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Abstract

We are considering a steady-state turbulent Reynolds-Averaged Navier-Stokes (RA-
NS) model that couples the equation for the velocity-pressure mean field with the
equation for the turbulent kinetic energy. Eddy viscosities vanish at the boundary,
characterized by terms like d(x,Γ)η and d(x,Γ)β , where 0 < η, β < 1. We determine
critical values ηc and βc for which the system has a weak solution. This solution is
obtained as the limit of viscous regularizations for 0 < η < ηc and 0 < β < βc.
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1 Introduction

This paper is dedicated to the analysis of a stationary coupled PDE system (see (1.4)
below) that arises in incompressible turbulence modeling.
The modeling of turbulence in fluid mechanics involves decomposing the velocity and
pressure fields into mean fields, denoted as u and p in this work. These mean fields are
assumed to be stationary, representing long-time averages. The fluctuations are denoted
as u′ and p′. By averaging the Navier-Stokes equations, we obtain the Reynolds stress
tensor R, representing the long-time average of the tensor product u′⊗u′ [7, 22, 24]. It is
crucial to model this Reynolds tensor, and it is widely accepted to be dissipative [3, 10].
According to the Boussinesq hypothesis, it is made proportional to the average strain
tensor via a turbulent viscosity denoted as νt. The question then arises as to whether the
molecular diffusion term is negligible compared to the turbulent diffusion term.
Various approaches exist for modeling νt, either within the framework of statistical averages
(RANS-type models) or by filtering the high frequencies of the flow (LES-type models).
In this article, we focus on a RANS model, while the case of LES models is studied in [16].
Generally speaking, in RANS models, turbulent viscosity is a function of turbulent kinetic
energy, k (TKE), and turbulent dissipation ε. This can be simplified by relating TKE k
to ε through the Prandtl mixing length, denoted by %, by the dimensional law

ε =
k|k|1/2

%
,
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yielding the following law for the eddy viscosity:

(1.1) νt = C%
√
k,

where C is a dimensionless constant (and k ≥ 0). After a modeling process [7, 22], one
obtains the following equation for k in the steady state case, named TKE model:

(1.2) u · ∇k −∇ · (µt(k)∇k) +
k|k|1/2

%
= νt(k)|Du|2,

where u is the fluid velocity, Du = 1
2(∇u + (∇u)T ) is the strain tensor, µt is an eddy

diffusion similar to the eddy viscosity given by (1.1).
Assuming that % is a smooth bounded function such that %(x) ≥ %0 > 0 in the fluid domain
Ω, the coupling of the resulting steady-state Navier-Stokes equation with eddy diffusion
to the TKE model (1.2) has been extensively studied [2, 7, 11, 15, 18, 19].
In most cases, we assume that νt is bounded below and above. This assumption can
be implemented by replacing C

√
k with a truncation function ν̃ defined on the interval

[1/M,M ], where ν̃ is equal to C
√
k, and on [0, 1/M ], where it is equal to C/

√
M , and on

[M,∞[, where it is equal to C
√
M , for some M > 0.

In this paper, we remain in this framework and focus on the problem posed by the Prandtl
mixing length %. In many physical applications, such as meteorology or oceanography
[17, 23], % = %(x) vanishes at the boundary, equivalent to the distance to the boundary Γ,
denoted d(x,Γ), which poses a major difficulty. Notice that it may also be of order

√
d, as

in the case of shear flows [13]. Throughout the paper, we consider the case %(x) ≈ d(x,Γ)
as x→ Γ.
A similar problem was already considered in the case of some LES models [4, 5, 25, 26],
where the eddy viscosity is proportional to %2 (instead of % as in the TKE model), leading
to challenging open problems. In these papers, the authors suggest relaxing this law and
taking an eddy viscosity proportional to %α, for some 0 < α < 2. The same situation
occurs in the case of RANS problems. Therefore, in this paper, we aim to relax the law
given by (1.1) by taking

(1.3) νt(k) = %ην̃(k),

for 0 < η < 1, and we study the coupling of the resulting steady-state Navier-Stokes
equation to (1.2), within the scope of the viscous approximations posed by the question
of whether or not we can neglect the molecular viscosity in comparison with the turbulent
viscosity.
To be more specific, let Ω be a C 0,1 bounded open subset of RN , where N = 2, 3, 0 < η < 1,
0 < β < 1, and 0 < λ. As mentioned earlier, % : Ω → R∗+ is a C∞ function equivalent
to d(x,Γ) near Γ (see the precise assumption in Section 2.1). We consider the following
stationnay system, where p denotes the pressure12:

(1.4)



λu + (u · ∇)u− div(%ην̃(k)∇u) +∇p = f in Ω,
div u = 0 in Ω,

u · ∇k − div(%βµ̃(k)∇k) +
k|k|1/2

%
= %ην̃(k)|∇u|2 in Ω,

k ≥ 0 in Ω,
u = k = 0 on Γ.

1We replace Du by ∇u for simplicity without loss of generality, thanks to the Korn inequality.
2Still, for simplicity, we consider homogeneous boundary conditions instead of the usual nonlinear laws

at the boundary given by the turbulence modeling framework.
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The term λu is a stabilization term, which can be seen as a discrete evolution term coming
from a finite difference and plays an important role in the proofs of the main results. We
next introduce the approximated system obtained by viscous regularization, where ε > 0,

(1.5)



λu + (u · ∇)u− div(%ην̃(k)∇u)− ε∆u +∇p = f in Ω,
div u = 0 in Ω,

u · ∇k − div(%βµ̃(k)∇k)− ε∆k +
k|k|1/2

%+ ε
= %ην̃(k)|∇u|2 in Ω,

k ≥ 0 in Ω,
u = k = 0 on Γ.

For this system, we know from [18] the existence of a weak solution in an appropriate
sense. We transcribe the question ”Is the molecular diffusion term negligible compared to
the turbulent diffusion term?” by ”Do the solutions of the system (1.5) converge towards
a solution -in some weak sense- of the system (1.4)” when ε goes to 0?
As we will see, the situation is seriously complicated. We only get a positive answer at the
cost of severe restrictions on the exponents η and β, i.e., when 0 < η < 1

2 and 0 < β < 1
3 in

dimension 2, and 0 < η, β < 1
5 in dimension 3. A specific statement is given by Theorem

4.2 below, which is the main result of this paper.
The paper is structured into three main sections and organized as follows. In the first
section, we focus on the study of the steady Navier-Stokes equations with an eddy viscosity,
as given in (1.3), for a specified k. To achieve this, we meticulously define the function space
in which we seek solutions. We employ the natural weighted Sobolev space of divergence-
free vector fields, deduced from the energy balance. Utilizing results from Kufner [14], we
embed this space into W 1,p for 1 ≤ p < pη = 2

1+η , and subsequently into H1−η/2 through
an interpolation argument, following Amrouche-Moussaoui [1].
Once the functional framework is established, we demonstrate the existence of a weak so-
lution (see Definition 2.1 below), obtained as a limit of the viscous regularization (SOLA3)
by introducing the term −ε∆u, for 0 < ε. However, for the coupling with the TKE equa-
tion, strong convergence of the approximations in our weighted space is necessary, and
the obtained (SOLA) must satisfy the energy balance. This requirement holds only if
0 < η < 1/2 when N = 2 and 0 < η < 1/5 when N = 3.
In the second section, our focus shifts to the TKE equation for a fixed vector field u, espe-
cially in deriving a priori estimates in regular Sobolev spaces. This task is not straightfor-
ward due to the presence of the right-hand side in L1 and the degeneracy of the diffusive
term at the boundary. To address this, we continue to use a weighted Sobolev space and
adapt the ladder method initially introduced by Boccardo-Gallouët [6]. This adaptation
stands as one of the principal contributions of this paper.
The third section synthesizes the findings from the previous two sections. Here, we suc-
cessfully take the limit in the viscous regularizations (1.5) as ε tends to 0 and establish
the main theorem, namely Theorem 4.2. This also verifies the existence of a weak solution
to system (1.4), namely a (SOLA). It is important to note that the equation for TKE
only holds in the sense of distributions, and achieving better results would require further
reductions in the size of the β parameter.

3SOlution Obtained by Approximations
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2 Velocity equation with a fixed TKE

2.1 General setting and space function

Let Ω be a C 0,1 bounded open subset of IRN (N = 2, 3), Γ its boundary, % : Ω → IR+ a
C∞ function equivalent to the distance to the boundary, which satisfies

lim
d(x,Γ)→0
x∈Ω

%(x)

d(x,Γ)
= 1,(2.1)

∀n > 0, %n = inf
d(x,Γ)≥ 1

n
x∈Ω

%(x) > 0(2.2)

The functions ν̃, µ̃ : IR→ IR are continous, bounded by above and by below, namely

(2.3) ∀ k ∈ IR, 0 < νm ≤ ν̃(k), µ̃(k) ≤ νM ,

We start by studying the velocity equation for a fixed TKE function k ∈ L1(Ω), and a
source term f ∈ L2(Ω)N . The corresponding Navier-Stokes equations are as follows:

(2.4)


λu + (u · ∇)u− div (%ην̃(k)∇u) +∇p = f in Ω,
div u = 0 in Ω,
u = 0 at Γ.

To obtain an a priori estimate, we formally take the dot product of the momentum equa-
tion with u and integrate by parts. A standard calculation, utilizing the no-slip boundary
condition and incompressibility, yields ((u · ∇)u,u) = 0 and (∇p,u) = 0, resulting in the
energy balance:

(2.5) λ

∫
Ω
|u|2 +

∫
Ω
%ην̃(k)|∇u|2 = 〈f ,u〉.

Consequently, as f ∈ L2(Ω)N , we deduce from (2.3) the a priori estimate:

(2.6)

∫
Ω
|u|2 +

∫
Ω
%η|∇u|2 ≤ C =

‖f‖20,2;Ω

2λmin(λ/2, νm)
.

This suggests to introduce the space fonction Vη defined as the closure of V for the norm

(2.7) ‖u‖1,2;%,η =
(
‖u‖20,2,Ω + ‖%η/2∇u‖20,2,Ω

)1/2
,

where

(2.8) V = {u ∈ D(Ω)N / div u = 0}.

In particular, Vη is a Hilbert space with the scalar product

(2.9) (u,v)1,2;%,η =

∫
Ω

u · v +

∫
Ω
%η∇u : ∇v.

The norm given by (2.7) corresponds to the H1-norm when η = 0. Consequently, the Vη
functions are not likely to be in H1. The following result from [1] gives Hs-regularity for
1/2 < s ≤ 1.
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Theorem 2.1. Let η ∈]0; 1[, the continuous embedding

(2.10) Vη ↪→ H1− η
2 (Ω)N

stands.

Consequently, the Sobolev embedding theorem yields the compact embedding

(2.11) Vη ↪→ Lr(Ω)N ,

for all

(2.12) r < r?η :=
2N

N + η − 2
=


4

η
if N = 2,

6

1 + η
if N = 3.

We present the proof of Theorem 2.1 in Appendix A for the sake of self-containment.
However, this result does not guarantee that gradients of functions in Vη belong to certain
Lq spaces, which, nevertheless, is necessary. To address this, we will rely on a result from
[14, Proposition 6.5], as stated below.

Theorem 2.2. Assume that Ω satisfies the cone property, and let η ∈ ]0, 1[. For any p
such that

(2.13) 1 ≤ p < 2

1 + η
=: pη,

the following continuous embedding holds

(2.14) Vη ↪→W 1,p
0 (Ω)N .

Remark 2.1. We deduce from Theorem 2.2 that vector fields in Vη have a trace at Γ
which is equal to 0, giving a sense to the no slip boundary condition for vector fields in Vη.

Remark 2.2. The critical exponent p?η is given by

(2.15) q < p?η :=
2N

N(1 + η)− 2
=


2

η
if N = 2,

6

1 + 3η
if N = 3.

Therefore, Theorem 2.1 establishes a superior Lebesgue regularity for vector fields in Vη
compared to Theorem 2.2. Specifically, we have Vη ↪→ Lq(Ω)N for a given q > 2, where
N = 2, 3.

Remark 2.3. The following Poincaré inequality holds, for all p < pη and all u ∈ Vη,

(2.16) ‖u‖0,p,Ω ≤ C‖u‖1,2;%,η,

where C = C(p,Ω).

Throughout the rest of the paper, we assume that Ω satisfies the cone property, in order
to verify (2.14).
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Remark 2.4. Let η ∈]0; 1[. The space Vη is a distributional space, and in particular we
conjecture that

(2.17) Vη =
{

u ∈ D′(Ω)N , div u = 0, u ∈ L2(Ω)N , %η/2∇u ∈ L2(Ω)N×N , u|Γ = 0
}
.

Unfortunetely, we were not able to prove this result, which is open.

We also denote in what follows

(2.18) V0 = {u ∈ H1
0 (Ω)N ; div u = 0}.

This space is well-defined, and V is dense in it.

2.2 Weak solutions and existence result

We begin by presenting the weak formulation of Problem (2.4), excluding the pressure as
it involves free divergence vector fields as test functions. However, it is essential to account
for the transport term, which gets as div u = 0,

(u · ∇)u = div (u⊗ u),

and which formally acts in the sense of the distributions as

(2.19) ∀ϕ ∈ D′(Ω)N, 〈div (u⊗ u, ϕ〉 = −
∫

Ω
u⊗ u : ∇ϕT .

We deduce from (2.12) that for all 0 < η < 1, r?η > 2. Therefore,

∀u ∈ Vη, ∀ q ∈ ]2; r?η[, u⊗ u ∈ Lq/2(Ω)N×N .

Hence, for any δ ∈ [2; r?η[ we are led to take tests v such that

(2.20) v ∈
⋃

δ<q<r?η

(
Vη ∩W 1,(q/2)′

0 (Ω)N
)

=: Hη,δ

In particular, when v ∈ Hη,δ,
u⊗ u : ∇v ∈ L1(Ω),

as well as
λu · v + %ην̃(k)∇u : ∇v ∈ L1(Ω),

since ν̃(k) ∈ L∞(Ω), and f ·v ∈ L1(Ω). Unfortunately, in view of the construction of weak
solutions to Problem (2.4), we must reduce the space Hη,δ a little bit for technical reasons
that will be cleared in the following. Let r > 1, and let us consider V given by (2.8)),
equiped with the norm

‖v‖η,r = ‖v‖1,2;%,η + ‖v‖1,r,Ω,

and let Kη,r denotes the closure of V for the norm ‖ · ‖η,r. Notice that we naturally have

(2.21) Kη,r ↪→ Vη.

The tests vector fields set we consider is given by

(2.22) Wη,δ =
⋃

δ<q<r?η

Kη,(q/2)′ ,

which is a subset of Hη,δ.
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Remark 2.5. We do not know wether, in general, Wη,δ = Hη,δ. However, as we shall see
in the following section, we have Wη,δ = Vη for 0 < η < ηc and δ0 < δ < r?η.

The fact that the set of vector field tests is labeled by a parameter δ implies that the notion
of a weak solution depends on this parameter. This suggests the following definition of a
weak solution.

Definition 2.1. We say that u ∈ Vη is a δ-weak solution to Problem (2.4) if ∀v ∈Wη,δ,

(2.23) λ

∫
Ω

u · v −
∫

Ω
(u⊗ u) : (∇v)T +

∫
Ω
%ην̃(k)∇u : ∇v =

∫
Ω

f · v.

Remark 2.6. Let 2 ≤ δ1 < δ2 < r?η. Then obvioulsy Wη,δ2 ⊂ Wη,δ1. Therefore any
δ1-weak solution is a δ2-weak solution. However, it is not clear that a δ2-weak solution is
a δ1-weak solution.

Theorem 2.3. Let η ∈ ]0; 1[, k ∈ L1(Ω), f ∈ L2(Ω)N , δ ∈ [2; r?η[. Then Problem (2.4) has
a δ-weak solution obtained by approximation (SOLA).

Proof. We argue using viscous regularization, with the proof being divided into three
steps. First, we introduce the viscous regularization we consider, and we obtain a uniform
estimate in Vη for the resulting equations. Then we extract subsequences by weak com-
pactness and Theorem 2.2. Finally, we pass to the limit as the viscous parameter ε goes
to 0.

Step 1. Approximations and estimate. We argue by singular perturbations. Let ε > 0.
According to standard results (see for instance in [7]), we know the existence of uε ∈ V0

such that for any v ∈ V0

(2.24) λ

∫
Ω

uε ·v−
∫

Ω
(uε⊗uε) : (∇v)T +

∫
Ω
%ην̃(k)∇uε : ∇v + ε

∫
Ω
∇uε : ∇v =

∫
Ω

f ·v.

Taking v = uε as test, we get the following energy balance, since the transport term
vanishes,

(2.25) λ

∫
Ω
|uε|2 +

∫
Ω
%ην̃(k)|∇uε|2 + ε

∫
Ω
|∇uε|2 =

∫
Ω

f · uε.

In particular, as f ∈ L2(Ω)N , the familly (uε)ε>0 is bounded in Vη.

Step 2. Extracting subsequences. From the bound in Vη, we deduce the existence of a
sequence (εn)n∈IN and u ∈ Vη such that:

1) The sequence (uεn)n∈IN weakly converges to u in Vη,

2) The sequence (uεn)n∈IN weakly converges to u in H1− η
2 (Ω)N ,

3) The sequence (uεn)n∈IN strongly converges to u in Lr(Ω)N for all q < r?η, where r?η
is given by (2.12),

4) The sequence (∇uεn)n∈IN weakly converges to ∇u in W 1,p
0 (Ω)N×N , for all p < pη.

Item 1) is straightforward. Items 2) 3) and 4) require additional comments. Indeed,
let (uεn)n∈IN which weakly converges to u in Vη, as given by item 1. As the sequence

(uεn)n∈IN is bounded in H1− η
2 (Ω)N by Theorem 2.1, we can extract a subsequence, still

7



denoted (uεn)n∈IN, which weakly converges to some v ∈ H1− η
2 (Ω), and by the way in

D′(Ω). But as uεn → u in Vη-weak, by (2.2) convergence in D′(Ω) also holds.
Therefore by the uniqueness of the limit, u = v. Items 3) and 4) stand by a similar
argument.

Step 3. Passing to the limit in the equations. Let us take v ∈ V as test in (2.24). It is
easily checked that

λ

∫
Ω

uεn · v +

∫
Ω
%ην̃(k)∇uεn : ∇v −→

n→+∞
λ

∫
Ω

u · v +

∫
Ω
%ην̃(k)∇u : ∇v,(2.26) ∫

Ω
(uεn ⊗ uεn) : (∇v)T −→

n→+∞

∫
Ω

(u⊗ u) : (∇v)T .(2.27)

It remains to deal with the term εn
∫

Ω∇uεn : ∇v. As ∇v ∈ L∞(Ω), and in particular
∇v ∈ Lq(Ω)N×N for any q > (pη)

′. Therefore by item 4),∫
Ω
∇uεn : ∇v −→

n→+∞

∫
Ω
∇u : ∇v,

hence

εn

∫
Ω
∇uεn : ∇v −→

n→+∞
0.

In conclusion, u satisfies (2.23) for any v ∈ V. Let v ∈ Wη,δ. There exists q ∈ ]δ; r?η[
such that v ∈ Kη,(q/2)′ . It follows the existence of a sequence (vn)n∈IN of vector fields in

V which converges to v in both Vη and W
1,(q/2)′

0 (Ω)N , which explains the reason of the
special construction of Wη,δ. Taking vn as test in (2.23), and passing to the limit when
n→ +∞ yields u satisfies (2.23) for any v ∈Wη,δ.

Remark 2.7. By De Rham Theorem, we know the existence of a pressure p ∈ L2
loc(Ω)

such that (2.4) holds in D′(Ω).

2.3 Energy balance and strong convergence

In this section, we address the question of the strong convergence in Vη of the approxima-
tions to Problem (2.23) constructed earlier. Our initial objective is to determine whether a
δ-weak solution satisfies the energy balance for a suitable choice of δ and η. The following
results hold.

Lemma 2.1. Let η ∈ ]0; ηc[, where

(2.28) ηc =

{
1/2 if N = 2,
1/5 if N = 3.

Then there exists δ0 ∈ ]2; r?η[ such that for all δ ∈ ]δ0; r?η[, any δ-weak solution u of Problem
(2.23) satisfies the energy balance (2.5).

Proof. The energy balance holds when we take u itself as test vector field. This is the case
when

(2.29) Wη,δ = Vη,

knowing already by that Wη,δ ⊂ Vη. According to Theorem 2.2, a function v ∈ Vη satisfies
∇v ∈ Lp(Ω)N×N for p ∈ [1; pη[.

8



Therefore, (2.29) is satisfied if (
r?η
2

)′
< pη,

which yields the bound (2.28) after elementary calculations. Moreover, as [p 7→ p′] is
non-increasing and continuous, there exists δ0 ∈]2; r?η[, such that(

r?η
2

)′
<

(
δ0

2

)′
< pη.

Therefore, for δ0 < q < r?η we have
( q

2

)′
< pη and we deduce from Theorem 2.2,

Vη ⊂W (q/2)′

0 (Ω)N .

Therefore, by (2.2)
‖v‖η,(q/2)′,Ω ≤ C‖v‖1,2;%,η,

which means Vη ↪→ Kη,(q/2)′ , hence Vη = Kη,(q/2)′ by (2.21), leading to (2.29).

Remark 2.8. After some calculus, we find for optimal value of δ0:

(2.30)


δ0 =

4

2− η
when N = 2,

δ0 =
12

5− 3η
when N = 3.

We are now able to prove the following convergence result.

Theorem 2.4. Let η ∈ ]0; ηc[, δ ∈ ]δ0; r?η[, and let (kε)ε>0 be a family in L1(Ω) which
converges in L1(Ω) to some k. Let uε ∈ V0 such that for any v ∈ V0

(2.31) λ

∫
Ω

uε · v −
∫

Ω
(uε ⊗ uε) : (∇v)T +

∫
Ω

(%η + ε)ν̃(kε)∇uε : ∇v =

∫
Ω

f · v.

Then there exists a sequence (εn)n∈IN such that the sequence (uεn)n∈IN strongly converges
in Vη to a δ-weak solution u ∈ Vη of Problem (2.4) which in addition satisfies the energy
balance (2.5). Moreover, the sequence (%ην̃(kεn)|∇uεn |2)n∈IN converges strongly in L1(Ω)
to %ην̃(k)|∇u|2.

Proof. We argue in two steps. First, following the proof of Theorem 2.3, we get the
existence of a sequence (εn)n∈IN, such that the sequence (uεn)n∈IN weakly converges in Vη
to a δ-weak solution u ∈ Vη of Problem (2.4). Then we prove the strong convergence in
Vη by the energy method.

Step 1. The only addition to be made, is to check how to pass to the limit in the diffusion
term. We first notice that the sequence (εn)n∈IN can be chosen such that the sequence
(kεn)n∈IN converges a.e. to k, by the inverse Lebesgue Theorem. Let v ∈ V, δ < q < r?η.
Then

(2.32) %η/2∇uεn −→
n→+∞

%η/2∇u weakly in L2(Ω)N×N ,

while

(2.33) %η/2ν̃(kεn)∇v −→
n→+∞

%η/2ν̃(k)∇v a.e. in Ω,
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because ν̃ is a continuous function. Therefore, since

|%η/2ν̃(kεn)∇v| ≤ νM |%η/2ν̃(kεn)∇v| ∈ L2(Ω),

by (2.3), then the convergence in (2.33) also holds in L2(Ω)N×N , by Lebesgue Theorem.
In conclusion ∫

Ω
%ην̃(kεn)∇uεn : ∇v −→

n→+∞

∫
Ω
%ην̃(k)∇u : ∇v.

The rest is as in the proof of Theorem 2.3, the energy balance being satisfied by Lemma
(2.28).

Step 2. It remains to prove the strong convergence. To do so we use the so called ”energy
method”. We deduce from (2.32) and the same argument as above that

(2.34) %η/2
√
ν̃(kεn)∇uεn −→

n→+∞
%η/2

√
ν̃(k)∇u weakly in L2(Ω)N×N .

Therefore,

(2.35)

∫
Ω
%ην̃(k)|∇u|2 ≤ lim inf

n→∞

∫
Ω
%ην̃(kεn)|∇uεn |2.

Now, we write the energy balances satisfied by u and uεn :

(2.36)


λ

∫
Ω
|uεn |2 +

∫
Ω
%ην̃(kεn)|∇uεn |2 + εn

∫
Ω
|∇uεn |2 = 〈f ,uεn〉

λ

∫
Ω
|u|2 +

∫
Ω
%ην̃(k)|∇u|2 = 〈f ,u〉.

As (uεn)n∈IN converges to u strongly in L2(Ω)N ,

lim
n→∞

∫
Ω
|uεn |2 =

∫
Ω
|u|2, lim

n→∞
〈f ,uεn〉 = 〈f ,u〉.

Therefore, by (2.36), we have

(2.37) lim
n→∞

(∫
Ω
%ην̃(kεn)|∇uεn |2 + εn

∫
Ω
|∇uεn |2

)
=

∫
Ω
%ην̃(k)|∇u|2,

which combined with (2.35) leads to

(2.38) lim
n→∞

∫
Ω
%ην̃(kεn)|∇uεn |2 =

∫
Ω
%ην̃(k)|∇u|2, and lim

n→∞
εn

∫
Ω
|∇uεn |2 = 0.

Therefore, combining (2.34) with (2.38) yields the strong convergence in L2(Ω)N×N of
(%η/2

√
ν̃(kεn)∇uεn)n∈IN to %η/2

√
ν̃(k)∇u, hence the strong convergence in L1(Ω) of the

sequence (%ην̃(kεn)|∇uεn |2)n∈IN to %ην̃(k)|∇u|2. Moreover, by the standard argument
based on the continuity of ν̃, (2.3) and the a.e. convergence of (kεn)n∈IN to k, we get

(2.39) lim
n→∞

∫
Ω
%η|∇uεn |2 =

∫
Ω
%η|∇u|2,

which combined with (2.32) and the L2-strong convergence of (uεn)n∈IN to u, yields the
strong convergence in Vη.
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3 TKE with a fixed velocity

In this section, we tackle a substantial challenge. We aim to obtain estimates in the spirit
of Boccardo-Gallouët [6] for the equation involving k. In addition to the typical difficulty
arising from the source term in L1, we must confront the degeneracy of the diffusion
coefficient at the boundary, introducing additional challenges.

Let β ∈ ]0; 1[, and
D ∈ L1(Ω), 0 ≤ D a.e. in Ω.

We consider the following TKE equation, satisfied by k = k(x):

(3.1)

 u · ∇k − div (%βµ̃(k)∇k) +
k|k|1/2

%
= D in Ω,

k = 0 at Γ,

Remark 3.1. Equation (3.1) can be written as

u · ∇k − %βµ̃(k)∆k −∇(%βµ̃(k)) · ∇k +
k|k|1/2

%
= D.

Therefore as % > 0 inside Ω, the strong maximum principle method used in [20] can be
adapted to this case, so that any C 2-strong solution k to (3.1) is such that k > 0 in Ω.

Throughout this section, we assume

(3.2) ‖D‖0,1;Ω ≤ D =
‖f‖20,2;Ω

2λ
.

Remark 3.2. In the system we are looking at, D = D(u, k) = %ηµ̃(k)| ∇u|2, which satisfies
(3.2) thanks to the energy balance (2.5).

Theorem 3.1. Assume u ∈ C 0(Ω), and let k ∈ C 2(Ω) be any strong solution to (3.1).
Then for any

(3.3) β <
1

2N − 1
= βc, q < qβ = N ′(pβ − 1) =

N ′(1− β)

1 + β
,

where pβ = 2
1+β , we have

(3.4) ‖k‖1,q;Ω + ‖%−1k3/2‖0,1;Ω ≤ C = C(D,β).

Proof. Step 1. A priori estimate over the sets {n ≤ k < n+ 1}. Let n ∈ IN∗, Hn : IR→ IR
be the odd function given by

(3.5) Hn : t 7→


0 if 0 ≤ t < n,
t− n if n ≤ t < n+ 1,
1 if t ≥ n+ 1.

Notice that Hn is continuous, piecewise C 1, the derivative of which has a finite number of
discontinuities and H(0) = 0. Therefore, Stampacchia’s Theorem [27] applies, in particu-
lar, for any κ ∈W 1,r

0 (Ω), Hn(κ) ∈W 1,r
0 (Ω), ∇Hn(κ) = ∇κH ′n(κ) a.e and ∇κ = 0 over the

level sets {κ = C} that are not of null measure.
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Let k be a strong solution of (3.1). We take Hn(k) as test function in (3.1) and integrate
over Ω. Due to the boundary conditions, on one hand we have,

(3.6)

∫
Ω
Hn(k)u · ∇k = 0,

(see in [18] for instance). On the other hand asHn is an odd function that satifiesHn(t) ≥ 0
over IR+, then Hn(k)k ≥ 0, which yields

(3.7)

∫
Ω

Hn(k)k|k|1/2

%
≥ 0.

According to Stampacchia Theorem, Stokes formula yields

(3.8)

∫
Ω
%βµ̃(k)∇k · ∇Hn(k) ≤

∫
Ω
DHn(k) ≤ D,

given that |Hn| ≤ 1.

Let Bn ⊂ Ω be defined for any n ∈ IN∗ by (recall that k > 0 in Ω),

Bn = {x ∈ Ω / n ≤ k(x) < n+ 1}.

We obtain by Stampacchia’s Theorem

(3.9) ∇k · ∇Hn(k) = |∇k|2 1Bn a.e. Ω.

Inequality (3.8) yields, by (3.9),

(3.10)

∫
Bn

%β|∇k|2 ≤ D

νm
.

The left-hand side of (3.8) can be transformed another way. Indeed, since H ′n(k) =
1Bn a.e. Ω, we have

(3.11) ∇k · ∇Hn(k) = |∇Hn(k)|21Bn = |∇Hn(k)|2 a.e. Ω,

which yields by (3.9)

(3.12) |∇k|2 1Bn = |∇Hn(k)|2 a.e. Ω.

Thus, (3.10) becomes

(3.13)

∫
Ω
%β|∇Hn(k)|2 ≤ D

νm
.

Applying Theorem 2.2, we deduce from (3.13) that for any p < pβ = 2
1+β , there exists a

constant C = C(p, β, νm, D) > 0 such that

(3.14)

∫
Bn

|∇k|p =

∫
Ω
|∇Hn(k)|p ≤ C.

Step 2. Ladder process. We deduce now the W 1,p estimate (3.4) from (3.14) by adapting
to this case the Boccardo-Gallouët technique [6]. To do so, Let p ∈ ]1; pβ[, q ∈ ]1; p[. We
get by Hölder’s Inequality

(3.15)

∫
Bn

|∇k|q ≤
(∫

Bn

|∇k|p
)q/p

|Bn|1−(q/p) ≤ Cq/p|Bn|1−(q/p).
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Let n0 ∈ IN∗. On one hand we have

(3.16)

n0−1∑
n=0

∫
Bn

|∇k|q ≤ n0C
q/p|Ω|1−(q/p) ≤ n0 max(C; |Ω|).

On the other hand, let r ≥ 1, the definition of Bn yields

(3.17)

∫
Bn

|k|r ≥ nr|Bn|.

We get by (3.15)

(3.18)

+∞∑
n=n0

∫
Bn

|∇k|q ≤ Cq/p
+∞∑
n=n0

|Bn|1−(q/p) ≤ Cq/p
+∞∑
n=n0

1

n
r(p−q)
p

(∫
Bn

|k|r
) p−q

p

.

Then the discrete Hölder Inequality yields

(3.19)

+∞∑
n=n0

∫
Bn

|∇k|q ≤ Cq/p
[

+∞∑
n=n0

∫
Bn

|k|r
] p−q

p
[

+∞∑
n=n0

1

n
r(p−q)
q

]q/p
.

Inequality (3.19) brings a condition on r ≥ 1. Indeed, the right-hand side of (3.19) is finite
if and only if the Riemann series converges, which means

(3.20) r >
q

p− q
.

Let the two constants λ1(n0) and λ2(n0) be defined by
λ1(n0) = n0 max(C; |Ω|)

λ2(n0) = Cq/p

[
+∞∑
n=n0

1

n
r(p−q)
q

]q/p
,

with r satisfying (3.20). Consequently, (3.16) and (3.19) ensure the existence of two
constants λ1(n0) and λ2(n0) such that λ2(n0) −→

n0→+∞
0 and

(3.21)

∫
Ω
|∇k|q ≤ λ1(n0) + λ2(n0)

(∫
Bn

|k|r
) p−q

p

= λ1(n0) + λ2(n0)‖k‖
r(p−q)
p

0,r;Ω .

In order to obtain an inequality involving the norm ‖k‖1,q;Ω, the Sobolev embedding

W 1,q
0 (Ω) ↪→ Lr(Ω) must stand, which brings another condition on r:

(3.22) 1 ≤ r ≤ q? =
Nq

N − q
.

For both conditions (3.20) and (3.22) to be satisfied, one needs to have

(3.23)
q

p− q
<

Nq

N − q
hence q <

N(p− 1)

N − 1
.

As this must be satisfied for any p < pβ, we get the following bound for q,

(3.24) q < N ′(pβ − 1) = qβ.
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Condition (3.24) makes sense if and only if β is such that

(3.25) 1 < qβ < pβ hence 2− 1

N
< pβ < N.

Since 0 ≤ β < 1, the condition pβ < N is always satisfied. However, pβ > 2 − 1

N
is

equivalent to

(3.26) β <
1

2N − 1
=: βc.

Conditions (3.26) and (3.24) then yield the bounds

(3.27)
βc =

1

3
and qβ = 2

(
2

1 + β
− 1

)
if N = 2

βc =
1

5
and qβ =

3

2

(
2

1 + β
− 1

)
if N = 3.

Therefore, if β < βc and q < qβ, considering r satisfying (3.20) and (3.22) for all p < pβ,
q < qβ, β < βc, Inequality (3.21) becomes

(3.28) ‖k‖q1,q;Ω ≤ λ1(n0) + cλ2(n0)‖k‖
r(p−q)
p

1,q;Ω .

As when 0 < β < βc, we verify γ =
q?β(pβ − qβ)

pβqβ
< 1, then we deduce from (3.28) that for

q < qβ and 0 < β < βc,

(3.29) ‖k‖1,q;Ω ≤ C = C(β, νm, D),

a constant that blows up when q → qβ or β → βc.

Step 3. L3/2(Ω, ρ−1) estimate. Let Gε : IR→ IR be the odd function given by

(3.30) Gε :

{
Gε(x) =

x

ε
if 0 ≤ x < ε,

Gε(x) = 1 if x ≥ ε.

We take Gε(k) as test function in (3.1). By the same argument as above,∫
Ω

u · ∇k Gε(k) = 0,

∫
Ω
%βµ̃(k)∇k · ∇Gε(k) =

∫
Ω
G′ε(k)%βµ̃(k)|∇k|2 ≥ 0,

hence, since 0 ≤ Gε(k) ≤ 1, ∫
Ω

Gε(k)k
3
2

%
≤ ‖D‖0,1;Ω.

As k > 0 and % > 0 in Ω,

Gε(k)k
3
2

%
→ k

3
2

%

a.e. in Ω. Then by Fatou’s Lemma,

(3.31) 0 ≤
∫

Ω

k
3
2

%
≤ ‖D‖0,1;Ω.

Notice that this last estimate does not require any restriction about β.
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Remark 3.3. Let Tn be the truncation at height n. Then by taking Tn(k) as test in (3.1),
we see that Tn(k) ∈W 1,p

0 (Ω), uniformly in n, namely for any p < pβ,

(3.32) ‖Tn(k)‖1,p;Ω ≤ C(D, νm, β).

Remark 3.4. We have assumed in Theorem 3.1 u ∈ C 0(Ω) and k ∈ C 2(Ω) for conve-
nience. However such regularity is not crucial. Indeed, we obtain the same estimate if,
instead of (3.1), we consider its following regularization, where ε > 0,

(3.33)

 u · ∇k − div (%βµ̃(k)∇k)−∆k +
k|k|1/2

%
= D in Ω,

k = 0 at Γ,

for a given u ∈ V0. We know the existence of a distributional solution k to this equation
such that:

k ∈
⋂
r<N ′

W 1,r
0 (Ω),

and such that
∀n ∈ N, Tn(k) ∈ H1

0 (Ω)

(see [18]). For this solution, tests can be taken in W 1,∞
0 (Ω), as well as functions of the

form h(k)ϕ, where ϕ ∈ W 1,∞
0 (Ω) and h : R → R is continuous, bounded, C 1-piecewise,

such that h′ is in L∞(R) with a finite number of discontinuities. This justifies that the
entire procedure above, to obtain estimates (3.4), also applies to this regularized equation
considering only this distributional solution.

In the following we set

(3.34) Kβ =
⋂

1≤q<qβ

W 1,q
0 (Ω).

4 Main result

Recall that ηc is given in (2.28), βc in (3.3). According to the previous sections, the
assumptions about the data are the following:

(4.1)


ν̃, µ̃ : IR→ IR are continuous and ∀ k ∈ IR, 0 < νm ≤ ν̃(k), µ̃(k) ≤ νM ,
f ∈ L2(Ω)N , λ > 0
0 < η < ηc, β < βc.

Definition 4.1. When (4.1) holds, we say that (u, k) ∈ Vη ×Kβ is a weak solution to the
initial problem (1.4) if k ≥ 0 a.e in Ω, and if for all (v, ϕ) ∈ Vη ×D(Ω),

λ

∫
Ω

u · v −
∫

Ω
(u⊗ u) : (∇v)T +

∫
Ω
%ην̃(k)∇u : ∇v =

∫
Ω

f · v,(4.2)

−
∫

Ω
k u · ∇ϕ+

∫
Ω
%βµ̃(k)∇k∇ϕ+

∫
Ω

k3/2ϕ

%
=

∫
Ω
D(u, k)ϕ,(4.3)

where D(u, k) = %ην̃(k)|∇u|2.
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Remark 4.1. As shown in section 2.3, the assumption about η makes sure that all the in-
tegrals in (4.2) are well defined. Moreover, by (2.5) and (3.2), D(u, k) ∈ L1(Ω). Therefore,
by (3.4), it is guaranteed that all the integrals in (4.3) are well defined, except the tansport
term about which we must take care. However, k ∈ L3/2(Ω) and as Vη ⊂ H1

loc(Ω)N , then
for a given ϕ ∈ D(Ω), we have at least u ∈ L3(supp(ϕ)). Therefore, k u ∈ L1(supp(ϕ)),
which makes well defined the integral

∫
Ω k u · ∇ϕ since ∇ϕ ∈ L∞(Ω).

Definition 4.2. We say that (u, k) ∈ V0 × (∩q<N ′W 1,q
0 (Ω)) is a weak solution to the

perturbed Problem (1.5) if k ≥ 0 a.e in Ω, and if for all (v, ϕ) ∈ V0 ×D(Ω),

λ

∫
Ω

u · v −
∫

Ω
(u⊗ u) : (∇v)T +

∫
Ω
%ην̃(k)∇u : ∇v + ε

∫
Ω
∇u : ∇v =

∫
Ω

f · v,(4.4)

−
∫

Ω
k u · ∇ϕ+

∫
Ω
%βµ̃(k)∇k · ∇ϕ+ ε

∫
Ω
∇k · ∇ϕ+

∫
Ω

k3/2ϕ

%+ ε
=

∫
Ω
D(u, k)ϕ.(4.5)

By [18], we already know:

Theorem 4.1. Let ε > 0. Assume that ν̃, µ̃ : IR → IR are continuous, bounded and
nonnegative, f ∈ V ′0, λ ≥ 0. Let 0 ≤ η, β ≤ 1. Then Problem (1.5) has a weak solution
(uε, kε) ∈ V0 × (∩q<N ′W 1,q

0 (Ω)).

We prove the following result:

Theorem 4.2. Assume that (4.1) holds. Then the initial Problem (1.4) has a weak so-
lution obtained by approximation (SOLA). More precisely, let (uε, kε) be a weak solu-
tion to the perturbed problem (1.5). Then there exists (εn)n∈IN that converges to 0 and
(u, k) ∈ Vη × Kβ a weak solution to the initial problem such that the sequence (uεn)n∈IN

strongly converges to u in Vη and the sequence (kεn)n∈IN weakly converges to k in W 1,q
0 (Ω)

for all 1 ≤ q < qβ.

Proof. The proof is the synthesis of the sections 2 and 3. Passing to the limit in the
fluid equation was already done in the proof of Theorem 2.3. Theorem 2.4 ensures the
strong convergence of the source term in L1(Ω). We already know estimates for the TKE
from Theorem 3.1 and Remark 3.4. Therfore, we summerize in a first step the sequence
extraction process, and we procced in a second step to pass to the limit in the TKE
equation.

Step 1. Extracting subsequences - Due to (4.1), particulary the choices of η and β, we know
from step 1 of the proof of Theorem 2.3 and Theorem 3.1, that there exists (εn)n∈IN that
converges to 0, such that the family (uεn)n∈IN is bounded in Vη, and the family (kεn)n∈IN

is bounded in W 1,q
0 (Ω) for any 1 < q < qβ (recall that qβ is given by (3.3)). Arguing as

Step 2 of the proof of Theorem 2.3, based on a standard compactness argument combined
to an uniqueness argument and Lebesgue inverse Theorem, we deduce that there exists
(εn)n∈IN, u ∈ Vη and k ∈ Kβ such that

1. (uεn)n∈IN converges weakly to u in Vη,

2. (uεn)n∈IN converges weakly to u in W p
0 (Ω)N for all 1 < p < pη,

3. (uεn)n∈IN converges strongly to u in Lq(Ω)N for all q < r?η,

4. (kεn)n∈IN converges weakly to k in W q
0 (Ω) for all 1 < q < qβ,

5. (kεn)n∈IN converges strongly to k in Lr(Ω) for all 1 < r < q?β,
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6. (kεn)n∈IN converges a.e. to k.

Moreover, by Theorem 2.4 and from the proof of Theorem 2.3, we can add to the list that
(uεn)n∈IN converges strongly to u in Vη, and that (u, k) satisfy (4.2). We also know that
the sequence (%ην̃(kεn)|∇uεn |2)n∈IN converges strongly in L1(Ω) to %ην̃(k)|∇u|2. Finally,
as Vη ⊂ H1

loc(Ω), by the same argument as in the proof of 2.3 based on the uniqueness of
the limit, (εn)n∈IN can be chosen so that for any ω ⊂⊂ Ω, (uεn |ω)n∈IN converges strongly
to u|ω in Lp(Ω)N , for all p <∞ when N = 2, and p < 6 when N = 3.

Step 2. Passing to the limit in the TKE equation - Let ϕ ∈ D(Ω), and let ω ⊂⊂ Ω denotes
the support of ϕ. From the above, we already know that∫

Ω
D(uεn , kεn)ϕ −→

n→+∞

∫
Ω
D(u, k)ϕ.

By a usual argument [7, 18], we also have∫
Ω
%βµ̃(kεn)∇kεn · ∇ϕ −→

n→+∞

∫
Ω
%βµ̃(k)∇k · ∇ϕ.

Moreover, let q ∈ ]1; qβ[ be fixed. By the weak convergence of (kεn)n∈IN to k in W 1,q
0 (Ω)

to k and D(Ω) ⊂W 1,q′

0 (Ω), ∫
Ω
∇kεn · ∇ϕ −→

n→+∞

∫
Ω
∇k · ∇ϕ.

hence

εn

∫
Ω
∇kεn · ∇ϕ −→

n→+∞
0.

Whether we are in dimension 2 or in dimension 3, we easily check that 3/2 < q?β. Therefore,
as %|ω ≥ Cω > 0,

k
3/2
εn

%+ εn
−→

n→+∞

k3/2

%
in L1(ω),

which leads to ∫
Ω

k
3/2
εn ϕ

%+ εn
−→

n→+∞

∫
Ω

k3/2ϕ

%
.

Finally, by the same argument using uεn → u in L3(ω),∫
Ω
kεn uεn · ∇ϕ −→

n→+∞

∫
Ω
k u · ∇ϕ.

As we were able to pass to the limit in the TKE equations, we have shown that (u, k) also
satisfies (4.3), which concludes the proof.

A Appendix : Proof of Theorem 2.1

We start by giving an interpolation lemma.

Lemma A.1. Let Ω be a bounded Lipschitz domain, 0 < s < 1, and u ∈ D′(Ω) such that
∇u ∈ H−s(Ω)N and u ∈ H−s(Ω). Then u ∈ H1−s(Ω) and there exists a constant C > 0,
which does not depend on u, be such that

(A.1) ‖u‖1−s,2,Ω ≤ C (‖u‖−s,2,Ω + ‖∇u‖−s,2,Ω) .
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Proof. We start by recalling two inequalities. First, the definition of the H1 norm reads
for any v ∈ H1(Ω)

(A.2) ‖v‖1,2,Ω = ‖v‖0,2,Ω + ‖∇v‖0,2,Ω.

Then a result due to Nečas and proved in [9] ensures that for any v ∈ D ′(Ω) such that
v ∈ H−1(Ω) and ∇v ∈ H−1(Ω)N , we have

(A.3) ‖v‖0,2,Ω ≤ ‖v‖−1,2,Ω + ‖∇v‖−1,2,Ω.

In order to obtain an inequality for spaces with a noninteger exponent, we use the interpo-
lation Theorem from [21]. To do so, let the spaces W 0 and W−1 be defined as the closure
of D(Ω) respectively for the norms

(A.4) ‖u‖W 0 := ‖u‖0,2,Ω + ‖∇u‖0,2,Ω and ‖u‖W−1 := ‖u‖−1,2,Ω + ‖∇u‖−1,2,Ω.

Noticice that W 0 = H1
0 (Ω).

Remark A.1. The embedding Λ : W 0 ↪→ W−1 is continuous and dense. Moreover,
because both W 0 and W−1 are Hilbert spaces, for all u, v ∈W 0,4

(u, v)2 + (∇u,∇v)2 = (Λu,Λv)−1 + (∇Λu,∇Λv)−1.

As the interpolation space [W 0,W−1]s = D(Λs) and H−s(Ω) =
[
L2(Ω), H−1(Ω)

]
s
, we have

(u, v)2 + (∇u,∇v)2 = (Λsu,Λsv)−s + (∇Λsu,∇Λsv)−s.

so that the interpolation norm is defined by

(A.5)
‖u‖[W 0,W−1]s = ‖u‖[L2(Ω),H−1(Ω)]s + ‖∇u‖[L2(Ω)N ,H−1(Ω)N ]s

= ‖u‖−s,2,Ω + ‖∇u‖−s,2,Ω.

Inequality (A.2) shows that the identity map, Id : W 0 → H1(Ω) is continuous, and
similarly (A.3) yields that Id : W−1 → L2(Ω) is continuous. Then, the interpolation
theorem yields

(A.6) Id :
[
W 0,W−1

]
s
→
[
H1(Ω), L2(Ω)

]
s

= H1−s(Ω)

is continuous.

This means there exists a constant C > 0 such that for any u ∈
[
W 0,W−1

]
s

(A.7) ‖u‖1−s,2,Ω ≤ C‖u‖[W 0,W−1]s
,

hence (A.1) by using (A.5).

As L2(Ω) ↪→ H−s(Ω), we deduce from (A.1) the following.

Corollary A.1. Let u ∈ L2(Ω) be such that ∇u ∈ H−s(Ω). Then u ∈ H1−s(Ω) and

(A.8) ‖u‖1−s,2,Ω ≤ C (‖u‖0,2,Ω + ‖∇u‖−s,2,Ω) .

4This can be easily seen by reccaling that F ∈ H−1(Ω) if and only if there exists f0, · · · , fN ∈ L2(Ω)
be such that ∀ϕ ∈ H1

0 (Ω), 〈F,ϕ〉 =
∑
i(fi, ∂iϕ)2. Therefore we have, (F,G)−1 =

∑
i(fi, gi)2.
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Proof of Theorem 2.1.

Let η ∈]0; 1[ and Ω a lipschitz domain. Let u ∈ Vη and ϕ ∈ D(Ω)N×N .

(A.9)

∣∣∣∣∫
Ω
∇u : ϕ

∣∣∣∣ =

∣∣∣∣∫
Ω
%η/2∇u : %−η/2ϕ

∣∣∣∣ ≤ ‖%η/2∇u‖0,2,Ω‖%−η/2ϕ‖0,2,Ω.

Given that η < 1, Hardy inequality (see [12]) yields

(A.10) ‖%−η/2ϕ‖0,2,Ω ≤ c‖ϕ‖η/2,2,Ω,

where C > 0 depends neither on ϕ nor on u.
Therefore, we obtain

(A.11) |〈∇u,ϕ〉| ≤ c‖u‖1,2,%,η‖ϕ‖η/2,2,Ω.

Thus ∇u is in
(
Hη/2(Ω)N×N

)′
= H−η/2(Ω)N×N , by [21, Theorem 6.2], and we deduce

from (A.11),
||∇u||−η/2,2,Ω ≤ C||u||1,2,%,η

Finally, as ||u||0,2,Ω ≤ ||u||1,2,%,η, we deduce from (A.8)

||u||1−η/2,2,Ω ≤ C||u||1,2,%,η.

Therefore, we have indeed u ∈ H1− η
2 (Ω)N , which concludes the proof.
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