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The multipolar-post-Minkowskian approach to gravitational radiation is applied to the problem of the gen-
eration of waves by the compact binary inspiral. We investigate specifically the third post-Newtonian~3PN!
approximation in the total energy flux. The new results are the computation of the mass quadrupole moment of
the binary to the 3PN order, and the current quadrupole and mass octupole to the 2PN order. Wave tails and
tails of tails in the far zone are included up to the 3.5PN order. The recently derived 3PN equations of binary
motion are used to compute the time derivatives of the moments. We find perfect agreement to the 3.5PN order
with perturbation calculations of black holes in the test-mass limit for one body. Technical inputs in our
computation include a model of point particles for describing the compact objects, and the Hadamard self-field
regularization. Because of a physical incompleteness of the Hadamard regularization at the 3PN order, the
energy flux depends on one unknown physical parameter, which is a combination of a parameterl in the
equations of motion, and a new parameteru coming from the quadrupole moment.
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I. INTRODUCTION

Inspiraling compact binaries are systems of two neut
stars and/or black holes undergoing an adiabatic orbital
cay by gravitational radiation emission. These systems c
stitute an important target for the gravitational-wave det
tors such as the Laser Interferometric Gravitational Wa
Observatory~LIGO! and VIRGO. The currently favored
theory for describing the binary inspiral is the pos
Newtonian approximation. Since inspiraling compact bin
ries are very relativistic the Newtonian description~corre-
sponding to the quadrupole approximation! is grossly
inadequate for constructing the theoretical templates to
used in the signal analysis of detectors. In fact, from sev
measurement-accuracy analyses@1–9# it follows that the
third post-Newtonian~3PN! approximation, corresponding t
the order 1/c6 when the speed of lightc→1`, constitutes a
necessary achievement in this field. Note that the 3PN
proximation is needed to compute the time evolution of
binary’s orbital phase, that depends via an energy bala
equation on the total gravitational-wave energy flux. The
ergy flux is therefore a crucial quantity to predict.

Following the earliest computations at the 1PN lev
@10,11# ~at a time where post-Newtonian corrections were
purely academic interest!, the energy flux generated by com
pact binaries was determined to the 2PN order@12–16#, by
means of a formalism based on multipolar and po
Minkowskian approximations@17–21#, and independently
using a direct integration of the relaxed Einstein equati
@14,22,23# ~see also Refs.@24,25#!. Since then the calcula
tions have been extended to include the nonlinear effect
tails at higher post-Newtonian orders. The tails at the 2.5
and 3.5PN orders were computed in Refs.@26,27# ~this ex-
0556-2821/2002/65~6!/064005~41!/$20.00 65 0640
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tended the computation of tails at the dominant 1.5PN or
@28–30#!, and the contribution of tails generated by the ta
themselves~so-called ‘‘tails of tails’’! at the 3PN order was
obtained in Ref.@27#. However, unlike the 1.5PN, 2.5PN an
3.5PN orders that are entirely composed of tail terms,
3PN approximation involves also, besides the tails of ta
many non-tail contributions coming from the relativistic co
rections in the multipole moments of the binary.

The present paper is devoted to the computation of
multipole moments, chiefly the quadrupole moment at
3PN order, in the case where the binary’s orbit is circu
~the relevant case for most inspiraling binaries!. We reduce
some general expressions for the multipole moments o
slowly-moving extended system@21# to the case of a point-
particle binary at the 3PN order. The self-field of poin
particles is systematically regularized by means of Ha
mard’s concept of ‘‘partie finie’’ @31–33#. The time-
derivatives of the 3PN quadrupole moment are compu
with the help of the equations of binary motion at the 3P
order in harmonic coordinates~the coordinate system chose
for this computation!. The 3PN equations of motion hav
been derived recently by two groups working independen
with different methods: Arnowitt-Deser-Misner-~ADM- !
Hamiltonian formulation of general relativity@34–38#, and
direct post-Newtonian iteration of the field equations in h
monic coordinates@40–44#. There is complete physica
equivalence between the results given by the two approa
@38,44#. We shall find that our end result for the energy flu
at the 3.5PN order is in perfect agreement, in the test-b
limit for one body, with the result of black-hole perturbatio
theory, which is currently known up to the higher 5.5P
approximation@45–47# ~see Ref.@48# for a review!. In a
separate work@49# we report the computation of the 3.5PN
©2002 The American Physical Society05-1
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accurate orbital phase which constitutes the crucial com
nent of the theoretical template of inspiraling binaries.

One conclusion of the investigation of the equations
motion of compact binaries is that from the 3PN order
model of point-particles~described by Dirac distributions!
might become physically incomplete, in the sense that
equations involve one undetermined coefficient,vstatic in the
ADM-Hamiltonian formalism@34–38# ~see, however,@39#!
andl in the harmonic-coordinate approach@40–44#. Techni-
cally this is due to some subtle features of the self-field re
larization in the manner of Hadamard. In the present pa
we shall be led to introduce a second undetermined co
cient, calledu, coming from our computation of the 3PN
quadrupole moment. However, we shall find that the to
energy flux contains only one unknown parameter, which
certain linear combination ofu and l entering the 3PN co-
efficient. All other terms in the flux up to the 3.5PN order a
completely specified.

The plan of this paper is as follows. Sections II–IV a
devoted to the basic expressions of the moments we s
apply. Section V presents the needed information concern
our point-particle model, and Secs. VI–IX deal with th
computation of all the different types of terms in the requir
multipole moments. Section X explains our introduction
the u-ambiguity. Finally we present our results for the m
ments and energy flux in Secs. XI and XII. The intermedi
values for all the terms composing the moments in the c
of circular orbits are relegated to the Appendix.

II. EXPRESSIONS OF THE MULTIPOLE MOMENTS

In this section we give a short summary of the expressi
of multipole moments in the post-Newtonian approximatio
The moments describe some general isolated sources tha
weakly self-gravitating and slowly-moving, i.e., whose inte
nal velocities are much smaller than the speed of lightv
!c. In this paper we order all expressions according to
formal order in 1/c, and we poseO(n)[O(1/cn). In addi-
tion, the moments area priori valid only in the case where
the source is continuous~for instance a hydrodynamica
fluid!; however, we shall apply these moments to the cas
point-particles by supplementing the above expressions
a certain regularization ansatz based on Hadamard’s con
of ‘‘partie finie’’ @31–33#. We adopt a system of harmon
coordinates, which means

]nhmn50, ~2.1a!

hmn5ugu1/2gmn2hmn, ~2.1b!

where gmn and g denote respectively the inverse and t
determinant of the covariant metricgmn , and wherehmn de-
notes the Minkowski metric with signature12. The Einstein
field equations, relaxed by the harmonic-coordinate con
tion, take the form of d’Alembertian equations for all th
components of the field variable,

hhmn5
16pG

c4
tmn, ~2.2a!
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tmn[uguTmn1
c4

16pG
Lmn, ~2.2b!

whereh5hmn]m]n and where we have introduced the e
fective stress-energy~pseudo-!tensortmn of the matter and
gravitational fields in harmonic coordinates. The mat
stress-energy is described byTmn and the gravitational stress
energy by the nonlinear interaction termLmn. The latter is
given in terms of the metric by the exact expression

Lmn52hrs]rs
2 hmn1]rhms]shnr1

1

2
gmngrs]lhrt]th

sl

2gmrgst]lhnt]rhsl2gnrgst]lhmt]rhsl

1grsglt]lhmr]th
ns1

1

8
~2gmrgns2gmngrs!

3~2gltgep2gteglp!]rhlp]shte. ~2.3!

Both the matter and gravitational contributions intmn de-
pend on the fieldh, with the gravitational termLmn being at
least quadratic inh and its space-time derivatives.

The multipole moments of slowly-moving sources are
the form of some functionals of the~formal! post-Newtonian
expansion of the pseudo-tensortmn; we denote the forma
post-Newtonian expansion with an overbar, sot̄mn

5PN(tmn). It is convenient to introduce the auxiliary nota
tion

S5
t̄001 t̄ i i

c2
; S i5

t̄0i

c
; S i j 5 t̄ i j . ~2.4!

From a general study@20,21# of the matching between th
exterior gravitational field of the source and the inner po
Newtonian field, we obtain some ‘‘natural’’ definitions fo
the l th order mass-type (I L) and current-type (JL) multipole
moments of the source. The physics of the isolated source
seen in its exterior, is extracted from these multipole m
ments when they are connected, in a consistent way, to
observables of the radiative field at~Minkowskian! future
null infinity, given in this formalism by the so-called radia
tive multipole moments. The connection betweenI L andJL

and the mass-type (UL) and current-type (VL) radiative mo-
ments at infinity involves up to say the 3.5PN order ma
tail effects and even a particular ‘‘tail-of-tail’’ effect arisin
specifically at 3PN. All these effects are known@27# and
therefore will not be investigated here but simply added
the end of our computation in Sec. XII. Here we focus o
attention on the reduction to point-particle binaries of t
generalsourcemultipole moments~in symmetric-tracefree
form!, whose complete expressions are given by
5-2
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GRAVITATIONAL WAVES FROM INSPIRALING . . . PHYSICAL REVIEW D65 064005
I L~ t !5 FP
B50

E d3xux̃uBE
21

1

dzH d l~z!x̂LS

2
4~2l 11!

c2~ l 11!~2l 13!
d l 11~z!x̂iLṠ i

1
2~2l 11!

c4~ l 11!~ l 12!~2l 15!
d l 12~z!x̂i jL S̈ i j J

3~x,t1zuxu/c!, ~2.5a!

JL~ t !5 FP
B50

«ab, i lE d3xux̃uBE
21

1

dzH d l~z!x̂L21.aSb

2
2l 11

c2~ l 12!~2l 13!
d l 11~z!x̂L21.acṠbcJ

3~x,t1zuxu/c!. ~2.5b!

Our notation is as follows.L5 i 1i 2 ...i l is a multi-index com-
posed ofl indices; a product ofl spatial vectorsxi[xi is
denotedxL5xi 1

xi 2
...xi l

; the symmetric-tracefree~STF! part

of that product is denoted using a hat:x̂L5STF(xL), for
instance x̂i j 5xixj2

1
3 d i j , x̂i jk5xixjxk2 1

5 (xid jk1xjdki
1xkd i j ); the STF projection is also denoted using angu
brackets surrounding the indices, e.g.,x̂i j [x^ i j & , x^ iv j &
5 1

2 (xiv j1xjv i)2 1
3 d i j xkvk ; « i jk denotes the usual Levi

Civita symbol («000511); the dots refer to the time differ
entiation. The matter densitiesS, S i , andS i j in Eqs. ~2.5!
are evaluated at the positionx and at timet1zuxu/c. The
function d l(z) is given by

d l~z!5
~2l 11!!!

2l 11l !
~12z2! l ; E

21

1

dzd l~z!51. ~2.6!

This function tends to the Dirac distribution whenl→1`.
Each of the terms composingI L andJL is to be understood in
the sense of post-Newtonian expansion, and computed u
the ~infinite! post-Newtonian series

E
21

1

dzd l~z!S~x,t1zuxu/c!

5(
j 50

`
~2l 11!!!

2 j j ! ~2l 12 j 11!!!
uxu2 j S ]

c]t D
2 j

S~x,t !. ~2.7!

Finally the symbol FPB50 in front of the integrals in Eqs
~2.5! refers to a specific finite part operation defined by a
lytic continuation~see Ref.@21# for the details!. Such a finite
part is crucial because the integrals have a non-compact
port due to the gravitational contribution in the pseud
tensor, and would be otherwise divergent at infinity~when
uxu→1`!. The integral involves the regularization fact
ux̃uB5ux/r 0uB, whereB is a complex number andr 0 denotes
an arbitrary length scale. It is defined by complex analy
continuation for anyBPC except at isolated poles inZ, in-
cluding in general the value of interestB50. We expand the
06400
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integral as a Laurent expansion whenB→0 and pick up the
finite part~in short FPB50!, or coefficient of the zeroth powe
of B in that expansion. This finite part is in fact equivalent
the Hadamard ‘‘partie finie’’@31#.

Thus, the moments dependa priori on the constantr 0

introduced in this analytic continuation process. This co
stant can be thought of as due to the ‘‘regularization’’ of t
field at infinity; the moments will depend explicitly onr 0

when the integral develops a polar part atB50 due to the
behavior of the integrand whenuxu→1`. As we shall see,
the source moments start depending explicitly onr 0 from the
3PN order. However, we know that the metric is actua
independent ofr 0 @more precisely,r 0 cancels out between
the two terms of the multipole expansion given by Eq.~3.11!
in Ref. @21# #. Indeed, as a good check of the calculation,
shall see that because of non-linear tail effects in the w
zone the constantr 0 is canceled out, so the physical ener
flux does not depend on it.

To the 1PN order the expressions~2.5a! and ~2.5b! are
equivalent to some alternative forms obtained earlier in R
@17# and @18#, respectively. The multipole moments in th
form ~2.5! were derived in@20# up to the 2PN order, and
shown subsequently in@21# to be in fact valid up to any
post-Newtonian order~formally!. On the other hand, both
Eqs.~2.5a! and ~2.5b! reduce to the expressions obtained
Ref. @50# in the limit of linearized gravity, where we ca
replacetmn by the compact-support matter tensorTmn ~hence
there is no need in this limit to consider a finite part!. Note
that the source multipole momentsI L andJL parametrize, by
definition, the linearized approximation to the vacuum met
outside the source@21#, but take into account all the nonlin
earities due to the inner~near-zone! field of the source. The
nonlinearities in the exterior field can be obtained by so
specific post-Minkowskian algorithm~see Ref.@21# for proof
and details!. The inclusion of these nonlinearities permi
one to relate the source momentsI L andJL to the radiative
onesUL andVL . Some other source momentsWL , XL , YL

andZL should also be taken into account~see Ref.@21# for
discussion!, but these parametrize a~linearized! gauge trans-
formation and do not contribute to the radiation field up to
high post-Newtonian order. We shall check that these m
ments do not affect the present calculation.

III. DEFINITIONS OF POTENTIALS

Our first task is to work out the expressions~2.5! to the
3PN order in the case ofI L and 2PN order in the case ofJL .
In this paper we shall use some convenient retarded po
tials, and then, from these, the corresponding ‘‘instan
neous’’ potentials. For insertion into the pseudo-tensort̄mn

~and, most importantly, its gravitational partL̄mn! we need
the components of the metrich̄mn developed to post-
Newtonian orderO~8, 7, 8!. By this we meanO(8)
[O(1/c8) in the 00 andij components of the metric, an
O(7)[O(1/c7) in the 0i components. With this precision
the metric reads
5-3
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h̄0052
4

c2 V2
2

c4 ~Ŵ14V2!2
8

c6 S Ẑ12X̂1VŴ1
4

3
V3D

1O~8!, ~3.1a!

h̄0i52
4

c3 Vi2
8

c5 ~R̂i1VVi !1O~7!, ~3.1b!

h̄i j 52
4

c4 S Ŵi j 2
1

2
d i j ŴD2

16

c6 S Ẑi j 2
1

2
d i j ẐD1O~8!.

~3.1c!

The potentials are generated by the components of the m
tensorTmn or, rather, using a notation similar to Eq.~2.4!, by

s5
T001Tii

c2 , s i5
T0i

c
, s i j 5Ti j . ~3.2!

The potentialV is a retarded version of the Newtonian p
tential and is defined by the retarded integralhR

21 acting on
the sources,

V~x,t !5hR
21$24pGs%[GE d3y

ux2yu
s~y,t2ux2yu/c!.

~3.3!

To the 1PN order we have the potentialsVi andŴi j ~together
with the spatial traceŴ5Ŵii !, which are generated by th
current and stresss i ands i j , respectively,

Vi5hR
21$24pGs i%, ~3.4a!

Ŵi j 5hR
21$24pG~s i j 2d i j skk!2] iV] jV%. ~3.4b!

To the 2PN order there are the potentialsR̂i , Ẑi j , X̂ ~and
also Ẑ5Ẑii ! whose expressions read

X̂5hR
21H 24pGs i i V1Ŵi j ] i j

2 V12Vi] t] iV1V] t
2V

1
3

2
~] tV!222] iVj] jVi J , ~3.5a!

R̂i5hR
21H 24pG~s iV2sVi !22]kV] iVk2

3

2
] tV] iVJ ,

~3.5b!

Ẑi j 5hR
21H 24pG~s i j 2d i j skk!V22] ( iV] tVj )

1] iVk] jVk1]kVi]kVj22] ( iVk]kVj )

2d i j ]kVm~]kVm2]mVk!2
3

4
d i j ~] tV!2J . ~3.5c!

Next we expand the retardations and define some assoc
instantaneous potentials. The highest-order expansio
needed for theV potential, up toO~5!, while O~3! is suffi-
cient forVi andŴi j . We write these expansions in the for
06400
ter

ted
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V5U1
1

2c2 ] t
2x2

2G

3c3

d3Q

dt3
1

1

24c4 ] t
4P1O~5!,

~3.6a!

Vi5Ui1
1

2c2 ] t
2x i1O~3!, ~3.6b!

Ŵi j 5Ui j 2
G

2c

d3Qi j

dt3
1

1

2c2 ] t
2x i j 2

1

c2 Ki j 1O~3!,

~3.6c!

where the instantaneous potentials are given by the Pois
type integrals

U5D21$24pGs%[GE d3y

ux2yu
s~y,t !, ~3.7a!

Ui5D21$24pGs i%, ~3.7b!

Ui j 5D21$24pG~s i j 2d i j skk!2] iU] jU%, ~3.7c!

x52D21U5GE d3yux2yus~y,t !, ~3.7d!

x i52D21Ui , ~3.7e!

x i j 52D21Ui j , ~3.7f!

P524D22U5GE d3yux2yu3s~y,t !, ~3.7g!

Ki j 5D21$] ( iU] j )] t
2x%. ~3.7h!

In addition, the Newtonian precisionO~1! is required for the
other potentialsX̂, R̂i andẐi j . For simplicity in the notation,
we shall keep the same names for the Newtonian approxi
tions to these potentials, henceforth redefined as

X̂5D21H 24pGs i i U1Ui j ] i j
2 U12Ui] t] iU1U] t

2U

1
3

2
~] tU !222] iU j] jUi J , ~3.8a!

R̂i5D21H 24pG~s iU2sUi !22]kU] iUk2
3

2
] tU] iUJ ,

~3.8b!

Ẑi j 5D21H 24pG~s i j 2d i j skk!U22] ( iU] tU j )1] iUk] jUk

1]kUi]kU j22] ( iUk]kU j )2d i j ]kUm~]kUm2]mUk!

2
3

4
d i j ~] tU !2J . ~3.8c!

Finally the ‘‘odd’’ terms in Eqs.~3.6! ~having an odd power
of 1/c in factor! are simple functions of time parametrized b

Qi j ~ t !5E d3x~xixj2x2d i j !s~x,t !, ~3.9a!

Q~ t !5E d3xx2s~x,t !. ~3.9b!

~Beware thatQÞQii .!
5-4
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IV. NOMENCLATURE OF TERMS

The post-Newtonian metric~3.1! is inserted into the
pseudo-tensor~2.2b!, in which notably the termLmn, given
by Eq.~2.3!, is developed up to quartic orderh4. Making use
of the formula~2.7! we obtain the source momentsI L(t) and
JL(t) as some functionals of all the retarded potentials, a
then, of all the ‘‘instantaneous’’ potentials defined by Eq
~3.6!–~3.9!. We transform some of the terms by integrati
by parts, being careful to take into account the presenc
the analytic continuation factorux̃uB. The surface terms ar
always zero by analytic continuation~starting from the case
where the real part ofB is a large negative number!. Notice
that we use the Leibniz rule, which is surely valid in the ca
of potentials corresponding to smooth~fluid! sources. How-
ever, when we shall insert for the potentials some singu
expressions corresponding to point-like particles, and s
replace the derivatives by some appropriate distributional
rivatives, the Leibniz rule will no longer be satisfied in ge
eral. This will be a source of some indeterminacy discus
in Sec. X.

We find that the moments are quite complicated, so i
useful to devise a good nomenclature of terms. First,
distinguish inI L and JL the contributions which are due t
the source densitiesS, S i , andS i j @see Eq.~2.5!#, and we
refer to them as scalar~S!, vector (V) and tensor~T! respec-
tively. Furthermore, we split each of these contributions
06400
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cording to the value of the summation indexj in Eq. ~2.7!:
for instance theS-type term denoted SI is defined by the s
of terms inI L coming from the ‘‘scalar’’S in which we have
used the formula~2.7! with only the contribution of the index
j 50 ~there are noS-type terms inJL!; similarly we denote
by SII, using Roman letters, theS terms corresponding toj
51 ~these terms involve a factorx2 and a second time
derivative!; and for instance VII denotes the set of terms
both I L andJL coming from the ‘‘vector’’S i and which have
j 52. With this notation the mass moment to the 3PN ord
can be written as

I L5SI1SII1SIII1SIV1VI1VII 1VIII 1TI1TII1O~7!.
~4.1!

For simplicity’s sake we omit writing the multi-indexL on
each of these separate pieces~there can be no confusion from
the context!. Second, the numerous terms are numbered
cording to their order of appearance in the following form
las. For instance the piece SI which is part of the mass m
ment ~4.1! will be composed of the terms SI~1!, SI~2!, etc;
similarly VII is made of terms VII~1! and so on. The num-
bering of terms is indicated in round brackets at the right
each term in Eq.~4.2! ~it should not be confused with, e.g.,
differentiation or a power!. The explicit expressions of all the
separate pieces formingI L are as follows:
SI5 FP
B50

E d3xux̃uBx̂LH s~1!2
1

2pGc2 D~U2!~2!1
4U

c4 saa~3!2
2

pGc4 Ui] t] iU
~4!2

1

pGc4 ~] i j
2 U !Ui j

~5!2
1

2pGc4 ~] tU !2~6!

1
2

pGc4 ] iU j] jUi
~7!2

2

3pGc4 D~U3!~8!2
1

2pGc4 D~U] t
2x!~9!2

1

2pGc4 D~UUaa!
~10!2

2

3

G

c5 s
d3Q

dt3
~11!

1
1

2pc5 ~] i j
2 U !

d3Qi j

dt3

~12!

1
16

c6 sUaUa
~13!1

8

c6 saaU2~14!1
2

c6 saa] t
2x~15!1

4

c6 U jks jk
~16!2

1

pGc6 Ui] i] t
3x~17!

2
1

pGc6 ~] t
2x i !~] t] iU !~18!2

1

2pGc6 ~] i j
2 U !~] t

2x i j !
~19!1

1

pGc6 ~] i j
2 U !Ki j ~20!2

1

2pGc6 ~] i j
2 ] t

2x!Ui j
~21!

1
1

2pGc6 Uaa] t
2U ~22!1

1

2pGc6 U] t
2Uaa

~23!2
1

2pGc6 ] tU] t
3x~24!1

2

pGc6 ] iU j] t
2] jx i

~25!2
2

pGc6 U~] tU !2~26!

2
6

pGc6 Ua] tU]aU ~27!2
12

pGc6 UUa] t]aU ~28!1
4

pGc6 U]aU] tUa
~29!2

8

pGc6 Ua~]bUa!]bU ~30!1
2

pGc6 ~] tUa!2~31!

2
1

pGc6 ~] tUaa!]bUb
~32!1

4

pGc6 ] iU j] tUi j
~33!1

8

pGc6 UUi] t] iU
~34!2

4

pGc6 Ẑi j ] i j
2 U ~35!2

4

pGc6 U] iU] tUi
~36!

2
4

pGc6 ~] t] iU !R̂i
~37!1

8

pGc6 ] iU j] j R̂i
~38!2

2

3pGc6 D~U4!~39!2
1

pGc6 D~U2Ubb!
~40!2

1

pGc6 D~U2] t
2x!~41!

2
1

8pGc6 D~] t
2x] t

2x!~42!2
1

24pGc6 D~U] t
4P!~43!2

1

4pGc6 D~Uaa] t
2x!~44!2

1

4pGc6 D~] t
2xaaU !~45!

1
1

2pGc6 D~KaaU !~46!2
1

4pGc6 D~UaaUbb!
~47!1

1

2pGc6 D~U jkU jk!~48!2
4

pGc6 D~UX̂!~49!2
2

pGc6 D~UẐaa!
~50!J ,

~4.2a!
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SII5
1

2c2~2l 13!
FP

B50
E d3xux̃uB] t

2H uxu2x̂LFs~1!1
4U

c4 saa~2!2
2

pGc4 Ui] t] iU
~3!2

1

pGc4 ~] i j
2 U !Ui j

~4!2
1

2pGc4 ~] tU !2~5!

1
2

pGc4 ] iU j] jUi
~6!G2

2l 13

pGc2 x̂LU2~7!2
1

2pGc2 ] i@] i~U2!uxu2x̂L2U2] i~ uxu2x̂L!#~8!2
2l 13

pGc4 x̂LU] t
2x~9!

2
1

2pGc4 ] i@] i~U] t
2x!uxu2x̂L2U] t

2x] i~ uxu2x̂L!#~10!2
2l 13

pGc4 x̂LUUaa
~11!2

1

2pGc4 ] i@] i~UUaa!uxu2x̂L

2UUaa] i~ uxu2x̂L!#~12!2
4~2l 13!

3pGc4 x̂LU3~13!2
2

3pGc4 ] i@] i~U3!uxu2x̂L2U3] i~ uxu2x̂L!#~14!J , ~4.2b!

SIII5
1

8c4~2l 13!~2l 15!
FP

B50
E d3xux̃uB] t

4H uxu4x̂Ls~1!2
2~2l 15!

pGc2 uxu2x̂LU2~2!

2
1

2pGc2 ] i@] i~U2!uxu4x̂L2U2] i~ uxu4x̂L!#~3!J , ~4.2c!

SIV5
1

48c6~2l 13!~2l 15!~2l 17!
FP

B50
E d3xux̃uBuxu6x̂L] t

6s~1!, ~4.2d!

VI5
24~2l 11!

c2~ l 11!~2l 13!
FP

B50
E d3xux̃uBx̂aL] tH sa

~1!1
2

c2 saU ~2!2
2

c2 sUa
~3!1

1

pGc2 ]kU]aUk
~4!1

3

4pGc2 ] tU]aU ~5!

2
1

2pGc2 D~UUa!~6!1
sa

c4 ] t
2x~7!1

2

c4 saU2~8!2
1

c4 s] t
2xa

~9!2
4

c4 sR̂a
~10!1

2

c4 Uasss
~11!1

2

c4 Uaksk
~12!

1
2

c4 Uksak
~13!1

1

2pGc4 ]kU]a] t
2xk

~14!1
1

2pGc4 ~]k] t
2x!~]aUk!

~15!1
1

2pGc4 Ua] t
2U ~16!

1
3

8pGc4 ] tU~]a] t
2x!~17!1

3

8pGc4 ~] t
3x!]aU ~18!2

1

2pGc4 U] t
2Ua

~19!1
1

pGc4 ] tU] tUa
~20!

2
2

pGc4 Uk~]k] tUa!~21!1
3

2pGc4 U] tU]aU ~22!2
1

pGc4 Ua]kU]kU
~23!1

3

2pGc4 Uk]aU]kU
~24!

1
2

pGc4 ]kU]aR̂k
~25!2

1

pGc4 Ukl]kl
2 Ua

~26!1
1

pGc4 ] tUak]kU
~27!2

1

pGc4 ]kUl]aUkl
~28!1

1

pGc4 ]kUal] lUk
~29!

2
1

2pGc4 D~U2Ua!~30!2
1

4pGc4 D~U] t
2xa!~31!2

1

4pGc4 D~] t
2xUa!~32!2

1

pGc4 D~UR̂a!~33!

2
1

2pGc4 D~UkkUa!~34!1
1

2pGc4 D~UakUk!
~35!J , ~4.2e!

VII 5
22~2l 11!

c4~ l 11!~2l 13!~2l 15!
FP

B50
E d3xux̃uB] t

3H uxu2x̂aLFsa
~1!1

2

c2 saU ~2!2
2

c2 sUa
~3!1

1

pGc2 ]kU]aUk
~4!

1
3

4pGc2 ] tU]aU ~5!G2
2l 15

pGc2 x̂aLUUa
~6!2

1

2pGc2 ] i@] i~UUa!uxu2x̂aL2UUa] i~ uxu2x̂al!#
~7!J , ~4.2f!

VIII 5
2~2l 11!

2c6~ l 11!~2l 13!~2l 15!~2l 17!
FP

B50
E d3xux̃uBx̂aLuxu4] t

5sa~1!, ~4.2g!
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TI5
2~2l 11!

c4~ l 11!~ l 12!~2l 15!
FP

B50
E d3xux̃uBx̂abL] t

2H sab
~1!1

1

4pG
]aU]bU ~2!1

4

c2 sabU
~3!2

4

c2 s~aUb)
~4!

1
1

4pGc2 ]~aU]b)] t
2x~5!1

2

pGc2 ]~aU] tUb)
~6!2

1

pGc2 ]aUk]bUk
~7!1

2

pGc2 ]~aUk]kUb)
~8!2

1

2pGc2 D~UaUb!~9!J ,

~4.2h!

TII5
2l 11

c6~ l 11!~ l 12!~2l 15!~2l 17!
FP

B50
E d3xux̃uBx̂abLuxu2] t

4H sab
~1!1

1

4pG
]aU]bU ~2!J . ~4.2i!

In the case of the 2PN current moment we write similarly

JL5VI1VII 1VIII 1TI1TII1O~5!. ~4.3!

The expressions of these separate pieces have the same structure as the correspondingV andT terms in the 3PN mass momen
I L . The differences lie only in the over-all coefficient, in the number of time-derivatives, and in the presence of a Levi
symbol. We have

VI52 FP
B50

E d3xux̃uB«ab, i l
x̂L21.b $same as in the curly brackets of Eq.~4.2e!%, ~4.4a!

VII 52
1

2c2~2l 13!
FP

B50
E d3xux̃uB«ab, i l

x̂L21.b] t
2 $same as in Eq.~4.2f!%, ~4.4b!

VIII 52
1

8c4~2l 13!~2l 15!
FP

B50
E d3xux̃uBuxu4«ab, i l

x̂L21.b] t
4 $same as in Eq.~4.2g!%, ~4.4c!

TI5
2l 11

c2~ l 12!~2l 13!
FP

B50
E d3xux̃uB«ac, i l

x̂L21.bc] t $same as in Eq.~4.2h!%, ~4.4d!

TII5
2l 11

2c4~ l 12!~2l 13!~2l 15!
FP

B50
E d3xux̃uBuxu2«ac, i l

x̂L21.bc] t
3 $same as in Eq.~4.2i!%.

~4.4e!

We explained that we denote the terms in the previous formulas by SI~1!, SI~2!, ..., SI~50!, SII~1!, ..., TII~2!.1 Our
convention is that this notation means that the terms involve their complete coefficient in front; for instance,

SI~5!52
1

pGc4 FP
B50

E d3xux̃uBx̂LUi j ] i j
2 U, ~4.5a!

SII~14!52
1

3pGc6~2l 13!
FP

B50
E d3xux̃uB] t

2] i@] i~U3!uxu2x̂L2U3] i~ uxu2x̂L!#, ~4.5b!

TI~7!5
2~2l 11!

pGc6~ l 11!~ l 12!~2l 15!
FP

B50
E d3xux̃uBx̂abL] t

2$]aUk]bUk%. ~4.5c!
os
i
t

s

t
mo-
oth

re
The notation means also that the terms include all the p
Newtonian corrections relevant to obtain the 3PN order
the energy flux. Consistently with that order we shall have
compute the mass quadrupole momentI i j to the 3PN order,
the mass octupoleI i jk and current quadrupoleJi j to the 2PN
order only. Look for instance at the term SI~5! given by Eq.

1Though SI~29! and SI~36! cancel out among themselves, they a
computed and included in our presentation.
06400
t-
n
o

~4.5a!: this is a 2PN term since it carries a factor 1/c4. Thus,
in the mass quadrupoleI i j we need to compute SI~5! with
1PN relative precision, while in the mass octupoleI i jk the
Newtonian precision is sufficient@the term SI~5! does not
exist in the current moments#. Note also that a term such a
SII~14! given by Eq.~4.5b! includes in fact two terms~which
come from an operation by parts!. Furthermore, since the
different pieces~of types V and T! composing the curren
moments have exactly the same structure as in the mass
ments, we employ the same notation for these terms in b
5-7
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I L and JL . For instance TI~7! denotes both the term in th
mass moment as given by Eq.~4.5c! and the corresponding
term in the current moment~with a little experience there ca
be no confusion!. Finally, in some cases we split the ter
into subterms according to the nature of a potential ther
either ‘‘compact’’ or ‘‘non-compact’’ potential. The compac
~respectively non-compact! part of a potential is that par
which is generated by a source with compact~non-compact!
support. For instance the term SI~5!, which contains the po-
tentialUi j given by Eq.~3.7c!, is naturally split into the two
contributions

SI~5!5SI~5C!1SI~5NC!, ~4.6!

where Ui j is replaced by its compact~C! or non-compact
~NC! parts given by

Ui j 5Ui j
~C!1Ui j

~NC! , ~4.7a!

Ui j
~C!5D21$24pG~s i j 2d i j skk!%, ~4.7b!

Ui j
~NC!5D21$2] iU] jU%. ~4.7c!

We shall split similarly all the terms containing the potentia
Ui j , x i j , R̂i , Ẑi j and X̂. This splitting into C and NC parts
is fairly obvious from the expressions of the potentials:
instance,

R̂i
~NC!5D21H 22]kU] iUk2

3

2
] tU] iUJ . ~4.8!

When computing the terms in the moments~4.1!–~4.4! we
shall separate them into various categories, according to
way their computation is performed. This entails introduci
some new terminology for the various classes. For insta
we shall consider the compact-support terms like SI~1!, or
so-called Y-terms made of the quadratic product of t
U-type potentials@examples are VI~4! and also SI~5C!#, or
so-called non-compact terms like SI~5NC! or SII~4NC!.
These categories of terms are defined when we tackle
computation. The resulting nomenclature is complicated
turned out to be useful during the explicit computation a
the many associated checks, since it delineates clearly
different problems posed by the different categories of ter

V. APPLICATION TO POINT-PARTICLES

Our aim is to compute the multipole moments for a s
tem of two point-like particles. One is not alloweda priori to
use the expressions~2.5! as they have been obtained in Re
@21# under the assumption of a continuous~smooth! source.
Applying them to a system of point-particles, we find that t
integrals are divergent at the location of the particles, i
when x→y1(t) or y2(t), wherey1(t) and y2(t) denote the
two trajectories. Therefore we must supplement the com
tation by a prescription for how to remove the infinite part
these integrals. In this paper, we systematically employ
Hadamard regularization@31,32# ~see Ref.@33# for an entry
to the mathematical literature!. The usefulness of this regu
larization for problems involving point-particles in gener
06400
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relativity has been shown by numerous works~see, e.g.,
@51#!. Recently the properties of the Hadamard regularizat
have been re-visited and a new set of generalized funct
~distributional forms! associated with this regularization wa
introduced@41,42#.

The functionsF(x) we need to deal with are smooth o
R3 excised of the two pointsy1 andy2 , and admit whenr 1
5ux2y1u→0 ~and similarly whenr 25ux2y2u→0! a singu-
lar expansion of the type

;nPN, F~x!5 (
a0<a<n

r 1
a

1f a~n1!1o~r 1
n!, ~5.1!

where the coefficients1f a of the various powers ofr 1 in the
expansion depend on the unit directionn15(x2y1)/r 1 . The
powersa of r 1 are real, range in discrete steps@i.e.,a belongs
to some countable set (ai) i PN# and are bounded from below
(a0<a). The functions likeF are said to belong to the clas
of functionsF ~see Ref.@41# for precise definitions!. If F and
G belong toF so do the ordinary~pointwise! productFG and
the ordinary gradient] iF. The Hadamard ‘‘partie finie’’ ofF
at the location of particle 1 is defined as

~F !15E dV1

4p 1f 0~n1!, ~5.2!

wheredV15dV(n1) is the solid angle element centered o
y1 and of directionn1 . On the other hand, the Hadama
partie finie~Pf! of the integral*d3xF, divergent because o
the two singular pointsy1 andy2 , is defined by

Pfu1 ,u2
E d3xF5 lim

u→0
H Er 1.u

r 2.u

d3xF14p (
a13,0

ua13

a13 S F

r 1
aD

1

14p lnS u

u1
D ~r 1

3F !111↔2J . ~5.3!

The first term represents the integral onR3 excluding two
spherical volumes of radiusu surrounding the singularities
The other terms are such that they cancel out the diverg
part of the latter integral whenu→0 ~the symbol 1↔2
means the terms obtained by exchanging the labels 1 an!.
Notice the presence of a logarithmic term, which depends
an arbitrary constantu1 , and similarlyu2 for the other sin-
gularity. In this paper we shall keep the constantsu1 andu2
all the way through our calculation. We assume noth
about these constants, for instance they are differenta priori
from similar constantss1 ands2 introduced in the equation
of motion ~Sec. II in @43#!. We shall see that the multipol
moments do depend onu1 and u2 ~as well as onr 0! at the
3PN order.

The strategy we adopt in this paper is to insert into
source multipole moments~2.5! the following expression of
the matter stress-energy tensorTmn for two point-masses:

Tpoint-particle
mn 5m1v1

mv1
nS dt

dt D
1
S 1

A2g
D

1

d~x2y1!11↔2,

~5.4a!
5-8



de
io
ul
-
e
e
ic
rd

m
o

l-

y

en

r-

am
rb

e

n
ra
ni

n-
s of
ons

ion

er.
ons
te

qua-

ion
nts

ies
he
the

t
nt
-

tial
, to
com-
ial,

GRAVITATIONAL WAVES FROM INSPIRALING . . . PHYSICAL REVIEW D65 064005
S dt

dt D
1

5
1

A2~grs!1v1
rv1

s/c2
, ~5.4b!

wherem1 is the ~Schwarzschild! mass,y1(t) the trajectory,
andv1(t)5dy1 /dt the velocity of body 1@with v1

m5(c,v1)#.
This stress-energy tensor constitutes a ‘‘naive’’ model to
scribe the particles, since the factors of the Dirac distribut
have been evaluated at the point 1 by means of the reg
ization defined by Eq.~5.2!. However, because of the so
called non-distributivity of the Hadamard partie finie, oth
tensors are possible as well. In particular, we discuss in S
X the effect of choosing another stress-energy tensor, wh
is particularly natural within the context of the Hadama
regularization, and that we proposed in Ref.@42#. After
Tpoint-particle

mn is substituted inside them, the moments are co
prised of many divergent integrals and we define each
these integrals by means of the Hadamard partie finie~5.3!.
Therefore our ansatz for applying the general ‘‘fluid’’ forma
ism to the ill-defined case of point-particles is

~ I L!point-particle5Pf$I L@Tpoint-particle
mn #%, ~5.5a!

~JL!point-particle5Pf$JL@Tpoint-particle
mn #%, ~5.5b!

where the functionalsI L andJL are exactly the ones given b
Eq. ~2.5! or Eqs.~4.1!–~4.4! ~including in particular the finite
part FPB50 at infinity!. In what follows we shall carefully
apply this prescription, but in order to reduce clutter we g
erally omit writing the partie-finie symbol Pf.

The relative position and velocity of two bodies in ha
monic coordinates are denoted by

xi5y1
i 2y2

i , and v i5
dxi

dt
5v1

i 2v2
i . ~5.6!

To the 2PN order~only needed in this paper! the relation
between the absolute trajectories in a center-of-mass fr
and the relative ones reads, in the case of a circular o
~see, e.g., Ref.@13#!, as

y1
i 5

m213ng2dm

m
xi1O~5!, ~5.7a!

y1
i 5

2m113ng2dm

m
xi1O~5!. ~5.7b!

Here m1 and m2 are the two masses, withm5m11m2 , n
5m1m2 /m2 ~such that 0,n<1/4! anddm5m12m2 . Fur-
thermore,

g5
Gm

rc2 , ~5.8!

represents a small post-Newtonian parameter of orderO(2),
with r 5uxu, often also denotedr 12, the distance between th
two masses in harmonic coordinates.

When computing the multipole moments we get ma
terms involving accelerations and derivatives of accele
tions. These are reduced to the consistent post-Newto
06400
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order by means of the binary’s equations of motion. To co
trol the moments at the 3PN order we need the equation
motion at the 2PN order. For circular orbits these equati
are ~see, e.g.,@13#!

dv

dt
52v2x1O~5!, ~5.9a!

v25
Gm

r 3 H 11@231n#g1F61
41

4
n1n2Gg21O~g3!J .

~5.9b!

The content of these equations lies in the relation~5.9b! be-
tween the orbital frequencyv and the coordinate separationr
in harmonic coordinates. However, note that the precis
given by Eqs.~5.9! is insufficient to obtain the~second and
higher! time-derivatives of the moments at the 3PN ord
Evidently for this we need the more accurate 3PN equati
of motion. These will be given in Sec. XII when we compu
the total energy flux@see Eq.~12.3! below#. In addition, we
shall also need for some intermediate computations the e
tions of motion for general~not necessarily circular! orbits
but at the 1PN order. These are given by

dv1

dt
52

Gm2

r 2 n1
Gm2

c2r 2 H nF2v1
222v2

214~v1v2!1
3

2
~nv2!2

15
Gm1

r
14

Gm2

r G1v@4~nv1!23~nv2!#J 1O~4!

~5.10!

~and idemfor 1↔2!. The notation (nv1) for instance means
the usual scalar product between the vectorsn5x/r ~some-
times denoted alson12! and v1 . With these preliminary in-
puts in place, we are in a position to tackle the computat
of each of the terms composing the multipole mome
~4.1!–~4.4!.

VI. COMPACT TERMS

In this category we consider all the terms in Eqs.~4.1!–
~4.4! whose integrand involves explicitly the matter densit
s, s i , or s i j as a factor, and thus which extend only over t
spatially compact support of the source. For these terms
finite part operation FPB50 ~which deals with the bound a
infinity of the integral! can be dropped out. With the prese
notation the compact terms are~i! compact term at Newton
ian order SI~1!; ~ii ! compact terms at 1PN order: SII~1!,
VI ~1!; ~iii ! compacts at 2PN:SI~3!, SIII~1!, VI~2!, VI~3!,
VII ~1!, TI~1!; ~iv! compacts at 3PN: SI~13!, SI~14!, SI~15!,
SI~16C!, SII~2!, SIV~1!, VI~7!, VI~8!, VI~9!, VI~10C!,
VI ~11!, VI~12C!, VI~13!, VII ~2!, VII ~3!, VIII ~1!, TI~3!,
TI~4!, TII~1!.

As explained earlier, it is convenient, when the poten
is composed of both compact and non-compact parts
separate out these pieces. Thus we shall also have the
pact terms involving the non-compact part of a potent
namely

SI~16NC!, VI~10NC!, VI~12NC!.
5-9
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Evidently we have to compute the ‘‘Newtonian’’ term SI~1!
with the maximal 3PN precision, while for instance a te
which appears at 3PN needs only the Newtonian precis
We devote this section to the computation of the Newton
term SI~1!, and to one example of a compact term with no
compact potential: SI~16NC!; the computation of the othe
compact terms is similar, or does not present any difficu
so we only list the final results in the Appendix.

From the stress-energy tensor~5.4! we find that the matter
source densities~3.2! are given by

s~x,t !5m̃1d@x2y1~ t !#11↔2, ~6.1a!

s i~x,t !5m1v1
i d@x2y1~ t !#11↔2, ~6.1b!

s i j ~x,t !5m1v1
i v1

j d@x2y1~ t !#11↔2, ~6.1c!

where we have introduced some ‘‘effective’’ massesm1 and
m̃1 defined by

m1~ t !5m1S dt

dt D
1
S 1

A2g
D

1

, ~6.2a!

m̃1~ t !5m1~ t !F11
v1

2

c2G . ~6.2b!

These effective masses are some mere functions of timt
through the dependence over the particle trajectories and
locities ~the accelerations are order-reduced!. Notice that,
had we used the stress-energy tensor proposed in Sec.
@42# ~see also the discussion in Sec. X below!, we would
have found thatm1 and m̃1 depend both on time and spac
as they contain the factor 1/A2g that is given at any field
point x. Using the metric~3.1!, expressed in terms of th
retarded potentials~3.3!–~3.5!, we find the expressions of th
two required factors entering the effective masses~6.2! up to
the 3PN order: namely,

S 1

A2g
D

1

5S 12
2

c2 V1
1

c4 @22Ŵ12V2#

1
1

c6 F28Ẑ28X̂14VŴ28ViVi2
4

3
V3G D

1

1O~8!, ~6.3a!
06400
n.
n
-

,

e-

of

S dt

dt D
1

5S 11
1

c2 FV1
1

2
v1

2G1
1

c4 F1

2
V21

5

2
Vv1

224Viv1
i

1
3

8
v1

4G1
1

c6 F4X̂14ViVi28R̂iv1
i 12Ŵi j v1

i v1
j

212VViv1
i 26Viv1

i v1
21

1

6
V31

25

4
V2v1

2

1
27

8
Vv1

41
5

16
v1

6G D
1

1O~8!, ~6.3b!

where the subscript 1 means that all the potentials are to
evaluated following the regularization~5.2!. In these expres-
sions there are no problems associated with the n
distributivity of the Hadamard partie-finie; that is, we ca
assume (FG)15(F)1(G)1 for this computation~see, how-
ever, Sec. X!. Most of the regularized values of the need
potentials at 1~for general orbits! have been computed in
Ref. @51# ~see the Appendix B there!. Here we simply report
the appropriate formulas@where r 125uy12y2u, n125(y1
2y2)/r 12#:

~V!15
Gm2

r 12
H 11

1

c2 F23

2

Gm1

r 12
12v2

22
1

2
~n12v2!2G

1
4

3

Gm1

r 12c
3 ~n12v12!1

Gm1

r 12c
4 F11

2

Gm1

r 12
1

5

4

Gm2

r 12

1
15

8
v1

22
7

4
~v1v2!2

25

8
v2

21
1

8
~n12v1!2

2
25

4
~n12v1!~n12v2!1

33

8
~n12v2!2G

1
1

c4 F2v2
42

3

2
~n12v2!2v2

21
3

8
~n12v2!4G J 1O~5!,

~6.4a!

~Vi !15
Gm2

r 12
H v2

i 1
v2

i

c2 F22
Gm1

r 12
1v2

22
1

2
~n12v2!2G

1
1

2

Gm1

r 12c
2 v1

i 1
Gm1

r 12c
2 n12

i F2
3

2
~n12v1!1

1

2
~n12v2!G J

1O~3!, ~6.4b!

~Ŵi j !15
Gm2

r 12
H v2

i j 2d i j v2
21

Gm1

r 12
@22n12

i j 1d i j #

1
Gm2

4r 12
@n12

i j 2d i j #J 1O~1!, ~6.4c!

~R̂i !15
G2m1m2

r 12
2 F2

3

4
v1

i 1
5

4
v2

i 2
1

2
~n12v1!n12

i

2
1

2
~n12v2!n12

i G1
G2m2

2

r 12
2 F2

1

8
v2

i 1
1

8
~n12v2!n12

i G
1O~1!. ~6.4d!
5-10
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~X̂!15
G2m1m2

r 12
2 F2

3

2

Gm1

r 12
1

1

4
v1

222~v1v2!1
9

4
v2

2

2
11

4
~n12v1!21

9

2
~n12v1!~n12v2!2

11

4
~n12v2!2G

1
G2m2

2

r 12
2 F 1

12

Gm2

r 12
2

1

8
v2

21
1

8
~n12v2!2G1O~1!.

~6.4e!

Notice that during the computation of the potentialV at the
2PN order we used the 1PN equations of motion for gen
orbits: these are given by Eq.~5.10!. In addition to the above
we need the traceŴ5Ŵii at 1PN order.@To the order con-
sidered in Eq.~6.4c! we haveUi j 5Ŵi j .# By a computation
similar to those of Ref.@51# we get

~Ŵ!15
Gm2

r 12
FGm1

r 12
2

1

2

Gm2

r 12
22v2

2G2
2G2m1m2

r 12
2 c

~n12v12!

1
G2m1m2

r 12
2 c2 F23

Gm1

r 12
1

1

2

Gm2

r 12
1

3

2
v1

21
13

2
v2

2

1~n12v1!212~n12v1!~n12v2!22~n12v2!2G
1

G2m2
2

r 12
2 c2 F2

9

4
v2

21
3

4
~n12v2!2G

1
Gm2

r 12c
2 @22v2

41~n12v2!2v2
2#1O~3!. ~6.5!

Inserting these expressions into Eq.~6.3! we obtain the 3PN
m̃1 and then straightforwardly compute SI~1!. In the quadru-
pole casel 52 it is given by

SI~1!5E d3xm̃1x̂i j d111↔2

5m̃1y1
^ i y1

j &11↔2. ~6.6!

The final result for circular orbits@using the relations~5.7!
and ~5.8!# reads then

SI~1!5mnF11
g

2
~125n!2

g2

8
~13261n125n2!

1
g3

16
~1492573n1354n2229n3!G x̂i j . ~6.7!

The sensitivity of this result to the choice of stress-ene
tensor for point-particles~in accordance with the ‘‘non-
distributivity’’ of the particle finie! is discussed in Sec. X.

Other interesting terms in this category are

SI~16NC!5
4

c6 FP
B50

E d3xux̃uBx̂LsabUab
~NC! , ~6.8!
06400
al

y

and the similar VI~10NC! and VI~12NC!. Applying our com-
putation rules we get

SI~16NC!5
4m1

c6 v1
ab@~y11r 1n1!^ i~y11r 1n1! j &Uab

~NC!#1

11↔2, ~6.9!

where we have writtenxi5y1
i 1r 1n1

i valid in the vicinity of
the point 1. The result follows from applying the regulariz
tion ~5.2!, with the help of the Newtonian approximation o
the NC potential. The interesting point is that the regulariz
factor in Eq.~6.9! is different fromy1

^ i y1
j &(Uab

(NC))1 as a con-
sequence of the non-distributivity. See Sec. X.

VII. QUADRATIC TERMS

In this category we consider all the terms whose supp
is spatially non-compact~hence the finite part operatio
FPB50 plays a crucial role!, and which are made of the inte
gral of a product of two derivatives of compact-support p
tentials. Furthermore we subdivide the quadratic terms i
subcategoriesY-, S-, andT-terms named after the function
YL , SL andTL defined below, and we classify all these term
according to their dominant post-Newtonian order. The
haustive list follows. ~i!Y-terms at 2PN: SI~4!, SI~6!, SI~7!,
SII~7!, VI~4!, VI~5!, TI~2!; ~ii ! Y-terms at 3PN: SI~31!,
SI~35C!, SI~37C!, SI~38C!, VI~16!, VI~20!, VII ~6!, VI~19!,
VI ~21!, VI~25C! VI ~26C!, VI~27C!, VI~29C!, TI~6!, TI~7!,
TI~8!; ~iii ! S-terms at 3PN: SII~3!, SII~4C!, SII~5!, SII~6!,
SIII~2!, VII ~4!, VII ~5!, TII~2!; ~iv! T-terms at 3PN: SI~17!,
SI~19C!, SI~21C!, SI~24!, SI~25!, SII~9!, VI~14!, VI~15!,
VI ~17!, VI~18!, TI~5!.

The Y- andS-terms involve the product of two compac
support potentialsU, Ui or Ui j

(C) , while theT-terms involve
a product of one of the latter potentials~of type U! and a
potential of the typex, x i or x i j

(C) @see Eq.~3.7!#. Compared
to Y-terms, theS-terms contain in addition a factoruxu2 inside
their integrand. In the two-body case these compact-sup
U-type potentials read

U5
Gm̃1

r 1
11↔2, ~7.1a!

Ui5
Gm1

r 1
v1

i 11↔2, ~7.1b!

Ui j
~C!5

Gm1

r 1
~v1

i j 2d i j v1
2!11↔2. ~7.1c!

The potentials of typex are obtained by replacing 1/r 1 by r 1
in these expressions. Then from the structure;1/r 111/r 2 or
;r 11r 2 it is not difficult to express all theY-, S-, and
T-terms with the help of three and only three types of
ementary integralsYL , SL , andTL , respectively~whereL
5 i 1i 2 ...i l denotes the multipolar index!. Two examples in
the quadrupole caseij are
5-11
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SI~4!52
4G

c4 m1@m̃2v1
av2

b
2]abYi j 1 ṁ̃2v1

a
2]aYi j #11↔2,

~7.2a!

SII~4C!5
G

7c6 m1m2

d2

dt2
@~v2

ab2dabv2
2! 1]abSi j #11↔2.

~7.2b!

@We denote, e.g.,2]a[]/]y2
a.] Since SI~4! is a 2PN term it

needs the relative 1PN precision~for simplicity we do not
write the post-Newtonian remainders!. The elementary inte-
grals are defined by

YL~y1 ,y2!52
1

2p
FP

B50
E d3xux̃uB

x̂L

r 1r 2
, ~7.3a!

SL~y1 ,y2!52
1

2p
FP

B50
E d3xux̃uBuxu2

x̂L

r 1r 2
, ~7.3b!

TL~y1 ,y2!52
1

2p
FP

B50
E d3xux̃uBx̂L

r 1

r 2
. ~7.3c!

In these definitions, the finite part at infinity is absolute
crucial ~it comes directly from the formalism@20,21#!. How-
ever, it is easily seen that the integrals are convergent
the two bodies so the Hadamard partie finie is not need
The integralYL agrees with the definition used in@20,13# and
is equivalent with the alternative form proposed in Ref.@18#.

We present several derivations of the closed-form exp
sions of these integrals for arbitraryl. This permits us to
introduce some techniques which are necessary when
compute some more complicated integrals in Secs. VIII a
IX. The first method consists of writing the multipolarit
factor x̂L in the form

x̂L5 (
p50

l S l
pD r 1

^Py1
L2P& , ~7.4!

where (p
l ) denotes the binomial coefficient~and ^& refers to

the STF projection!. Inserting this into the integralYL , it is
easy to obtain the equivalent expression

YL52
1

2p (
p50

l S l
pD ~2 !p

~2p21!!!
y1

^L2P
1]P&

3H FP
B50

E d3xux̃uB
r 1

2p21

r 2
J . ~7.5!

Next we compute the integral inside the curly brackets of
~7.5!. Let us show that the polar part of this integral wh
B→0 is zero. We replace the integrand by its expans
when uxu→` ~any pole atB50 necessarily comes from th
behavior of the integral at infinity!, we integrate over the
angles and look for radial integrals of the typ
*1`duxuuxuB21 which are the only ones to produce a po
However these radial integrals do not exist since after
angular integration the powers ofuxu are only of the typeB
06400
ar
d.

s-

e
d

.

n

.
e

12k wherek is an integer. So the integral in Eq.~7.5! can be
computed by analytic continuation down to the valueB50.
We obtain (;pPN)

FP
B50

E d3xux̃uB
r 1

2p21

r 2
52

2pr 12
2p11

~p11!~2p11!
, ~7.6!

which is a particular case of the Riesz formula@52#, valid for
any a, bPC except at some isolated poles:

E d3xr 1
ar 2

b5p3/2

GS a13

2 DGS b13

2 DGS 2
a1b13

2 D
GS 2

a

2DGS 2
b

2DGS a1b16

2 D
3r 12

a1b13 ~7.7!

~G denotes the Eulerian function!. A closely related reasoning
to prove Eq.~7.6! is to replace the regularization factorux̃uB
by its expansion whenB→0, i.e.,

ux̃uB5 r̃ 1
BH 11

B

2
lnF112

~n1y1!

r 1
1

y1
2

r 1
2G1O~B2!J .

~7.8!

Since the integral does not develop any pole whenB→0, the
term of orderB cannot contribute, nor any of the highe
order termsO(B2). This means that we can replace the reg
larization factor ux̃uB by r̃ 1

B ~where r̃ 15r 1 /r 0!. From the
Riesz formula, witha5B12p21 andb521, and compu-
tation of the limitB→0 we get the same result.

Thus, plugging Eq.~7.6! into Eq.~7.5! we find the explicit
expression ofYL as

YL~y1 ,y2!5r 12(
p50

l S l
pD ~2 !p

p11
y1

^L2Py12
P& , ~7.9!

wherey12
i 5y1

i 2y2
i andr 125uy12u. In terms ofy1

i andy2
i the

expression is simpler:

YL5
r 12

l 11 (
q50

l

y1
^L2Qy2

Q& . ~7.10!

Using exactly the same method we find for theSL-integral,

SL5r 12(
p50

l S l
pD ~2 !py^L2Py12

P&F y12
2

~p12!~p13! S p112
2l

3 D
2

2y1"y12

p12
1

y1
2

p11G
5

r 12

~ l 11!~ l 12! (
q50

l

y1
^L2Qy2

Q&F ~ l 112q!y1
22

2

3
~q11!

3~ l 112q!y12
2 1~q11!y2

2G , ~7.11!

and, for theTL-integral,
5-12
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TL5
r 12

3

3 (
p50

l S l
pD ~2 !p

p12
y1

^L2Py12
P&

5
r 12

3

3~ l 11!~ l 12! (
q50

l

~q11!y1
^L2Qy2

Q& . ~7.12!

Notice thatSL can be deduced fromTL and YL using the
formula

SL5~122y1
i

1] i !TL1y1
2YL . ~7.13!

The integralsYL , SL andTL vanish in the limity1→y2 . As
is clear from the defining expressions~7.3! there is no prob-
lem with the latter limit, in the sense that it does not intr
duce any singularity at the point 1. This justifiesa posteriori
our neglect of all the ‘‘self’’ contributions~proportional to
m1

2 and m2
2! in the quadratic terms; see the examples giv

by Eqs. ~7.2!. However, when we compute the cubic a
non-compact terms in Secs. VIII and IX we shall find som
important non-zero self contributions.

Another method for the computation of the integrals~7.3!
is based on the set of functions defined by

g5 ln ~r 11r 21r 12!, ~7.14a!

f 5
1

6
~r 1

21r 2
22r 12

2 !S g2
1

3D1
1

6
~r 12r 11r 12r 22r 1r 2!,

~7.14b!

f 125
1

6
~r 1

21r 12
2 2r 2

2!S g2
1

3D1
1

6
~r 1r 21r 12r 22r 1r 12!,

~7.14c!

f 215
1

6
~r 2

21r 12
2 2r 1

2!S g2
1

3D1
1

6
~r 1r 21r 12r 12r 2r 12!,

~7.14d!

which satisfy, in the sense of distribution theory,

Dg5
1

r 1r 2
, D1g5

1

r 1r 12
, D2g5

1

r 2r 12
, ~7.15a!

D f 52g, D1f 5
r 1

r 12
, D2f 5

r 2

r 12
, ~7.15b!

D f 125
r 1

r 2
, D1f 1252g, D2f 125

r 12

r 2
, ~7.15c!

D f 215
r 2

r 1
, D1f 215

r 12

r 1
, D2f 2152g, ~7.15d!

where the LaplaciansD5] i] i , D151] i•1] i , D252] i•2] i .
Let us take the example of the integralYL . With the help of
Eq. ~7.14a! it can be rewritten as

YL52
1

2p
FP

B50
E d3xux̃uBx̂LDg. ~7.16!
06400
-

n

We operate the Laplacian by parts, discard theB-dependent
surface term which is zero by analytic continuation, and u
the formulaD(uxuBx̂L)5B(B12l 11)uxuB22x̂L . Hence,

YL52
1

2p
FP

B50
HB~B12l 11!E d3xux̃uBuxu22x̂LgJ .

~7.17!

Because there is an explicit factorB in front of the integral
we need to look only at the polar part whenB→0, which
depends only on the behavior of the integrand at the up
bound r[uxu→1` ~this r should not be confused withr
5r 12 as we sometimes denote the orbital separation!. Thus
we are allowed to replace the functiong in Eq. ~7.17! by its
expansion at infinity. It can be checked that the~simple! pole
of the integral in Eq.~7.17! is produced exclusively by the
term in the expansion ofg of order r 2 l 21. Let us consider
the quadrupole casel 52. We have

g5 ln~2r !1
1

r
$¯%1

1

r 2 $¯%

1
1

r 3 H r 12

4
@~ny1!21~ny1!~ny2!1~ny2!2#1¯J

1OS 1

r 4D , ~7.18!

where the dots indicate some terms which yield no contri
tion to the present computation, either because they do
belong to the relevant orderr 23 or they will be zero after
angular integration. Thus the formula~7.17! becomes in this
case

Yi j 5 FP
B50

H 22B~B15!E1`

drr̃ Br 21E dV

4p
n̂i j

r 12

4

3@~ny1!21~ny1!~ny2!1~ny2!2#J . ~7.19!

The notation for the radial integral means that only t
bound at infinity contributes to its value. The latter expre
sion is easily transformed into

Yi j 5
r 12

3
@y1

^ i j &1y1
^ i y2

j &1y2
^ i j &#, ~7.20!

in agreement with the more general result~7.10!. The same
method works forSL as well, but one performs two succe
sive integrations by parts using the functionsg and f. Con-
cerningTL , one integration by parts is sufficient but usin
the functionf 12.

With the latter expressions of the elementary integr
YL , SL andTL we obtain all the quadratic terms. The resu
in the case of circular orbits are displayed in Appendix A
5-13
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VIII. CUBIC TERMS

By cubic terms we refer to all the terms which are ma
of a product between three~derivatives of! compact-support
potentialsU and Ui @there are no such terms involving th
tensor potentialUi j

~C!#. From Eq.~4.2! we can check that the
only cubic terms appear at the 3PN order. These are

SI~26!,SI~27!,SI~28!,SI~29!,SI~30!,SI~34!,SI~36!,SII~13!,

VI ~22!,VI~23!,VI~24!.

Let us proceed in a way similar to the computation of t
quadratic terms, i.e., by expressing the terms as functio
of some elementary integrals that are computed separa
th

o

tio

ce

06400
e

ls
ly.

Since the cubic terms are 3PN, their computation can
done using the Newtonian potentials

U5
Gm1

r 1
1O~2!11↔2, ~8.1a!

Ui5
Gm1

r 1
v1

i 1O~2!11↔2. ~8.1b!

For simplicity we gather in one computation the sum of
the cubic terms in SI@and similarly in VI, there is only one
cubic term in SII, which is SII~13!#. In the case of mass-typ
moments we get
SI~26127128129130134136!5
G2m1

3

c6 H 2
32

15
v1

i v1
j

1] i j YL
~23,0!1

88

5
v1

2YL
~25,0!1

512

225
v1

ab
1]abŷ1

LJ
1

G2m1
2m2

c6 H S 2
9

2
v1

i v2
j 2

5

2
v1

i v1
j D 1] i j YL

~22,21!28v1
i v2

j
2] i j YL

~22,21!

1@22v1
i v2

j 26v1
i v1

j 18d i j ~v1v2!18d i j v1
2# 1] i 2] jYL

~22,21!

1@15~v1v2!13v1
2#YL

~24,21!J 11↔2, ~8.2a!

SII~13!5
4G2

3c6

d2

dt2
$m1

3YL
~23,0!13m1

2m2YL
~22,21!%11↔2, ~8.2b!

VI ~22123124!5
8G2~2l 11!

c6~ l 11!~2l 13!

d

dt H 2m1
3v1

aYaL
~25,0!1m1

2m2F3

4
~v1

k2v2
k! 1]a 2]k

3YaL
~22,21!2v1

a
1]k 2]kYaL

~22,21!2
3

16
~v1

k2v2
k! 1]akYaL

~22,21!

2S 3

8
v1

a1
5

8
v2

aDYaL
~24,21!G J 11↔2. ~8.2c!
ies

e

ula
,

In the case of the current-type moments there are only
VI-terms, which admit a formula analogous to Eq.~8.2c!. As
we see, we could express all the cubic terms by means
single type of elementary integral,

YL
~n,p!~y1 ,y2!52

1

2p
FP

B50
E d3xux̃uBx̂Lr 1

nr 2
p , ~8.3!

of which some particular cases used in the previous sec
readYL5YL

(21,21) and TL5YL
(1,21). The integral~8.3! is

well-defined in the vicinity of the pointsy1 andy2 only when
n.23 andp.23. When this is not the case—for instan
the integralYL

(23,0) appearing in Eq.~8.2!—one should add
the Hadamard partie-finie operation Pf defined by Eq.~5.3!
and dependinga priori on two constantsu1 andu2 . Accord-
e

f a

n

ing to our convention we generally do not write such part
finies, but they are always implicitly understood.

The integralYL
(22,21) is perfectly well-behaved near th

two bodies~like YL , SL , andTL considered in Sec. VII!, so
it does not need the partie finie. We substitute in it a form
obtained from Eq.~7.4! by exchanging the labels 1 and 2
obtaining

YL
~22,21!52

1

2p (
p50

l S l
pD ~21!p

~2p21!!!
y2

^L2P
2]P&

3H FP
B50

E d3xux̃uB
r 2

2p21

r 1
2 J . ~8.4!

Next we replace the regularization factorux̃uB by its expan-
5-14
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sion aroundB50 already written in Eq.~7.8!. Since the
integral can develop simple poles at most, we can limit o
selves to the first order inB. Then the integral in the bracket
of Eq. ~8.4! reads

FP
B50

E d3xux̃uB
r 2

2p21

r 1
2

5 FP
B50

E d3xr̃ 1
B

r 2
2p21

r 1
2 1FPB50H B

2 E d3xr̃ 1
B

r 2
2p21

r 1
2

3 lnF112
~n1y1!

r 1
1

y1
2

r 1
2G J . ~8.5!

The first term follows from the Riesz formula~7.7!, and the
second term depends only on the poles developed by
integral at infinity~because of the explicit factorB in front!.
Now, contrary to the case of the integralYL[YL

(21,21) in-
vestigated in Sec. VII, we find that this second term give
net contribution to the integral, straightforwardly obtain
from expanding the integrand whenr 5uxu→1`. The final
values that we obtain in the quadrupole and octupole ca
~l 52 andl 53! of interest are

Yi j
~22,21!5y1

^ i j &F16

15
ln r̃ 122

188

225G1y1
^ i y2

j &F 8

15
ln r̃ 122

4

225G
1y2

^ i j &F2

5
ln r̃ 122

2

25G , ~8.6a!

Yi jk
~22,21!5y1

^ i jk &F32

35
ln r̃ 122

2552

3675G
1y1

^ i j y2
k&F16

35
ln r̃ 121

124

3675G
1y1

^ i y2
jk&F12

35
ln r̃ 121

66

1225G
1y2

^ i jk &F2

7
ln r̃ 122

2

49G . ~8.6b!

Note the occurrence of some logarithms ofr̃ 125r 12/r 0 . Ap-
plying on these values the point-1 LaplacianD151] i i , and
usingD1r 1

2252r 1
24 ~a statement valid in the sense of dist

butions!, we obtain

Yi j
~24,21!5

1

r 12
2 S 8

3
y1

^ i j &2
4

3
y1

^ i y2
j &2

1

3
y2

^ i j &D , ~8.7a!

Yi jk
~24,21!5

1

r 12
2 S 16

5
y1

^ i jk &2
8

5
y1

^ i j y2
k&2

2

5
y1

^ i y2
jk&

2
1

5
y2

^ i jk &D . ~8.7b!
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Alternatively, the results~8.7! can also be obtained by th
same technique as used previously forYL

(22,21) ~i.e., from
the Riesz formula and search for the pole at infinity!.

The computation of the integralYL
(23,0), defined by

YL
~23,0!~y1!52

1

2p
FP

B50
E d3xux̃uB

x̂L

r 1
3 , ~8.8!

is a priori more tricky because this integral necessitates
Hadamard partie finie for curing the divergence at the po
y1 . Actually, the same method as before, based on the R
formula, could be used because we know that the Hadam
partie finie can also be obtained as an analytic continua
~see, e.g.,@41#!. We prefer here to vary the techniques and
present some other derivations. We split the integration
main R3 into a ball centered ony1 with some fixed radius
R1 , and the complementary domain, i.e.,r 1.R1 . The partie
finie applies only on the ‘‘inner’’ domain, surrounding th
singularity 1, and the finite part FPB50 applies only on the
integral extending to infinity. Hence,

YL
~23,0!52

1

2p
Pfu1

E
r 1,R1

d3x
x̂L

r 1
3

2
1

2p
FP

B50
E

r 1.R1

d3xux̃uB
x̂L

r 1
3 . ~8.9!

In the first term we recall that the partie finie depends o
constantu1 @see the definition~5.3!#. For this term we readily
find

2
1

2p
Pfu1

E
r 1,R1

d3x
x̂L

r 1
3 522ŷ1

L lnS R1

u1
D . ~8.10!

On the other hand, one must replace into the second term
factor ux̃uB by its B-expansion as given by Eq.~7.8!. This
yields two contributions: one is immediately computed us
the properties of the analytic continuation, the other conta
an explicit factorB and therefore relies on the existence
poles at infinity:

2
1

2p
FP

B50
E

r 1.R1

d3xux̃uB
x̂L

r 1
3

52ŷ1
L lnS R1

r 0
D2

1

2p
FPB50H B

2 E
R1

1`

d3xr̃ 1
B x̂L

r 1
3

3 lnF112
~n1y1!

r 1
1

y1
2

r 1
2G J . ~8.11!

As expected, the sum of the two contributions~8.10! and
~8.11! is independent of the intermediate length scaleR1 .
Indeed, the integral in the second term of Eq.~8.11! does not
in fact depend onR1 as it depends only on the infinit
bound. We obtain
5-15
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YL
~23,0!52ŷ1

L lnS u1

r 0
D2

1

4p
FPB50H BE1`

d3xr̃ 1
B x̂L

r 1
3

3 lnF112
~n1y1!

r 1
1

y1
2

r 1
2G J . ~8.12!

The computation of the second term proceeds along the s
line as for the reduction ofYL in Eq. ~7.17!. We expand the
log-term up for instance to the order 1/r 1

2 necessary to get th
quadrupole casel 52,

lnF112
~n1y1!

r 1
1

y1
2

r 1
2G52

~n1y1!

r 1
1

1

r 1
2 @22~n1y1!21y1

2#

1OS 1

r 1
3D . ~8.13!

Therefore,

Yi j
~23,0!52ŷ1

i j lnS u1

r 0
D2FPB50H BE1`

dr1r̃ 1
Br 1

21

3E dV1

4p
n̂1

i j @4n1
^ i y1

j &~n1y1!22n1
^ i j &~n1y1!2#J .

~8.14!

The integral follows immediately. This method yields th
results~casesl 52,3!

Yi j
~23,0!5F2 lnS u1

r 0
D1

16

15Gy1
^ i j & , ~8.15a!

Yi jk
~23,0!5F2 lnS u1

r 0
D1

142

105Gy1
^ i jk & . ~8.15b!

The results depend on the Hadamard-regularization cons
u1 .

We present another derivation of the integralYL
(23,0),

based on the interesting formula of distribution theory~see,
e.g.,@33#!

DF 1

r 1
lnS r 1

u1
D G52Pfu1S 1

r 1
3D 14pd~x2y1!. ~8.16!

@Notice the sign of the distributional term,14pd1 , opposite
to the sign in the more famous formulaD(1/r 1)524pd1 .#
With Eq. ~8.16! one can re-expressYL

(23,0) in the form

YL
~23,0!522ŷ1

L1
1

2p
FPB50E d3xux̃uBx̂LDF 1

r 1
lnS r 1

u1
D G .

~8.17!

Here the first term comes from the delta-function in E
~8.16!. Integrating the second term by parts, we get
06400
me

nt

.

YL
~23,0!522ŷ1

L1
1

2p
FPB50

3H B~B12l 11!E1`

d3xux̃uBuxu22
x̂L

r 1
lnS r 1

u1
D J .

~8.18!

Following the same principle as before, we compute the
maining integral by looking at the pole at infinity. The resu
is in agreement with the earlier derivation~as we checked in
the casel 52!. Let us also mention that still another metho
to computeYL

(23,0) consists of taking the limity2→y1 of the
integralYL

(22,21). The limit is singular sinceYL
(22,21) di-

verges when the two particles merge together. In fact
limit must be taken in the sense of the Hadamard partie fi
~5.2!. Indeed, applying Eq.~5.5! in Ref. @41#, we obtain the
following limit relation betweenYL

(23,0) andYL
(22,21):

YL
~23,0!~y1!5S YL

~22,21!~y1 ,x!22F lnS r 1

u1
D21Gy1

^L&D
1

.

~8.19!

Inserting for instance the result forYi j
(22,21) obtained in Eq.

~8.6a! we recover exactly the functionYi j
(23,0) given by Eq.

~8.15a!.
Finally it is easy to see that the functionYL

(25,0), also
needed in the cubic terms~8.2!, is identically zero. We apply
the point-1 LaplacianD1 onto the expression ofYL

(23,0) us-
ing the known formula of distribution theory

D1S 1

r 1
3D 5

6

r 1
52

10p

3
D1d1 , ~8.20!

and readily obtain, for anyl,

YL
~25,0!50. ~8.21!

The results for the cubic terms in the case of circular orb
are reported in the Appendix.

IX. NON-COMPACT TERMS

The most difficult part of the present analysis is the co
putation of the so-called ‘‘non-compact’’ terms, which a
cubically nonlinear terms~like the cubic terms! made of the
product of a compact-support potential likeU and a qua-
dratic ‘‘non-compact’’ potential likeUi j

~NC! . The complete list
of non-compact terms is

SI~5NC!,SI~19NC!,SI~20!,SI~21NC!,SI~33NC!,SI~35NC!,

SI~37NC!,SI~38NC!,SII~4NC!,VI~25NC!,VI~26NC!,

VI ~27NC!,VI~28NC!,VI~29NC!.

A. Expressions of the NC terms

As before, here again our strategy is to express the n
compact terms as functionals of certain elementary integr
5-16
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that are computed separately. We substitute inside
sources of non-compact terms the appropriate p
Newtonian potentials computed for two particles on a g
eral orbit. The compact potentialsU, Ui , andUi j

~C! ~and simi-
lar expressions for thex’s! were already given by Eq.~7.1!.
Here we list all the non-compact potentials needed for
computation@see Eqs.~3.7! and ~3.8! for definitions#. The
potentialUi j

~NC! is the only one which is needed at 1PN ord
the other potentials are Newtonian:

Ui j
~NC!52

1

8
m̃1

2S ] i j ln r 11
d i j

r 1
2 D 2m̃1m̃2 igj11↔2,

~9.1a!

x i j
~NC!52

1

4
m1

2H ] i j F r 1
2

6 S ln r 12
5

6D G1d i j ln r 1J
2m1m2 i f j11↔2, ~9.1b!

R̂i
~NC!52

1

16
m1

2v1
kS ] ik ln r 11

d ik

r 1
2 D

22m1m2S v1
k2

3

4
v2

kD igk11↔2, ~9.1c!

Ẑi j
~NC!5m1

2H a1
( i

1] j ) ln r 11
1

8
v1

2
1] i j ln r 1

1
1

32
d i j v1

km
1]km ln r 11

1

2

v1
i j

r 1
2 2

11

32
d i j

v1
2

r 1
2 J

1m1m2H 2a1
~ igj )12v1

k~ i
kgj )22v1

~ iv2
k

kgj )

1~v1v2!~ igj )1v1
~ iv2

j )
kgk2

3

4
d i j v1

kv2
m

kgm

1d i j v1
mv2 k

k gm2d i j ~v1v2! kgkJ 11↔2, ~9.1d!

Ki j 5m1
2H F 1

48
a1

k
1] i jk1

1

96
v1

km
1] i jkmG~r 1

2 ln r 1!

1F2
1

8
d i j a1

k
1]k1

1

4
a1

~ i
1] j )2

1

16
d i j v1

km
1]km

1
1

16
v1

2
1] i j G~ ln r 1!1F 1

16
d i j v1

21
1

8
v1

i j G~r 1
22!J

1m1m2@a1
k

1]k1v1
km

1]km#~ i f j )
1211↔2. ~9.1e!

Here, g, f, f 12 and f 21 are defined by Eq.~7.14!, and we
denote, e.g.,igj51] i 2] jg ~see Ref.@51# for the expression
of igj !; the acceleration isa1

i 5dv1
i /dt; the parenthesis

around indices denotes the symmetrization~andG51!.
Notice that we have chosen to express the non-com

potentials by means ofg, f, f 12, and f 21. But these functions
constitute merely someparticular solutions of the Laplace
equations~7.15! we have to solve, and the question arises
06400
e
t-
-

is

;

ct

f

which solution is the correct one. The most general solut
will be obtained by adding to the particular one ahomoge-
neousterm, solving a source-free Laplace-type equation.
have checked that the only possible homogeneous soluti
that are regular at the origin, are constants or linear functi
of the position, and that these are always either canceled
some spatial or time derivatives, or disappear at the en
our computations. This justifies our use of the particular
lutions ~7.14!. ~Similarly, we found that the same happens
the computation of the 3PN equations of motion, where th
particular solutions are sufficient@43#.!

The potentials~9.1! contain a ‘‘self’’ part, proportional to
m1

2 or m2
2 ~before replacement of the accelerations!, and an

‘‘interaction’’ part, proportional to m1m2 . Similarly the
sources of the non-compact terms will involve a self pa
proportional tom1

3 or m2
3, and an interaction part, propor

tional to m1
2m2 or m1m2

2. At the 2PN level, all the self parts
canceled out in the multipole moments@13#. At the 3PN
level, we shall find that the self parts bring a contribution
the moments.@Actually, we shall argue in Sec. X that the se
parts are unknown.# For treating the NC terms we used th
standard distributional derivative@32,33#. Thus, we have, for
instance,

D
1

r 1
524pd1 , ~9.2a!

] i j S 1

r 1
D5

3n1
i j 2d i j

r 1
3 2

4p

3
d i j d1 , ~9.2b!

DS 1

r 1
3D 5

6

r 1
52

10p

3
Dd1 , ~9.2c!

] i j S 1

r 1
3D 5

15n1
i j 23d i j

r 1
5 2

2p

5
d i j Dd12

32p

15
] i j d1 .

~9.2d!

However, the use of the standard Schwartz derivative can
justified only when the terms involved are multiplied b
some smooth functions. In the case of the self parts of
terms, this will not be true in general, so the Schwartz
rivative gives some ill-defined contributions, composed
the product of a delta-function and a singular function.
Sec. X we consider a well-defined way to do the computat
of the self terms, which is based on the distributional deri
tives proposed in Ref.@41#. From the discussion in Sec. X
we conclude that one must add to the present computa
some undetermined terms taking into account the amb
ities in the choice of the regularization and distribution
derivatives. All the expressions in Eq.~9.3! below are
modulo these ill-defined contributions and we can safely p
ceed with the knowledge that our procedure is unambigu
and complete. We are securely protected from such
defined contributions at this stage since we shall add s
terms with an arbitrary coefficient in Sec. X. We obtain t
following expressions of the non-compact terms, as functi
5-17
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als of several new types of elementary integrals~we poseD51] i 2] i andG51!. In the case of the mass-type moments:

SI~5NC!5
m̃1

3

c4 YL
~25,0!1

m̃1
2m̃2

c4 H 2
1

2
ŷ2

Lr 12
222

1

4
D2NL

~0,21!24 2]sGL
s J 11↔2, ~9.3a!

SI~19NC!5
m1

3

c6 F2
1

30
v1

ab
1]abYL

~23,0!1
2

5
v1

2YL
~25,0!1

8

225
v1

ab
1]abŷ1

LG
1

m1
2m2

c6 H S 2
1

2

~n12a1!

r 12
1

~n12v1!2

r 12
2 2

1

2

v1
2

r 12
2 D ŷ2

L2
1

24
~a1

a
1]a1v1

ab
1]ab!D

2

3FNL
~2,21!2

5

6
YL

~2,21!G22S d

dtD
2

2] iFL
i 24v1

j d

dt
~2] iFL

i j !22a1
j

2] iFL
i j 22v1

jk
2] iFL

i jkJ 11↔2, ~9.3b!

SI~20!5
m1

3

c6 H F1

3
a1

a
1]a2

1

15
v1

ab
1]abGYL

~23,0!1
4

5
v1

2YL
~25,0!2

2

9
a1

s
1]sŷ1

L1
16

225
v1

ab
1]abŷ1

LJ
1

m1
2m2

c6 H F1

2
~n12a1!r 12

212
1

2
~n12v1!2r 12

22G ŷ2
L1F2

1

24
a1

a
1]a2

1

48
v1

ab
1]abGD2NL

~2,21!

1F2
1

2
a1

a
2]a2

1

8
v1

2DGDNL
~0,21!2

1

4
v1

ab
2]abYL

~22,21!22@a2
a

2]a1v2
ab

2]ab#2]sFL
s2122@a1

a
1]a

1va
ab

1]ab#2]sFL
s1222@a1

a12v1
ab

1]b#2]sFL
sa1222v1

ab
2]sFL

sab12J 11↔2, ~9.3c!

SI~21NC!5
m1

3

c6 H F2
1

6
a1

s
1]s2

2

15
v1

su
1]suGYL

~23,0!1
3

5
v1

2YL
~25,0!1

1

9
a1

s
1]sŷ1

L1
32

225
v1

ab
1]abŷ1

LJ
1

m1
2m2

c6 H 2
1

8
~a2

a
2]a1v2

ab
2]ab!D

2NL
~0,1!2

1

4
~a2

a
2]a1v2

ab
2]ab!YL

~22,21!12a1
a

2]sHL
as

22v1
ab

2]sHL
absJ 11↔2, ~9.3d!

SI~33NC!5
m1

3

c6 F 2

15
v1

ab
1]abYL

~23,0!2
8

5
v1

2YL
~25,0!2

32

225
v1

ab
1]abŷ1

LG1
m1

2m2

c6 $2v1
av2

b@1]abDNL
~0,21!

1 1]a 2]bYL
~22,21!#18v1

b] t@2]bGL1 2]a~bGL
a!#18v1

bc@2]b~GL
c !1 2]a~bGL

ac!#%11↔2, ~9.3e!

SI~35NC!5
m1

3

c6 F2
16

3
a1

i
1] iYL

~23,0!1
4

5
v1

i j ]1i j YL
~23,0!2

28

5
v1

2YL
~25,0!1

32

9
a1

s
1]sŷ1

L2
64

75
v1

ab
1]abŷ1

LG1
m1

2m2

c6

3$@25v1
22~n12v1!2# ŷ2

Lr 12
221@12~v1v2!18~n12v1!~n12v2!# ŷ1

Lr 12
2218a1

i
2] iDNL

~0,21!1v1
2D2

3NL
~0,21!14v1

i j
2] i j YL

~22,21!116a1
i

2] jKL
i j 116@a2

i 2v2
i ~v1

k2v2
k!2]k1~v1v2!2] i #GL

i

116v1
i ~v1

k2v2
k!2] j kGL

i j 116v1
i v2

j UL
i j %11↔2, ~9.3f!
064005-18
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SI~37NC!5
m1

3

c6 F 1

15
v1

ab
1]abYL

~23,0!2
4

5
v1

2YL
~25,0!2

16

225
v1

ab
1]abŷ1

LG1
m1

2m2

c6 H 1

2
v1

av2
b~1]a 2]bDNL

~0,21!

1 2]abYL
~22,21!!116v1

aS v1
b2

3

4
v2

bD 2]bGL
a116v1

aS v2
b2

3

4
v1

bD 2]c~bGL
ac!J 11↔2, ~9.3g!

SI~38NC!5
m1

3

c6 F2
2

15
v1

ab
1]abYL

~23,0!1
8

5
v1

2YL
~25,0!1

32

225
v1

ab
1]abŷ1

LG1
m1

2m2

c6 H v1
av2

b~1]abDNL
~0,21!

1 2]a 1]bYL
~22,21!!232v1

j S v1
k2

3

4
v2

kD 2]k~GL
j !232v1

j S v2
k2

3

4
v1

kD 2] i~kGL
i j !132v1

j

3S v1
k2

3

4
v2

kD 2]k~ I L~ j !!132v1
j S v2

k2
3

4
v1

kD 2] i~kI L~ j !
i !J 11↔2, ~9.3h!

SII~4NC!5
m1

3

c6 ] t
2F 1

14
Si j

~25,0!G1
m1

2m2

c6 ] t
2F2

1

28
ŷ2

i j y2
2r 12

222
1

56
D2Mi j

~0,21!2
2

7 2]b~Qi j
b !G11↔2, ~9.3i!

VI ~25NC!5
m1

3

c6

d

dt F 2

63
v1

l
1]alYai j

~23,0!2
8

21
v1

aYai j
~25,0!2

32

945
v1

k
1]akŷ1

ai j G
1

m1
2m2

c6

d

dt H 2
5

21
v1

l
1]alDNai j

~0,21!2
5

21
v1

l
1]a 2] lYai j

~22,21!

1
160

21 S v2
l 2

3

4
v1

l D 2]k~ lGai j
ak !1

160

21 S v1
l 2

3

4
v2

l D 2] l~Gai j
a !

2
160

21 S v2
l 2

3

4
v1

l D 2]k~ l I ai j ~a!
k !2

160

21 S v1
l 2

3

4
v2

l D 2] l I ai j ~a!J 11↔2, ~9.3j!

VI ~26NC127NC128NC129NC!

5
m1

2

c6

d

dt F2
2

63
v1

s
1]saYai j

~23,0!2
4

7
v1

aYai j
~25,0!1

32

945
v1

k
1]akŷ1

ai j G1
m1

2m2

c6

d

dt H 10

21
v2

aŷ2
ai j r 12

22

1
5

21
v2

aD2Nai j
~0,21!1

5

21
v1

s
1]asDNai j

~0,21!1
5

21
v1

s
1]s 2]aYai j

~22,21!1
5

21
v2

k
1]a 2]kYai j

~22,21!

2
5

21
v2

k
1]k 2]aYai j

~22,21!1
80

21
v1

a
2] l~Gai j

l !2
40

21
v1

l
2] l~Gai j

a !

2
40

21
v1

l
2]k~ lGai j

ka !2
40

21

d

dt
@2]a~Gai j !1 2]k~aGai j

k !#1
40

21
v1

l
2] l I ai j ~a!1

40

21
v1

l
2]k~ l I ai j ~a!

k !

2
40

21
v1

l
2]a~ I ai j ~ l !!2

40

21
v1

l
2]k~aI ai j ~ l !

k !J 11↔2. ~9.3k!

We have similar expressions~involving VI-type terms! for the current moments. The elementary integrals parametrizing
NC terms include some generalizations of the integrals already introduced in Sec. VIII,

YL
~n,p!52

1

2p
FP

B50
E d3xux̃uBx̂Lr 1

nr 2
p , ~9.4a!

SL
~n,p!52

1

2p
FP

B50
E d3xux̃uBx̂Luxu2r 1

nr 2
p , ~9.4b!
064005-19
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NL
~n,p!52

1

2p
FP

B50
E d3xux̃uBx̂Lr 1

nr 2
p ln r̃ 1 , ~9.4c!

ML
~n,p!52

1

2p
FP

B50
E d3xux̃uBx̂Luxu2r 1

nr 2
p ln r̃ 1 . ~9.4d!
he

d

o

be

-

als
ex
As usual the Hadamard partie finie Pf is to be added w
the integral diverges near the particles. The logarithms
Eqs. ~9.4c! and ~9.4d! contain the constantr 0 through the
notation r̃ 15r 1 /r 0 . In addition we have the more involve
integrals

GL
P52

1

2p
FP

B50
E d3xux̃uBx̂L]aPS 1

r 1
D ag, ~9.5a!

bGL
aP52

1

2p
FP

B50
E d3xux̃uBx̂L]aPS 1

r 1
D bg,

~9.5b!

KL
P52

1

2p
FP

B50
E d3xux̃uBx̂L]PS 1

r 1
Dg,

~9.5c!

UL
P52

1

2p
FP

B50
E d3xux̃uBx̂L]PS 1

r 1
D kgk ,

~9.5d!

FL
P52

1

2p
FP

B50
E d3xux̃uBx̂L]aPS 1

r 1
D af ,

~9.5e!

FL
P1252

1

2p
FP

B50
E d3xux̃uBx̂L]aPS 1

r 1
D af 12,

~9.5f!

FL
P2152

1

2p
FP

B50
E d3xux̃uBx̂L]aPS 1

r 1
D af 21,

~9.5g!

HL
P52

1

2p
FP

B50
E d3xux̃uBx̂L] iP~r 1! ig,

~9.5h!
06400
n
in QL

P52
1

2p
FP

B50
E d3xux̃uBx̂Luxu2]aPS 1

r 1
D ag,

~9.5i!

kI L~ j !
i 52

1

2p
FP

B50
E d3xux̃uBx̂L] jF] i S 1

r 1
D kgG ,

~9.5j!

I L~ j !52
1

2p
FP

B50
E d3xux̃uBx̂L] jF] i S 1

r 1
D igG .

~9.5k!

The notation is, e.g.,af 51]af , gb52]bg, agb51]a 2]bg
~notably kgk5Dg!. The last two integrals are related t
some previous ones by

kI L~ j !
i 52~1] j1 2] j !kGL

i , ~9.6a!

I L~ j !52~1] j1 2] j !GL . ~9.6b!

B. Computation of the elementary integrals

The techniques developed in Secs. VII and VIII can
used to compute many of these integrals. ConcerningSL

(n,p)

we need only the particular casel 52 and (n,p)5(25,0). It
is computed by the same methods as used forYi j

(23,0); we
find

Si j
~25,0!5F14

3
lnS u1

r 0
D1

8

5Gy1
^ i j & . ~9.7!

Next the group of integrals constituted by theNL
(n,p)’s and

ML
(n,p)’s is obtained in a fashion similar to the one em

ployed forYL
(22,21) in Sec. VIII, i.e., basically by applica-

tion of the Riesz formula. The logarithms in these integr
are included by differentiating with respect to the compl
parameterB. The relevant results are
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Ni j
~0,21!5y1

^ i j &H 8

105
r 12

2 F ln r̃ 122
247

210G2
2

105
y1

22
4

35
~y1y2!1

4

105
y2

2J 1y1
^ i y2

j &H 4

35
r 12

2 F lnr̃ 122
59

70G
1

2

105
y1

22
4

35
~y1y2!J 1y2

^ i j &H 1

7
r 12

2 F ln r̃ 122
9

14G2
1

35
y1

2J , ~9.8a!

Ni jk
~0,21!5y1

^ i jk &H 16

315
r 12

2 F lnr̃ 122
811

630G2
4

945
y1

22
88

945
~y1y2!1

4

105
y2

2J 1y1
^ i j y2

k&H 8

105
r 12

2 F lnr̃ 122
601

630G
1

2

63
y1

22
4

35
~y1y2!1

4

105
y2

2J 1y1
^ i y2

jk&H 2

21
r 12

2 F ln r̃ 122
95

126G1
1

35
y1

22
2

21
~y1y2!J

1y2
^ i jk &H 1

9
r 12

2 F lnr̃ 122
11

18G2
1

63
y1

2J , ~9.8b!

Ni j
~2,21!5y1

^ i j &H 4

315
r 12

4 F ln r̃ 122
887

1260G2
13

945
y1

42
4

315
y1

2y2
22

2

315
y2

41
4

945
y1

2~y1y2!1
4

315
~y1y2!2J

1y1
^ i y2

j &H 2

63
r 12

4 F lnr̃ 122
127

252G2
16

945
y1

42
2

35
y1

2y2
21

8

315
y1

2~y1y2!1
4

63
y2

2~y1y2!J
1y2

^ i j &H 1

18
r 12

4 F ln r̃ 122
13

36G2
59

1260
y1

41
1

63
y1

2y2
21

1

7
y1

2~y1y2!2
1

9
~y1y2!2J , ~9.8c!

D2Ni j
~2,21!5

8

5
y1

^ i j &F ln r̃ 121
7

15G2
16

5
y1

^ i y2
j &F ln r̃ 122

6

5G1
68

5
y2

^ i j &F ln r̃ 121
71

170G , ~9.8d!

DNi j
~0,21!5 2

8

15
y1

^ i j &F ln r̃ 121
7

15G2
4

15
y1

^ i y2
j &F ln r̃ 121

37

15G2
6

5
y2

^ i j &F ln r̃ 121
2

15G , ~9.8e!

D2Ni j
~0,21!5

1

r 12
2 H 4

3
y1

^ i j &2
8

3
y1

^ i y2
j &1

10

3
y2

^ i j &J , ~9.8f!

Ni j
~0,1!5y1

^ i j &H 4

315
r 12

4 F ln r̃ 122
1937

1260G1
11

945
y1

41
4

945
y1

2~y1y2!1
44

945
~y1y2!22

2

135
y1

2y2
22

4

105
y2

2~y1y2!

1
2

315
y2

4J 1y1
^ i y2

j &H 4

315
r 12

4 F ln r̃ 122
1517

1260G2
1

135
y1

42
4

189
y1

2~y1y2!1
4

105
~y1y2!22

8

315
y2

2~y1y2!J
1y2

^ i j &H 1

126
r 12

4 F ln r̃ 122
253

252G2
1

3780
y1

42
1

105
y1

2~y1y2!1
1

63
~y1y2!22

2

315
y1

2y2
2J , ~9.8g!

D2Mi j
~0,21!5y1

^ i j &H 2
88

15
ln r̃ 121r 12

22F2
676

225
y1

21
2072

225
~y1y2!2

1096

225
y2

2G J 1y1
^ i y2

j &H 2
16

5
ln r̃ 121r 12

22F2
184

25
y1

2

1
1024

75
~y1y2!2

224

25
y2

2G J 1y2
^ i j &H 2

48

5
ln r̃ 121r 12

22F2
536

75
y1

21
304

25
~y1y2!2

42

25
y2

2G J . ~9.8h!
ng

ll t
ex
The remaining integrals, defined by Eq.~9.5!, are more
difficult, but we have been able to obtain all of them usi
several different methods, adapted to the computation
each of these integrals separately. We shall not present a
details of these computations but simply outline some
amples. Consider the integralKL defined by Eq.~9.5c! with
p50, i.e.,
06400
of
he
-

KL52
1

2p
FP

B50
E d3xux̃uBx̂L

g

r 1
. ~9.9!

Using the fact thatg/r 1 is a Laplacian,

g

r 1
5DF r 11r 12

2
g2

r 1

4
2

r 2

2 G , ~9.10!
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we can integrate by parts and transformKL into an integral
containing an explicitB-factor,

KL52
1

2p
FP

B50
H B~B12l 11!E d3xux̃uBuxu22x̂L

3F r 11r 12

2
g2

r 1

4
2

r 2

2 G J . ~9.11!

From a previous argument, the value of the integral depe
only on the possible occurrence of a pole;1/B at infinity.
As the pole is easily computed from expanding the integr
at infinity, we obtain in this way the expression ofKL . Next,
from the formula

]aS 1

r 1
D ag52

1

2
D1S 1

r 1
gD1

g

2
D1S 1

r 1
D1

1

2r 1
D1g,

~9.12!

where one should be careful about consideringD1r 1
21 in the

sense of distributions@i.e., D1r 1
21524pd1#, we deduceGL

from the Laplacian ofKL . Indeed, as a consequence of E
~9.12!,

GL52
1

2
D1KL1~ x̂Lg!11

1

2r 12
YL

~22,0!, ~9.13!

and we can easily show thatYL
(22,0) is actually zero. Alter-

natively, one can prove also that

GL5
1

2
YL

~23,0!2
1

2r 12
YL

~23,1!1
1

2r 12
YL

~22,0!.

~9.14!

This provides a check of the computation.
To computeGL

s ~in the quadrupole caseL5 i j , say! we
use a different method. We remark thatGi j

s obeys a Laplace
equation, with respect to the point 2, with known source:

D2Gi j
s 51]aS 1

r 12
D 1]asYi j . ~9.15!

Here,Yi j is known from Eq.~7.10!. The right-hand side of
Eq. ~9.15! is expanded, and we obtain a particular solution
this equation by integrating each of the terms. NowGi j

s is
necessarily equal to this particular solution plus some s
tion, regular at the origin, of the homogeneous equation. T
ing into account the index structure ofGi j

s and the fact that it
has the dimension of a length, we find that the homogene
solution is parametrized by solely two numerical constanta
andb. At this stage we have

Gi j
s 52

1

30
y12

^ i j &sr 12
221

1

6
y12

s^ i y1
j &r 12

222
1

15
y12

^ i d j &s ln r̃ 12

2
4

3
y1

^ id j &s ln r̃ 121ay1
^ id j &s1by2

^ id j &s. ~9.16!

Incidentally, this expression already gives the complete re
for the gradients1]sGi j

s and 2]sGi j
s , because the gradients o
06400
ds

d

.

f

-
k-

us

lt

the homogeneous terms are zero. To compute the constaa
andb we need some extra information, which is provided
the contracted product betweeny12

s andGi j
s . Indeed this con-

traction is a known quantity thanks to the identity

y12
s Gi j

s 52~11y12
s

1]s!Gi j 1
1

4
D1Yi j

~22,1!, ~9.17!

whereGi j has just been obtained previously. Here,Yi j
(22,1)

can be computed from the Riesz formula exactly like
Yi j

(22,21) in Sec. VIII. @When deriving Eq.~9.17! we take
account of the fact thatYi j

(22,0)50.# Comparing the result
for y12

s Gi j
s with the one obtained directly from Eq.~9.16! we

find threeequations for thetwo unknown constantsa andb.
This overdetermined system fixes uniquely the constant
the valuesa563/100 andb52257/900.

The preceding method was successfully applied to sev
integrals of the type~9.5!: that is, we ~i! compute the
‘‘source’’ of the Laplace equation satisfied by the integ
with respect to the point 2@the source is computable becau
D2 applies only on the part of the integrand containing t
functionsg, f, etc., and we can make use of Eqs.~7.15!; with
respect to the point 1 this would not work#, ~ii ! compute a
particular solution of this equation,~iii ! write down the most
general form of the homogeneous solution in terms of a f
arbitrary coefficients~this works only when the dimension o
the integral is a small power of a length so that the numbe
unknown coefficients is small!, ~iv! compute the coefficients
using the extra information provided by the contraction w
respect toy12. Alternatively to ~iv! one can use an angula
average with respect ton12 @see Eq.~9.29! below#.

As a verification let us introduce the new integral

Ri j 52
1

2p
FP

B50
E d3xux̃uBx̂i j ]aS 1

r 1
Dga . ~9.18!

From the easily checked formula

~D12D!S g

r 1
D5

1

r 1
2r 12

2
1

r 1
2r 2

12]aS 1

r 1
Dga , ~9.19!

we deduce a relation betweenRi j and some computable
quantities,

Ri j 5
1

2
D1Ki j 1

1

2
Yi j

~22,21!1
1

4p
FP

B50

3H B~B15!E d3xux̃uBuxu22x̂i j

g

r 1
J . ~9.20!

The value of the last integral comes from the pole
infinity—the same method as before. Having obtainedRi j ,
the verification is that2]sGi j

s , which on one hand is com
puted from Eq.~9.16!, on the other hand should be given b
the following alternative expression:

2]sGi j
s 52

1

2
D1Ri j 2~]a~ x̂i j ga!!1 , ~9.21!
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which is obtained by some integrations by parts inside
integrand of 2]sGi j

s . Of course, the value ofRi j computed
by Eq. ~9.20! is such that Eq.~9.21! is also satisfied.

OnceGi j
s is known we can deduce another needed in

gral, i.e., 2]sKi j
as , from the identity

]asS 1

r 1
D ~gs1sg!52

1

2
DF]aS 1

r 1
DgG1

1

2
]aS D

1

r 1
Dg

2
1

4 1]aS 1

r 1
DgD , ~9.22!

which implies

2]sKi j
as52Gi j

a 2
1

4 1]aYi j
~22,21!2~]a~ x̂i j g!!1

1
1

4p
FP

B50
H B~B15!E d3xux̃uBuxu22x̂i j ]aS 1

r 1
DgJ .

~9.23!

Again the last integral causes no problem. Next, from b
Ri j and 2]sKi j

bs , we can further deduce2]a(bGi j
a ). Indeed

the other identity

]aS 1

r 1
D bga51]bF]aS 1

r 1
DgaG1]abS 1

r 1
Dga , ~9.24!

implies

2]a~bGi j
a !51]bRi j 12]sKi j

bs . ~9.25!

Some other integrals are connected directly to the sim
Y-type integrals. For instance, the integral~9.5d! is given by

Ui j
ab5

3

16 1]abYi j
~22,21!2

1

8
dabYi j

~24,21!

2
1

2r 12
1]abYi j

~21,21! ~9.26!

~using the facts thatYi j
(22,0)505Yi j

(24,0)!. Once the value
of this integral is obtained, we can check that its traceUi j

aa

5dabUi j
ab is especially simple:Ui j

aa52y1
^ i j &/r 12

2 . This is in
perfect agreement with
06400
e

-

h

er

Ui j
aa52

1

2p
FP

B50
E d3xux̃uBx̂i j DS 1

r 1
D kgk52~ x̂i j kgk!1 ,

~9.27!

the final reduction being obtained thanks to the known f
mula ~see, e.g.,@51#!

kgk5
1

2 S 1

r 1r 2
2

1

r 1r 12
2

1

r 2r 12
D . ~9.28!

Still another method is useful in our computation. All th
integrals are certain functions of the two pointsy1 and y2 ,
and it is advantageous to consider their angular average
respect to the relative directionn12 between the points, with
the vectory1 being fixed. As it turns out, the average is mu
easier to compute~using some methods similar as befor!
than the integral itself. On the other hand, once we h
obtained a result, we can compute its average, so the c
parison leads to an interesting check of the calculation.
us see on the example ofGL how one performs this angula
average. From Eq.~9.5a! we write

E dV12

4p
GL52

1

2p
FP

B50
E d3xux̃uBx̂L]aS 1

r 1
D E dV12

4p ag,

~9.29!

in which we commuted the angular average~where dV12
denotes the solid angle element in the directionn12! with the
integral sign and the terms depending only ony1 . This is
correct becausey1 is kept fixed in the process; for instanc
the average ofy2 is y1 , which is obtained by writingy2
5y12r 12n12 and averaging overn12 with fixed r 12 and y1 .
In practice, computing the average~9.29! is not too compli-
cated because the average ofag is rather simple,

E dV12

4p ag55 S r 1

6r 12
2 2

1

2r 12
Dn1

a when r 1<r 12,

S 2
1

2r 1
1

r 12

6r 1
2Dn1

a when r 1.r 12.

.

~9.30!

A more complicated example, that was useful for us, is
E dV12

4p agb55 2
r 1

2

20r 12
4 n1

ab1S r 1
2

60r 12
4 2

1

6r 12
2 D dab when r 1<r 12,

S 2
1

4r 1
2 1

r 12

5r 1
3Dn1

ab1S 2
1

3r 1r 12
1

1

4r 1
22

r 12

15r 1
3D dab when r 1.r 12.

~9.31!
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According to Eq.~9.30!, we must split the integration overd3x into two ‘‘near-zone’’ and ‘‘far-zone’’ contributions,

E dV12

4p
GL52

1

2p E
r 1,r 12

d3xx̂LS 2
1

6r 1r 12
2 1

1

2r 1
2r 12

D 2
1

2p
FP

B50
E

r 1.r 12

d3xux̃uBx̂LS 1

2r 1
32

r 12

6r 1
4D . ~9.32!

The finite part atB50 is necessary only for the far-zone integral. Both integrals in Eq.~9.32! are now evaluated using standa
methods. In the casel 52 we find

E dV12

4p
Gi j 5y1

^ i j &S ln r̃ 121
1

30D . ~9.33!

This is in agreement with the average ofGi j computed directly with the result calculated from Eq.~9.13! or Eq. ~9.14!. This
method of averaging has been applied for checking many other integrals. Even, in several cases, the method
employed in order to determine some unknown coefficients. However, for this purpose the method is less powerful
method of contraction with the vectory12, since the latter method yields in general a redundant determination of the c
cients.

The complete list of the results for the elementary integrals is as follows:

Gi j 5y1
^ i j &F ln r̃ 122

23

60G1
1

3
y1

^ i y2
j &1

1

12
y2

^ i j & , ~9.34a!

2]b~Gi j !52y1
^ i j &y12

b r 12
221

1

2
db^ i y1

j &2
1

6
db^ i y12

j & , ~9.34b!

2]b~Gi j
c !52

1

15
y12

^ i j &bcr 12
241

1

30
y12

^ i j &dbcr 12
221

1

15
~y12

b^ id j &c1y12
c^ id j &b!r 12

221
1

3
y12

bc^ i y1
j &r 12

24

2
1

6
y12

^ i y1
j &dbcr 12

221
4

3
y12

b y1
^ id j &cr 12

222
1

6
y12

c y1
^ id j &br 12

221
1

15
db^ id j &cF ln r̃ 122

257
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Inserting these elementary integrals into the expression
non-compact terms@see Eq.~9.3!#, and reducing to the cas
of circular orbits, we obtain the results reported in the A
pendix.

X. POINT-MASS REGULARIZATION AMBIGUITIES

The computation of the multipole moments we perform
so far has been carried out with standard techniques: s
dard Hadamard regularization@see Sec. V#, and Schwartz
distributions@see, e.g., Eqs.~9.2!#. The result we obtained
depends on three arbitrary constants: the two Hadam
regularization constantsu1 and u2 introduced in Eq.~5.3!,
and the constantr 0 entering the definition of the source mu
tipole moments through the analytic-continuation fac
ux̃uB5ux/r 0uB @see Eqs.~2.5!#. The constantr 0 is not a prob-
lem since we know that in this formalism the multipole e
pansion of the field exterior to any source is actually ind
pendent ofr 0 @21#. Indeed we shall check in Sec. XII thatr 0
06400
of
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d
n-

rd

r

-

disappears from the final expression of the energy flux@the
constantr 0 in the source moments is cancelled by the sa
constant present in the contribution of ‘‘tails of tails’’ in th
wave zone; see Eq.~11.8! below#. However, it will turn out
that the constantsu1 and u2 , which encode some arbitrari
ness of the Hadamard regularization, leada priori to two
undetermined purely numerical parameters in the expres
of the 3PN quadrupole moment. In addition, we shall arg
that because of some delicate problems linked with the
of the Hadamard regularization at the 3PN order, we sho
considera priori a third undetermined parameter in the qua
rupole moment. However, the important point is that the
three parameters combine to yieldone and only oneundeter-
mined constant, that we shall callu, in the third time-
derivative of the moment which is needed to compute
physical energy flux for circular orbits. Furthermore, w
shall find that the constantu enters the energy flux at th
same level as the constantl coming from the equations o
motion ~see below!, so that the energy flux dependsin fine
5-26
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merely on one combination ofu andl.
The equations of motion of compact objects at the 3

order have been investigated using the ADM-Hamilton
formulation of general relativity@34,35#, and by integrating
the field equations in harmonic coordinates@40,43#. In both
approaches the compact objects are modeled by point
particles described by delta-functions, and the self-field
the particles is removed by a Hadamard regularization. It w
shown that the regularization permits the determination
the full equations of motion at the 3PN order except for o
undetermined coefficient,l in the harmonic-coordinate ap
proach andvstatic in the ADM-Hamiltonian. Very likely the
unknown coefficient accounts for a physical incompleten
of the point-mass regularization. Actually two unknown c
efficients were originally introduced in@34,35#, but one of
them was shown later@36,37# to be fixed to a unique value
by requiring, in anad hocmanner, the global Poincare´ in-
variance of the Hamiltonian. On the other hand, in t
harmonic-coordinate approach@40,43# a new Hadamard-type
regularization was developed in order to account for
mathematical ambiguities of the standard Hadamard regu
ization @41,42#. A characteristic of this regularization is th
systematic use of a theory of generalized functions. T
regularization is defined in a Lorentz-invariant way, but w
ultimately shown to yield incomplete results for the equ
tions of motion, in the sense that there remained the
known numerical coefficientl. The complete physica
equivalence between the harmonic-coordinate@40,43# and
ADM-Hamiltonian @34–37# formalisms has been establishe
@38,44#. Indeed a unique ‘‘contact’’ transformation of the pa
ticles motion which changes the harmonic-coordinate
grangian~as given in Ref.@44#! into the ADM-Hamiltonian
obtained in Ref.@37# exists. The equivalence holds if an
only if the harmonic-coordinate constantl is related to the
ADM-Hamiltonian static ambiguity by

l52
3

11
vstatic2

1987

3080
. ~10.1!

Recently, the valuevstatic50 has been obtained by means
a different regularization~dimensional! within the ADM-
Hamiltonian approach@39#. This result would mean thatl
521987/3080. Note that a feature of the harmon
coordinate equations of motion derived in@40,43,44# is the
dependence, in addition tol, on two arbitrary constantsr 18
andr 28 parametrizing some logarithmic terms. However, co
trary tol which is a true physical ambiguity, the constantsr 18
and r 28 can be removed by a coordinate transformation a
therefore represent merely some unphysical gauge const
For instance these constants cancel out in the center-of-m
invariant energy of circular binaries@40#.

A. Hadamard-regularization constants

The first problem in the present calculation lies in thea
priori unknown relation between the Hadamard regulari
tion constantsu1 andu2 introduced by Eqs.~5.3! and the two
gauge constantsr 18 and r 28 which parametrize the harmonic
coordinate equations of motion. Let us investigate more p
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cisely the dependence of the quadrupole moment on the
stantsu1 andu2 . Inspection of our computation shows th
these constants come only from the cubic and non-com
terms obtained in Sec. VIII and IX. More precisely, we fin
that the whole computation depends onu1 ,u2 only through
the elementary integralsYL

(23,0) andSL
(25,0), which param-

etrize the ‘‘self’’ parts, proportional tom1
3 or m2

3, of the cubic
and non-compact terms~recall also thatYL

(25,0) is zero!. See
for instance the expressions~9.3! of NC terms. The relevan
YL

(23,0) andSL
(25,0) were obtained in Eqs.~8.15a! and~9.7!.

The dependence onu1 andu2 therein is

Yi j
~23,0!52 lnS u1

r 0
D y1

^ i j &1¯ , ~10.2a!

Si j
~25,0!5

14

3
lnS u1

r 0
D y1

^ i j &1¯ . ~10.2b!

The dots indicate the terms independent ofu1 and u2 . We
take all the cubic and NC terms given by Eqs.~8.2! and~9.3!
@only the mass quadrupole is to be considered#, plug into
them the results~10.2! and find after summation the follow
ing part of the quadrupole moments depending on these
stants~for general orbits!:

I i j @u1 ,u2#5S 2
44

3

G2m1
3

c6 lnS u1

r 0
Da1

^ i y1
j &11↔2D 1¯ .

~10.3!

By I i j @u1 ,u2# we mean the quadrupole obtained from su
ming all the terms computed in the previous sections, i
depending on the Hadamard-regularization constantsu1 ,u2
~as well as, of course, the constantr 0!. On the other hand, we
found that many of the ‘‘interaction’’ terms, proportional t
m1

2m2 or m1m2
2, depend on time-dependent logarithms of t

ratio r̃ 125r 12/r 0 , wherer 0 is the constant dealing with th
behavior of the moments at infinity. See for instance
elementary integrals~9.8!. The effect of the result~10.3! is to
‘‘replace’’ a part of the latter logarithms ofr̃ 12 by some cor-
responding logarithms of the ratior 12/u1 ~and ditto withu2!.
The remaining logarithms stay as they are as logarithms
the ratio r̃ 12. Thus we can re-write the dependence of t
quadrupole onu1 and u2 through the logarithms ofr 12/u1
and r 12/u2 in the form

I i j @u1 ,u2#5F44

3

G2m1
3

c6 lnS r 12

u1
Da1

^ i y1
j &11↔2G1¯ .

~10.4!

All the other logarithms, present in the dots of Eq.~10.4!, are
of the type ln(r12/r 0). In this paper we assumed nothin
about the values ofu1 and u2 . In particular we did not as-
sume any relation betweenu1 ,u2 and the gauge constan
r 18 ,r 28 that parametrize the final equations of motion in h
monic coordinates@40,43#. However, when computing the
energy flux we shall need to obtain the third time-derivat
of the quadrupole moment, and for that purpose we s
replace the accelerations by their expressions obtained f
the 3PN equations of motion, depending onr 18 ,r 28 . As a
5-27
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result the third time-derivative of the moment will depend
u1 ,u2 as well as onr 18 ,r 28 . Therefore, we definitely need t
control the relation betweenu1 , u2 andr 18 , r 28 ; then we shall
have the quadrupole moment expressed solely in terms or 18
and r 28 and we shall check that the latter constants can
removed by the same coordinate transformation as in
equations of motion, and thus that the final expression of
physical energy flux must be independent of these consta
From Eq.~10.4! we can write

I i j @u1 ,u2#5I i j @r 18 ,r 28#1
44

3

G2m1
3

c6 lnS r 18

u1
Da1

^ i y1
j &11↔2.

~10.5!

The notation forI i j @r 18 ,r 28# is clear: we mean the sum of a
the contributions obtained in the previous sections, but co
puted with r 18 ,r 28 in place of the regularization constan
u1 ,u2 .

We shall now look for the most general ln(r18/u1) that is
allowed by physical requirements. In this connection rec
the spirit of the regularization: the constantsu1 andu2 reflect
some incompleteness of the process, that may or may no
fixed in a given computation, and therefore they should
kept completely arbitrary unless there are some physica
guments to restrict their form. In particular, when used
different computations, these regularization constants h
no reasona priori to be the same. For instance, in the pres
computation of the moments, the constantsu1 andu2 area
priori different from the constantss1 and s2 which were
originally used in the 3PN equations of motion@see Eq.~2.3!
in @43##. They area fortiori different from the constantsr 18
and r 28 chosen to parametrize the final equations of mot
@Eq. ~7.16! in @43##. See also the discussion in Sec. VII
Ref. @43#, where we determined the general form of the
lation betweens1 ,s2 and r 18 ,r 28 by imposing the polynomia
mass dependence of the equations of motion, the correct
turbative limit, and the existence of a conserved energy. H
we shall basically do the same in order to restrict the form
the relation betweenu1 , u2 and r 18 , r 28 . Note thata priori
the logarithms ln(r18/u1) and ln(r28/u2) can depend on the
massesm1 andm2 . To determine just what combination o
masses is allowed we make~similarly to the equations o
motion! two physical requirements:~i! that the quadrupole
moment be a polynomial function of the two massesm1 ,m2
when taken separately,~ii ! that the perturbative limit~corre-
sponding ton→0! not be affected by this possible depe
dence over the masses. Because of the factorm1

3 in front of
the log-term in Eq.~10.5!, and because the accelerationa1

i

brings another factorm2 , the most general solution for thi
logarithm in order to satisfy the requirement~i! is to be com-
posed of: a pure numerical constant~sayj!, plus a pure con-
stant ~say k! times the mass ratiom/m1 , plus a constant
times m/m2 , next five terms involving the mass ratio
m2/m1

2, m2/m1 /m2 , m3/m1
3, m3/m1

2/m2 and m4/m1
3/m2 .

Each of these terms must be such that it does not violate
perturbative limit@our requirement~ii !#. This means that they
should involve, in a center-of-mass frame, a factorn2 at
least. We readily find that the only two admissible terms
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this respect are the first two in the previous list~with con-
stantsj andk!. So we end up with the most general adm
sible solution

lnS r 18

u1
D 5j1k

m11m2

m1
~and idem with 1↔2!,

~10.6!

wherej andk denote some arbitrary purely numerical co
stants~for instance rational fractions!. This result is similar
to the one obtained in the 3PN equations of motion, conce
ing the relation betweens1 , s2 andr 18 , r 28 . See Eqs.~7.9! in
Ref. @43#, where the determination of the constant analogo
to j was possible from the requirement of existence o
conserved energy~and Lagrangian! for the equations of mo-
tion.

We now check that the logarithms ofr 12/r 18 andr 12/r 28 in
the quadrupole moment, which are of the form

I i j @r 18 ,r 28#5S 44

3

G2m1
3

c6 lnS r 12

r 18
Da1

^ i y1
j &11↔2D 1¯ ,

~10.7!

can be eliminated by thesamecoordinate transformation a
found in Ref. @43# for the logarithms in the harmonic
coordinate equations of motion.@As concerns the logarithm
of r 12/r 0 in the moment they cannot be eliminated by
change of coordinates but will match precisely with cor
sponding logarithms present in the ‘‘tails of tails’’ at infinity#
We look for a coordinate change of the type considered
Sec. VI A of @43#: namelydxm5jm, wherejm5hmnjn is a
3PN gauge vector given by

jm5
G3m3

c6 ]mS e1

r 1
1

e2

r 2
D . ~10.8!

We have factorized outm3 ~wherem5m11m2! so thate1
ande2 , which are constants or mere functions of timet, will
be dimensionless. The corresponding change of the partic
trajectories is given to this order by the regularized value
the gauge vector at the location of the particle~see Sec. VI A
in @43#!. We obtain

djy1
i 52e2

G3m3

c6r 12
3 y12

i , ~10.9a!

djy2
i 5e1

G3m3

c6r 12
3 y12

i . ~10.9b!

Since the quadrupole moment starts at the Newtonian le
with the usualm1y1

^ i j &11↔2, we easily find its coordinate
change as

djI i j 52m1y1
^ idjy1

j &11↔2

522m1e2

G3m3

c6r 12
3 y1

^ i y12
j & 11↔2. ~10.10!
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By comparing this with Eq.~10.7! ~using the Newtonian par
ticles acceleration!, we find that the gauge transformatio
required to eliminate the logarithms is

e252
22

3

m1
2m2

m3 lnS r 12

r 18
D , ~10.11a!

e152
22

3

m1m2
2

m3 lnS r 12

r 28
D , ~10.11b!

in complete agreement with Eq~7.2! in Ref. @43#. In sum-
mary, not only will these logarithms disappear when cons
ering physical quantities associated with the equations
motion ~such as the invariant energy!, but they will also can-
cel from physical quantities associated with the wave field
infinity, viz. the invariant energy flux we compute in Se
XII.

B. Special features of the regularization

We now discuss some subtleties of the Hadamard regu
ization which motivate the introduction in the quadrupo
moment, in addition toj andk considered in Eq.~10.6!, of
still another constant~however, see below for the definitio
of a single constantu!.

Non-distributivity of the Hadamard partie finie. By ‘‘non-
distributivity’’ we mean the fact that the regularization of
product of two functionsF and G, singular in the sense o
Eq. ~5.1!, does not equal, in general, the product of the re
larized functions: (FG)1Þ(F)1(G)1 . For instance, withU
5Gm1 /r 11Gm2 /r 2 the Newtonian potential, we hav
(Un)15@(U)1#n for n51,2,3, but (U4)15@(U)1#4

12@(U)1#2@(U)2#2. An immediate consequence is that t
product of a singular functionF with a delta-function does
not equal, in general, the product of its regularized va
with the delta-function:Fd1Þ(F)1d1 . Here we are assum
ing that the three-dimensional integral of the product ofF
with d1[d(x2y1) gives back the regularized value (F)1 .
Notice that only at the 3PN order does the non-distributiv
play a role. Up to the 2PN order, the distributivity holds f
all the functions encountered in the problem~hence the com-
putation of the moments as was done in@13# is correct!.

The non-distributivity at 3PN has an important bearing
the choice of the stress-energy tensor for describing po
particles. In this paper, we adopted the most naive choice
the stress-energy tensor. See Eq.~5.4! above, which is
equivalent, at 3PN order, to

Tmn5
m1v1

mv1
n

A~ggrs!1v1
rv1

s/c2
d~x2y1!11↔2. ~10.12!

Namely, we assumed that the whole factor of the de
function consists of a regularized value at point 1. But b
causeFd1Þ(F)1d1 , we could obtain a different result b
choosing another stress-energy tensor, defined by repla
the factor of the delta-function in Eq.~10.12!, or part of it, by
a function depending on any field pointx and such that its
regularized value whenx→y1 is the same. In fact, a specifi
form of the stress-energy tensor of point-particles, comp
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ible with the Hadamard regularization, was advocated in R
@42# and used to compute the 3PN equations of motion@43#.
This form, given by Eq.~5.11! in Ref. @42#, reads

T̂mn5
m1v1

mv1
n

A2~grs!1v1
rv1

s/c2

d~x2y1!

A2g~x,t !
11↔2.

~10.13!

Choosing one or the other form of stress-energy tensor d
make a difference in our computation. Consider for instan
the term SI~1!5*d3xx̂i j s. We find that the result for this
term, when computed using the tensor~10.13!, i.e., using
c2ŝ5T̂001T̂ii , differs from the original result by the amoun

DSI~1!5
G2m1

3

c6 F2

3
a1

^ i y1
j &2

1

5
v1

^ iv1
j &G11↔2.

~10.14!

There is also a modificationDSII~1! but which is of the same
structure~with different numerical coefficients!.

On the other hand, some terms in our computation wo
be different if the regularization would be distributive. F
instance, if for computing the term SI~16NC! we take into
account the nondistributivity~as we did!, we find the result
~6.9!: namely,

SI~16NC!5
4m1

c6 v1
ab~x^ ixj &Uab

~NC!!111↔2. ~10.15!

If instead we incorrectly assume that the partie finie is d
tributive, then we get

SI~16NC!distr5
4m1

c6 y1
^ i y1

j &v1
ab~Uab

~NC!!111↔2.

~10.16!

The difference between the two results is not zero:

DSI~16NC!52
2

15

G2m1
3

c6 v1
^ iv1

j &11↔2. ~10.17!

The same happens with the other terms VI~10NC! and
VI ~12NC!; each time the structure of the difference is t
same as in Eq.~10.14! or Eq. ~10.17!.

Violation of the Leibniz rule by the distributional deriva
tive. In Ref. @41# a new kind of distributional derivative o
singular functions of the typeF was introduced. It was found
that it is impossible to define a derivative satisfying the Le
niz rule for the derivation of the product, but that a mat
ematical structure exists when we replace the Leibniz rule
the weaker rule of ‘‘integration by parts.’’ The latter rule ca
be seen as an integrated version of the Leibniz rule~see Sec.
VII A in @41#!. More precisely, two different distributiona
derivatives were proposed in@41#: a ‘‘particular’’ derivative,
and a ‘‘correct’’ one. Both derivatives reduce to the deriv
tive of the standard distribution theory@32# when applied to
smooth test functions with compact support. The particu
5-29
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derivative is simpler to use in practical computations, but
correct one is more satisfying because successive deriva
to any order commute.

Previously we performed numerous simplifications, w
the help of the Leibniz rule, to arrive at the form of multipo
moments given by Eqs.~4.2!. Thus we made some error
because of the violation of the Leibniz rule by the distrib
tional derivative. The strategy adopted in Ref.@43# was to
keep track of all these error terms and to compute them u
the particular and correct derivatives of@41#. In the present
paper we shall proceed differently. We simply give an e
ample. When simplifying the moment to arrive at the simp
looking term SI~39! in Eq. ~4.2a!, we ‘‘forgot’’ to include the
error term

DSI~39!5
2

3pGc6 FP
B50

E d3xux̃uBx̂i j @D~U4!24U3DU

212U2]aU]aU#. ~10.18!

Clearly this term would be zero for any derivative satisfyi
the Leibniz rule~in a distributional sense!. However, com-
puting it by means of for instance the ‘‘particular’’ derivativ
@defined by Eq.~7.7! in Ref. @41##, we find that it is not zero,
but

DSI~39!5
64

3

G2m1
3

c6 a1
^ i y1

j &11↔2. ~10.19!

Again this result has the same type of structure as fo
previously. We have checked that all the terms coming fr
the violation of the Leibniz rule have the same structu
either of type m1

3a1
^ i y1

j & like in Eq. ~10.19! or of type
m1

3v1
^ iv1

j & .
Cubically non-linear self-interaction terms. We take the

example of the self contribution in the term SI~35NC!. This
term is

SI~35NC!52
4

pGc6 FP
B50

E d3xux̃uBx̂LẐi j
~NC!] i j

2 U.

~10.20!

The ‘‘self’’ part of this term corresponds to that part inẐi j
(NC)

which is proportional tom1
2, in the sense that

Ẑi j
~NC!5G2m1

2H a1
( i

1] j ) ln r 11
1

8
v1

2
1] i j ln r 1

1
1

32
d i j v1

km
1]km ln r 11

1

2

v1
i j

r 1
2 2

11

32
d i j

v1
2

r 1
2 J 1O~m2!

~10.21!

@see Eq.~9.1d!#, and that part ofU due to 1 itself, i.e.,U
5Gm1 /r 11O(m2). The resulting term, proportional tom1

3,
is ill defined in distribution theory because the del
function, coming from the distributional derivative of 1/r 1 as
given by Eq.~9.2b!, is multiplied by the terms in Eq.~10.21!
which are singular at point 1. The partie finie pseud
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functions and their derivatives proposed in Ref.@41# permit
us to give a mathematical meaning to such ill-defined ter
The ‘‘particular’’ derivative of 1/r 1 reads ] i j

2 (1/r 1)
5] i j

2 (1/r 1)ordinary1Di j @1/r 1#, where the purely distributiona
part is

Di j F 1

r 1
G52

4p

3 S d i j 1
15

2
n̂1

i j D d1 . ~10.22!

@Compare this with the result~9.2b! of distribution theory.#
We easily compute the effect of this new derivative on t
self part of the term~10.20!. Once again we find the sam
type of structure as before:

DSI~35NC!5
G3m1

3

c6 F2
64

3
a1

^ i y1
j &1

38

15
v ^ iv1

j &G11↔2.

~10.23!

Similarly we checked that all other self-interaction contrib
tions take the same form with simply different numeric
coefficients.

C. Definition of the u-ambiguity

As we have seen the structure of the possible terms a
ciated with the previous subtleties in the Hadamard regu
ization are limited to only two types, eitherm1

3a1
^ i y1

j & or
m1

3v1
^ iv1

j & . The first type was already considered in Eq
~10.5! and ~10.6!, where it yielded the arbitrary constantj.
Thus, modulo a redefinition ofj, we do not need to conside
this term. The other type, given bym1

3v1
^ iv1

j & , was not con-
sidered earlier. Therefore, motivated by the previous disc
sion, we shall from now on add such a term to the multip
moment, with a new constant in front, sayz. In summary, we
consider three types of ‘‘ambiguous’’ terms~in the sense of
@34,35#!, parametrized by the two constantsj, k of Eq.
~10.5!, and thez. The quadrupole moment we finally con
sider in this paper is thus

I i j 5I i j @r 18 ,r 28#1DI i j , ~10.24!

where I i j @r 18 ,r 28# denotes the computation we have done
Sections VI–IX ~i.e., the sum of all the terms, defined fo
general orbits, and given for circular orbits in the Appendi!,
when expressed by means of the same regularization
stantsr 18 ,r 28 as the ones appearing in the 3PN equations
motion ~we know that these constants are pure gauge!. Now
the undetermined part reads as

DI i j 5
44

3

G2m1
3

c6 F S j1k
m

m1
Da1

^ i y1
j &1zv1

^ iv1
j &G11↔2.

~10.25!

In a center-of-mass frame we get

DI i j 5
44

3

G2m3n2

c6 @~j12k!a^ ixj &1zv ^ iv j &#

~10.26!
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~where xi5y1
i 2y2

i , v i5dxi /dt and ai5dv i /dt!. The con-
stantsj, k andz will be left unspecified in the present pape
It could be possible that the more sophisticated regular
tion procedure of@41,42# determines some of these co
stants. However, the point for our purpose is that we
going to show that the physical energy flux for circular orb
depends only on one parameter. Indeed, the flux depend
the third time-derivative of the quadrupole, and by a straig
forward computation~using the Newtonian equations of mo
tion! we find that, in the case of circular orbits, the thi
time-derivative of Eq.~10.26! is

DI i j
~3!5

352

3

Gm2n2

r 3 g3ux^ iv j &, ~10.27!

where u5j12k1z is a single unknown constant. Ther
fore, the ambiguous part of the physical 3PN flux, as c
cerns this effect, depends in fact only onu. It is given ~for
circular orbits! by

DL5
2G

5c5 I i j
~3!DI i j

~3!5
32c5

5G
n2g5H 2

88

3
ung3J .

~10.28!

In addition tou, the flux will depend also on the constantl
coming from the equations of motion@40,43#. However, we
shall find that, in the case of circular orbits, bothu and l
enter the flux at the same level, so the flux depends only
one combination of these constants:l2 2

3 u, from the end
result ~12.9! below. Further work, supplementing the Ha
amard self-field regularization by suitable extensions and
ternative methods, may be required to determine the c
stantsu andl.

XI. THE BINARY’S MULTIPOLE MOMENTS

The computation of the moments is now almost comple
The remaining terms are as follows.

~i! The ‘‘odd’’ terms: SI~11!, SI~12!. These terms involve
the fifth ~odd! power of 1/c ~2.5PN order!. They appear be-
cause of the expansion of retardations in the potentials~3.6!;
they are pure functions of time, parametrized byQi j (t) and
Q(t) @see Eq.~3.9!#. The sum of the two odd terms has be
computed in Eqs.~4.9! and ~4.12! of Ref. @26#. With the
present notation, in the quadrupole case, we have

SI~11!1SI~12!5
G

c5 H 2
8

7
Qk^ i

~3!Qj &k2
10

7
Q^ i j &

~3! Q

2
2

21
Q^ i j &Q

~3!J . ~11.1!

These terms do not contribute to the flux for circular orb
~ii ! The ‘‘divergence’’ terms: SI~2!, SI~8!, SI~9!, SI~10!,

SI~39!, SI~40!, SI~41!, SI~42!, SI~43!, SI~44!, SI~45!, SI~46!,
SI~47!, SI~48!, SI~49!, SI~50!, SII~8!, SII~10!, SII~12!,
SII~14!, SIII~3!, VI~6!, VI~30!, VI~31!, VI~32!, VI~33!,
VI ~34!, VI~35!, VII ~7!, TI~9!. The integrand of these terms
made of the product ofux̃uB and a pure divergence] iA or
DA. Their computation makes use of the same technique
06400
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as

those employed in Secs. VII–IX, but with the notable sim
plification that because of the divergence one can perform
integration by parts, and that as a result the elementary i
grals contain explicitly a factorB ~due to the differentiation
of ux̃uB! so their computation is quite easy. See the result
the Appendix.

~iii ! Four particular terms that we have left out becau
their sum is in fact zero:

SI~22!1SI~23!1SI~32!1SII~11!50. ~11.2!

We sum up all the terms given in the Appendix, plus t
undetermined correction given by Eq.~10.26!, and obtain the
expressions of the 3PN mass-type quadrupole moment,
mass-type octupole moment and 2PN current-type qua
pole moment of the compact binary moving on a circu
orbit. ~Note that most of the investigation of this paper
valid for general orbits, but we are interested in inspirali
binaries whose orbit is quickly circularized by radiation r
action.! The 3PN mass quadrupole reads

I i j 5mS Ax̂i j 1B
r 2

c2 v̂ i j 1
48

7

r

c
x^ iv j &ng2D1O~7!,

~11.3!

where the third term is the 2.5PN odd term, and where

A511gS 2
1

42
2

13

14
n D1g2S 2

461

1512
2

18395

1512
n2

241

1512
n2D

1g3H 395899

13200
2

428

105
lnS r

r 0
D1F139675

33264
2

44

3
~j12k!

2
44

3
lnS r

r 08
D Gn1

162539

16632
n21

2351

33264
n3J , ~11.4a!

B5
11

21
2

11

7
n1gS 1607

378
2

1681

378
n1

229

378
n2D

1g2H 2
357761

19800
1

428

105
lnS r

r 0
D1F2

75091

5544
1

44

3
zGn

1
35759

924
n21

457

5544
n3J . ~11.4b!

The mass parameters arem5m11m2 , dm5m12m2 , m
5m1m2 /m, andn5m/m. The post-Newtonian parameter
g5Gm/(rc2)5O(2) @see Eq.~5.8!#. The logarithms depend
either on the constantr 0 associated with the finite part a
infinity ~recall ux̃uB5ux/r 0uB! or on the ‘‘logarithmic bary-
center’’r 08 of the regularization constantsr 18 andr 28 ~see Sec.
X!, defined bym ln r085m1 ln r181m2 ln r28 . We shall investi-
gate in Sec. XII the fate of these constantsr 0 and r 08 . In
addition the moment depends on the unknown constantsj, k,
andz introduced in Eq.~10.26!. The 2PN mass-octupole an
2PN current-quadrupole are free of any of such constants
given by
5-31
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I i jk5m
dm

m
x̂i jkF211gn1g2S 139

330
1

11923

660
n1

29

110
n2D G

1m
dm

m
x^ iv jk&

r 2

c2 F2112n1gS 2
1066

165
1

1433

330
n

2
21

55
n2D G1O~5!, ~11.5a!

Ji j 5m
dm

m
«ab^ ixj &avbF211gS 2

67

28
1

2

7
n D

1g2S 2
13

9
1

4651

252
n1

1

168
n2D G1O~5!.

~11.5b!

The higher multipole moments which are needed in the 3
energy flux are the 1PN current octupole, 1PN mass 24-pole,
Newtonian current 24-pole, and Newtonian mass 25-pole.
For these moments we simply report the expressions alre
obtained in Ref.@13#:

I i jkl 5m x̂i jkl F123n1gS 3

110
2

25

22
n1

69

22
n2D G

1
78

55
mx^ i j vkl&

r 2

c2 ~125n15n2!1O~3!, ~11.6a!

Ji jk5m«ab^ ixjk&avbF123n1gS 181

90
2

109

18
n1

13

18
n2D G

1
7

45
m~125n15n2!«ab^ iv jk&bxa

r 2

c2 1O~3!,

~11.6b!

I i jklm5m
dm

m
~2112n!x̂i jklm1O~1!, ~11.6c!

Ji jkl 5m
dm

m
~2112n!«ab^ ixjkl &avb1O~1!.

~11.6d!

As proved in Refs.@26,21# the multipole momentsI L and
JL are not the only source moments entering the radia
field. However, the other moments, denotedWL , XL , YL and
ZL , parametrize a~linearized! gauge transformation in th
exterior field, and as a result make a contribution to the n
linear radiation field at a quite high post-Newtonian ord
2.5PN. It is always possible to re-express the radiation fi
in terms of solely two sets of moments, denotedML andSL ,
given by some non-linear functionals of the momentsI L ,
JL , WL , XL , YL andZL , but differing fromI L andJL start-
ing at the 2.5PN order~see Sec. VI in@21# for a discussion!.
From Eqs.~4.20!–~4.24! in @26# the 3PN quadrupoleMi j is
related toI i j by

Mi j 5I i j 2
4G

c5 @W~2!I i j 2W~1!I i j
~1!#1O~7!, ~11.7a!
06400
N

dy

n

-
:
ld

W5
1

3 E d3xxis i5
1

3
m1~y1v1!1O~2!11↔2.

~11.7b!

For the other moments there is no correction to be mad
this order@for instanceSi j 5Ji j 1O(5)#. Actually we observe
thatW is zero for circular orbits, and thus we shall from no
on replace all the momentsI L andJL by the corresponding
ML andSL .

Finally we need to relate the momentsML , SL to the
‘‘radiative’’ moments, sayUL ~mass-type! and VL ~current-
type!, which play the role of observables associated with
radiation field at infinity. Since such a relation has alrea
been worked out at the 3.5PN level in Ref.@27#, we simply
report the main result, which concerns the mass-quadru
radiative momentUi j , that is

Ui j ~ t !5Mi j
~2!~ t !1

2Gm

c3 E
0

1`

dtMi j
~4!~ t2t!F lnS ct

2r 0
D1

11

12G
1

2G2m2

c6 E
0

1`

dtMi j
~5!~ t2t!F ln2S ct

2r 0
D

1
57

70
lnS ct

2r 0
D1

124627

44100G1
1

c5 $¯%1
1

c7 $¯%

1O~8!. ~11.8!

This formula is valid through 3.5PN order, modulo the od
order 2.5PN and 3.5PN terms that we do not show beca
they do not contribute to the flux for circular orbits. The on
contributions coming from Eq.~11.8! are the 1.5PN tail, and
3PN ‘‘tail of tail’’ integrals. In the flux we shall derive below
the terms at the orders 2.5PN and 3.5PN are due to the
integrals in higher multipole moments~see Ref.@27# for de-
tails!.

XII. THE ENERGY FLUX OF CIRCULAR COMPACT
BINARIES

For general sources, the total energy flux~or gravitational
luminosity L! to the 3PN order is composed of an ‘‘insta
taneous’’ contribution—i.e., a functional of the multipo
momentsML andSL at the same instant—and a ‘‘tail’’ con
tribution. We shall now follow the study in@27# of the oc-
currence of non-linear effects inL up to 3.5PN order. Fol-
lowing the equation~4.18! in Ref. @27# we split L into an
instantaneous part, a tail part, a tail square part, and a ta
tail part:

L5Linst1Ltail1L~ tail!21Ltail~tail! . ~12.1!

As all the parts involving tails have already been compu
for circular binaries@27#, we need only to compute the in
stantaneous part which is given by
5-32
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Linst5
G

c5 H 1

5
Mi j

~3!Mi j
~3!1

1

c2 F 1

189
Mi jk

~4!Mi jk
~4!1

16

45
Si j

~3!Si j
~3!G

1
1

c4 F 1

9072
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@see, e.g.,~4.15! in @27##. To obtainLinst we compute the time
derivatives of the multipole moments. At this stage we ne
a new input, namely the 3PN equations of motion of circu
binaries which are crucial in the differentiation of the 3P
quadrupole moment. As recently obtained@40,43# the 3PN
orbital frequency of the circular motion reads as
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The inverse of this formula gives the post-Newtonian para
eter g as a function of the frequency related parametex
5(Gmv/c3)2/3,
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Note that Eq.~12.3! or Eq.~12.4! involves the same constan
r 08 as in the 3PN mass quadrupole moment~11.3! and~11.4!.

Taking all the expressions of the multipole momen
found in Sec. XI, computing their time-derivatives accordi
to the latter circular-orbit 3PN equations of motion, and
serting them into Eq.~12.2! we then arrive at the following
instantaneous part of the flux:
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where we recall thatu5j12k1z. Next we simply add the
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known other contributions. The tail one is due to such ter
as the 1.5PN integral appearing in Eq.~11.8! @and other
equations corresponding to higher multipole moments#. The
result is derived to the 3.5PN order in Eq.~5.5a! in Ref. @27#:
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Second, the tail of tail comes from the 3PN term in E
~11.8!, and the tail square from the square of the 1.5PN te
The sum of these parts reads, following Eq.~5.9! in @27#,
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whereC denotes the Euler constant (C50.577...), and where
the constantr 0 is the same as ther 0 occurring in the mass
quadrupole moment~11.3! and~11.4!. Thus, the energy flux,
complete up to the 3.5PN order, reads
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We observe that the constantsr 0 have canceled out betwee
the instantaneous fluxLinst and the partL~tail!21tail~tail! . This
cancellation is to be expected for any source: see a proo
@27# @Eqs. ~4.14! there# where it is shown that the tails o
tails at the 3PN order depend onr 0 through the effective
quadrupole momentMi j

eff5Mij1
214
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our explicit result~11.4! for I i j 5Mi j 1O(5) we find that
indeed ther 0’s cancel out. The fact that we have recover
the expected dependence onr 0 of the source quadrupole mo
ment is a good check of the computation.

On the other hand, the point-mass regularization cons
r 08 still remains in the flux~12.8!. This is because the energ
flux is not yet expressed in a coordinate-independent way
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the post-Newtonian parameterg depends on the distance b
tween the masses in harmonic coordinates. To find a t
coordinate-independent result we must replaceg by its ex-
pression given by Eq.~12.4! in terms of the frequency
related parameterx. With this change of variable, at long la
we obtain our end result:
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In the above expression the constantr 08 has cleanly disap-
peared. Of course, this was to be expected because we
seen thatr 08 is pure-gauge; nevertheless this cancellation c
stitutes a satisfactory test of the algebra. However, the re
still depends on one physical undetermined numerical c
ficient, which is a linear combination of the equation-o
motion-related constantl and the multipole-moment-relate
constantu. On the other hand, our final expression~12.9! is
in perfect agreement, in the test-mass limitn→0, with the
result of black-hole perturbation theory which is alrea
known to a very high post-Newtonian order@46,47#.
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APPENDIX: RESULTS FOR ALL THE TERMS

For the mass quadrupole we factorize out a factorm
5mn in front of all the terms. We denotev i

5A(Gm/r 3)wi , so for instanceŵi j 5(r 3/Gm)v ^ iv j & ~and
x̂i j 5x^ ixj &!. For the current quadrupole all the terms have
be multiplied bydm/mL^ ixj & , wheredm5m12m2 and Li
5me i jkxjvk is the angular momentum. For the mass oc
pole we factorize outmdm/m5ndm. For simplicity the con-
stantsr 0 andr 08 in the logarithms are set to 1. In the case
the 3PN mass quadrupole, to the sum of all these terms
must add the undetermined contribution given by Eq.~10.26!
in the text.
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g3n@~2228n!ŵi j 1~21122n112n2!x̂i j #,

~A9d!

SI~24!5
1

18
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~A9k!
06400
TI~5!5
1

189
g3~429n221n2113n3!~ŵi j 2 x̂i j !.
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SII~8!50, ~A13q!

SII~10!50, ~A13r!

SII~12!5
27

35
g3~ x̂i j 2ŵi j !, ~A13s!

SII~14!5
72

35
g3~2 x̂i j 1ŵi j !, ~A13t!

SIII~3!50, ~A13u!

VI ~6!50, ~A13v!

VI ~30!50, ~A13w!

VI ~31!50, ~A13x!

VI ~32!50, ~A13y!

VI ~33!5
8

15
g3~ x̂i j 2ŵi j !, ~A13z!
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VI ~34!50, ~A13aa!

VI ~35!52
4

15
g3~ x̂i j 2ŵi j !, ~A13bb!

VII ~7!50, ~A13cc!

TI~9!50. ~A13dd!

2. The 2PN current quadrupole

Compact term at Newtonian order:

VI ~1!5
1

8
@2814g1g2~215188n13n2!#. ~A14!

Compact terms at 1PN:

VI ~2!5g@2212n1g~11n24n2!#, ~A15a!

VI ~3!5gn@221g~2114n!#, ~A15b!

VII ~1!5
g

28
@224n1g~27116n23n2!#,

~A15c!

TI~1!5
g

56
@224n1g~27116n23n2!#.

~A15d!

Compact terms at 2PN:

VI ~7!5g2n~12n!, ~A16a!

VI ~8!52g2~2112n!, ~A16b!

VI ~9!5g2n~11n!, ~A16c!

VI ~10C!524g2n, ~A16d!

VI ~10NC!5
3

2
g2n, ~A16e!

VI ~11!52g2n~12n!, ~A16f!

VI ~12C!50, ~A16g!

VI ~12NC!5
g2

2
~126n!, ~A16h!

VI ~13!52g2n~12n!, ~A16i!

VII ~2!5
g2

7
~123n1n2!, ~A16j!

VII ~3!5
g2

7
n~12n!, ~A16k!
06400
VIII ~1!5
g2

504
~123n!~211n!, ~A16l!

TI~3!5
g2

7
~123n1n2!, ~A16m!

TI~4!5
g2

7
n~12n!, ~A16n!

TII ~1!5
g2

504
~123n!~211n!.

~A16o!

Y-terms at 1PN:

VI ~4!5
g

2
@2214n1g~128n2!#, ~A17a!

VI ~5!52
3

4
gn@21g~126n!#,

~A17b!

TI~2!50. ~A17c!

Y-terms at 2PN:

VI ~16120!1VII ~6!5
g2

3
~122n23n2!, ~A18a!

VI ~19!5
g2

3
~122n23n2!, ~A18b!

VI ~21!52
2

3
g2n~526n!, ~A18c!

VI ~25C!52g2~2112n!, ~A18d!

VI ~26C!5
2

3
g2n~113n!, ~A18e!

VI ~27C!5
g2

3
~122n!, ~A18f!

VI ~28C!50, ~A18g!

VI ~29C!5
2

3
g2n, ~A18h!

TI~6!5
g2

21
~2214n23n2!, ~A18i!

TI~7!50, ~A18j!

TI~8!52
g2

21
n~723n!. ~A18k!
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S-terms at 2PN:

VII ~4!5
1

42
g2~2223n!~122n!, ~A19a!

VII ~5!52
1

28
g2n~213n!, ~A19b!

TII ~2!50. ~A19c!

T-terms at 2PN:

VI ~14!5
1

6
g2~114n29n2!, ~A20a!

VI ~15!5
1

6
g2n~129n!, ~A20b!

VI ~17!5
1

8
g2n~419n!, ~A20c!

VI ~18!5
3

8
g2n~213n!, ~A20d!

TI~5!5
1

168
g2n~213n!. ~A20e!

Cubic terms:

VI ~22123124!52g2S 1

3
2

9

4
n D . ~A21!

Non-compact terms:

VI ~25NC!5g2S 2
2

3
1

17

6
n D , ~A22a!

VI ~26NC127NC128NC129NC!

5g2S 3

2
1

19

6
n D . ~A22b!

Divergence terms:

VI ~6!50, ~A23a!

VI ~30!50, ~A23b!

VI ~31!50, ~A23c!

VI ~32!50, ~A23d!

VI ~33!50, ~A23e!

VI ~34!50, ~A23f!

VI ~35!50, ~A23g!

VII ~7!50, ~A23h!

TI~9!50. ~A23i!
06400
3. The 2PN mass octupole

Compact term at Newtonian order:

SI~1!5
1

8
@281g~24116n!1g2~13124n115n2!# x̂i jk .

~A24!

Compact terms at 1PN:

SII~1!5
1

180
g$@30260n1g~2751120n145n2!# x̂i jk

13@220140n1g~210160n270n2!#x^ iwjk&%,

~A25a!

VI ~1!5
1

90
g$@30260n1g~21051240n245n2!# x̂i jk

13@220140n1g~10220n210n2!#x^ iwjk&%.

~A25b!

Compact terms at 2PN:

SI~3!524g2~123n1n2!x̂i jk , ~A26a!

SIII~1!5
1

3960
g2~123n!~12n!~2105x̂i jk1300x^ iwjk&!,

~A26b!

VI ~2!5
2

45
g2~123n1n2!~15x̂i jk230x^ iwi j &!,

~A26c!

VI ~3!5
2

45
g2n~211n!~215x̂i jk130x^ iwjk&!,

~A26d!

VII ~1!5
1

990
g2~123n!~12n!~2105x̂i jk1300x^ iwjk&!,

~A26e!

TI~1!5
1

990
g2~123n!~12n!~233x̂i jk184x^ iwjk&!.

~A26f!

Y-terms at 2PN:

SI~4!52
2

15
g2n@~15230n!x̂i jk160x^ iwjk&#,

~A27a!

SI~5C!5
1

30
g2@2~15260n260n2!x̂i jk

13~210140n!x^ iwjk&#, ~A27b!

SI~6!52
1

30
g2n@~15230n!x̂i jk230x^ iwjk&#,

~A27c!
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SI~7!52
2

15
g2n@~215230n!x̂i jk130x^ iwjk&#,

~A27d!

SII~7!52
1

10
g2~122n!~215x̂i jk130x^ iwjk&!,

~A27e!

VI ~4!52
1

450
g2~452140n120n2!

3~215x̂i jk130x^ iwjk&!, ~A27f!
.
n,

hy

.

.

s.

06400
VI ~5!5
1

60
g2~229n12n2!~215x̂i jk130x^ iwjk&!,

~A27g!

TI~2!5
1

990
g2~8221n12n2!

3~215x̂i jk130x^ iwjk&!. ~A27h!

Non-compact term:

SI~5NC!52g2~112n!x̂i jk . ~A28!
tum
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