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Abstract

We consider a steady-state turbulent RANS model that couples the equation for
the velocity-pressure field to the equation for the turbulent kinetic energy, with eddy
viscosities vanishing at the boundary like d(x,Γ)η and d(x,Γ)β , where 0 < η, β < 1.
We find critical values ηc and βc for which the system has a weak solution obtained
as the limit of viscous regularizations for 0 < η < ηc, 0 < β < βc.
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1 Introduction

The modeling of turbulence in fluid mechanics is based on the decomposition of the velocity
and pressure fields into the sum of mean fields, which we denote u, p in this work and which
we will assume stationary for simplicity, and fluctuations denoted u′ and p′. By averaging
the Navier-Stokes equations, we get the Reynolds stress σ(r), which is the average of the
tensor product u′⊗u′ [6, 18, 20]. We must model this Reynolds tensor. It is quite admitted
that the latter is dissipative [2, 8], and according to the boussinesq hypothesis, it is made
proportional to the average strain tensor via a turbulent viscosity, denoted νturb. The
question then arises as to whether the molecular diffusion term is negligible compared to
the turbulent diffusion term.
There are different ways to model νturb, whether in the framework of statistical averages
(RANS type models), or whether the high frequencies of the flow are filtered (LES type
models). In this article we consider the case of a RANS model, the case of LES models
being studied in [13].
Generally speaking, in RANS models the turbulent viscosity is a function of the turbulent
kinetic energy, k (TKE) and the turbulent dissipation E . This can be simplified by relating
the TKE k to E by the Prandlt mixing length, denoted by %, which yields the following
law:

(1.1) νturb = C%
√
k,
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for some dimensionless constant C (and k ≥ 0). After a modeling process [6, 18], one gets
the following equation for k, named TKE model:

(1.2) u · ∇k − div (µturb(k)∇k) +
k|k|1/2

%
= νturb(k)|Du|2,

where u is the fluid velocity, Du = 1/2(∇u + ∇uT ) is the strain tensor, µturb an eddy

diffusion similar to the eddy viscosity given by (1.1), and E = k|k|1/2
% . When we assume

that % is a smooth bounded function such that %(x) ≥ %0 > 0 in the fluid domain Ω, the
coupling of the resulting steady-state Navier-Stokes equation with an eddy diffusion to the
TKE model (1.2), has been studied extensively [1, 6, 9, 12, 15, 16].
In most cases, we assume that νturb is bounded below and above, which amounts to replac-
ing C

√
k by a truncation function ν̃ equal to C

√
k on the interval [1/M,M ], and equal to

C/
√
M over [0, 1/M ] and C

√
M on [M,∞[, for some M > 0.

In this paper, we remain in this framework and focus on the problem posed by the Prandlt
mixing lenght %. Indeed, in most physical applications, such as meteorology or oceanog-
raphy [14, 19], % = %(x) vanishes at the boundary equivalently to the distance to the
boundary Γ, denoted d(x,Γ), where Γ is the boundary of Ω, which poses a major difficulty.
Notice that it also may be of order

√
d, as for instance for shear flows [10]. Throughout

the paper, we consider the case %(x) ≈ d(x,Γ) when x→ Γ.
A similar problem was already considered in the case of some LES models [3, 4, 21, 22], for
which the eddy viscosity is proportional to %2 (instead of % as in the TKE model), which
yields difficult open problems. In these papers, the authors suggest to relax this law and
to take an eddy viscosity proportional to %α, for some 0 < α < 2. The same situation
occurs in the case of RANS problem. Therefore, in this paper we aim to relax the law
given by (1.1) by taking

(1.3) νturb(k) = %ην̃(k),

for 0 < η < 1, and we study the coupling of the resulting steady-state Navier-Stokes
equation to (1.2), in the scope of the viscous approximations posed by the question of
whether or not we can neglect the molecular viscosity in comparison with the turbulent
viscosity.
To be more specific, let Ω be a C 0,1 bounded open subset of IRN , N = 2, 3, 0 < η < 1,
0 < β < 1, 0 < λ. As said before, % : Ω→ IR+

? is a C∞ function equivalent to d(x,Γ) near
Γ (see the precise assumption in the begining of section 2.1). We consider the following
system, where p denotes the pressure12:

(1.4)



λu + (u · ∇)u− div (%ην̃(k)∇u) +∇p = f in Ω,
div u = 0 in Ω,

u · ∇k − div (%βµ̃(k)∇k) +
k|k|1/2

%
= %ην̃(k)|∇u|2 in Ω,

k ≥ 0 in Ω,
u = k = 0 at Γ.

The term λu is a stabilization term, which can be seen as a discrete evolution term coming
from a finite difference, and which plays an important role in the proofs of the main results.

1we replace Du by ∇u for the simplicity without loss of generality, thanks to the Korn inequality.
2Still for the simplicity, we consider homogeneous boundary conditions instead of usual non linear laws

at the boundary given by the turbulence modeling framework.
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We next introduce the regularized system, where ε > 0,

(1.5)



λu + (u · ∇)u− div (%ην̃(k)∇u)− ε∆u +∇p = f in Ω,
div u = 0 in Ω,

u · ∇k − div (%βµ̃(k)∇k)− ε∆k +
k|k|1/2

%+ ε
= %ην̃(k)|∇u|2 in Ω,

k ≥ 0 in Ω,
u = k = 0 at Γ,

for which we know from [15] the existence of a weak solution in an appropriate sense.
We transcribe the question ”Is the molecular diffusion term negligible compared to the
turbulent diffusion term” by ”do the solutions of the system (1.5) converge towards a
solution -in some weak sense- of the system (1.4) when ε goes to 0” ?
As we will see, the situation is seriously complicated. We only get a positive answer at the
cost of severe restrictions on the exponents η and β, i.e. when 0 < η, β < 1/3 in dimension
2, and 0 < η < 1/9, β < 1/5 in dimension 3. A specific statement is given by Theorem
4.2 below, which is the main result of this paper.
The paper is divided in 3 main sections and is organized as follows. In the first section
we study the steady Navier-Stokes equations with an eddy viscosity such as (1.3), with a
given k. By using a weighted Sobolev spaces of divergence free vector fields and results in
Kufner [11], we are able to prove the existence of a weak solution in a particular weak sense
(see definition 2.1 below), obtained as a limit of the viscous regularization by adding the
term −ε∆u, when 0 < η < 1 for N = 2, 0 < η < 2/3 for N = 3. However, in view of the
coupling with the TKE equation, we need the strong convergence of the approximations
in our weighted space, to be able to pass to the limit in the production term in the r.h.s
of the equation for the TKE. Indeed, this term is only in L1(Ω), which is one of the main
characteristics of this range of problems. We find that the strong convergence holds when
0 < η < 1/3 for N = 2, and 0 < η < 1/9 for N = 3, and we can’t do better at the moment.
In the second session, we focus on the TKE equation for a fixed vector field u, especially
the derivation of a priori estimates in regular Sobolev spaces, which is not straightforward
due to the r.h.s in L1 and the degeneracy of the diffusive term at the boundary. To do
so, we use a weighted Sobolev space, and then we adapt to this case the ladder method
initially due to Boccardo-Gallouët [5], which is one of the main contributions of this paper.
In the third section we synthesize the two previous sections. We are then able to pass to the
limit in the viscous regularizations (1.5) when ε tends to 0 and to prove the main theorem,
namely Theorem 4.2. This also proves the existence of a weak solution to system (1.4)
in a certain way, solutions that we call ”SOLA” (solutions obtained by approximations).
Note that the equation for TKE only holds in the sense of the distributions, and we are
not able to do better without further decreasing the size of the β parameter.

2 Velocity equation with a fixed TKE

2.1 General setting and space function

Let Ω is be a C 0,1 bounded open subset of IRN (N = 2, 3), % : Ω → IR+ is of C∞ class
function equivalent to the distance to the boundary., which satisfies

lim
d(x,Γ)→0
x∈Ω

%(x)

d(x,Γ)
= 1,(2.1)

∀n > 0, %n = inf
d(x,Γ)≥ 1

n
x∈Ω

%(x) > 0(2.2)
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The functions ν̃, µ̃ : IR→ IR are continous, bounded by above and by below, namely

(2.3) ∀ k ∈ IR, 0 < νm ≤ ν̃(k), µ̃(k) ≤ νM ,

We start by studying the velocity equation for a fixed TKE function k at least in L1(Ω),
and a source term f , the regularity of which will be discussed later. The corresponding
Navier-Stokes system is as follows:

(2.4)


λu + (u · ∇)u− div (%η(x)ν̃(k)∇u) +∇p = f in Ω,
div u = 0 in Ω,
u = 0 at Γ.

To get an à priori estimate, we formally take the dot product of the transport equation
with u and and we integrate by parts, using a standard calculus that uses the no slip
boundary condition, giving in particular ((u ·∇)u,u) = 0 and (∇p,u) = 0. Therefore, the
following energy balance holds:

(2.5) λ

∫
Ω
|u|2 +

∫
Ω
%ην̃(k)|∇u|2 = 〈f ,u〉.

Consequently, for a large class of source terms f , for instance f ∈ L2(Ω)N , and using (2.3),
we get the à priori estimate:

(2.6)

∫
Ω
|u|2 +

∫
Ω
%η|∇u|2 ≤ C =

||f ||20,2;Ω

2λmin(λ/2, νm)
.

This suggests to introduce the space fonction Vη defined as the closure of V for the norm

(2.7) ‖u‖1,2;%,η =
(
‖u‖20,2,Ω + ‖%η/2∇u‖20,2,Ω

)1/2
.

where

(2.8) V = {u ∈ D(Ω)N / div u = 0},

In particular, Vη is a Hilbert space with the scalar product

(2.9) (u,v)1,2;%,η =

∫
Ω

u · v +

∫
Ω
%η∇u : ∇v.

According to [11, Proposition 6.5], the following holds.

Theorem 2.1. Assume that Ω satisfies the cone property, and η ∈ ]0, 1[. For any p such
that

(2.10) 1 ≤ p < 2

1 + η
= pη,

the following continuous embedding holds

(2.11) Vη ↪→W 1,p
0 (Ω)N .

The Sobolev embedding theorem yields the following.
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Corollary 1. We have

(2.12) Vη ↪→ Lq(Ω)N ,

for all

(2.13) q < p?η =
2N

N(1 + η)− 2
=


6

1 + 3η
when N = 3,

2

η
when N = 2,

with compact embedding.

Remark 2.1. We deduce from Theorem 2.1 that vector fields in Vη have a trace at Γ
which is equal to 0, giving a sense to the no slip boundary condition for vector fields in Vη.

Remark 2.2. Vector fields in Vη are naturally in L2(Ω)N by construction. In the case
N = 2, p? > 2, then (2.12) brings additional regularity. However, in the case N = 3, more
regularity is reached only for 0 < η < 2/3, where p? > 2.

Remark 2.3. The following Poincaré inequality holds, for all p < pη and all u ∈ Vη,

(2.14) ||u||0,p,Ω ≤ C||u||1,2;%,η,

where C = C(p,Ω).

Throughout the rest of the paper, we assume that Ω satisfies the cone property, in order
to verify (2.11).

Remark 2.4. Let 0 < η < 1. The space Vη is a distributional space, and in particular we
conjecture that

(2.15) Vη =
{
u ∈ D′(Ω)N , div u = 0, u ∈ L2(Ω)N ,

√
%η∇u ∈ L2(Ω)N×N , u|Γ = 0

}
.

We also denote in what follows

(2.16) V0 = {u ∈ H1
0 (Ω)N ; div u = 0}.

2.2 Weak solutions and existence result

We start by giving the weak formulation of Problem (2.4) in which the pressure is not
involved, since we take free divergence vector fields as tests. However, we must take in
consideration the transport term (u · ∇)u = div (u⊗ u). We deduce from (2.13) that for
any u ∈ Vη, u ⊗ u ∈ Lq/2(Ω)N×N for all 2 < q < p?η. The constrain p?η > 2 is equivalent
to 0 < η < 2/3 = ηc when N = 3, and no additional condition about η when N = 2,
therefore ηc = 1 in this case. Throughout the rest of the paper, we assume this condition
fulfilled
Hence, for any 2 ≤ δ < p?η we could consider

(2.17) v ∈
⋃

δ<q<p?η

(
Vη ∩W 1,(q/2)′

0 (Ω)N
)

= Hη,δ

as test vector fields set. In particular, when v ∈ Hη,δ, u ⊗ u : ∇v ∈ L1(Ω), as well as
λu · v + %ην̃(k)∇u : ∇v ∈ L1(Ω), since ν̃(k) ∈ L∞(Ω), and f · v ∈ L1(Ω). Unfortunately,
in view of the construction of weak solutions to Problem (2.4), we must reduce the space
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Hη,δ a little bit for reasons that will be cleared in the following. Let r > 1, and let us
consider V (see (2.8)) equiped with the norm

||v||η,r = ||v||1,2;%,η + ||v||1,r,Ω,

and let Kη,r denotes the closure of V for the norm || · ||η,r. Notice that we naturally have

(2.18) Kη,r ↪→ Vη.

The tests vector fields set we consider is given by:

(2.19) Wη,δ =
⋃

δ<q<p?η

Kη,(q/2)′ ,

which is a subset of Hη,δ.

Remark 2.5. We do not know if generally Wη,δ = Hη,δ. However, as we shall see it in
the remainder, when η is small enough and δ close enough from p?, then Wη,δ = Vη.

Definition 2.1. We say that u ∈ Vη is a δ-weak solution to Problem (2.4) if ∀v ∈Wη,δ,

(2.20) λ

∫
Ω

u · v +

∫
Ω

u⊗ u : ∇vT +

∫
Ω
%ην̃(k)∇u : ∇v =

∫
Ω

f · v.

Remark 2.6. Let 2 ≤ δ1 < δ2 < p?η. Then obvioulsy Wη,δ2 ⊂ Wη,δ1. Therefore any
δ1-weak solution is a δ2-weak solution. However, it is not clear that a δ2-weak solution is
a δ1-weak solution as well.

Theorem 2.2. Let 0 < η < ηc, where ηc = 1 when N = 2, ηc = 2/3 when N = 3,
k ∈ L1(Ω), f ∈ L2(Ω)N , 2 ≤ δ < pη. Then Problem (2.4) a δ-weak solution obtained by
approximation (SOLA).

Proof. We argue by viscous regularization, the proof being divided into 3 steps. We first
introduce the viscous regularization we consider, and we get a uniform estimate in Vη for
the resulting equations. Then we extract subsequences by weak compactness and Theorem
2.1. Then we pass to the limit when the viscous parameter ε goes to 0.

Step 1. Approximations and estimate. We argue by singular perturbations. Let ε > 0.
According to standard results (see for instance in [6]), we know the existence of uε ∈ V0

such that for any v ∈ V0

(2.21) λ

∫
Ω

uε · v +

∫
Ω

uε ⊗ uε : ∇vT +

∫
Ω
%ην̃(k)∇uε : ∇v + ε

∫
Ω
∇u : ∇v =

∫
Ω

f · v.

Taking v = uε as test, we get the following energy balance, since the transport term
vanishes,

(2.22) λ

∫
Ω
|uε|2 +

∫
Ω
%ην̃(k)|∇uε|2 + ε

∫
Ω
|∇uε|2 =

∫
Ω

f · uε.

In particular, as f ∈ L2(Ω)N , the familly (uε)ε>0 is bounded in Vη.

Step 2. Extracting subsequences. From the bound in Vη, we deduce the existence of a
sequence (εn)n∈IN and u ∈ Vη such that the sequence (uεn)n∈IN:

1. Weakly converges to u in Vη,
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2. Weakly converges to u in W p
0 (Ω)N for all p < pη,

3. Strongly converges to u in Lq(Ω)N for all q < p?η, where p? is given by (2.13).

Item 1) is straightforward. Items 2) and 3) require additional comments. Indeed, let
(uεn)n∈IN which weakly converges to u in V , as given by item 1, and let 1 < p < pη be

fixed. As the sequence (uεn)n∈IN is bounded in W 1,p
0 (Ω) by Theorem 2.1, we can extract

a subsequence, still denoted (uεn)n∈IN, which weakly converges to some v ∈W 1,p
0 (Ω), and

by the way in D′(Ω). But as uεn → u in V -weak, by (2.2) convergence in D′(Ω) also holds.
Therefore by the uniqueness of the limit, u = v. Let now p < q < pη. From the sequence

(uεn)n∈IN we can extract a sub-sequence which weakly converges to some v in W 1,q
0 (Ω).

By the same argument as above, u = v and by uniqueness of the limit, the whole sequence
(uεn)n∈IN converges to u in W 1,q

0 (Ω)-weak, hence items 2) and 3).

Step 3. Passing to the limit in the equations. Let us take v ∈ V as test in (2.27). It is
easily checked that when n→∞,

(2.23)
λ

∫
Ω

uεn · v +

∫
Ω
%ην̃(k)∇uεn : ∇v→

∫
Ω

u · v +

∫
Ω
%ην̃(k)∇u : ∇v,∫

Ω
uεn ⊗ uεn : ∇vT →

∫
Ω

u⊗ u : ∇vT .

It remains to deal with the term ε
∫

Ω∇u : ∇v. As ∇v ∈ L∞(Ω),∫
Ω
∇uεn : ∇v→

∫
Ω
∇u : ∇v,

hence

ε

∫
Ω
∇uεn : ∇v→ 0.

In conclusion, u satisfies (2.20) for any v ∈ V. Let v ∈ Wδ,η. There exists q ∈ ]δ, pη[
such that v ∈ Kη,(q/2)′ . It follows the existence of a sequence (vn)n∈IN of vector fields in

V which converges to v in both Vη and W
1,(q/2)′

0 (Ω)N , which explains the reason of the
special construction of Wη,δ. Taking vn as test in (2.20), and passing to the limit when
n→∞ yields u satisfies (2.20) for any v ∈Wη,δ.

Remark 2.7. By De Rham Theorem, we know the existence of a pressure p ∈ L2
loc(Ω)

such that (2.4) holds in D′(Ω).

2.3 Strong convergence

We adress in this section the question of the strong convergence of the approximations to
Problem (2.20) constructed above. We first must check if a δ-weak solution satisfies the
energy balance for a suitable choice of δ and η. The following holds.

Lemma 2.1. Let 0 < η < η′c, where

(2.24)

{
η′c = 1/9 when N = 3,
η′c = 1/3 when N = 2.

Then there exists δ0 ∈ ]2, p?η[ such that for all δ ∈ ]δ0, p
?
η[, any δ-weak solution u of Problem

(2.20) satisfies the energy balance (2.5).
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Proof. The energy balance holds when we take u itself as test vector field. This is the case
when

(2.25) Wη,δ = Vη.

To ensure that (2.25) is satisfied, it is necessary that
(
p?η
2

)′
< pη, which yields the bound

(2.24) after elementary calculations. Moreover, as p→ p′ is non-increasing and continuous,

there exists δ0 ∈]2, p?η[, such that
(
p?η
2

)′
<
(
δ0
2

)′
< pη. Therefore, for δ0 < q < p?η,

( q
2

)′
< pη

and by Theorem 2.1, Vη ⊂W (q/2)′

0 (Ω)N . Therefore, by (2.2)

||v||η,(q/2)′ ≤ C||v||1,2;%,η,

which means Vη ↪→ Kη,(q/2)′ , hence Vη = Kη,(q/2)′ by (2.18), leading to (2.25).

Remark 2.8. After some calculus, we find for optimal value of δ0:

(2.26)


δ0 =

12

5− 3η
when N = 3,

δ0 =
4

2− η
when N = 2.

We are now able to prove the following convergence result.

Theorem 2.3. Let 0 < η < η′c, δ ∈]δ0, pη[, and let (kεn)ε>0 be a family in L1(Ω) which
converges in L1(Ω) to some k in L1(Ω). Let uε ∈ V0 such that for any v ∈ V0

(2.27) λ

∫
Ω

uε · v −
∫

Ω
uε ⊗ uε : ∇vT +

∫
Ω

(%η + ε)ν̃(kεn)∇uε : ∇v =

∫
Ω

f · v.

Then there exists a sequence (εn)n∈IN such that the sequence (uεn)n∈IN strongly converges
in Vη to a δ-weak solution u ∈ Vη of Problem (2.4) which in addition satisfies the en-
ergy balance (2.5). Moreover, the sequence (%ηνturb(kεn)|∇uεn |2)n∈IN converges strongly in
L1(Ω) to %ηνturb(k)|∇u|2.

Proof. We follow the proof of Theorem 2.2, in order to ensure the existence of a sequence
(εn)n∈IN, such that the sequence (uεn)n∈IN weakly converges in Vη to a δ-weak solution
u ∈ Vη of Problem (2.4). The only addition to be made, is to check how to pass to the
limit in the diffusion term. We first notice that the sequence (εn)n∈IN can be chosen such
that the sequence (kεn)n∈IN converges a.e. to k, by the inverse Lebesgue Theorem. Let
v ∈ V, δ < q < pη. Then

(2.28)
√
%η∇uεn →

√
%η∇u weakly in L2(Ω)N×N ,

while

(2.29)
√
%ην̃(kεn)∇v→

√
%ην̃(k)∇v a.e. in Ω,

because ν̃ is a continuous function. Therefore, since

|
√
%ην̃(kεn)∇v| ≤ νM |

√
%ην̃(kεn)∇v| ∈ L2(Ω),

by (2.3), then the convergence in (2.29) also holds in L2(Ω)N×N , by Lebesgue Theorem.
In conclusion ∫

Ω
%ην̃(kεn)∇uεn : ∇v→

∫
Ω
%ην̃(k)∇u : ∇v,
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as n→∞. The rest is as in the proof of Theorem 2.2, the energy balance being satisfied
by Lemma (2.24).

It remains to prove the strong convergence. To do so we use the so called ”energy method”.
We deduce from (2.28) and the same argument as above that

(2.30)
√
%η
√
ν̃(kεn)∇uεn →

√
%η
√
ν̃(k)∇u weakly in L2(Ω)N×N .

Therefore,

(2.31)

∫
Ω
%ην̃(k)|∇u|2 ≤ lim inf

n→∞

∫
Ω
%ην̃(kεn)|∇uεn |2.

Now, we write the energy balances satisfied by u and uεn :

(2.32)


λ

∫
Ω
|uεn |2 +

∫
Ω
%ην̃(kεn)|∇uεn |2 + εn

∫
Ω
|∇uεn |2 = 〈f ,uεn〉

λ

∫
Ω
|u|2 +

∫
Ω
%ην̃(k)|∇u|2 = 〈f ,u〉.

As (uεn)n∈IN converges to u strongly in L2(Ω)N ,

lim
n→∞

∫
Ω
|uεn |2 =

∫
Ω
|u|2, lim

n→∞
〈f ,uεn〉 = 〈f ,u〉.

Therefore, by (2.32), we have

(2.33) lim
n→∞

(∫
Ω
%ην̃(kεn)|∇uεn |2 + εn

∫
Ω
|∇uεn |2

)
=

∫
Ω
%ην̃(k)|∇u|2,

which combined with (2.31) leads to

(2.34) lim
n→∞

∫
Ω
%ην̃(kεn)|∇uεn |2 =

∫
Ω
%ην̃(k)|∇u|2, lim

n→∞
εn

∫
Ω
|∇uεn |2 = 0.

Therefore, combining (2.30) with (2.34) yields the strong convergence in L2(Ω)N×N of
(
√
%η
√
ν̃(kεn)∇uεn)n∈IN to

√
%η
√
ν̃(k)∇u, hence the strong convergence in L1(Ω) of the

sequence (%ηνturb(kεn)|∇uεn |2)n∈IN to %ηνturb(k)|∇u|2. Moreover, by the standard argu-
ment based on the continuity of ν̃, (2.3) and the a.e. convergence of (kεn)n∈IN to k, we
get

(2.35) lim
n→∞

∫
Ω
%η|∇uεn |2 =

∫
Ω
%η|∇u|2,

which combined with (2.28) and the L2-strong convergence of (uεn)n∈IN to u, yields the
strong convergence in Vη.

3 TKE with a fixed velocity

Let u ∈ Vη, k ∈ L1(Ω) be given, 0 < η < η′c, 0 < β < 1, and let

(3.1) D = D(u, k) = %ην̃(k)|∇u|2 ∈ L1(Ω),

and consider the following TKE equation, satisfied by k = k(x):

(3.2)

 u · ∇k − div (%βµ̃(k)∇k) +
k|k|1/2

%
= D(u, k) in Ω,

k = 0 at Γ,
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Remark 3.1. Equation (3.2) can be written as

u · ∇k − %βµ̃(k)∆k −∇(%βµ̃(k)) · ∇k +
k|k|1/2

%
= D(u, k).

Therefore as % > 0 inside Ω, the strong maximum principle method used in [17] can be
adapted to this case, so that any C2-strong solution k to (3.2) is such that k > 0 in Ω.

Throughout this section, D(u, k) is supposed to be bounded in L1 uniformly in u and k
according to (2.5), which means that for any u and k, we take

(3.3) ||D(u, k)||0,1;Ω ≤ D =
||f ||20,2;Ω

2λ
.

Theorem 3.1. Assume u ∈ C0(Ω), and let k ∈ C2(Ω) be any strong solution to (3.2).
Then for any

(3.4) β <
1

2N − 1
= βc, q < qβ = N ′(pβ − 1) = N ′

(
1− β
1 + β

)
,

where pβ = 2
1+β , we have

(3.5) ||k||1,q;Ω + ||%−1k3/2||0,1;Ω ≤ C = C(D,β).

Proof. Step 1. A priori estimate over the sets {n ≤ k < n+ 1}. Let n ∈ IN∗, Hn : IR→ IR
be the odd function given by

(3.6) Hn : t 7→


0 if 0 ≤ t < n,
t− n if n ≤ t < n+ 1,
1 if t ≥ n+ 1.

Notice that Hn is continous, piecewise C1, the derivative of which has a finitie number of
discontinuity and H(0) = 0. Therefore, Stampacchia’s Theorem [23] applies, in particular,
for any κ ∈ W 1,r

0 (Ω), Hn(κ) ∈ W 1,r
0 (Ω), ∇Hn(κ) = ∇κH ′n(κ) a.e and ∇κ = 0 over the

level sets {κ = C} that are not of null measure.
Let k be a strong solution of (3.2). We take Hn(k) as test function in (3.2) and integrate
over Ω. Due to the boundary conditions, on one hand we have,

(3.7)

∫
Ω
Hn(k)u · ∇k = 0,

(see in [15] for instance). On the other hand asHn is an odd function that satifiesHn(t) ≥ 0
over IR+, then Hn(k)k ≥ 0, which yields

(3.8)

∫
Ω

Hn(k)k|k|1/2

%
≥ 0.

According to Stampacchia Theorem, Stokes formula yields

(3.9)

∫
Ω
%βµ̃(k)∇k · ∇Hn(k) ≤

∫
Ω
DHn(k) ≤ D,

given that |Hn| ≤ 1.
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Let Bn ⊂ Ω be defined for any n ∈ IN∗ by (recall that k > 0 in Ω),

Bn = {x ∈ Ω / n ≤ k(x) < n+ 1}.

We obtain by Stampacchia’s Theorem

(3.10) ∇k · ∇Hn(k) = |∇k|2 1Bn a.e. Ω.

Inequality (3.9) yields, by (3.10),

(3.11)

∫
Bn

%β|∇k|2 ≤ 1

νm
D.

The left-hand side of (3.9) can be transformed another way. Indeed, since H ′n(k) =
1Bn a.e. Ω, one has

(3.12) ∇k · ∇Hn(k) = |∇Hn(k)|21Bn = |∇Hn(k)|2 a.e. Ω,

which yields by (3.10)

(3.13) |∇k|2 1Bn = |∇Hn(k)|2 a.e. Ω.

Thus, (3.11) becomes

(3.14)

∫
Ω
%β|∇Hn(k)|2 ≤ 1

νm
D.

Applying Theorem 2.1, we deduce from (3.14) that for any p < pβ = 2
1+β , there exists a

constant C = C(p, β, νm, D) > 0 such that

(3.15)

∫
Bn

|∇k|p =

∫
Ω
|∇Hn(k)|p ≤ C.

Step 2. Ladder process. We deduce now the W 1,p estimate (3.5) from (3.15) by adapting
to this case the Boccardo-Gallouët technique [5]. To do so, Let p < pβ, 1 < q < p. We get
by Hölder’s Inequality

(3.16)

∫
Bn

|∇k|q ≤
(∫

Bn

|∇k|p
)q/p

|Bn|1−(q/p) ≤ Cq/p|Bn|1−(q/p).

Let n0 ∈ IN∗. On the one hand one has

(3.17)

n0−1∑
n=0

∫
Bn

|∇k|q ≤ n0C
q/p|Ω|1−(q/p) ≤ n0 max(C; |Ω|).

On the other hand, let r ≥ 1, the definition of Bn yields

(3.18)

∫
Bn

|k|r ≤ nr|Bn|.

We get by (3.16)

(3.19)
+∞∑
n=n0

∫
Bn

|∇k|q ≤ Cq/p
+∞∑
n=n0

|Bn|1−(q/p) ≤ Cq/p
+∞∑
n=n0

1

n
r(p−q)
p

(∫
Bn

|k|r
) p−q

p

.
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Then the discrete Hölder Inequality yields

(3.20)

+∞∑
n=n0

∫
Bn

|∇k|q ≤ Cq/p
[

+∞∑
n=n0

∫
Bn

|k|r
] p−q

p
[

+∞∑
n=n0

1

n
r(p−q)
q

]q/p
.

Inequality (3.20) brings a condition on r ≥ 1. Indeed, the right-hand side of (3.20) is finite
if and only if the Riemann series converges, which means

(3.21) r >
q

p− q
.

Let the two constants λ1(n0) and λ2(n0) be defined by
λ1(n0) = n0 max(C; |Ω|)

λ2(n0) = Cq/p

[
+∞∑
n=n0

1

n
r(p−q)
q

]q/p
,

with r satisfying (3.21). Consequently, (3.17) and (3.20) ensure the existence of two
constants λ1(n0) and λ2(n0) such that λ2(n0) −→

n0→+∞
0 and

(3.22)

∫
Ω
|∇k|q ≤ λ1(n0) + λ2(n0)

(∫
Bn

|k|r
) p−q

p

= λ1(n0) + λ2(n0)‖k‖
r(p−q)
p

0,r;Ω .

In order to obtain an inequality involving the norm ‖k‖1,q;Ω, the Sobolev embedding

W 1,q
0 (Ω) ↪→ Lr(Ω) must stand, which brings another condition on r:

(3.23) 1 ≤ r ≤ q? =
Nq

N − q
.

For both conditions (3.21) and (3.23) to be satisfied, one needs to have

(3.24)
q

p− q
<

Nq

N − q
hence q <

N(p− 1)

N − 1
.

As this must be satisfied for any p < pβ, we get the following bound for q,

(3.25) q < N ′(pβ − 1) = qβ.

Condition (3.25) makes sense if and only if β is such that

(3.26) 1 < qβ < pβ hence 2− 1

N
< pβ < N.

Since 0 ≤ β < 1, the condition pβ < N is always satisfied. However, pβ > 2 − 1

N
is

equivalent to

(3.27) β <
1

2N − 1
=: βc.

Conditions (3.27) and (3.25) then yield the bounds

(3.28)
βc =

1

3
and qβ = 2

(
2

1 + β
− 1

)
if N = 2

βc =
1

5
and qβ =

3

2

(
2

1 + β
− 1

)
if N = 3.
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Therefore, if β < βc and q < qβ, considering r satisfying (3.21) and (3.23) for all p < pβ,
q < qβ, β < βc, Inequality (3.22) becomes

(3.29) ‖k‖q1,q;Ω . λ1(n0) + cλ2(n0)‖k‖
r(p−q)
p

1,q;Ω .

As when 0 < β < βc, we verify γ =
q?β(pβ − qβ)

pβqβ
< 1, then we deduce from (3.29) that for

q < qβ and 0 < β < βc,

(3.30) ‖k‖1,q;Ω ≤ C = C(β, νm, D),

a constant that blows up when q → qβ or β → βc.

Step 3. L3/2(Ω, ρ−1) estimate. Let Gε : IR→ IR be the odd function given by

(3.31) Gε :

{
Gε(x) =

x

ε
if 0 ≤ x < ε,

Gε(x) = 1 if 1 ≤ x.

We take Gε(k) as test function in (3.2). By the same argument as above,∫
Ω

u · ∇k Gε(k) = 0,

∫
Ω
%βµ̃(k)∇k · ∇Gε(k) =

∫
Ω
G′ε(k)%βµ̃(k)|∇k|2 ≥ 0,

hence, since 0 ≤ Gε(k) ≤ 1, ∫
Ω

Gε(k)k
3
2

ρ
≤ ||D||0,1;Ω.

As k > 0 and ρ > 0 in Ω, Gε(k)k
3
2

ρ → k
3
2

ρ a.e. in Ω. Then by Fatou’s Lemma,

(3.32) 0 ≤
∫

Ω

k
3
2

ρ
≤ ||D||0,1;Ω.

Notice that this last estimate does not require any restriction about β.

Remark 3.2. Let Tn be the truncation at eight n. Then by taking Tn(k) as test in (3.2),
we see that Tn(k) ∈W 1,p

0 (Ω), uniformly in n, namely for any p < pβ,

(3.33) ||Tn(k)||1,p;Ω ≤ C(D, νm, β).

Remark 3.3. We get the same estimate if instead of (3.2) we consider its following
regularization, where ε > 0,

(3.34)


u · ∇k − div (%βµ̃(k)∇k)− ε∆k +

k3/2

%+ ε
= D(u, k) in Ω,

k ≥ 0 in Ω,
k = 0 at Γ,

for a given u ∈ V0, and considering renormalized solutions k ∈
⋂
r<N ′

W 1,r
0 (Ω) such that

for any n ∈ IN, Tn(k) ∈ H1
0 (Ω) (see [7, 15]). For these solutions, tests can be taken

in W 1,∞
0 (Ω), as well as function of the form h(k)ϕ, for q ∈ W 1,∞

0 (Ω) and h : IR →
IR, continuous, bounded, C1-piecewise such that h′ ∈ L∞(IR) with a finite number of
discontinuities. This is what justifies that the whole procedure above to get estimates also
applies to this regularized equation.

In the following we set

(3.35) Kβ =
⋂

1≤q<qβ

W 1,q
0 (Ω).
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4 Main result

According to the previous sections, the assumptions about the data are the following:

(4.1)


ν̃, µ̃ : IR→ IR are continuous and ∀ k ∈ IR, 0 < νm ≤ ν̃(k), µ̃(k) ≤ νM ,
f ∈ L2(Ω)N , λ > 0
0 < η < η′c = 1

6N−9 , β < βc = 1
2N−1 .

Definition 4.1. When (4.1) holds, we say that (u, k) ∈ Vη ×Kβ is a weak solution to the
initial problem (1.4) if k ≥ 0 a.e in Ω, and if for all (v, ϕ) ∈ Vη ×D(Ω),

λ

∫
Ω

u · v −
∫

Ω
u⊗ u : ∇vT +

∫
Ω
%ην̃(k)∇u : ∇v =

∫
Ω

f · v,(4.2)

−
∫

Ω
k u · ∇ϕ+

∫
Ω
%βµ̃(k)∇k∇ϕ+

∫
Ω

k3/2ϕ

%
=

∫
Ω
D(u, k)ϕ,(4.3)

where D(u, k) = ρην̃(k)|∇u|2.

Remark 4.1. As shown in section 2.3, the assumption about η makes sure that all the in-
tegrals in (4.2) are well defined. Moreover, by (2.5) and (3.3), D(u, k) ∈ L1(Ω). Therefore,
by (3.5), it is guaranteed that all the integrals in (4.3) are well defined, except the tansport
term about which we must take care. However, k ∈ L3/2(Ω) and as Vη ⊂ H1

loc(Ω)N , then
for a given ϕ ∈ D(Ω), we have at least u ∈ L3(supp(ϕ)). Therefore, k u ∈ L1(supp(ϕ)),
which makes well defined the integral

∫
Ω k u · ∇ϕ since ∇ϕ ∈ L∞(Ω).

Definition 4.2. We say that (u, k) ∈ V0 × (∩q<N ′W 1,q
0 (Ω)) is a weak solution to the

perturbed Problem (1.5) if k ≥ 0 a.e in Ω, and if for all (v, ϕ) ∈ V0 ×D(Ω),

λ

∫
Ω

u · v −
∫

Ω
u⊗ u : ∇vT +

∫
Ω
%ην̃(k)∇u : ∇v + ε

∫
Ω
∇u : ∇v =

∫
Ω

f · v,(4.4)

−
∫

Ω
k u · ∇ϕ+

∫
Ω
%βµ̃(k)∇k∇ϕ+ ε

∫
Ω
∇k · ∇ϕ+

∫
Ω

k3/2ϕ

%+ ε
=

∫
Ω
D(u, k)ϕ.(4.5)

By [15], we already know:

Theorem 4.1. Let ε > 0. Assume that ν̃, µ̃ : IR → IR are continuous, bounded and
nonnegative, f ∈ V ′0, λ ≥ 0. Let 0 ≤ η, β ≤ 1. Then Problem (1.5) has a weak solution
(uε, kε) ∈ V0 × (∩q<N ′W 1,q

0 (Ω)).

We prove the following result:

Theorem 4.2. Assume that (4.1) holds. Then the initial Problem (1.4) has a weak so-
lution obtained by approximation (SOLA). More precisely, let (uε, kε) be a weak solu-
tion to the perturbed problem (1.5). Then there exists (εn)n∈IN that converges to 0 and
(u, k) ∈ Vη × Kβ a weak solution to the initial problem such that the sequence (uεn)n∈IN

strongly converges to u in Vη and the sequence (kεn)n∈IN weakly converges to k in W 1,q
0 (Ω)

for all 1 ≤ q < qβ.

Proof. The proof is the synthesis of the sections 2 and 3. Passing to the limit in the
fluid equation was already done in the proof of Theorem 2.2. Theorem 2.3 ensures the
strong convergence of the source term in L1(Ω). We already know estimates for the TKE
from Theorem 3.1 and Remark 3.3. Therfore, we summerize in a first step the sequence
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extraction process, and we procced in a second step to pass to the limit in the TKE
equation.

Step 1. Extracting subsequences - Due to (4.1), particulary the choices of η and β, we know
from step 1 of the proof of Theorem 2.2 and Theorem 3.1, that there exists (εn)n∈IN that
converges to 0, such that the family (uεn)n∈IN is bounded in Vη, and the family (kεn)n∈IN

is bounded in W 1,q
0 (Ω) for any 1 < q < qβ (recall that qβ is given by (3.4)). Arguing as

Step 2 of the proof of Theorem 2.2, based on a standard compactness argument combined
to an uniqueness argument and Lebesgue inverse Theorem, we deduce that there exists
(εn)n∈IN, u ∈ Vη and k ∈ Kβ such that

1. (uεn)n∈IN converges weakly to u in Vη,

2. (uεn)n∈IN converges weakly to u in W p
0 (Ω)N for all 1 < p < pη,

3. (uεn)n∈IN converges strongly to u in Lq(Ω)N for all q < p?η,

4. (kεn)n∈IN converges weakly to k in W q
0 (Ω) for all 1 < q < qβ,

5. (kεn)n∈IN converges strongly to k in Lr(Ω) for all 1 < r < q?β,

6. (kεn)n∈IN converges a.e. to k.

Moreover, by Theorem 2.3 and from the proof of Theorem 2.2, we can add to the list that
(uεn)n∈IN converges strongly to u in Vη, and that (u, k) satisfy (4.2). We also know that the
sequence (%ηνturb(kεn)|∇uεn |2)n∈IN converges strongly in L1(Ω) to %ηνturb(k)|∇u|2. Finally,
as Vη ⊂ H1

loc(Ω), by the same argument as in the proof of 2.2 based on the uniqueness of
the limit, (εn)n∈IN can be chosen so that for any ω ⊂⊂ Ω, (uεn |ω)n∈IN converges strongly
to u|ω in Lp(Ω)N , for all p <∞ when N = 2, and p < 6 when N = 3.

Step 2. Passing to the limit in the TKE equation - Let ϕ ∈ D(Ω), and let ω ⊂⊂ Ω denotes
the support of ϕ. From the above, we already know that when n→∞,∫

Ω
D(uεn , kεn)ϕ→

∫
Ω
D(u, k)ϕ.

By a usual argument [6, 15], we also have∫
Ω
%βµ̃(kεn)∇kεn∇ϕ→

∫
Ω
%βµ̃(k)∇k∇ϕ.

Moreover, let 1 < q < qβ be fixed. By the weak convergence of (kεn)n∈IN to k in W 1,q
0 (Ω)

to k and D(Ω) ⊂W 1,q′

0 (Ω), ∫
Ω
∇kεn∇ϕ→

∫
Ω
∇k∇ϕ.

hence

ε

∫
Ω
∇kεn∇ϕ→ 0.

Whether we are in dimension 2 or in dimension 3, we easily check that 3/2 < q?β. Therefore,
as %|ω ≥ Cω > 0,

k
3/2
εn

%+ εn
→ k3/2

%
in L1(ω),
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which leads to ∫
Ω

k
3/2
εn ϕ

%+ εn
→
∫

Ω

k3/2ϕ

%
.

Finally, by the same argument using uεn → u in L3(ω),∫
Ω
kεn uεn · ∇ϕ→

∫
Ω
k u · ∇ϕ.

As we were able to pass to the limit in the TKE equations, we have shown that (u, k) also
satisfies (4.3), which concludes the proof.
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