrary constant,, and similarlyu, for the other sin-
V. APPLICATION TO POINT-PARTICLES gularity. In this paper we shall keep the constantsandu,
o . all the way through our calculation. We assume nothing
Our aim is to compute the multipole moments for a syS-gpoyt these constants, for instance they are diffeaguriori
tem of two pomt-_llke particles. One is not aIIoWGQJHOY_I 0 from similar constants; ands, introduced in the equations
use the expression@.5 as they have been obtained in Ref. 5t notion (Sec. 11 in[43]). We shall see that the multipole

[21] under the assumption of a continuaigsnooth source. moments do depend am, andu, (as well as orr,) at the
Applying them to a system of point-particles, we find that thegpy order.

integrals are divergent at the location of the particles, i.e., The strategy we adopt in this paper is to insert into the
whenx—y(t) or y,(t), whereyy(t) andy,(t) denote the  goyrce multipole moment@.5) the following expression of
two trajectories. Therefore we must supplement the COMPYpe matter stress-energy tenddt” for two point-masses:
tation by a prescription for how to remove the infinite part of

these integrals. In this paper, we systematically employ the dt 1

Hadamard regularizatiof81,32 (see Ref[33] for an entry T nt-particle™ mlvffv{(d—r) —) S(x—y1)+ 12,
to the mathematical literatureThe usefulness of this regu- 1\V=9/,

larization for problems involving point-particles in general (5.43
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dt 1 order by means of the binary’s equations of motion. To con-
(d_) = —, (5.4  trol the moments at the 3PN order we need the equations of
T/ \/—(gpg)lv’ivllc motion at the 2PN order. For circular orbits these equations

are(see, e.g.[13
wherem; is the (Schwarzschilid mass,y;(t) the trajectory, ( 9413)

andv,(t) =dy, /dt the velocity of body Jwith v{=(c,v,)]. dv 5

This stress-energy tensor constitutes a “naive” model to de- gy =~ ¢ x+0(5), (5.9a
scribe the particles, since the factors of the Dirac distribution

have been evaluated at the point 1 by means of the regular- Gm

41

ization defined by Eq(5.2). However, because of the so- w2=—3[1+[—3+ v]y+|6+ vt v2}72+ 0(73)}-
called non-distributivity of the Hadamard partie finie, other (5.95
tensors are possible as well. In particular, we discuss in Sec. '
X the effect of choosing another stress-energy tensor, whiclthe content of these equations lies in the relat®®b) be-
is particularly natural within the context of the Hadamardtween the orbital frequenay and the coordinate separation
regularization, and that we proposed in RP42]. After  in harmonic coordinates. However, note that the precision

point-particle 1S SUbstituted inside them, the moments are comgiven by Eqs.(5.9) is insufficient to obtain thésecond and
prised of many divergent integrals and we define each ohighep time-derivatives of the moments at the 3PN order.
these integrals by means of the Hadamard partie {fi®. Evidently for this we need the more accurate 3PN equations
Therefore our ansatz for applying the general “fluid” formal- of motion. These will be given in Sec. XIl when we compute

ism to the ill-defined case of point-particles is the total energy fluxsee Eq(12.3 below]. In addition, we
shall also need for some intermediate computations the equa-
(1) point-particte= PRI LL T hoint-particiel } (5.58  tions of motion for generalnot necessarily circularorbits
but at the 1PN order. These are given by
(JL)point—particle: Pf{JL[Tgc;jint.pamdél}, (5.5b
_ _ dv, Gm, Gm, ’ ) 3 )
where the functionall, andJ, are exactly the ones given by ~ === —2 N+ 22| N ~v1~ 203+ 4(v1vy) + 5 (Nvy)
Eq. (2.5 or Egs.(4.1)—(4.4) (including in particular the finite
part FRs_, at infinity). In what follows we shall carefully Gmy Gm,
apply this prescription, but in order to reduce clutter we gen- +5——F4——|+V[4(nvy)—3(nua) J1 +O(4)
erally omit writing the partie-finie symbol Pf.
The relative position and velocity of two bodies in har- (5.10

monic coordinates are denoted by (andidemfor 1+ 2). The notation (v ,) for instance means

dx the usual scalar product between the vectors</r (some-

x=y'—y,, and vi=E=i !

V1 V5. (5.6 times denoted alsa;,) andv,. With these preliminary in-
puts in place, we are in a position to tackle the computation

To the 2PN orderonly needed in this papethe relation of each of the terms composing the multipole moments
between the absolute trajectories in a center-of-mass framé-D—(4-4).

and the relative ones reads, in the case of a circular orbit
(see, e.g., Re[,13]), as VI. COMPACT TERMS

In this category we consider all the terms in E¢s1)—
X+ O(5), (5.7a (4.4) whose integrand involves explicitly the matter densities
g, oj, or gj; as a factor, and thus which extend only over the
5 spatially compact support of the source. For these terms the
y = —my+3vy"om xi+O(5) (5.7p  finite part operation R, (which deals with the bound at
! m ' ' infinity of the integral can be dropped out. With the present
) notation the compact terms afi¢ compact term at Newton-
Here m, ar;d m, are the two masses, with=m;+m,, v jan order S(1); (i) compact terms at 1PN order: &lJ,
=mym,/m*" (such that 8<ry<1/4) and Sm=m;—m,. Fur-  v|(1); (i) compacts at 2PN:8), SllI(1), VI(2), VI(3),

Mt 3vy?ém

Y1

thermore, VIl (1), TI(1); (iv) compacts at 3PN: §13), SI(14), SI(15),
Gm SI(160), Sl(2), SIV(1), VI(7), VI(8), VI(9), VI(100),
,—om 5.9 VIAD, VI(120, VI13), VII2), VII@), VII(1), TI@3),

rc TI(4), TH(D).

, As explained earlier, it is convenient, when the potential
represents a small post-Newtonian parameter of a{@),  js composed of both compact and non-compact parts, to
with r=|x|, often also denotet,, the distance between the separate out these pieces. Thus we shall also have the com-
two masses in harmonic coordinates. pact terms involving the non-compact part of a potential,

When computing the multipole moments we get manypamely
terms involving accelerations and derivatives of accelera-
tions. These are reduced to the consistent post-Newtonian SI(16NO), VI(10NO), VI(12NO.
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Evidently we have to compute the “Newtonian” term($)| dt 1, 1., 5, i
with the maximal 3PN precision, while for instance a term (d_r) =1+ @ |V ui|t | Vit 5 Vui—4Vioy
which appears at 3PN needs only the Newtonian precision. 1

We devote this section to the computation of the Newtonian A 1] A RN
term S[1), and to one example of a compact term with non- +gu1|t gs| AXFT4ViVi—8Rv; +2Wivi0y

compact potential: $16NC); the computation of the other
compact terms is similar, or does not present any difficulty,
so we only list the final results in the Appendix.

From the stress-energy tengér4) we find that the matter

_ 1 . 25
—1VVju—6Vivivi+ 5V szui

. ; 27 5
source densitie§3.2) are given by i\ 4 6
+ 3 Vui+ — 16" +(9(8), (6.3b
(1) =iy S X~y (1) ]+ L2, 6.13 where the subscript 1 means that all the potentials are to be

evaluated following the regularizatigb.2). In these expres-

sions there are no problems associated with the non-

_ distributivity of the Hadamard partie-finie; that is, we can
oi(X,1) =01 [ x—y1 (1) ]+ 12, (6.1  assume EG),=(F),(G), for this computation(see, how-
ever, Sec. X Most of the regularized values of the needed

potentials at 1(for general orbits have been computed in

Ref.[51] (see the Appendix B thereHere we simply report
. +1<2, A :
7 (0= pa0 30 Xy (1)) 610 e appropriate formulagwhere r,=|y;—y,|, N=(y;
—Y2)Ir1al:
where we have introduced some “effective” masggsand (V)1:Gm2{ Ez —3Gm +2p2— E(nlzvz)z
7, defined by F1 2 rp z 2
4 Gmy Gml 1le1 5Gm,
3r2C(n12v1 ric? +Z r
w=m| | (—1 ) (6.28 ’
paU=Ma| 2 | 7= ] : 15 , 7 25 , 1
d7/,\ V-g 1 +gvf—Z(vlvz)—gvg"‘g(nlzvl)z

25 33 ,
_ V2 _Z(n1201)(n1202)+§(n1202)
ra(t)=pq ()] 1+ Py (6.2b
+i 2 4_§ 2.2 E 4
7| 20— 5 (Nv2) Vo + 5 (N 2) " | [ +O(5),
c 2 8
These effective masses are some mere functions of time (6.49

through the dependence over the particle trajectories and ve-
locities (the accelerations are order-reduceblotice that, D)1=
had we used the stress-energy tensor proposed in Sec. V of 2
[42] (see also the discussion in Sec. X belpwe would

~ : 1 Gmy Gmy
have found thaju, andz; depend both on time and space, —zv' + ﬁn

X K . : 2 r.c2 1 rC 12

as they contain the factor (/g that is given at any field 12
point x. Using the metric(3.1), expressed in terms of the +0(3), (6.4b
retarded potential3.3)—(3.5), we find the expressions of the

Gm 1
—+v5- E(nlzvz)z
2

Gmy[ , vb
C

1
(n1201)+ 5(”1202)

two required factors entering the effective mad$eg) up to _Gmy oy o Gm i L s
the 3PN order: namely, ij)1= M2 vy~ 8vyt T [—2ndy+ "]
Gm A
+ r nil,— 8171 +0(1), (6.40
1 2 1 - 2
—| =|1- 5 V+ 7 [-2W+2V? - Gmm; 3, 5, 1 i
(\/—g)l ( c C4[ | (Ri)lzr—iz{_ZUI1+ZUI2_§(H1201)V‘I12
1 4 1 Gmi[ 1 1 .
F 828X+ 4VW-8V,Vi - 3V D — 5 (N)Nip |+ —5—| — guot Z(Nw2)Ny,
1 2 re, 8 8
+0(8), (6.33 +0O(1). (6.49
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N G2mm,[ 3Gm, 1 5 9, and the similar VILONC) and VI(12NC). Applying our com-
(X)1= 3 + 017 2(vaa) T 77 putation rules we get

v
I ro

11 9 11 4m, _ |
- Z(nnv )2+ E(n12vl)(n12l)2)_ Z(nlzvz)z} SI(16NO)= ?U?b[(yl—" rony) iy, + rlnl)J>U(a'\tl)C)]l

+1-2, (6.9

G’mi[1 Gm, 1
+0(1).

—————v2+1(n )2
2, |12, 8Y2 g 12

where we have writtew! =yil+ rlni1 valid in the vicinity of
6.49  the point 1. The result follows from applying the regulariza-
tion (5.2, with the help of the Newtonian approximation of

Notice that during the computation of the poten¥abt the o NC potential. The interesting point is that the regularized
2PN order we used the 1PN equations of motion for generquactor in Eq.(6.9) is different fromy(liyjl)(U(NC)
(6. {

e ; e p )1 @s a con-
orbits: these are glvenAby E(h.10. In addition to the above, sequence of the non-distributivity. See Sec. X.
we need the trac&/=W,; at 1PN order[To the order con-
sidered in Eq(6.49 we haveU;; =\7Vij .] By a computation

. VII. ADRATIC TERM
similar to those of Ref{51] we get QU c S

In this category we consider all the terms whose support

A Gm, Gm; 1Gm, ) 2G%m;m, is spatially non-compacthence the finite part operation
(W)1= ro | o 2 Tpo —2v3| - T(nﬂvﬂ) FPs—q plays a crucial rolg and which are made of the inte-
gral of a product of two derivatives of compact-support po-
G’mym, Gm 1Gm, 3 , 13 , tentials. Furthermore we subdivide the quadratic terms into
12c2 | T, 2 rp tovit 5v) subcategorie¥-, S, and T-terms named after the functions
Y., S andT, defined below, and we classify all these terms
2 5 according to their dominant post-Newtonian order. The ex-
+(N1201) "+ 2(N1201) (N1202) = 2(N1205) haustive list follows. (i)Y-terms at 2PN: $#), SI(6), SI(7),
SI(7), VI(4), VI(5), TI(2): (i) Y-terms at 3PN: SBY),
G'mi[ 9 , 3 ) SI(350), SI(370), SI(38C), VI(16), VI(20), VII(6), VI(19),
el —gvat z(Nwy) VI(21), VI(25C) VI(260), VI(270), VI(290), TI(6), TI(7),
TI(8); (iii) Sterms at 3PN: S(B), Sll(4C), Sli(5), Sll(6),
m, SII(2), VII(4), VII(5), TII(2): (iv) T-terms at 3PN: SL7),
+rlzcz[_203””12”2)2”5]*0(3)- 6.9 51190, SI210), SI24), SI25), SI(9), VI(14), VI(15),
VI(17), VI(18), TI(5).
Inserting these expressions into E§.3) we obtain the 3PN The Y- and Sterms involve the product of two compact-
%, and then straightforwardly compute(8). In the quadru-  support potentiald), U; or U{?, while the T-terms involve
pole casd =2 it is given by a product of one of the latter potentialsf type U) and a
potential of the typey, x; or Xi(jc) [see Eq(3.7)]. Compared
I to Y-terms, theSterms contain in addition a factpx|? inside
SKl)—f d°Xq X1 6, + 12 their integrand. In the two-body case these compact-support
o U-type potentials read
=Taylyl + 12, 6.6
_ , L , Gl
The final result for circular orbitfusing the relationg5.7) U= r—+1<—>2, (7.1a
and(5.8)] reads then !
2 Gui
S =my| 1+ %(1—51/)— %(13—611/—1— 25,2) U= vi+le2, (7.1b
o G
+ 15(149-573+354°-29°) |X;; . (6.7) Ui(jc):#(vilj — S+ 102, (7.10

The sensitivity of this result to the choice of stress-energ

tensor for point-particleqin accordance with the “non-

distributivity” of the particle finig is discussed in Sec. X.
Other interesting terms in this category are

Mhe potentials of typg are obtained by replacingry/by r,

in these expressions. Then from the structurdr;+ 1/r, or

~rq,+r, it is not difficult to express all they-, S, and

T-terms with the help of three and only three types of el-

4 ementary integraly,, S, and T, respectively(wherelL

SI(16NO) = — pr d3x|%| 8%, 05U, (6.8 =i4i,...i; denotes the multipolar indexTwo examples in
Cs-0 the quadrupole casg are
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4G Ly X a +2k wherek is an integer. So the integral in E(..5) can be
SI(4) = =z mal7av1v; 20apYij + 12v1 20aYii 1+ 12, omnited by analytic continuation down to the vaBre 0.
(7.2a  We obtain FpeN)

G d? Pt

_ b b, 2 3 B _

SII(4C)—%5m1m2W[(v§ —5%0%) 192pS;j]+12. f d°x[X| > (pF1)(2pT1)’ (7.9
(7.2b

o . ~which is a particular case of the Riesz form[#2], valid for
[We denote, €.9.3d,=d/dy5.] Since S{4) is a 2PN term it anya, be C except at some isolated poles:
needs the relative 1PN precisigfor simplicity we do not

write the post-Newtonian remainderdhe elementary inte- a+3 b+3 at+b+3
grals are defined by 2 2 T2
f d3xr1r2 32
% r a r b at+b+6
Yi(Y1,Y2)=— 5= pr d3X|X|B (7.3a 2 2 2
. . xriyPre (7.7)
~ XL
SL(Y1Y2)=— 5 Ff’f d3X|X|B|X|ZE’ (7.3D (I denotes the Eulerian functiprA closely related reasoning
B=0 to prove Eq.(7.6) is to replace the regularization fact®
by its expansion wheB—0, i.e.,
TL(y1Y2) =~ 5~ FPJ d3x[X|Bx — (7.30
B B B (n1yy) y1 2
IX|®= +§In 1+2 +(9(B)
In these definitions, the finite part at infinity is absolutely : 7.9

crucial (it comes directly from the formalisif20,21]). How-
ever, it is easily seen that the integrals are convergent ne@ince the integral does not develop any pole wBen0, the
the two bodies so the Hadamard partie finie is not needederm of orderB cannot contribute, nor any of the higher-
The integralY| agrees with the definition used|[ia0,13 and  order termg)(B?). This means that we can replace the regu-
is equivalent with the alternative form proposed in R&8]. larization factor|%X|® by T2 (whereT,=r,/ry). From the
We present several derivations of the closed-form expresRiesz formula, witha=B+2p—1 andb=—1, and compu-
sions of these integrals for arbitraty This permits us to tation of the limitB—0 we get the same result.
introduce some techniques which are necessary when we Thus, plugging Eq(7.6) into Eq.(7.5) we find the explicit
compute some more complicated integrals in Secs. VIII an(éxpressmn ofY, as
IX. The first method consists of writing the multipolarity
factor X, in the form

P

| Yi(y1,Y2) = r122< )
% =2,
p=0

| ~
p) r{Pyi P, (7.4

wherey},=Yy;—Y, andr,=|ysJ|. In terms ofy} andy, the
expression is simpler:

where ¢,) denotes the binomial coefficie@nd () refers to

the STF projection Inserting this into the integraf, , it is

|
easy to obtain the equivalent expression YL:quo yi Y. (7.10
[
Y, = — i ' ) (-)P y(LfP P Using exactly the same method we find for tReintegral,
Y 2w lp/(2p-pn P | ,
I V1o 2l
2P 1 =r ( ) py(L—P - e +1— —
X[ fd3X|X|B 1 ] (75) SL 12[)20 p ) y y12 (p+2)(p+3) p 3
B 2)’1‘Y12jL vi
Next we compute the integral inside the curly brackets of Eq. p+2 p+ 1
(7.5). Let us show that the polar part of this integral when
B—O0 is zero. We replace the integrand by its expansion Mo (L-0,,0 , 2
when |x|—e (any pole aB=0 necessarily comes from the  ~ (|4 1)(1+2) & Z Y& S 1+ 1-a)yi- 3@+1)

behavior of the integral at infinijy we integrate over the

angles and look for radial integrals of the type 5 5

J7=d|x||x|®B~* which are the only ones to produce a pole. X(1+1=q)y*(9+1yz|, (7.1
However these radial integrals do not exist since after the

angular integration the powers of are only of the typeB  and, for theT -integral,
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I (—)P P)
TL_ 3 po(p> p+2y y12

I’12

e (L-0,9)
T3 (1+2) & 2 (a+Dyr "%y (712

Notice thatS, can be deduced frori, and Y using the

formula

SL:(l_Zyil 1D TLHYIY, .

The integralsY, , S, and T, vanish in the limity;—y,. As

is clear from the defining expressio(i&3) there is no prob-
lem with the latter limit, in the sense that it does not intro-
duce any singularity at the point 1. This justifi@posteriori
our neglect of all the “self” contributiongproportional to
ml and mz) in the quadratic terms; see the examples given
by Egs. (7.2. However, when we compute the cubic and
non-compact terms in Secs. VIII and IX we shall find some

(7.13

important non-zero self contributions.
Another method for the computation of the integrgds3)
is based on the set of functions defined by

=In(rqi+ry+ryqy),

1 1
f= 6(ri+r§—r§2)(g— 3"

1 1
= g3+ 0 g

(7.143

g(r12r1+r12r2—r1r2),

(7.14h

1
+ g(r1r2+ Mol 2= r1r12),

(7.140
a1 2 2 o
f =€(r2+r12—r1) g— +€(rlr2+r12rl—r2r12),
(7.149
which satisfy, in the sense of distribution theory,
Ag= ! A ——l —1 7.15
g_mv lg_r1r12! r2r121 ( . a
1
Af=2g, Af=—, Azf— (7.15pH
12 r12
r r
AfP2= 2 A f12=2g, A,f%=— (7.150
2 2
21_T2 21_ 12 21_
Afe= = A fo=—, A,f“=2q, (7.159
51 ry
where the Laplaciand =4;d,, A1=1d;-17;, Ay=12d;-20; .

Let us take the example of the integhgl . With the help of

Eq. (7.143 it can be rewritten as

1
Yi=—5— FPJ d3x|X|®x Ag.

2mg_g

(7.19

PHYSICAL REVIEW D 65 064005

We operate the Laplacian by parts, discard Brdependent
surface term which is zero by analytic continuation, and use
the formulaA (|x|Bx, ) =B(B+2l+1)|x|® 2%, . Hence,

1 3y |%IBly |~ 2%
Y. = FP[B(B+2I+1)fd X[X|°|X| ng].
2mg_q
(7.1

Because there is an explicit factBrin front of the integral
we need to look only at the polar part wh&—0, which
depends only on the behavior of the integrand at the upper
boundr=|x|— ¢ (this r should not be confused with
=r,, as we sometimes denote the orbital separatidhus
we are allowed to replace the functignn Eq. (7.17) by its
expansion at infinity. It can be checked that thinple pole

of the integral in Eq(7.17) is produced exclusively by the
term in the expansion af of orderr ' =1, Let us consider
the quadrupole cade=2. We have

1 1
= n<2r)+r{}+r_2{}

1(ry ) )

73] 7 Ly "+ (ny1)(nyz) +(nyz) "]+

r

+0

1
r_) , (7.18

where the dots indicate some terms which yield no contribu-
tion to the present computation, either because they do not
belong to the relevant order 3 or they will be zero after
angular integration. Thus the formul@ 17 becomes in this
case

dQ  ryp,

Yij= [ ZB(B+5)J dryBr—1t - n”4

X[(”Y1)2+(ﬂY1)(HY2)+(HYz)2]}- (7.19

The notation for the radial integral means that only the
bound at infinity contributes to its value. The latter expres-
sion is easily transformed into

[y<”>+y yy+ysi], (7.20

in agreement with the more general reqiltl0. The same
method works forS_ as well, but one performs two succes-
sive integrations by parts using the functiomeindf. Con-
cerning T, , one integration by parts is sufficient but using
the functionf?

With the latter expressions of the elementary integrals
Y., S, andT, we obtain all the quadratic terms. The results
in the case of circular orbits are displayed in Appendix A.
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VIll. CUBIC TERMS Since the cubic terms are 3PN, their computation can be

By cubic terms we refer to all the terms which are made done using the Newtonian potentials

of a product between thrgéerivatives of compact-support

potentialsU and U; [there are no such terms involving the U= (2)+1-2, (8.1a
tensor potential’]. From Eq.(4.2) we can check that the
only cubic terms appear at the 3PN order. These are
Gm; .
SI(26),S1(27),51(28),S1(29),S1(30),S1(34),51(36),S11(13), Ui=——01+0(2)+1=2. (8.1b

VI1(22),VI(23),VI(24).
For simplicity we gather in one computation the sum of all
Let us proceed in a way similar to the computation of thethe cubic terms in Sfand similarly in VI, there is only one
guadratic terms, i.e., by expressing the terms as functionaksubic term in SlI, which is S(lL3)]. In the case of mass-type
of some elementary integrals that are computed separateljnoments we get

G?mi( 32 . 88
ab ~
[ 150|lvl laIJYL( 3 O)+ gviYL( 50)+ _Ul l(yabyk

SI(26+ 27+ 28+ 29+ 30+ 34+ 36) =
22
+G mlmz[( 9 . viol

_ i
U1V
cb 27172

> 195 YL 2P =8ulwb 50, Y (72T

+[ 2Ull)2 GUlU +85ij(U1U2)+85ijUi] 107i 207]'Y|_(72'71)

+[15(v1v,) +302]Y, T4V + 162, (8.23
G2 2
SI(13) =55 W{mivfﬂh 3mim,Y, ("2 U +142, (8.2

8G%(21+1) d N 3
V|(22+23+24)=ma —mfvi‘ aL( 5'°)+m§m2 Z(vli—vg) 194 29k

3
o o K K o
XYa "2 V=08 10k 20k Yal T l)_E(Ul_Uz) 10 Y a2

+1<2. (8.20

3 5
— (gv?-i- gvg) YaL(74'71)

In the case of the current-type moments there are only thing to our convention we generally do not write such parties
VI-terms, which admit a formula analogous to E§.20. As  finies, but they are always implicitly understood.
we see, we could express all the cubic terms by means of a The integralY, ("2~ Y is perfectly well-behaved near the
single type of elementary integral, two bodies(like Y., S, , andT, considered in Sec. V)] so
it does not need the partie finie. We substitute in it a formula
obtained from Eq(7.4) by exchanging the labels 1 and 2,

YLy Ye) == 5= FPI d3x|X(B%, 0B, (8.3  obtaining

. 1 Iy (=1)° _
. . . . . vy, (2 _ = — P g
of which some particular cases used in the previous section L 27 &6 \p/(2p—1)11 72 20P)
readY, =Y, %D and T =Y Y. The integral(8.3) is

well-defined in the vicinity of the pointg, andy, only when [ f dxRE rap-t
X|X

n>—3 andp> — 3. When this is not the case—for instance
the integralY, (739 appearing in Eq(8.2—one should add
the Hadamard partie-finie operation Pf defined by &q3)
and depending priori on two constantsi; andu,. Accord-  Next we replace the regularization fac{®i® by its expan-

] . (8.9
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sion aroundB=0 already written in Eq(7.8). Since the Alternatively, the result$8.7) can also be obtained by the
integral can develop simple poles at most, we can limit oursame technique as used previously Yot =2~ 1) (i.e., from
selves to the first order iB. Then the integral in the brackets the Riesz formula and search for the pole at infinity

of Eq. (8.4) reads The computation of the integral, (739, defined by
2p—1 3
r N 1 e XL
FP f d3x(X| B2 YL 3Oy =~ S-FP J d3x|x|B—, (8.9
_ ri Tg=0 '
gpfl B rgpfl . - . . .
_ pr d3xT? —+FPs_y _f d3x“r‘? , is & priori more tr|<_:k_y becaus_e this mt_egral necessitates t_he
B=0 ry 2 ry Hadamard partie finie for curing the divergence at the point
5 y1 . Actually, the same method as before, based on the Riesz
| (n1y1) Y1 formula, could be used because we know that the Hadamard
XIni1+2 r + g ' (8.5 partie finie can also be obtained as an analytic continuation

(see, e.g.[41]). We prefer here to vary the techniques and to

) . present some other derivations. We split the integration do-
The first term follows from the Riesz formul&@.7), and the main R? into a ball centered oy, with some fixed radius

second term depends only on the poles developed by thﬁ I .
. e . ; , and the complementary domain, iJe.>> R, . The partie
integral at infinity(because of the explicit factd in front). finlie applies onlyp on the “?/nner” domgn> SLlJrroundping the

Now, contrary to the case of the integigl=Y, "+~ in- . ) - ,

vestigated in Sec. VII, we find that this second term gives ‘?Sr:?eg;rl;ngqéhg{:% ttgeir::‘?rlltif pﬁgn'ggo applies only on the
net contribution to the integral, straightforwardly obtained Y- '
from expanding the integrand when= |x|— +. The final

values that we obtain in the quadrupole and octupole cases Y (30— _ ipf f d3x)A(—L
(=2 andl =3) of interest are 2w ' r1<R; rf
1 X
L fi6 188 . .[8 _ 4 - FPJ d3x|X|B— . (8.9
Y l):y<1”>{1_5|n M2~ 55g +yiyY 1—5In M2~ 2_25} 2mg_oJr>R, ri
+ydD) E"ﬁ _ E (8.63 In the first term we recall that the partie finie depends on a
2 |5 12 25 ' constanu, [see the definitiot5.3)]. For this term we readily
find
032 2552
Y.. (Zvl):y<|]k>[_|n’l"’ __:| 1 5‘( R
K b3 3675 — P, f d3x 5 = — 2§ In(—l). (8.10
2 1 r1<Ry ry Uz
i 18 124}
Y1y | zeInTiot ooo; .
172357 12 3675 On the other hand, one must replace into the second term the

12 66 factor [X|® by its B-expansion as given by Eq7.8). This
VI T ot s yields two contributions: one is immediately computed using
y1y2 35 12 1225 K . R . .

the properties of the analytic continuation, the other contains

[2 2 an explicit factorB and therefore relies on the existence of
+y<2” ) 7In”r’12— 4—9}. (8.6b  poles at infinity:
- 1 Xu
Note the occurrence of some logarithm&ef=r,/ry. Ap- o FPJ d3x|X|B—
plying on these values the point-1 LaplaciAp=14;;, and Tg=07r1>Ry 1
usingA,r; ?=2r;* (a statement valid in the sense of distri- .
butiong, we obtain =29-In Ra_ i,:pr Ef+xd3x?3ﬁ
YW rg) 27 7B 2 g, trd
1(8 .. 4 . 1 . »
(—4-1) = RV P _Z n
Yi —;172(33/(1'” R4 Lt A P CRE xin| 142" :yl) +i’—§” (8.1
1 1

As expected, the sum of the two contributiof&10 and

(8.1)) is independent of the intermediate length scRle.

Indeed, the integral in the second term of E&}11) does not

_E <ijk>) 8.70 in fact depend ornR; as it depends only on the infinite
5727 ' bound. We obtain

8 . 2
vl - o yllys - yivy
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_ N up 1 e B XL _ 1
Y (T20=29] In(a)—EFPBO[BJ' d%r?a Y TH0= =297+ S—FRag
(ny1) Y3 T B2 XL [T1
XIn T+2——+3| (8.12 X{B(B+2l+1) d°x|X|®|x| Hln wll
1 1

(8.18
The computation of the second term proceeds along the same ) o
line as for the reduction of, in Eq.(7.17). We expand the Following the same principle as before, we compute the re-

log-term up for instance to the order {hecessary to get the maining integral by looking at the pole at infinity. The result
quadrupole cask=2, is in agreement with the earlier derivati¢as we checked in

the casd =2). Let us also mention that still another method
to computeY, (~30 consists of taking the limig,—y; of the

2
In 1+2(n1y1) + y—;} =2 (N1y1) + iz[—z(nlyl)2+y§] integral Y, ("2~ 1. The limit is singular sincey, ("2~ 1 di-
1 r ' r verges when the two particles merge together. In fact the
1 limit must be taken in the sense of the Hadamard partie finie
+0 —3). (8.13 (5.2. Indeed, applying Eq5.5) in Ref.[41], we obtain the
r following limit relation betweeny (~30 andy (-2~ 1)
Therefore,

YL 30y = YL T2 Py 0 -2

51
N (L)
|n(ul) 1:|yl )1.
(3.0 _ i n| U1 =B, -1 (8.19
Yi' TP=297 In o —FPs_o{ B drqTiry
40 Inserting for instance the result ftfrij(‘z" 1) obtained in Eq.
i g i i 8.6a we recover exactly the functiovi; (~* given by Eq.
x f o RliangyD(nyy - 2nf(ny ). (869 y ;%9 given by Eq
Ax (8.153.
8.14 Finally it is easy to see that the functiof (">?, also
' needed in the cubic ternt8.2), is identically zero. We apply
the point-1 Laplaciam\; onto the expression of (739 us-

The integral follows immediately. This method vyields the ing the known formula of distribution theory

results(cased =2,3

A 1)_8 1077A é (8.20
Y, (730=|2n bt +1_6y(lii>, (8.15a ! rf _I’? 3 "ok ‘
y ro/ 15
and readily obtain, for anj,
u 142 .
-30_ 1 k 50 _
i )_[2 '”(E) +ﬁ5}y<1” - (8.15b Y 750=0. (829

o The results for the cubic terms in the case of circular orbits
The results depend on the Hadamard-regularization constagte reported in the Appendix.

u1.

We present another derivation of the integhgl(~39),
based on the interesting formula of distribution the(sge,
e.g.,[33]) The most difficult part of the present analysis is the com-

putation of the so-called “non-compact” terms, which are
{ 1 ( rl)} 1 cubically nonlinear termglike the cubic termsmade of the
Al—In| —=||=—Pf, | =5
r{ \ug nry

IX. NON-COMPACT TERMS

+4mw5(x—y1). (816  product of a compact-support potential like and a qua-
dratic “non-compact” potential likeJ{“'. The complete list
of non-compact terms is

[Notice the sign of the distributional term, 47 5,, opposite
to_the sSign In the more famous form%l{r 1) = _47T51.:| S|(5NC),S|(19NC),S|(20),S|(21NC),S|(33NC),S|(35NC),
With Eq. (8.16 one can re-expresg, (739 in the form

SI(37NC),SI(38NC),SII(4NC),VI(25NC),VI(26NC),

Ln(r_l) } VI(27NC),VI(28NC), VI (29NO).
rp \ug

(8.17

1
YL<73,0>: _Z%Jr EFPB:OJ d3x|7<|Bf<LA

A. Expressions of the NC terms

Here the first term comes from the delta-function in Eq. As before, here again our strategy is to express the non-
(8.16). Integrating the second term by parts, we get compact terms as functionals of certain elementary integrals,
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that are computed separately. We substitute inside thehich solution is the correct one. The most general solution
sources of non-compact terms the appropriate postwill be obtained by adding to the particular onehamoge-
Newtonian potentials computed for two particles on a genneousterm, solving a source-free Laplace-type equation. We

eral orbit. The compact potentidls U;, andU(C) (and simi-
lar expressions for thg’s) were already glven by Eq7.1).

have checked that the only possible homogeneous solutions,
that are regular at the origin, are constants or linear functions

Here we list all the non-compact potentials needed for thi®f the position, and that these are always either canceled by

computation[see Egs(3.7) and (3.8) for definitiong. The

some spatial or time derivatives, or disappear at the end of

potentiaIUi(]NC) is the only one which is needed at 1PN order; 0ur computations. This justifies our use of the particular so-

the other potentials are Newtonian:

1. Si\ L
UijC)z—g,wi a; |nr1+r—g ~TiyFip 0+ 12,
1
(9.19
1 r2 5
Xf]NC)__Zmi{&ij E(lnrl_g +5|] |nr1]
—mym,fj+1<2, (9.1b
|A?i(NC):_:L6mlU1 Iklnrl+_2_
k3
—2mm, V1T 402 gkt 12, (9.19
5 (NC) 1,
Zij _ml a 1I7J)|nrj_ 81)1 1&”' |nr1
1 1of 11 o
+—5| l)l 1(9km|nr1 2 % 3—2 ?

[ k(i ik
+mlm2‘2a(1'gj)+2ul(' kgj)—Zv(l'vz k9
+(v1vp) |91)+UlI Y -

5|Jvlv2 kIm

+ 5ijUr1nU|§ kOm— 8ij(v1v2) (k[ + 12, (9.10

1
Ki Eali 19ijk T g—GUIEm 1&ijkm}(r%|n ry)

—m2
j=m

1,
731 19)—

1 ik
—55' allak+4

165 Ul 19km

1
T2vT 1) |(Inrg) + 165101+_U1}(r1 )]

L1
16
(9.18

Here, g, f, f12 and f?! are defined by Eq(7.14), and we
denote, e.9.;9;=1d; 29;0 (see Ref[51] for the expression
of ig)); the acceleration isaj=dv}/dt; the parenthesis
around indices denotes the symmetrizatiandG=1).

k k 12
+m1m2[a1 1(3’k+vlm l&km](ifj) +1<2.

lutions (7.14). (Similarly, we found that the same happens in
the computation of the 3PN equations of motion, where these
particular solutions are sufficief#3].)

The potentialg9.1) contain a “self” part, proportional to
mZ2 or m; (before replacement of the acceleratiprend an
“interaction” part, proportional tomym,. Similarly the
sources of the non-compact terms will involve a self part,
proportional tomf or mg, and an interaction part, propor-
tional tom2m, or m;m3. At the 2PN level, all the self parts
canceled out in the multipole momenit$3]. At the 3PN
level, we shall find that the self parts bring a contribution to
the momentgActually, we shall argue in Sec. X that the self
parts are unknowi.For treating the NC terms we used the
standard distributional derivatiy&2,33. Thus, we have, for
instance,

1
A==—4ré,, (9.23
i
1 3ny—5'J am s 000
i\ )T T3 0% (9.2b
1 6
3175 3 Ady, (9.20
rl N
1 15n”— o 2w o 3w
a —? Ady— 15 aijél-
(9.20

However, the use of the standard Schwartz derivative can be
justified only when the terms involved are multiplied by
some smooth functions. In the case of the self parts of NC
terms, this will not be true in general, so the Schwartz de-
rivative gives some ill-defined contributions, composed of
the product of a delta-function and a singular function. In
Sec. X we consider a well-defined way to do the computation
of the self terms, which is based on the distributional deriva-
tives proposed in Ref41]. From the discussion in Sec. X
we conclude that one must add to the present computation
some undetermined terms taking into account the ambigu-
ities in the choice of the regularization and distributional
derivatives. All the expressions in Eq9.3) below are
modulo these ill-defined contributions and we can safely pro-
ceed with the knowledge that our procedure is unambiguous

Notice that we have chosen to express the non-compaeind complete. We are securely protected from such ill-

potentials by means af, f, f1%, andf2%. But these functions
constitute merely somparticular solutions of the Laplace

defined contributions at this stage since we shall add such
terms with an arbitrary coefficient in Sec. X. We obtain the

equationg7.15 we have to solve, and the question arises offollowing expressions of the non-compact terms, as function-
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als of several new types of elementary integfale poseD =,4J; ,d; andG=1). In the case of the mass-type moments:

~3 ~ D
[ M 1, ., 1
SI(BNC) = C—jYL<*5v0>+ (l:4 20 - Ey;rlzz— ZDZNL(O"”—4 2GS | +12, (9.33

mi[ 1 ab (=30, 2 2y (50, 8 ab . oL
S|(19NC):? —%Ul 10apYL +gleL ' +§51)1 19abY1

2 2 2
mim, 1(npa;) (Nqy)® 1op| , 1
[(__ ;_ﬁ(aal‘ 1‘7a1~|'v‘r:jllb laab)D2

+—% G Y
c 2 Iy ris 2r7,

5 d\¢ - d . . o ;
X NL(Z’il)_ EYL(Z'l):|_2(_) 207,F'|_—4v'1a(2<9||::_')—2a11 Z&iF:_] _ZUJ]_k zﬁiFEk} +l<—>2, (93b)

dt

1 1 4 ~ 16 .
Eai 10a— 1_5U?b 1‘9ab}YL(3’0)+ gviYL(75'O)_ §ai lﬁsyli+ 2_250?b laabyli]

mimz
5

1 1
- Eai‘ 2(9a— §U§D

my
SI(20)= ?[

1 1
- ﬁai 1da— 4_80?b laab} D2N 7Y

1 B 1 SR
E(nlzal)rlzl_ E(n1201)2r122 yé*’

1
- b —o- b 21
DN, D‘Zvi 20apY L T2 = 2[@5 20, + 05 20apl2dsF T - 2[aF 17,

+

+1-2, (9.30

+03° 19apla0sF P - 2[ @5+ 2050 19,120 F P2 2050 Lo F A2

3
m([ 1 2 o3 1 32
SI(2INO)= gg[ { ~ 5 105 0l m}w 304 ZuiY T804 G At 10+ 55evl” 1
2
mim, [ 1 1 o
6 ( - §(a§ 293052 295p) D2NL OV — Z(ag 202+ 030 20ap) YL T2 V4288 HoHES
— 208 L9 HEPS + 152, (9.30
3 2
mi| 2 N 8 N ~ mim, 3
SIB3NO= 5 | 7g01" 1danYL' 20— guiY 20— o2vi® ¥ |+ — 5 {—vTval10aDNLOTY
+ 102 205YL T2V 80L0[ 206G+ 20a(pGE) 1+ 8V T2dh(GE) + 20a(5GE) ]} +12, (9.3¢
3 2
md[ 16 a4 .28, . 32 _ . 64 1 mPm,
SIB5NO)= ?{ —F & 1YL T30+ gvg&linL( 30— gviYL( %0+ 5 & A 7_5Uib 19an¥s |+ S

X{[ =503~ (N101) 21957 15" +[12(010) +8(N12v 1) (N102) 1957 15 + 88} 23DNL OV +v7D?
X NL(0’71)+4U! 20')in|_(72’71)+ 16a'1 2(9JKILJ +lq:aiz_viz(vl](__U5)2§k+(0102)2(9i]GL

+ 1603 (05— 05)20; G + 160h0bUT} + 12, (939
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3 2
my 4 16 mim, [ 1 _
S|(37NC):€6' 1501 ® 19anY. 30)_§U§YL 50— 22501 ® 10and +_CG_[EUTU2(1(9a 20,DN (071

+1<2, (9.39

3 3
+ ZaabYL(_z'_l))"'lGUi( 402) 20pGF +1601(Uz 402) 20¢(pGF°)

2
mymy _
6 [Uellvg(laabDNL(o’ 1

2 8 32
=082 1 0apY 30)+§UZY TS0 03P 1T |+

3
SI38NO= 5 { i 5%

-2,-1) 3k j i,k 3 « i] ]
207 107bYL ) 32111 Ul 41)2 zﬁk(GL)_321)1 Uz_Zvl zai(kGL)+3201

k 3 k i k 3 Kk i
X|vi= gvz )20l + 31| vo= Zui] 20l L) [ +1-2, (9.3h
mi o[ 1 (-50 mim, 2,2 1 o0-1_ 2
SI(ANO)= 5 97 73850 |+ —5— y Iy3riF = 25D?M; OV = 05(Qf) | + 12, (9.3)
: ! 30 8 a (-5,0_ 32
VI25NO= 5 Gt|63¥1 10arYaij ~1V1vai T g5Vt 103
2
mim, d 5 5 o
CG dt[ 2101 1&aIDNa|J b— 21U1 1(93 2&|Ya”( 2-1
160 | 3 ak 160 I 3 | .
o1 4Ul 20k(1Gaij) + o7 | v1~ 72 201(Gaj)
160

160 3
( +12, (9.3)

| |
vl_ZUZ) 201 aij(a)

_E<Ul2 4U|l) 20k(i |](a))

VI(26NC+27NC+28NC+29N0O)

2
m; d 2 B 4 32 . mlmz df1i0 _ . _
e dt{ 63U1 155aYa|| 30— 7UaYa|J( 50 94501 10a950 |+ o5 dtl21? v393r S
5 5 5 5
+ ngDzNaij(O 21U1 1aasDNa|] 21U1 19s 204 Yalj "2 by ﬂvz 19a 2’9kYa|J .

a1y 80 40
2102 19k 29aY aij +2_101 2f7|(Ga|]) Ul 20/(Gaij)

40 4 K 40 | 40 | K
21”1 20k(1G55) — 77 gik2%a(Gaip) + 20k(aGai)) 1+ 57 v1 20 aij@ + 5701 20kl aij(a)

40

4
= 5701 29allaiji) ~ 5701 20k(alaij) [ + 12, (9.3K

We have similar expressiorigvolving VI-type terms for the current moments. The elementary integrals parametrizing the
NC terms include some generalizations of the integrals already introduced in Sec. VIII,

Y (MP=— FPJ d3x[x|Bx, rfrh, (9.4a
2mg_g
1
5.0~ — o FP [ %% g, (9.4
B=0
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N, (™ l">———FPJ d3x[%[B% rir5InFy, (9.49

1
M (WP)=— — FPJ d3x|X[B% [X|?r I InT,. (9.49
2mg_g

As usual the Hadamard partie finie Pf is to be added when b o iBe |12 1
the integral diverges near the particles. The logarithms in Qu=—5- FPJ dx(X| %, [x] aaP(r_) a0,
Egs. (9.40 and (9.4d contain the constant, through the B=0 .

notationT,;=r,/ry. In addition we have the more involved (95)
integrals
. 1 1
G[’:— — FPJ’ d3x|x|Bx,_<9ap( ) 29, (9.5a (9.5)
i
1 1
1 L 3yvI¥IBY 9. 9.0 — .
bGﬁP= - FPJ d3X|X|BXL(?aP( ) vd, IL(I) ZWBFIZJ d X|X| XL0] (9,( rl) 19}
.5 (9.5K)

1 The notation is, €.9.of=1daf, 9p=29p0, a0p=1da 29p0
Kf=——FPJ d3x|X|B% dp| —| g, (notably ,g,=Dg). The last two integrals are related to
l

2mg—o some previous ones by
(9.50
) 1 . 1 k'iL(j)=—(1l9]+ 25j)kGiL1 (9.6a
U=~ EBFEJ d*x|X| XL(7P< )kgki
(950) lL(J):_(l&]—’_ 2&])GL (96b)
1
Fl=— 5= FPJ d3x|x|BxL¢9ap< ) f,
Te=0 ! (950 B. Computation of the elementary integrals
' The techniques developed in Secs. VIl and VIII can be
used to compute many of these integrals. Concerﬁf_ﬁgﬂ)
1 1 we need only the particular cabe 2 and (,p) =(—5,0). It
FPl— — — FPJ d3X|7<|B§<L<9aP<r—) 12 :f’ gomputed by the same methods as usedvfgr 39; we
1 in
(9.51)
14 [u 8| .
SRS —In(—l) + —}yﬁ'”. (9.7
1 1 3 ro/ 5
P21_ _ _— 3y |%|Bo =
FL 27TBF—|3J d°x[X| XLaaP(rl) af
(9.59

Next the group of integrals constituted by tNe(™P)'’s and
M, ("P)’s is obtained in a fashion similar to the one em-
ployed forY, (~2~1 in Sec. VIII, i.e., basically by applica-
HP=——— FpJ d3x|%|B%, dip(r1) 0, tion _of the Riesz f_ormula_. The Iogarithms in these integrals
are included by differentiating with respect to the complex
(9.5h parameteB. The relevant results are
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0-1) (i 8 2|~ 247 2 5 4 4 ) 0 4 59
Nij ™=y 705712 INT12— 57| ~ 7o5Y1~ 35 (YaY2) + 705Y2 +yi'yl —r12 InF1o— =5
105"t 357172 2 |7'1237°12 14| 3571 '

601}

N OBy 16 - 811 4y2 88(yy)+ 4y 4yl 8 o 601
315 127630 94571 9457172 " 10572 172 105 12630

2 , 4 4 i 2 | 95 1, 2
QY1_3_5(Y1)’2)+E5V2 yly _r12 nTio— 126"'3_5)/1_2_()/1)’2)

1) 1,
INF 12— 75|~ 53Y1[ (9.8

1
e

887] 13 , 4

N; 2D =y B [ S yi— 2 2yay3 2 ya+ . yz(yy)Jri(yy)2
3151 1271260 94571 315712 315727 g4 1YYV T 315012

a2 4 127 16 , 2 8 4
+YAYY | 537 1A M 12— 555 — gzeY1~ geVi¥at 31eYi(Yay2) + 53Ya(Yay2)
1 13 59 1 1 1
+y<”>[—f z[ln P %} - FGOY‘H 6—3yfyg+ 7Y§(Y1y2) - §(y1yz)2] , (9.80
8 [ 7 71
D? N;j; (2-D= 5)/<1IJ> InT 1+ < 5l yly INT1— +_y<”> |n"12+m, (9.80
8 . 7 37 2
DNij(O'il): _Ey<1|]> InT+ ¢ 15|~ y yz InT+ < 15|~ _y<ll> INT o+ 15 (9.8¢
1 o 10 ..
DzNij<o,71)_r ( y<|J>_ y<1'y12>+§y<2”>], (9.8f)
12

01) i 4 _ 1937, 11 4 44 2 ,, 4
y T5r 1 In Mo~ % 945yl 945yl(yly2) 945(yly2) ESylyZ 105y2(y1y2)

1517} 1

4
2
315y2] y y [315r12 InT M1~ 1260 135y1 189y1(y1y2) 105(yly2) 315y2(y1y2)]

(i) 1 | 253 1, 1, N 1 , 2 5, 0.8
Ty 126 12 NTio— 552 378071 ESY1(Y1Y2) @(Yﬂ/z) ~ 31872 (9.89
- - 88 _ 676 2072 1096 . 16 B 184
D?M;; (@ 1):)/(1”){ - 1—5In Mot rlZZ[ 225Y1 575 S5 (Y1Y2) — TSY%H +y<1'y'2>{ - g'n Pl — 25 S Vi
1024 224 (i 48 _,| 536 304 42
+ 7—5(Y1YZ)_ o5 Y2|[TY2) g'n PR BT’ 75 == Yit 25 -5 (Y1y2) — 25Y2 (9.8h
|
The remaining integrals, defined by E®.5), are more 1 B
difficult, but we have been able to obtain all of them using Ki==5— FPJ d°x|X| (9.9
several different methods, adapted to the computation of B=0
each of these integrals separately. We shall not present all thgsing the fact thay/r, is a Laplacian,
details of these computations but simply outline some ex-
amples. Consider the integridl defined by Eq(9.50 with 9 _ Mflre 1 I
0 i —=Al——0- 7% (9.10
p=0, i.e., r 2 4 2
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we can integrate by parts and transfokip into an integral  the homogeneous terms are zero. To compute the constants

containing an expliciB-factor, andb we need some extra information, which is provided by
the contracted product betwegt, ande‘j . Indeed this con-
K =-— i Fpr B(B+ 2l +1)f d3x[%|B|x| 2%, traction is a known quantity thanks to the identity
2mg_g
1
ri+rp, 1y o Y1.Gij = — (1+y1, 155)Gij+ZA1Yij(_2‘D, (9.17)
2 9% 2 .19

whereG;; has just been obtained previously. Heg( 2%
From a previous argument, the value of the integral dependsan be computed from the Riesz formula exactly like for
only on the possible occurrence of a polel/B at infinity. Yi; (-2-1) jn Sec. VIII. [When deriving Eq(9.17) we take
As the pole is easily computed from expanding the mtegran@ccount of the fact thay;; (=20=0.] Comparing the result
at |nf|n|ty, we obtain in this way the eXpreSS|OnK)f NeXt for ylZG with the one obta|ned d”‘ect'y from E@ 1@ we

from the formula find three equations for thewo unknown constanta andb.
1 1 1 1 1 This overdetermined system fixes uniquely the constants to
ol =l g Al Zgle Sa (2] A the valuesa=63/100 ancb= — 257/900.
a ad 119 1 19, . .
I 2 M 2 r The preceding method was successfully applied to several

(9.12 integrals of the type(9.5): that is, we (i) compute the
“source” of the Laplace equation satisfied by the integral
with respect to the point he source is computable because
A, applies only on the part of the integrand containing the
functionsg, f, etc., and we can make use of E(&15; with
respect to the point 1 this would not wdyKii) compute a

1 1 particular solution of this equatiofiji ) write down the most
GL=— 5 MK+ (X @)1t TYL(’Z")), (9.13  general form of the homogeneous solution in terms of a few

12 arbitrary coefficientsthis works only when the dimension of

the integral is a small power of a length so that the number of
unknown coefficients is smaJl(iv) compute the coefficients
using the extra information provided by the contraction with

where one should be careful about consider&ritg[l in the
sense of distributionfi.e., A;r; *=—474;], we deduces,
from the Laplacian oK, . Indeed, as a consequence of Eq.

(9.12,

and we can easily show thig (729 is actually zero. Alter-
natively, one can prove also that

1 50 1 - 1 20 respect toy,,. Alternatively to(iv) one can use an angular
GL =§Y (730 oroL Y (T34 o Y (729, average with respect 1o, [see Eq(9.29 below].
2 2 (9.14 As a verification let us introduce the new integral

This provides a check of the computation. _ L 3 1~|Bo 1

To computeG; (in the quadrupole case=ij, say we Rij= FPJ d™|X["%ij r /% (918
use a different method. We remark tf@% obeys a Laplace
equation, with respect to the point 2, with known source: From the easily checked formula

1 1
19asYij - (9.19 (Al—A)(g)I Y+ 20,
r r1r12 rir,

s 1
A2Gij =10, [

1
)gaa (919)
N

Here,Y;; is known from Eq.(7.10. The right-hand side of we deduce a relation betwedR; and some computable
Eqg.(9.19H is expanded, and we obtain a particular solutlon quuantmes ]

this equation by integrating each of the terms. N

necessarily equal to this particular solution plus some solu-

tion, regular at the origin, of the homogeneous equation. Tak-

ing into account the index structure ij and the fact that it

has the dimension of a length, we find that the homogeneous
solution is parametrized by solely two numerical constants

andb. At this stage we have

1AK+1Y 21>+1FP
B ) 4my_,

B(B+5) f d3x|')"(|B|x|2>”<ijrg]. (9.20
1

, 1. The value of the last integral comes from the pole at
Gi=- y<u>sr 12t 6ys<'y Mz~ 1—5y<1'261>sln"r‘12 infinity—the same method as before. Having obtaifRg,
the verification is thatd GS , which on one hand is com-

4 (i 5i)S [ (i si)s (i siys puted from Eq(9.16), on the other hand should be given by
—3Y197"InTptay; 87+ by, 67 (916 the following alternative expression:
Incidentally, this expression already gives the complete result s_ } o o
for the gradients G} and ,d:Gj; , because the gradients of 20sGij = = 5 A1Ry = (9a(Xij0a))1, (8.21
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which is obtained by some integrations by parts inside the

integrand of ,d;G} . Of course, the value dR;; computed Uil=—o— FPJ d3x(X|%;; A ( )kgk_z(xlj k9K)1,

by Eq.(9.20 is such that Eq(9.2)) is also satisfied. 9.2
OnceG;j is known we can deduce another needed inte- '

gral, i.e., 20s K'J , from the identity the final reduction being obtained thanks to the known for-
1 1 1 1 1 mula (see, e.g.[51])
aas(ﬁ (gs+sg):_§A[aa(a)g +§‘9a(A )g
1 1 _1( 1 1 1 ) 9.29
- — 1&a(—Ag), (9.22 K72 raifp rafap fofgo) '
4 rq
which implies Still another method is useful in our computation. All the

integrals are certain functions of the two poigtsandys,,
and it is advantageous to consider their angular average with
respect to the relative directiam, between the points, with
the vectory; being fixed. As it turns out, the average is much
1 easier to computéusing some methods similar as before
+— FP[B(B+5)J d3X|X[B|X| ~%Rijda —)g] than the integral itself. On the other hand, once we have
47 r obtained a result, we can compute its average, so the com-
parison leads to an interesting check of the calculation. Let
(9.23 us see on the example &f how one performs this angular
average. From Eq9.59 we write

1
20K = -G — 1 10aY4 2TV = (94(%i9))1

Again the last integral causes no problem. Next, from both
R;; and zﬁSK-bjs, we can further deducgd,(,Gf}). Indeed

i i dQ dQ
the other identity f 12G - FPJ A [%(5%_ 7 (r ) f 2
1

4 4
1 1 1
( ) b9a™= lab[ (E) Ja + aab( H) Oa> (9-24) (9.29

in which we commuted the angular averagehere d(};,

denotes the solid angle element in the directigp) with the

a bs integral sign and the terms depending only yan This is
9a(bGij) =19pRij + 205K;". (9.29 correct becausyg; is kept fixed in the process; for instance,

Some other integrals are connected directly to the simpler effe average oy, is y1, which is obtained by writingy,

r1o.N1, and averaging ovemq, with fixed rq, and
Y-type integrals. For instance, the integf@l5d is given by Inyr}ractlif:elzcomputing %hegavera%éézg) is not t(l)% corXéli-

cated because the average,dfis rather simple,

implies

3 1
Ua 16 1‘9abY i )_g‘sabY -4 l)
( ry 1 ) hen 1. <
—— n$ when r;<r,,,
_ilé, bY__(*l,*l) (926) dQlZ 6r12 2r12 1 1 12
2r12 ab ™l — 0=
47T 1 r12 a h ~
(using the facts thay;;(~29=0=Y;,(~*9). Once the value T, " 6rz)M When f1=Taz.
of this integral is obtained, we can che_(_:k that its trarf}? (9.30
= 5,pU5"° is especially simpleU2?= —y{!/r%, This is in
perfect agreement with A more complicated example, that was useful for us, is
2 2
SR ( ri 1 ) .
_ NP4 —— 52 when ri<r,,
J dQ, 2o, leord, 6rZ, 031

—_— g:
4gq 2P (_ 1 rlz) ab (_ 1 1 ryp

12 + 5% when r>rq,.
4rf 5r3) 3rary,  4r? 15rf) 1=
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According to Eq.(9.30, we must split the integration over’x into two “near-zone” and “far-zone” contributions,

. (9.32

40y, 1 1 1 1 1 rp
Gl=——— BxK | — =y + = FPJ A3X[X|B% | —5— —=
f A7 Y 27 XX"( 6rirs, 2r§r12) 2o Jriory XX 2r} 6rf

ri<ris

The finite part aB= 0 is necessary only for the far-zone integral. Both integrals in€82 are now evaluated using standard
methods. In the cade=2 we find

f yps Gij=y<1”>(|nr12+ 30

This is in agreement with the average®f; computed directly with the result calculated from E9.13 or Eq.(9.14. This
method of averaging has been applied for checking many other integrals. Even, in several cases, the method has been
employed in order to determine some unknown coefficients. However, for this purpose the method is less powerful than the
method of contraction with the vectgyi,, since the latter method yields in general a redundant determination of the coeffi-
cients.

The complete list of the results for the elementary integrals is as follows:

(9.33

o231, 1,
=YV InToo— ool + 3vivE+ oy, (9.343
25b(Gij):_y W+ 5 5b yJ>__5b<'ylzv (9.34b

205(Gij) = = 15y<”>bc"12 + _ym)ﬁbcrlz + _(Y12 S C+)/C<|5'>b)"12 3 ybc<ly1>rfz4

1 . . oz, 1 . 257
-yl 4 o ylZy 8% 1~ y12Y1 SIPr I+ = 8180 InT - —|, (9.340
6 15 60
202(,Gf) = 60y<”>bcrfz4 <”>5bcrlz Oyb<I °rs+ yc<|5]>br12 +5 y 2)/J>5bC
1 1 317
- _Y12y<l5l>br12 +7 Y1§y<”>r12 - _5bcy<”>r72+ 15 INT 15— 60} shi e, (9.349
2 ... o 1 103
20a(bGfj) = 5y<”>br122_ S YRR+ 3 8yl + 5b<'y11>2[ —1gNT- ﬁ)} (9.34¢
g 2ty Ty
Z&S(G”) y Y3 +€y r12 (9.349
257 4 31
Gf’j 30y<”>5r122+ 6y5<'yl > +y1 6”5{ - —In Tt — 900 y<'5'>5[ 3 =INT 1+ — 50! (9.349
307 1 .
= <IJk> <'J k) Jk> |1k>
2843 1 1739
k k K ~
isjk 56yS<IJ )— 10y5<|]y1>+ y5<|yJ ) r.12 + 5S<ij { In nrio— 29404 + 65 y12y { zInT r12+ 2100}
+ 88y — 2 INT ot — o7 (9.34)
! 27 420 '
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1 699
b y\_ k) k k K)s
Zab(SGijk) - 280y<” 280y<”y 280y yJ >+ _y<” ) yl2r 12 +y<” 5 |:_ InT r.124_ 980:|
o 3 2963 313
+y{lyh 8 ENTwt 1470(]+y<”5k>s Tt 3675} (9.34)
| 1, . 147, 463 109 3 167 , 449
20p(aG a.,) ryi - §r12|n M2t 5501~ ﬁ)(hyz) 120Y2 +riyiyy r12|n P2t 251~ ﬁ)(h)’z)
22 i o, 577, 79 197 0.0
125Y2 +rfyS 25r12 nry+ 300071 W)(Vﬂ/z)*' 300072| (9.34K

_ 3 r . . 3
Zab(SGibjlli): 56y<ljk sur124 1405usy(ljk r12 85s(|y11k2)ur12 _ 2_805u(| jk)sr12 + _y yjk)sur124 205suy jk>r12

3 3 3 R
tz 5S<'y11yk>ur12 + 10 5u<'y11yk>sr 12ty 5suy<” r12 - _5S<IY1 Y12r12 + 4y<"k>ylgr124— ny<1”k>‘()‘sur122

] L 1361] k>u 2159
1 o 7 )
206(sG3) =~ 3 y<”>s + 300 YY12Yh T’ 300y1y Prig+ 5y1y”sr122+ ToYi Vi i ——y<”>s 3
3 (ij)y,s ,—4 3 2 (iy,i)s, —4 2 S(iy ) =2 7 S(iy,i)p —2 1 2 os(iy,i)p —2
+ Z(Y1Y12)y1 Yidlio — EY1Y1Y12r12 + 2_5()/1)’12)5 Y1l — E(Y1y12)5 yir + EY15 YiTi2
+ 6%yl 2t +6%iyd) L iy 2229 (9.34m
12257127 500 11257 12 1500" '
Uab <'J>__ J>+ (i) |44 sab o3 (i 4 i) (i) r*2+i5a<i )by -2
Y12 y y y y 12 10Y1 10)’ y 20y 127715 Y1210
1 B 97
+ _5b yJ)a 2+ 5a<|5l>b |nr:L2 150' (934@
9 .. 1 .. ) [ 17 851 13
z&s(Kﬁs=(—Ey§'”—%y§'y’2 15y<”>)y‘1‘2r122+5a<'y'1>[—1—5Inr12 500 F oY '>[ = InT oo 300},
(9.340
iy 8. 11731 243 , 22 88 ||, [ B8, . 5603
206(Q1) =y§ — 5INT1- 7550 F 70 = Yi— 7 Y2+ 3aeYa| [ +Y1Yz) ~ 15INT2~ 5309
J 134, 8 34 Ol | Lo 1777 [29 , 1 6
+r12 105yl_ Z(yly2)+ﬁy2 +y2 _glnrlz 4200 rlZ 210y1 (y1y2)+§_->y2 ’
(9.34p
204(H3) = y<IJ> Inr 227 +yiyl Inr 33 +yil 1In? - (9.349
i 12771800 7t 4 15 12 900 512 1800"
Ip(HPS = — ys<”>r ys<'y ——y Syir 24yl 5J>S ZIn¥ ! +yiishs ——Inr + 19 (9.34)
20p i 30 12 6 l 12 1 12 12— 900 12 45 .
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_ 7 o
zﬁs(Habs)—— y3s 4+—5""b rg+ 5oy + POy S Yty 3 5aby12y‘>r +3 (5a<'y1y12
241
+ SyDyayr +5a<'8'>'{—ln Fio— 900}’ (9.343
)| | 29 oL
(F )=VYj Inr12+3ln2+ﬁ)—l—2y y2+24y , (9.349
1 43
2f9b(FbS == —ys<”>r122 ys<'yj>r12 - —Y12y<”>r12 +y4, 51)5[ 5'” Fi2— W)}
(i siys _ 4 28
+yid —2Inr12—§ln2+%, (9.344
23 L2
205(Fi] s)_—m)ﬁgw)r +_5aby USTas 6—0(5a yip+ 0y + 2 yab<'y >r124+§5aby<1lzyj1>r122
( b ( sidb 32 4 409
+ = (ylzéa +yd 8yl 24 54 s —Inr12+ In2— —, (9.34v
3 900
s1 i) 7 2 79 0 4 148 1 13
s(Fi=y{ ~enTe- In2—m+y vk TENTiet 5o +ydi £INTizt 354/ (9.34w)
2 13 44
205(Fi™0) = = 72y 1+ Yiyiras — yiyr i+ v 5J>s3ln2+45 Y0 g InTrot o), (9.34%
o 5 . o
2f9s(':ia}b$L = Oyab<”>r1 +_5&1by<”>r12 __(5a<'yj>b 5b<'yj1>2a)+§(yg25a<'+y61‘25b<')yjl>r12 3Y?SIY1"12
b (i) b 'J (i 5i)b T 4 229
——6a iy 2 ——ylzy ro+= 5‘3 + 625 5Inr12—§ln2—m, (9.34y)
21 i) 2 787 aoil 4 196 i) 1 77
I(Fii")=yi —Inr12 §In2—ﬁ) +yivy 5Inr12+ 595 +ys E'”Mrﬁ)- (9.342

Inserting these elementary integrals into the expressions afisappears from the final expression of the energy [fthe

non-compact termfsee Eq(9.3)], and reducing to the case constantr in the source moments is cancelled by the same

of circular orbits, we obtain the results reported in the Ap-constant present in the contribution of “tails of tails” in the
pendix. wave zone; see Eq11.8 below]. However, it will turn out
that the constants; andu,, which encode some arbitrari-

n f the H mard r larization, | riori to two
X. POINT-MASS REGULARIZATION AMBIGUITIES ess of the Hadamard egularization, eﬂid) 0

undetermined purely numerical parameters in the expression

The computation of the multipole moments we performedof the 3PN quadrupole moment. In addition, we shall argue
so far has been carried out with standard techniques: stathat because of some delicate problems linked with the use
dard Hadamard regularizatidsee Sec. ¥, and Schwartz of the Hadamard regularization at the 3PN order, we should
distributions[see, e.g., Eqs9.2)]. The result we obtained considera priori a third undetermined parameter in the quad-
depends on three arbitrary constants: the two Hadamandipole moment. However, the important point is that these

regularization constants; andu, introduced in Eq.(5.3, three parameters combine to yielde and only onendeter-
and the constant, entering the definition of the source mul- mined constant, that we shall ca#l, in the third time-

tipole moments through the analytic-continuation factorderivative of the moment which is needed to compute the
[X|B=|x/r,|B [see Egs(2.5)]. The constant, is not a prob-  physical energy flux for circular orbits. Furthermore, we

lem since we know that in this formalism the multipole ex- shall find that the constard enters the energy flux at the
pansion of the field exterior to any source is actually inde-same level as the constantcoming from the equations of
pendent of 5 [21]. Indeed we shall check in Sec. Xll thag  motion (see beloy, so that the energy flux depenisfine
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merely on one combination af andA\. cisely the dependence of the quadrupole moment on the con-
The equations of motion of compact objects at the 3PNstantsu; andu,. Inspection of our computation shows that
order have been investigated using the ADM-Hamiltonianthese constants come only from the cubic and non-compact
formulation of general relativity34,35, and by integrating terms obtained in Sec. VIII and IX. More precisely, we find
the field equations in harmonic coordinatd®,43. In both  that the whole computation depends wpu, only through
approaches the compact objects are modeled by point-likthe elementary integraté, (~>? andS, (~>9, which param-
particles described by delta-functions, and the self-field oktrize the “self” parts, proportional tmi or m%y of the cubic
the particles is removed by a Hadamard regularization. It wagnd non-compact ternisecall also that', (~5? is zerg. See
shown that the regularization permits the determination ofor instance the expressiof8.3) of NC terms. The relevant
the full equations of motion at the 3PN order except for oney, (-30) ands{~59 were obtained in Eq¢8.153 and(9.7).
undetermined coefficienty in the harmonic-coordinate ap- e dependence am, andu, therein is
proach andwgsc in the ADM-Hamiltonian. Very likely the

unknown coefficient accounts for a physical incompleteness (30 us) iy

of the point-mass regularization. Actually two unknown co- Yij “U=2In[ =yt (10.2a
efficients were originally introduced if84,35, but one of 0

them was shown lat€36,37] to be fixed to a unique value 14 (ug)|

by requiring, in anad hocmanner, the global Poincaie- S;i(7%0= gln(a) yi 4+ (10.2b

variance of the Hamiltonian. On the other hand, in the
harmonic-coordinate approap#0,43 a new Hadamard-type The dots indicate the terms independentugfand u,. We
regulanza’gon was de\_/eloped in order to account for thgske all the cubic and NC terms given by E(&2) and(9.3)
mat_hemaucal ambiguities Qf ;he star)dard Hacjam.ard .regula[bmy the mass quadrupole is to be considéredug into
ization [41,42. A characteristic of this regularization is the {hem the result$10.2 and find after summation the follow-

systematic use of a theory of generalized functions. The,g nart of the quadrupole moments depending on these con-
regularization is defined in a Lorentz-invariant way, but WaSstants(for general orbits

ultimately shown to yield incomplete results for the equa-

tions of motion, in the sense that there remained the un- 44G’m3  [u, o)
known numerical coefficient.. The complete physical Lijlug,up]= T3 In P ayyy+1e2] 4.
equivalence between the harmonic-coordingt6,43 and 0 (10.3

ADM-Hamiltonian[34—-37 formalisms has been established

[38,44. Indeed a unique “contact” transformation of the par- By lij[us,u,] we mean the quadrupole obtained from sum-
ticles motion which changes the harmonic-coordinate Laming all the terms computed in the previous sections, i.e.,
grangian(as given in Ref[44]) into the ADM-Hamiltonian  depending on the Hadamard-regularization constapis,
obtained in Ref[37] exists. The equivalence holds if and (as well as, of course, the constag:. On the other hand, we
only if the harmonic-coordinate constaxtis related to the found that many of the “interaction” terms, proportional to

ADM-Hamiltonian static ambiguity by m2m, or m;m3, depend on time-dependent logarithms of the
ratioT,=r,,/rg, wherer, is the constant dealing with the
A= 3 1987 (10.1) behavior of the moments at infinity. See for instance the

11 “static” 3080 elementary integral€®.8). The effect of the resultl0.3 is to
“replace” a part of the latter logarithms @f,, by some cor-
Recently, the value ;=0 has been obtained by means of responding logarithms of the ratig,/u; (and ditto withuy).

a different regularizationdimensiongl within the ADM-  The remaining logarithms stay as they are as logarithms of
Hamiltonian approacii39]. This result would mean that  the ratioT,,. Thus we can re-write the dependence of the
=—1987/3080. Note that a feature of the harmonic-quadrupole oru, andu, through the logarithms of,/u;
coordinate equations of motion derived[i#0,43,44 is the  andr,/u, in the form
dependence, in addition o, on two arbitrary constants;

, . . . 2,3
andr, parametrizing some logarithmic terms. However, con- | [Uy Uy] = er mlln M2
trary to\ which is a true physical ambiguity, the constanits L =2 3 ¢cf u;
andr; can be removed by a coordinate transformation and (10.4
therefore represent merely some unphysical gauge constani?

a<1iyj1>+1e>2}+---.

For instance these constants cancel out in the center-of-ma’s the other logarithms, pregent in the dots of EI0.4), arg
of the type Infi,/rg). In this paper we assumed nothing

about the values afi, andu,. In particular we did not as-
sume any relation betweam, ,u, and the gauge constants
ri,r, that parametrize the final equations of motion in har-
The first problem in the present calculation lies in the monic coordinate$40,43. However, when computing the
priori unknown relation between the Hadamard regularizaenergy flux we shall need to obtain the third time-derivative
tion constantsi; andu, introduced by Eq95.3) and the two  of the quadrupole moment, and for that purpose we shall
gauge constants; andr; which parametrize the harmonic- replace the accelerations by their expressions obtained from
coordinate equations of motion. Let us investigate more prethe 3PN equations of motion, depending op,r;,. As a

invariant energy of circular binarig4Q].

A. Hadamard-regularization constants
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result the third time-derivative of the moment will depend onthis respect are the first two in the previous lith con-
ug,U, as well as orr;,r;. Therefore, we definitely need to stantsé and «). So we end up with the most general admis-
control the relation betweeam, u, andr;, r5; then we shall ~ sible solution

have the quadrupole moment expressed solely in term$ of

andr; and we shall check thgt the latter constants can be In(ﬁ) :§+Kml+ (and idem with 1c2),
removed by the same coordinate transformation as in the U

equations of motion, and thus that the final expression of the (10.9
physical energy flux must be independent of these constants.

From Eq.(10.4 we can write where ¢ and « denote some arbitrary purely numerical con-

stants(for instance rational fractionsThis result is similar
i) to the one obtained in the 3PN equations of motion, concern-
ayyytle2. ing the relation betwees,, s, andry, r;. See Egs(7.9) in
(10.5 Ref.[43], where the determination of the constant analogous
to & was possible from the requirement of existence of a
The notation forl ;[r},r;] is clear: we mean the sum of all conserved energfand Lagrangianfor the equations of mo-
the contributions obtained in the previous sections, but comtion.
puted withrj,r; in place of the regularization constants We now check that the logarithms of,/r1 andr ;,/r5 in
Uq,Us. the quadrupole moment, which are of the form
We shall now look for the most general ;) that is

., 44G'mi [r]
|ij[U11U2]:|ij[r1,r2]+g—cg—m U_1

allowed by physical requirements. In this connection recall el p— 44 szfl M2\ iy 1o
the spirit of the regularization: the constantsandus, reflect ijlra.ral= 3 s N E ajyytle2i+---,
some incompleteness of the process, that may or may not be (10.7)

fixed in a given computation, and therefore they should be

kept completely arbitrary unless there are some physical agan be eliminated by theamecoordinate transformation as
guments to restrict their form. In particular, when used infound in Ref. [43] for the logarithms in the harmonic-
different computations, these regularization constants haveoordinate equations of motiopAs concerns the logarithms
no reasora priori to be the same. For instance, in the presenbf r,,/r, in the moment they cannot be eliminated by a
computation of the moments, the constamfsandu, area  change of coordinates but will match precisely with corre-
priori different from the constants, and s, which were  sponding logarithms present in the “tails of tails” at infinity.
originally used in the 3PN equations of motitsee Eq(2.3)  We look for a coordinate change of the type considered in
in [43]]. They area fortiori different from the constants;  Sec. VIA of [43]: namely ox*= &, where&,=7,,£" is a
andr; chosen to parametrize the final equations of motion3PN gauge vector given by

[Eq. (7.16) in [43]]. See also the discussion in Sec. VIl in

Ref. [43], where we determined the general form of the re- Gm® € €
lation betweers,,s, andr;,r; by imposing the polynomial g,u:T )
mass dependence of the equations of motion, the correct per-

turbative limit, and the existence of a conserved energy. Hergye have factorized oun® (wherem=m;+m,) so thate;

we shall basically do the same in order to restrict the form ofng ¢, , which are constants or mere functions of timeyill

the relation betweeny, u, andrj, r;. Note thata priori  pe dimensionless. The corresponding change of the particle’s
the logarithms In(;/u;) and In¢y/uy) can depend on the trajectories is given to this order by the regularized value of
massesn; andm,. To determine just what combination of the gauge vector at the location of the particlee Sec. VIA
masses is allowed we maksimilarly to the equations of in [43]). We obtain

motion) two physical requirementgi) that the quadrupole

(10.8

moment be a polynomial function of the two massgsm, i G®md i
when taken separatelgij) that the perturbative limitcorre- Ogy1=— Ezﬁg Y12, (10.93

sponding tor—0) not be affected by this possible depen-

dence over the masses. Because of the fanfoin front of G3m3

the log-term in Eq(10.5, and because the acceleratiah 5§y‘2:ElWy‘12_ (10.9H
brings another factom,, the most general solution for this Criz

logarithm in order to satisfy the requirementis to be com- ) )

posed of: a pure numerical constdsay &), plus a pure con- Since the quadrupole moment starts at the Newtonian level
stant (say «) times the mass ration/m,, plus a constant With the usuaim;y,{"+ 12, we easily find its coordinate
times m/m,, next five terms involving the mass ratios change as

m2/m3, m2/my/m,, m3/m3, m¥mi/m, and m*/m3/m,.

Each of these terms must be such that it does not violate the Selij=2myy{ Syl + 12

perturbative limif our requirementii)]. This means that they G3m?

should involve, in a center-of-mass frame, a factdr at = —2m162TTY<1iYJ1>2+ 152, (10.10
least. We readily find that the only two admissible terms in Crip
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By comparing this with Eq(10.7) (using the Newtonian par- ible with the Hadamard regularization, was advocated in Ref.
ticles acceleration we find that the gauge transformation [42] and used to compute the 3PN equations of moftis].

required to eliminate the logarithms is This form, given by Eq(5.11) in Ref.[42], reads
—_ ol e 2 A myviv; o(X—y1)
\/_(gp(r)lvlvllc \/_g(X,t)
22mm3 [r (10.13
(=g n(—”) (10.11h
m 2 Choosing one or the other form of stress-energy tensor does

make a difference in our computation. Consider for instance

: : : .. the term S{1)=fd®xx/o. We find that the result for this
mary, not only will these logarithms disappear when consid rm, when computed using the tensd0.13, i.e., using

ering physical quantities associated with the equations oﬁ‘ez 500 Al O
motion (such as the invariant enengyut they will also can- ¢ =T+ T", differs from the original result by the amount

cel from physical quantities associated with the wave field at -

infinity, viz. the invariant energy flux we compute in Sec. Gmy
Xl ASI(1)= o

in complete agreement with EF.2) in Ref. [43]. In sum-

2 .1 ..
—a<1'y11>——v<1'vjl>}+1<—>2.

3 5
(10.14

B. Special features of the regularization
There is also a modificatiofSIl(1) but which is of the same

Etructure(with different numerical coefficients

On the other hand, some terms in our computation would
be different if the regularization would be distributive. For
instance, if for computing the term @B6NC) we take into
account the nondistributivityas we did, we find the result
(6.9): namely,

We now discuss some subtleties of the Hadamard regulal
ization which motivate the introduction in the quadrupole
moment, in addition t& and « considered in Eq(10.6), of
still another constanthowever, see below for the definition
of a single constané).

Non-distributivity of the Hadamard partie fini®y “non-
distributivity” we mean the fact that the regularization of a
product of two functiond= and G, singular in the sense of am
Eq. (5.1, does not equal, in general, the product of the regu- SI(16NQO) = —lei‘b(x“xnug'gc))ﬁ 1«52, (10.15
larized functions: EG),# (F).(G),. For instance, witHJ c
=Gmy/r;+Gmy/r, the Newtonian potential, we have ) S
(UM, =[(U),]" for n=12,3, but U%,=[(U),]* If_ms;ead we incorrectly assume that the partie finie is dis-
+2[(U);]2 (U),]2. An immediate consequence is that the fributive, then we get
product of a singular functiofr with a delta-function does am
not equal, in general, the product of its regularized value o TG0y, abgy (NO)
with the delta-functionf 8,# (F),8,. Here we are assum- SIAENOisr= 55~ Y1101 (Uap )1t 12,
ing that the three-dimensional integral of the productFof (10.18
with 6;=456(x—y,) gives back the regularized valu€; .

Notice that only at the 3PN order does the non-distributivityThe difference between the two results is not zero:

play a role. Up to the 2PN order, the distributivity holds for

all the functions encountered in the problénence the com- LG

putation of the moments as was dondg 113] is correcj. ASI(16NO =~ 1_5_CG_U1UJ:L +1<2. (10.17
The non-distributivity at 3PN has an important bearing on

the choice of the stress-energy tensor for describing point-rhe same happens with the other terms(10NC) and

particles. In this paper, we adopted the most naive choice faf 1oNQ): each time the structure of the difference is the
the stress-energy tensor. See H§.4 above, which is ;0 asin Eq10.14 or Eq.(10.17.
equivalent, at 3PN order, to Violation of the Leibniz rule by the distributional deriva-
Mot tiye. In Ref. [4_11] a new kind of dis_tributional derivative of
Ty = 17171 S(x—yy)+12. (10.12 smgglgr _functmns of the typE was mtrqduced_. Ityvas founq
\/(ggpg)lvﬁv 7Ic? that it is impossible to define a derivative satisfying the Leib-
niz rule for the derivation of the product, but that a math-
Namely, we assumed that the whole factor of the deltaematical structure exists when we replace the Leibniz rule by
function consists of a regularized value at point 1. But bethe weaker rule of “integration by parts.” The latter rule can
causeF §;# (F),61, we could obtain a different result by be seen as an integrated version of the Leibniz (sée Sec.
choosing another stress-energy tensor, defined by replacingl A in [41]). More precisely, two different distributional
the factor of the delta-function in E¢L0.12, or part of it, by  derivatives were proposed jA41]: a “particular” derivative,
a function depending on any field poirtand such that its and a “correct” one. Both derivatives reduce to the deriva-
regularized value wher—y; is the same. In fact, a specific tive of the standard distribution theof$2] when applied to
form of the stress-energy tensor of point-particles, compatsmooth test functions with compact support. The particular

243
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derivative is simpler to use in practical computations, but thunctions and their derivatives proposed in RdflL] permit
correct one is more satisfying because successive derivativeis to give a mathematical meaning to such ill-defined terms.

to any order commute.

The “particular” derivative of 1f; reads aﬁ-(l/rl)

Previously we performed numerous simplifications, with:aﬁj(l/rl)ordmary+ D[ 1/r1], where the purely distributional
the help of the Leibniz rule, to arrive at the form of multipole part is

moments given by Eq94.2). Thus we made some errors
because of the violation of the Leibniz rule by the distribu-

tional derivative. The strategy adopted in Ref3] was to

keep track of all these error terms and to compute them using

the particular and correct derivatives [@f1]. In the present

paper we shall proceed differently. We simply give an ex-
ample. When simplifying the moment to arrive at the simple-

looking term S(39) in Eq. (4.2a, we “forgot” to include the
error term

ASI(39) =

37TGC63F_IZJ d3x|X|B%; [A(U%) —4U%AU

—12U%9,U4d,U]. (10.18

3 (10.22

1 4ar
2

o5
[Compare this with the resu(®.2b of distribution theory}
We easily compute the effect of this new derivative on the

self part of the tern(10.20. Once again we find the same
type of structure as before:

.15
5IJ+_’hlf 51.

G3m3
ASIBENO =~

... 38, .
- §a<l'y'l>+ EUOUJB} +1-2.
(10.23

Similarly we checked that all other self-interaction contribu-

Clearly this term would be zero for any derivative satisfyingtions take the same form with simply different numerical

the Leibniz rule(in a distributional senge However, com-

puting it by means of for instance the “particular” derivative

[defined by Eq(7.7) in Ref.[41]], we find that it is not zero,
but
23

64 G°m3
ASI(39)= = —

alyl+1-2. (10.19

coefficients.

C. Definition of the #-ambiguity

As we have seen the structure of the possible terms asso-
ciated with the previous subtleties in the Hadamard regular-
ization are limited to only two types, eithemfag'y'f or

miv{'v). The first type was already considered in Egs.

Again this result has the same type of structure as foundl0-9 and(10.6, where it yielded the arbitrary constagt

previously. We have checked that all the terms coming from

Thus, modulo a redefinition af, we do not need to consider
3¢ 1)

the violation of the Leibniz rule have the same structure this term. The other type, given byjvjvy’, was not con-

either of type mfaﬁ'y‘f like in Eq. (10.19 or of type
mfz;(l‘vjf .

Cubically non-linear self-interaction term$§Ve take the
example of the self contribution in the term(8NC). This
term is

SI(35NC)= —

4 -

FP f d3x|%|Bx, z(NO 2 u.
6 L

mGC5_, we

(10.20

The “self” part of this term corresponds to that partZri('[\‘c)
which is proportional t(mi, in the sense that

,\ ' 1
Zi(jNC):szi{ agl 101) In r{+ —Ui 1(3’” In M

8
1 P11 vd
Kk 1 1
+3—25IJUlm 1ﬁkmlnr1+§¥——25”r—i +0O(m,)

(10.21)

[see Eq.(9.1d)], and that part oU due to 1 itself, i.e.U
=Gm, /r,+O(m,). The resulting term, proportional o3,

is ill defined in distribution theory because the delta-

function, coming from the distributional derivative of 1/as
given by Eq.(9.2b), is multiplied by the terms in Eq10.2J)

which are singular at point 1. The partie finie pseudo-

sidered earlier. Therefore, motivated by the previous discus-
sion, we shall from now on add such a term to the multipole
moment, with a new constant in front, sadyin summary, we
consider three types of “ambiguous” ternfism the sense of
[34,35), parametrized by the two constangs « of Eq.
(10.9, and the{. The quadrupole moment we finally con-
sider in this paper is thus
|ij:|ij[ri,ré]+A|ij, (1024
wherel;[ry,r,] denotes the computation we have done in
Sections VI-IX(i.e., the sum of all the terms, defined for
general orbits, and given for circular orbits in the Appendix
when expressed by means of the same regularization con-
stantsr;,r; as the ones appearing in the 3PN equations of
motion (we know that these constants are pure gaugew
the undetermined part reads as

44 G*m; M) Gyb s 0D
AIiJZET §+Km_1 ayyy +{vyvy |t1e2.
(10.29
In a center-of-mass frame we get
44 G?m®y? b e i)
A|ij=§T[(§+2K)a X! + v Ul]
(10.26
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(wherex'=y\ —y.,, v'=dx/dt and a'=dv'/dt). The con- those employed in Secs. VII-IX, but with the notable sim-
stantsé, « and ¢ will be left unspecified in the present paper. plification that because of the divergence one can perform an
It could be possible that the more sophisticated regularizaintegration by parts, and that as a result the elementary inte-
tion procedure of(41,42 determines some of these con- grals contain explicitly a factoB (due to the differentiation
stants. However, the point for our purpose is that we aref |X|B) so their computation is quite easy. See the results in
going to show that the physical energy flux for circular orbitsthe Appendix.

depends only on one parameter. Indeed, the flux depends on (i) Four particular terms that we have left out because
the third time-derivative of the quadrupole, and by a straighttheir sum is in fact zero:

forward computatiorfusing the Newtonian equations of mo-

tion) we find that, in the case of circular orbits, the third SI(22)+S1(23)+SI1(32)+Sl1(11)=0. (11.2
time-derivative of Eq(10.26 is

3526m2V2 We sum up all the.term_s given in the Appendix, plus the
Al |(13)_ YRoxtivh, (10.27  undetermined correction given by E30.26, and obtain the

3 expressions of the 3PN mass-type quadrupole moment, 2PN
mass-type octupole moment and 2PN current-type quadru-
pole moment of the compact binary moving on a circular
orbit. (Note that most of the investigation of this paper is
valid for general orbits, but we are interested in inspiraling
binaries whose orbit is quickly circularized by radiation re-

where = ¢+ 2k+ is a single unknown constant. There-
fore, the ambiguous part of the physical 3PN flux, as con-
cerns this effect, depends in fact only énlt is given (for
circular orbitg by

2G 3¢5 88 action) The 3PN mass quadrupole reads
AL= VAP = 1292 — —vy?
5¢> ! 5G 3 2 48
(10.29 _ r r 22
lij=u| Ax;+B 2u”+ SXavj +0O(7),
In addition to 6, the flux will depend also on the constant (11.3

coming from the equations of motidd0,43. However, we
shall find that, in the case of circular orbits, bathend N \here the third term is the 2.5PN odd term, and where
enter the flux at the same level, so the flux depends only on
one combination of these constanis- 546, from the end
result (12.9 below. Further work, supplementlng the Had- A=1+y| — 13 ) 72<_ 461_ 18395V_ 241 v2>
amard self-field regularization by suitable extensions and al- 42 14 1512 1512 1512
ternative methods, may be required to determine the con- {395899 428 ( r) [139675 44

Y

stantsg andA. 13200 105 33264 3 (6120

XI. THE BINARY’S MULTIPOLE MOMENTS 44 | r 162539 2351
The computation of the moments is now almost complete. 3 In( ro) " 16632" " 33264 } (11.43
The remaining terms are as follows.
(i) The “odd” terms: S[11), SI(12). These terms involve 11 11 1607 1681 229
the fifth (odd) power of 1t (2.5PN order. They appear be- B= 17 v+ y(ﬁ— 378 v+ ﬁvz)
cause of the expansion of retardations in the poten{&a6;
they are pure functions of time, parametrized@y(t) and ,| 357761 428I ( r ) [ 75091 44§
Q(t) [see Eq(3.9)]. The sum of the two odd terms has been + v~ Zeann T ANl — = T =LV
computed in Eqs(4.9 and (4.12) of Ref. [26]. With the 19800~ 105 1rq 5544 3
present notation, in the quadrupole case, we have 35759 457
v+ V3] (11.4b
924 5544

_G 8 3 10 3
S|(11)+S|(12)— ? - ?qu Qj)k_ 7Q<ij>Q
The mass parameters am@=m;+m,, Sm=m;—Mm,, u
=mym,/m, andv= u/m. The post-Newtonian parameter is
(ij)Q(s)] : (11.)  y=Gm/(rc?) =0(2) [see Eq(5.9]. The logarithms depend
either on the constant, associated with the finite part at
These terms do not contribute to the flux for circular orbits.infinity (recall [X|®=x/r¢|®) or on the “logarithmic bary-

(i) The “divergence” terms: SPR), SI(8), SI(9), SI(10),  center’rq of the regularization constants andr , (see Sec.
SI(39), SI(40), SI(41), SI(42), SI(43), SI(44), SI(45), SI(46),  X), defined bymInrj=m;Inr;+my,Inr;. We shall investi-
SI(47), SI(48), SI(49), SI(50), SII(8), SIli(10), Sli(12), gate in Sec. Xl the fate of these constangsandrg. In
SII(14), SlI(3), VI(6), VI(30), VI(31, VI(32), VI(33), addition the moment depends on the unknown constamts
VI(34), VI(35), VII(7), TI(9). The integrand of these terms is and{ introduced in Eq(10.26. The 2PN mass-octupole and
made of the product ofk|® and a pure divergenc&A or 2PN current-quadrupole are free of any of such constants and

AA. Their computation makes use of the same techniques agven by

2
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om

Lo R . ,(139 11923 29 W—ljd3 1 024102
k= Ky Xik| — 1yt Y 335F 5e0 VT 1107 =3 XXiUi—gml(Y1vl)+ (2)+1<2.
) (12.7b
ém r 1066 1433
+,LLWX<ink>EZ[—1+2V+’y —E-l-ﬁv
For the other moments there is no correction to be made at
) this orderffor instanceS;; = J;; + O(5)]. Actually we observe
“55Y )|t O05), (1158 thatwis zero for circular orbits, and thus we shall from now
on replace all the moments andJ, by the corresponding
sm 67 2 M_ andS, .
Jij = o EaniXjalp| —1+ 7( ~2gt 77 Finally we need to relate the momeritd, , S, to the

“radiative” moments, sayU, (mass-typgandV, (current-
type), which play the role of observables associated with the
+0O(5). radiation field at infinity. Since such a relation has already
been worked out at the 3.5PN level in REZ7], we simply
(11.50 report the main result, which concerns the mass-quadrupole

The higher multipole moments which are needed in the C%PI\Ir""d""‘t'Ve moment);; , that is

energy flux are the 1PN current octupole, 1PN mdspde,

13 4651

)
9 " 252" " 168"

+'y2 -

ij

Newtonian current 2pole, and Newtonian mass®dole. 2Gm [+« cr\ 11
: : (2) (4)
For these moments we simply report the expressions alreadyij(t) =M () + — =~ drM;’(t—7)|In TNRET
obtained in Ref[13]: 0 0
2G?m? [+ c

. 3 25 69, L2 f drM(t-7) |nz(_7>

lija = mXij| 1=3v+y| 7757 557+ 557 c 0 2rg

-8 2 L5 (CT L2462 1 1

+ e XUz (1-5v+5v%)+0(3), (11.63 70"\ 2ro) T 24100 Uit gt

+0(8). (11.8

Jijk:lLsab<ink>an 1—31/—|—'y %_EV_F]._S

181 109 13 )
V2

This formula is valid through 3.5PN order, modulo the odd-
order 2.5PN and 3.5PN terms that we do not show because
they do not contribute to the flux for circular orbits. The only
contributions coming from Eq11.8 are the 1.5PN tail, and

7 r2
+ 4—5,u,(1_5V+5V2)8ab<ivjk>bxac7+O(3),

(11.6b 3PN “tail of tail” integrals. In the flux we shall derive below
sm the terms at the orders 2.5PN and 3.5PN are due to the tall
Ljiim= i — (= 14 20)Kijam + O(1), (11.69  integrals in higher multipole momentsee Ref[27] for de-
m tails).
B om
Jijia = o (= 1+ 20)eapXjkyavp+ O(1). XIl. THE ENERGY FLUX OF CIRCULAR COMPACT
(11.60 BINARIES
As proved in Refs[26,21] the multipole moments, and For general sources, the total energy flok gravitational

J, are not the only source moments entering the radiatiofiminosity £) to the 3PN order is composed of an “instan-
field. However, the other moments, denowd, X, , Y, and  taneous” contribution—i.e., a fu'nctlonal of the multlpole
Z,, parametrize glinearized gauge transformation in the momentsM, andS, at the same instant—and a “tail” con-
exterior field, and as a result make a contribution to the nontfibution. We shall now follow the study if27] of the oc-
linear radiation field at a quite high post-Newtonian order:currence of non-linear effects id up to 3.5PN order. Fol-
2.5PN. It is always possible to re-express the radiation field®Wing the equatior(4.18 in Ref. [27] we split £ into an

in terms of solely two sets of moments, denokéd andS, , instantaneous part, a tail part, a tail square part, and a tail of
given by some non-linear functionals of the momehts  t@il part:
Ju, W, X, Y_andZ_, but differing froml_andJ, start-

ing at the 2.5PN ordesee Sec. VI irj21] for a discussion

From Egs.(4.20—(4.24 in [26] the 3PN quadrupol#;; is

related tol;; by

L= Linstt Liait+ Ltai2+ Liailtail) - (12,1

As all the parts involving tails have already been computed
M= — E[W<2)|_ —WOI D]+ O(7) (11.73 for circular binarieq27], we need only to compute the in-
RS 4 1 ’ ' stantaneous part which is given by
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1 @ @) 1 1 N 16 (el known other co.ntributions. The.tail one is due to such terms
Lins=z5| 5 Mij Mij + =2 189M'1"M'“‘ 2550 S as the 1.5PN integral appearing in E41.9 [and other
equations corresponding to higher multipole momgntae
11 1 e (&) result is derived to the 3.5PN order in £§.53 in Ref.[27]:
+_4 lijkm |jkm Si Si
32c° 5 3 25663 109 5
1 © e 4 ) RN R 77 R B
594000M|kanMijkmn+ 141758|]km5|1km
(90205+ 3772673 N 32147 2) 24 o
+c9(8)] (12.2 576 © 12006 * 3022 |7V TO)[:

(12.9

[see, e.9.(4.15 in [27]]. To obtainL;,s; we compute the time
derivatives of the multipole moments. At this stage we needsecond, the tail of tail comes from the 3PN term in Eq.
a new input, namely the 3PN equations of motion of circular(11.8), and the tail square from the square of the 1.5PN term.
binaries which are crucial in the differentiation of the 3PN The sum of these parts reads, following E§.9) in [27],
qguadrupole moment. As recently obtaingtD,43 the 3PN
orbital frequency of the circular motion reads as 32¢° X 1712 4or

L tail2+tailain = 55 Yy (( - E{C"‘ n( )

1672 11676 51 o 1

whereC denotes the Euler constar@ € 0.577...), and where
19 the constant is the same as thig, occurring in the mass
t Vot Vg] Y3+ O( 7’4))- (12.3  quadrupole momer(tl1.3 and(11.4. Thus, the energy flux,
complete up to the 3.5PN order, reads
The inverse of this formula gives the post-Newtonian param-

2

m
w?=—5(1+[-3+v]y+ y?+{-10

6 41 )
+ZV+V

+]221In — _64 840+ 3

14

r)+41772 67759 44\
0

eter y as a function of the frequency related parameter 32c° 5 2927 5
=(Gmw/C3)2/3, ‘C’ 5G =~ YV 336 4 ')’+47T’)’
v 65 22 [r
_ 293383 380 25663 109
‘y—X(l+ 1—=|X+|1——=v|X +[l+ ——In(—,) oo 2 . Y 5/2
3 12 3 1o ez e )Y T ez 8 MY
2
e Vs]xs 120386791 16v° 1712 856
192 2520 9 36" 8l 7761600 T 3 105 C 105MN(167)
2
+O(x4)). (12.4 332051 110 (r 1237 _§3
T + - 3 n "o 61 + 44\ 3 0\v
Note that Eq(12.3 or Eq.(12.4) involves the same constant
ro as in the 3PN mass quadrupole momgrit.3) and(11.4). _ 3;831/ 53 (90205+ 3772673 32147 ) Y712
Taking all the expressions of the multipole moments 9 576 12096 ~ 3024

found in Sec. XI, computing their time-derivatives according

to the latter circular-orbit 3PN equations of motion, and in- 4
. ! . . +0O(y") |. (12.9
serting them into Eq(12.2 we then arrive at the following
instantaneous part of the flux:
3965 2927 5 293383 We observe that the constamigshave canceled out between
L= — 521 ———— — the instantaneous fluk;,s; and the partC ainzs taiiain - 1HiS
st 55 Y 336 47)Y"\ 9072 o (taily +tail(ail ,
cancellation is to be expected for any source: see a proof in

+380 B el |
9 Y|Y" 7| 1108800 105 "

12372

44\ 880
+7+ ? v

53712289 1712 |[r [27] [Egs. (4.14 therd where it is shown that the tails of

( ) tails at the 3PN order depend a@g through the effective

quadrupole momeri = M,ﬁié‘éln ro(GAP/c)MP . Using
our explicit result(11.4 for 1;;=M;;+O(5) we find that
indeed thery’'s cancel out. The fact that we have recovered
the expected dependence iyof the source quadrupole mo-
383 ment is a good check of the computation.
5 Vz] Y3+ O 74)), (12.9 On the other hand, the point-mass regularization constant
ro still remains in the fluX12.8. This is because the energy

where we recall thap= £+ 2«+ ¢. Next we simply add the flux is not yet expressed in a coordinate-independent way, as

r

{ 332051 110
In| —

720 3

ro
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the post-Newtonian parametgrdepends on the distance be- 1. The 3PN mass quadrupole
tween the masses in harmonic coordinates. To find a truly \siscellaneous:
coordinate-independent result we must repladay its ex-

pression given by Eq(12.4 in terms of the frequency- SI(22+23+32)+SlI(11)=0, (Ala)
related parametet With this change of variable, at long last
we obtain our end result: VI(16+ 20)+ VIl (6)=VI(19).
(Alb)
32c 1247 35 .
= y5,2 Compact term at Newtonian order:
L 5G X v[ ( 236 127 v |x+4mx3?
2 3
44711 9271 65 8191 _ Y 2
_ oAl 99 52, | S Si(1)=[1 (1 5v)— 5 (13- 61v+25v)+
( 9072 504" 18" )X +( 672
2
_ 535 | spp, (8643739519 16m7 1712 X (149-573v+ 3547~ 29°) X . (A2)
24 69854400 3 105
856 11497453 41x? Compact terms at 1PN:
XC- 7pgn(160 + [_ 272160 | 48
1
176 88 94403 , 775 16285 SlI(1)= — y{[ — 8+ 24v+ y(20— 52v— 20v?) + »?
A= O|lv— o VP~ — X+ | - —— 56
9 3 3024 324 504
X (=23~ 17v+160v°— 550°) |%;; +[8—24v
176419 19897 .\ . .
1512 V1 37g V| ™X O (12.9 +y(4— 280+ 44%) + y*(— 13— 9+ 23812

+ 35V3)]Wij}, (A3a)

In the above expression the constafthas cleanly disap-
peared. Of course, this was to be expected because we have VI(1)= i ([ — 8+ 24v+ (28— 92v+ 2002) + 72
seen that is pure-gauge; nevertheless this cancellation con- 1

stitutes a satisfactory test of the algebra. However, the result

3
still depends on one physical undetermined numerical coef- X (= 75+250—1760° + 13y )% +[8-24v

ficient, which is a linear combination of the equation-of- + y(—4+12v+4v?) + y?*(15— 157w+ 414°
motion-related constant and the multipole-moment-related A
constantd. On the other hand, our final expressid®.9 is +7v°) Wi }. (A3b)

in perfect agreement, in the test-mass limit-0, with the
result of black-hole perturbation theory which is alreadyCompact terms at 2PN:
known to a very high post-Newtonian ordet6,47].
SI(3)=2y*[2—8v+4v?+ y(—7+28v— 122

3 A~
ACKNOWLEDGMENTS —4r)I%ij, (A43)
Many of the algebraic computations reported in this paper ¥2
were checked with the aid of the softwanerHEMATICA and SlI(1)= 126{[2 10v+ 1002+ y(— 11+ 55p

using some programs developed by Guillaume Faye.
— 5602+ 31%) % +[ — 2+ 10v— 1002

APPENDIX: RESULTS FOR ALL THE TERMS +y(5—23v+ 1607+ 7v°%) 1W;;}, (A4b)

For the mass quadrupole we factorize out a faqli_or

=my_in front of all the terms. We denotev' VI(2)=— == y¥{[2—8v+41v*+ y(— 7+ 28
=\(GM/Ir¥w!, so for instancei;;=(r*/Gm)v‘v) (and 21

%;;=x{x)). For the current quadrupole all the terms have to — 1202 41%)]%; +[— 2+ 8v— 412

be multiplied by om/mL;x;,, where m=m; —m; and L, !

= pexlo® is the angular momentum. For the mass octu- +y(1-2v—8v2+81%) |W;;}, (Adc)

pole we factorize out 5m/m= vém. For simplicity the con-

stantsrq andr in the logarithms are set to 1. In the case of 8

the 3PN mass quadrupole, to the sum of all these terms one VI(3)= 2—17’2V{[—2+4V+ ¥(5-6v—417)1%;

must add the undetermined contribution given by @§.26

in the text. +[2—4v+y(1-8v+81%) W}, (A4d)
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8
VIl (1): ﬁg’y

— 842+ 17v%) % +[ — 2+ 10v— 1002

2[2—10v+ 10v%+ y(— 13+ 69

+y(7— 37w+ 440° = 7v°) Wy }, (Ade)

TI(1)= 5i4'y2{[2— 10v+ 1002+ y(— 13+ 69

— 8412+ 171%) % +[ — 2+ 10v — 1012
+Y(7—3Tv+ 447 =713 [W;; }. (A4f)

Compact terms at 3PN:
SI(13) =16y , (A5a)
SI(14)=8y3(1-5v+517)%; (A5b)
SI(15)= —2y*v(1—4v+2v%)%;; , (A5c)
SI(16C)=0. (AS5d)
SI(16NC) = (—1+9v— 1712 y3%;; + 135;/%\7\/” :

(A5e)

4
S“(Z): 7‘}’3(_14'21/)(1_41/"' VZ)(s\(ij _Wij)!

(A5f)
SIV(1)= 207973(—1+7v—141/2+7v3)(x —W;),
(A5Q)
8
VI(7)— yv(l Av+207) (X —Wij),
(A5h)
16
V|(8)——2—1y3(1—5u+5v2)(>‘<”—wij),
(A5i)
8
V|(9):—2—173y(1+v)(—1+2y)(>“<ij—wij),
(AS))
32
V|(10(:):2—1y3u(—1+2v)($<”—w”), (A5k)
4 (8
VI(10NC) = —2—11/(5—111/) (Wi —Xij),
(A5I)
16
VI(11) = —yv(l 4v+207) (X — Wij),
(A5m)
VI(120) =0, (A5n)
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38
VI(12NC) = — 21(1—§y+17v)y3(w”—>‘<”—),
(A50)
16
VI(13)= yv(l Av+2v7) (X — W),
(ASp)
V||(2)=—1—89'y3(—1+2v)(1—4v+v2)(f(ij
—W;j), (A5Q)
VII(3)= 1897 Sp(1—4v+2v2 )(Xij —W;j),
(A5r)
VI (1)= 2079y3(—1+7v—14v2+7v3)($<”—wij),
(A5s)
4
TI(3)=—2—773( 1+2v)(1—4v+1?)
X (i —W;j), (A51)
4
TI(4)= 277 Sp(1—4v+217 )(Xij —W;5),
(A5u)
TI(1)= =1+ 7v— 142+ 703 (R — Wy)).

2977
(A5v)

Y-terms at 2PN:

8
Sl(4)= §yZV{(2—4w)v“vij +[1-3v+y(—3+8v

+30%) 1%}, (A6a)

1
SI(5C)= §y2{[4—8v+ y(—2+160%)W;; +[2—10v

— 1202+ y(— 7+ 350+ 347+ 120°%) |%;;},

(ABb)
1
S|(6)=§y2V{[—2+y(—l+6v)]\Tvij
+[2-6v+y(—5+11v+1207)]%;},  (A6C)
4
SI(7)= = 71/{[2-1-)/( 1-2v) W;
+[—2+6v+ y(7—21) 1%}, (A6d)
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SI(7)= 2 YA(—1+3v){[ — 2+ y(— 1+ 6v)|W;

+[2+ ‘}/(_5_4V)]$(ij}, (AGE)
4
VI(4)= ag«yz{[zs— 110v+ 2402+ y(— 14+ 15p
+ 16002 — 480°%) [W;; + [ — 28+ 110y — 2422
+ (98— 373v+ 2207+ 24v°) 1%}, (A6f)
1
VI(5)=4—272(—12+ 62v—24v?){[ 2+ y(1—6v)]W;;
+[ =2+ y(5+4v)]%;}, (ABQ)
2
T|(2)=6—3y2(2—7y+v2){[—2+ y(—1+6v)]W;
+[2+ y(—5—4v)]%;}. (ABh)
Y-terms at 3PN:
8 3 2\ A
SI(31):§’)/ V[(l_ZV_3V )Xij_VWij], (A?a)
SI(330) = —8y%v%%; , (A7b)
8 3 2\&
SI(850) = — 3 ¥ [~ (1-6v+317)%;
+(_2+6V)Wij], (A?C)
16 . .
32 o
(A7e)
VI(16+20)+ VII (6)
=& Y3(12— 49+ 1002+ 241°)
X (Xjj = Wij ), (ATf)
2
VI(19) = 53 Y3(12— 49+ 1002+ 241°)
X (Xjj = Wij ), (A79)
8
V|(21)=6—3y3v(—1+2u)(5+12v)
X( Xij+wlj)' (A?h)
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16 o e
VI(250) = 53 7% (14 550+ 120%) (K + ;)
(AT7i)
4 o
VI(26C) = g5 v V(5= 700+ 2407) (=X + W),
(A7)
4
V|(27c:)=6—3y3(—5+21v)(>“<u—\7vi,-),
(A7K)
VI(28C)=0, (ATI)
4 o
VI(290) = &2 y*w(—1+120) (X — W),
(A7m)
T|(6):i 3(— 16— 21v+ 174%+561°%)
189" vy
X (%= Wij), (A7n)
16 oo
Tl(?)zag’y V(2_7V+V )(Xij_Wij)!
(A70)
1, o e
TI(8) = o5 ¥*1(13—46v+81%) (— Kij +Wy)).
(A7p)

Sterms at 3PN:

2
Sl(3)= 2—1y3y(1+2v+ 120%)(W;; — %), (A8a)

Sl(40)= 4i2'y3(1—2v)(1+2v— 120%) (Wi = Xij),
(A8b)

1
SlIi(5)= 1—26y3y(— 11+ 6v+360°) (Wi —Xij),
(A8c)

2
SI(6)= — — ¥*v(— 11+ 6v+3607) (Wi — &),

63
(A8d)
2
SIi(2)=— 6—3y3(3—22v+ 36v%) (W;; — i),
(A8e)

VIl (4) 3(3—2v— 3402+ 81°) (W;; — X)),

(A8f)

~ 1897
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VIl (5)=— 62—:3y3(—1+6v—18v2+ 81%) (Wj;
= Xij), (A8g)
TI(2)= my3(8— 67v+ 13407 — 120°) (W,
—%ij). (A8h)

T-terms at 3PN:

1
SI(17)= 5 Y3 u[(7— 36v)Wj; + (— 15+ 36v+ 541}2))?”],

(A9a)
_ 1 3 ~ 2\ &
SI(18)—§)/ v[ —3W;; +(—1-12v+18v9)X;; ],
(A9b)
SI19C—3—11— A+12—7 + 700
+ 121/3)5\(” y (AQC)

1
Sl(210)= 1—2’ysv[(—2—8v)\fvij +(—1+220+120%)%; ],

(A9d)
1
Sl(24)= 1—8731/[11% +(—15+36v+540)%;; ],
(A9e)
2
SI(25)=— 5 Y2 u[ —W;; + (= 3—36v+547)%; ],
(A9F)
2 3 2 n <
5”(9)25’)’ (1=9v9)(=Wj; +Xj;), (A9g)
2
VI(14)= — @73(20—711/4-361/3)(\7%,-—f(ij),
(A9h)
2
VI(15)= — @73V(17—98v+361/2)(\7vij—f(ij),
(A9i)
1
VI(17)= 4—2y3y(—43+94y+361/2)(wi,-—kij),
(A9))
1
VI(18)= 4—273(4—3v—721/2+36v3)(\7vij —%)),
(A9K)
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1 3 2 3/ S
T|(5)=1—897 (4—9v— 2102+ 130°) (Wi — &;)).
(A9l)
Cubic terms:
SI(26+ 27+ 28+ 29+ 30+ 34+ 36)
L [[74 182\ . 128I
AR A T
1024, ALO
~ 225 M (A109
su13—16345 750)] 9-25
( )—557 [( v)inr v]
X (= Kij +Wij), (A10b)

8
VI(22+ 23+ 24) = 3(60Inr —7— 265+ 275/°)

5257
X(f(”_\iV”) (A].OC)
Non-compacts terms:
1
SI(5NC)=—572[4+10v+y(2—6v
—47%)1%;; (Alla)
SI(19NC) = L PP 2 |
( ) = €+3_6V §V ’yXij+ 1—5V nr
L 3 Allb
& 250" )Y Wi (Allb)
S1(20) = 4+4 77 25
(20=/15T37/""" 25 "
+6V2 )/35\(”
4 4 | 77
—1—5+1—5V nr+2—25
77 A
—ﬁv Y Wi, (Allc
SI(21NC) = 8 2 | 26 1 2
(2INO=|| 757 37|INr+ 5557 3677
. 8 8 | 26
Xy Xij+ —1—5+1—5V nr 2—25
+397 3 All
EOV Y Wi, ( d)
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SI(33NC) = 164+ %2.2) 5 8 |
( )— —1—51/4'?1/ ’yXij+ —1—51/ nr
176 |
—2—251/ Y Wij (Alle)
SI3ENC) - 16 64 1028 1148
(BNO=||~ 5 g+ 55+ 25 7
145
R
16 16 | 1028
15 57" 528
568 |
+%V Y Wij (Allf)
SI(37NC)= 02 17 2| s 4 |
( )— —1—51/—?1/ 'yXiJ--l— —1—51/ nr
512 |
o555 | Y Wi, (Allg
SI(38NC)= 124 34 2 s 8 |
( )— 1—51/"‘?1/ ’)/Xij+ 1—51/ nr
1376 |
+ 2251! Y Wij (Allh)
SIANG) = 16 2 | -+139 164
(4NO=|135" 37"+ 1550 315"
i _
+7V y(Wij—Xij), (Alll)
VI(25NG) = 48+_8 | 9684_10792
(25NCO=|| =35+ 57| INT~ 1575" 15757
236 ,| . _
_aV ’y(Xij_Wij), (All])

VI(26NC) + VI(27NC) + VI (28NC) + VI (29NC)

(32 8 | 2644 488
“\105" 57/ T 1575 1757
124 ol 30 .
_aV ’y(Xij_Wij). (Allk)
Terms at 2.5PN:
48 o
SI(11+12) = — y*2uxw). (A12)

Divergence terms:
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SI(2)=0, (A13a)
SI(8)=0, (A13b)
SI(9)=0, (A130)
SI(10)=0, (A13d)
SI(39 =0, (A13e)
SI(40)=0, (A13f)
SK4D:——§y%—&”+mm), (A13g)
Sl(42) =0, (A13h)
SI(43 =0, (A13i)
Sl(44)= %73(—2” +W;)), (A13))
SI(45) = y3(—&;; +W;)), (A13K)
SK4®=%y%?”—W”L (A130)
SI(47)=0, (A13m)
SK4&=~—§y%—2”+WHL (A13n)
SI(49) = 16y>(X;; —W;), (A130)
swsmzzgy%x”—mm), (A13p)
Sli(8)=0, (A130)
Sli(10)=0, (A13n)
smlzyzgzy%xr—wrx (A139
357 Vi T
SII(14)=7—273(—§(i»+\7vi-), (A13t)
35 I

Sli(3)=0, (A13u)
VI(6)=0, (A13v)
VI(30)=0, (A13w)
VI(31)=0, (A13x)
VI(32)=0, (A13y)
vu33y=£%y%xw—wnx (A132)
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VI(34)=0, (A13a3
VI(35)=— 1—5«y3(>“<ij —W;)), (A13bb)
VII(7)=0, (A13co

TI(9)=0. (A13dd)

2. The 2PN current quadrupole
Compact term at Newtonian order:

1
VI(1)= g[—8+4y+ y?(— 15+ 88v+31?)]. (A14)

Compact terms at 1PN:

VI(2)=9y[—2+2v+ y(1+v—417)], (A153)
VI(3)=yu[ =2+ y(—1+4v)], (A15b)
VIl(1)= —[2 4v+y(—7+16v—317)],
(A150)
TI(1)= —[2 4v+y(—7+16v—317)].
(A15d)
Compact terms at 2PN:
VI(7)=y?v(1—v), (A16a)
VI(8)=2v%(—1+2v), (A16b)
VI(9)=7y?v(1+v), (A160)
VI(10C) = —4%?v, (A16d)
3
VI(10NC) = 5721/, (A16e)
VI(11)=2y?v(1—v), (A16f)
VI(120) =0, (A16Q)
’}/2
VI(12NC)= = (1-6v), (A16h)
VI(13)=2y?v(1—v), (A16i)
’)/2
VII(2)= 7(1—3v+vz), (A16))
‘)/2
VIL(3)= = v(1-v), (A16K)
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'}’2

VIII(l)—504(l 3v)(—1+v), (Al6l)
yz
T|(3)=7(1—3y+ V), (A16m)
’)’2
TI(4)= = v(1-w), (A16n)
2
TI(1)= @(1 3v)(—1+v).
(A160)
Y-terms at 1PN:
VI(4)= %[—24—41/4— ¥1-81%)],  (Al7a
3
VI(5)=— 2 yv[2+ y(1-6v)],
(A17b)
TI(2)= (A170)
Y-terms at 2PN:
2
VI(16+20)+VII(6)=%(1—21/—31/2), (A18a)
’)/2
VI(19) = 3 (1-2v- 312), (A18b)
2
VI(21)=—§)/2v(5—6v), (A18¢)
VI(25C)=2y%(—1+2v), (A18d)
VI(26C) = g Y2 v(1+3v), (A18e
yz
VI(270 = 3 (1-2v), (A18f)
VI(280)=0, (A189)
2
VI(290) = 3 Y2y, (A18h)
yz
TI(6)— ( 2+4v—31%), (A18i)
TI(7)=0, (A18j)
’)/2
TI(8)=— = 577(7—3). (A18k)
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Sterms at 2PN:

1
V||(4)=4—272(—2—3V)(1—2v), (A19a)
1
VII(5)=—§3)/2V(2+31/), (A19b)
TII(2)=0. (A190)
T-terms at 2PN:
1
VI(14)= gy2(1+4v—9yz), (A20a)
1
VI(15)= 5 Y?v(1-9v), (A20b)
1
VI(17)= 3 Y2 v(4+9v), (A200)
3
VI(18)= s Y?v(2+3v), (A20d)
1 2
TI(5)= T8 v(2+3v). (A20e)
Cubic terms:
1 9
VI(22+ 23+ 24)=272<§— ZV). (A21)
Non-compact terms:
2 17
VI(25NC)=72< -3+ €V>, (A223)
VI(26NC+27NC+28NC+29NC)
_ 23 + 19 A22b
=YlztgY| ( )
Divergence terms:
VI(6)=0, (A23a)
VI(30)=0, (A23Db)
VI(31)=0, (A230)
VI(32)=0, (A23d)
VI(33)=0, (A23¢)
VI(34)=0, (A23f)
VI(35)=0, (A239)
VIl (7)=0, (A23h)
TI(9)=0. (A23i)
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3. The 2PN mass octupole
Compact term at Newtonian order:

1
Sl(1)= g[—8+ Y(—4+16v) + y*(13+ 24v+150%) i -
(A24)

Compact terms at 1PN:
1
Sli(1)= @)/{[30— 60v+ y(— 75+ 1200+ 4507) |
+3[ = 20+ 400 + y(— 10+ 60v— 700%) IX Wi},
(A253)
1
VI(1)= %y{[30— 60v+ y(— 105+ 2400 — 450°) |X;j

+3[ — 20+ 400+ (10— 20v— 100%) |X Wiy}
(A25b)
Compact terms at 2PN:

SI(3)= —4y*(1-3v+ 1) Kijk , (A26a)

Sll(1)= Weoyz(l—?,y)(l—v)(—lo&ijk+300<<iwjk>),
(A26h)
2 2 2 o
VI(2)= E_)‘y (1-3v+v )(15Xijk_30x(iwij))a
(A260)
2 N
V|(3) = 4_5’)/ V(_ 1+ V)(_ 15Xijk+30x<ink>),

(A26d)

1 2
(A260)

1 2
(A26f)

Y-terms at 2PN:

2, N
SI(4): - 1_5’}/ 1/[(15— 30V)X,Jk+6OX<|WJk>],
(A273)
1 2, 2\
SI(50)= 307 [ — (15— 60r—60v°)X;;i
+3(— 10+ 400) X Wy ], (A27D)
1, .
S|(6): - %’y V[(15_ 30V)Xijk_3ox<ink>],

(A270)
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2
SI(7)=— 1—5y2v[( — 15— 300) Kijk + 30 Wik 1,

(A27d)
1, )
S”(?): - 1—0’)/ (1—21/)(—15Xijk+30)(<ink>),
(A27¢)
VI(4)=— 4—50y2(45— 1400+ 20v?)

PHYSICAL REVIEW D 65 064005

VI(5)= %72(2—9v+2vz)(— 158k + 30X 1 Wik)),
(A279)
TI(2)= @72(8—211/4—21/2)
X (= 15+ 30X ;W) ). (A27h)
Non-compact term:
SIBNC)=2y*(1+2v)Kij - (A28)
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