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Using the standard dynamical theory of spherical systems, we calculate the properties of spherical galaxies and clusters whose density profiles obey the universal form first obtained in high-resolution cosmological N-body simulations by Navarro, Frenk & White (NFW). We adopt three models for the internal kinematics: isotropic velocities, constant anisotropy and increasingly radial Osipkov±Merritt anisotropy. Analytical solutions are found for the radial dependence of the mass, gravitational potential, velocity dispersion, energy and virial ratio and we test their variability with the concentration parameter describing the density profile and amount of velocity anisotropy. We also compute structural parameters, such as halfmass radius, effective radius and various measures of concentration. Finally, we derive projected quantities, the surface mass density and line-of-sight as well as aperture-velocity dispersion, all of which can be directly applied in observational tests of current scenarios of structure formation. On the mass scales of galaxies, if constant mass-to-light is assumed, the NFW surface density profile is found to fit Hubble±Reynolds laws well. It is also well fitted by Se Ârsic R 1/m laws, for m . 3Y but in a much narrower range of m and with much larger effective radii than are observed. Assuming in turn reasonable values of the effective radius, the mass density profiles imply a mass-to-light ratio that increases outwards at all radii.

I N T R O D U C T I O N

A universal profile of dark-matter haloes was introduced as a result of high-resolution N-body simulations performed by Navarro, Frenk & White (1995, 1996, 1997, hereinafter NFW123) for power-law as well as CDM initial power spectra of density fluctuations. NFW123 found that in a large range of masses the density profiles of dark haloes can be fitted by a simple formula with only one fitting parameter. The density profile steepens from r 21 near the centre of the halo to r 23 at large distances. The NFW profile has been confirmed in cosmological simulations by Cole & Lacey (1996), Tormen, Bouchet & White (1997), Huss, Jain & Steinmetz (1999a), Jing (1999) and [START_REF] Bullock | [END_REF], while Huss, Jain & Steinmetz (1999b) have shown that the NFW profile also arises from non-cosmological initial conditions. It is worthwhile noting that some (but not all) recent very high-resolution cosmological simulations produce steeper density profiles, with inner slopes . 21X5 (Fukushige & Makino 1997;Moore et al. 1998;Ghigna et al. 1999; see also Jing & Suto 2000). The density profiles in the cosmological simulations also display considerable scatter (Avila-Reese et al. 1999;[START_REF] Bullock | [END_REF]) and Avila-Reese et al. find that the outer slopes of galaxy size haloes are steeper than the NFW slope of 23 when selected within clusters (24) and slightly shallower within groups (22.7). Although the exact properties of dark-matter haloes are still under debate, the NFW profile is presently considered to provide the reference frame for any further numerical research on density profiles of dark haloes.

Simple cosmological derivations of the density profiles of bound objects are difficult, essentially because one needs to work in the non-linear regime of the growth of gravitational instabilities. Nevertheless, using the spherical top-hat model of Gunn & Gott (1972), density profiles typically varying as r 29/4 were derived by Gott (1975), Gunn (1977), Fillmore & Goldreich (1984) and Bertschinger (1985). Hoffman & Shaham (1985) applied the spherical infall model to the hierarchical clustering scenario and predicted that the density profiles of haloes should depend on V as well as the initial power spectrum of density fluctuations. However, for V 1 they obtained power-law profiles in contradiction with the steepening slopes found in the current N-body simulations described above. In a recent study, èokas (2000) has improved the model of Hoffman & Shaham (1985) by a generalization of the initial density distribution, the introduction of a cut-off in this distribution at half the inter-peak separation and by a proper calculation of the collapse factor. The improved model reproduces the changing slope of the density profile and its dependence on halo mass and the type of cosmological power spectrum found by NFW123. The NFW profile is also reproduced in studies taking into account the merging mechanism (see Lacey & Cole 1993) in the halo formation scenario (e.g. Salvador-Sole Â, Solanes & Manrique 1998;Avila-Reese, Firmani & Hernandez 1998). Therefore the numerical and analytical considerations seem to converge on the statement that the density profiles of dark-matter haloes are indeed well described by the universal formula proposed by NFW123.

The ultimate test of both the analytical and numerical results must come from the observations of density profiles of galaxies and galaxy clusters. Three recent studies of clusters (Carlberg et al. 1997;Adami et al. 1998;van der Marel et al. 2000) claim good agreement between cluster observations and the NFW mass density profile. But for galaxies, the situation is less satisfying. Flores & Primack (1994) show that the NFW profile is incompatible with the rotation curves of spiral galaxies, while Kravtsov et al. (1998) estimate that the inner slope of the density profile of dwarf irregular and LSB galaxies is 20.3 instead of 21. However, these conclusions were obtained with a number of assumptions and approximations concerning the very unclear issues of biasing, non-sphericity of objects and so on. Besides, as pointed out by van den Bosch et al. (2000), Swaters, Madore & Trewhella (2000) and van den Bosch & Swaters (2000), the observed rotation curves of these galaxies are too uncertain to discriminate between cores and cusps.

The main motivation for this research is to explore analytically the physical properties of objects with NFW density profiles. The aim is to check whether these properties are acceptable from the physical point of view and thus to test the validity of density profiles obtained in cosmological N-body simulations. Additionally, this paper presents formulae for observable quantities that can be used for comparisons between the theoretical predictions (such as the NFW profile) and observations.

The paper is organized as follows: after a short presentation of the universal formula for the density profile proposed by NFW123, in Section 2 we describe physical properties of spherical systems following from this density profile. Section 3 is devoted to a simple comparison between the projected NFW density profile and the surface brightness of elliptical galaxies. A more thorough comparison is beyond the scope of the present paper and will be given elsewhere (Mamon & èokas, in preparation). A discussion follows in Section 4.

2 P R O P E R T I E S O F T H E N F W M O D E L 2.1 Basic properties
NFW123 established that the density profiles of dark-matter haloes in high-resolution cosmological simulations for a wide range of masses and for different initial power spectra of density fluctuations are well fitted by the formula rr r 0 c d char rar s 1 rar s 2 1 with a single fitting parameter d char , the characteristic density. The so-called scale radius r s is defined by

r s r v c Y 2
where r v is the virial radius, usually defined as the distance from the centre of the halo within which the mean density is v times the present critical density, r 0 c X The value of the virial overdensity v is often assumed to be v 178Y a number predicted by the simplest version of the spherical model for V 1X For other cosmological models it can be lower by a factor of 2 or more (Lacey & Cole 1993;Eke, Cole & Frenk 1996). However, according to the improved spherical infall model (èokas 2000), v can be as low as 30 even for V 1X In the following, v is kept as a free parameter.

The quantity c introduced in equation ( 2) is the concentration parameter, which is related to the characteristic density by

d char vc 3 gc 3 Y 3 
where

gc 1 ln1 c 2 ca1 c X 4
The concentration parameter will be used hereafter as the only parameter describing the shape of density profile. From cosmological N-body simulations (Navarro et al. 1997;[START_REF] Bullock | [END_REF]Jing 2000;Jing & Suto 2000), extended Press±Schechter theory (Navarro et al. 1997;Salvador-Sole Â, Solanes & Manrique 1998) and the spherical infall model (èokas 2000), we know that c depends on the mass of object and the form of the initial power spectrum of density fluctuations. For all initial power spectra, the observed trend is for lower concentration parameter in higher mass objects, with 4 , c , 22 in cosmological simulations with CDM initial power spectra and c up to 90 for the less realistic scale-free power spectra. More precisely, in the LCDM cosmology, c 5 corresponds to the masses of clusters of galaxies, while c 10 corresponds to the masses of bright galaxies.

It is convenient to express the distance from the centre of the object in units of the virial radius r v :

s r r v 5
and the density profile of equation (1) then becomes rs r 0 c vc 2 gc 3s1 cs 2 Y 6

The mass of the halo is usually defined as the mass within the virial radius:

M v 4 3 pr 3 v vr 0 c X 7 
The distribution of mass in units of the virial mass follows from equation ( 6):

Ms M v gc ln1 cs 2 cs 1 cs ! 8
and we see that it diverges at large s, which is a disadvantage of the model from a physical point of view.

The gravitational potential associated with the density distribution (6) is

Fs V 2 v 2gc ln1 cs s Y 9
where V v is the circular velocity at r r v :

V 2 v V 2 r v GM v r v 4 3 pGr 2 v vr 0 c X 10 
Hence, from equation ( 9) we see that the gravitational potential at the centre, F0 2cgcV 2 v Y is finite. Equations ( 8) and (10) lead to a circular velocity that obeys

V 2 s V 2 v gc s ln1 cs 2 cs 1 cs ! X 11 
Equations ( 8), ( 9) and ( 11) were first derived by Cole & Lacey (1996).

The radial velocity dispersion s r (r) can be obtained by solving the Jeans equation 1 r

d dr rs 2 r 2b s 2 r r 2 dF dr Y 12
where b 1 2 s 2 u ras 2 r r is a measure of the anisotropy in the velocity distribution. In the simplest case of isotropic orbits, s u r s r r and b 0X This value of b is also close to the results of N-body simulations: Cole & Lacey (1996) and Thomas et al. (1998) show that, in a variety of cosmological models, the ratio s u as r is not far from unity and decreases slowly with distance from the centre to reach .0.8 at the virial radius. However, Huss, Jain & Steinmetz (1999a) find s u as r . 0X6 at r v .

First we consider the case of b constX Then the solution to the equation ( 12) with the condition s r 3 0 at s 3 1 is

s 2 r V 2 v sY b const gc1 cs 2 s 122b  1 s s 2b23 ln1 cs 1 cs 2 2 cs 2b22 1 cs 3 ! dsX 13 
For b 0Y 0.5 and 1, reasonably simple analytical solutions to this equation can be found:

s 2 r V 2 v sY b 0 1 2 c 2 gcs1 cs 2 p 2 2 lncs 2 1 cs 2 1 1 cs 2 2 6 1 cs 1 1 c 2 s 2 2 4 cs 2 2 1 cs  ln1 cs 3 ln 2 1 cs 6Li 2 2cs ! Y 14 s 2 r V 2 v sY b 0X5 cgc1 cs 2 2 p 2 3 1 21 cs 2 2 1 cs ln1 cs cs ln1 cs 1 cs 2 ln 2 1 cs 2 2Li 2 2cs ! Y 15 s 2 r V 2 v sY b 1 gc1 cs 2 1 s p 2 6 2 1 21 cs 2 2 1 1 cs 2 ln1 cs 1 cs ln 2 1 cs 2 Li 2 2cs ! X 16 
In the above expressions Li 2 (x) is the dilogarithm, a special function that can be conveniently dealt with using mathematica packages. Otherwise, it can be approximated by

Li 2 x 0 x ln1 2 t dt t . x1 10 20X5 2x 0X62a0X7 20X7 X 17
The fit is accurate to better than 1.5 per cent in the range 2100 , x , 0X

We included the predictions for b 1 just as a limiting case. In fact such a model with purely radial orbits and NFW density profile is not physical since its distribution function is not everywhere non-negative. As pointed out by e.g. Richstone & Tremaine (1984, see also èokas & Hoffman 2000), such velocity anisotropy requires the inner density profile to be r 22 or steeper for the model to be physical.

A more realistic description of velocity anisotropy is provided by a model proposed by Osipkov (1979) and Merritt (1985) with b-dependence on distance from the centre of the object:

b OM s 2 s 2 s 2 a Y 18
where s a is the anisotropy radius determining the transition from isotropic orbits inside to radial orbits outside. As mentioned above, the results of N-body simulations suggest s u as r . 0X8 and therefore b . 0X36 at s 1Y which gives s a . 4a3Y a value that we adopt here for all numerical calculations. For the Osipkov±Merritt model, the solution to the Jeans equation (with the same boundary condition as before) reads

s 2 r V 2 v sY b OM gcs1 cs 2 s 2 s 2 a  1 s s 2 s 2 a ln1 cs s 3 1 cs 2 2 cs 2 s 2 a s 2 1 cs 3 ! ds 19
and the integration gives

s 2 r V 2 v sY b OM gcs1 cs 2 2s 2 s 2 a 2 cs 2 a s 2 c 2 s 2 a lncs & c 2 s 2 a ln1 cs 1 1 c 2 s 2 2 4 cs 2 1 c 2 s 2 a  1 1 cs 2 2 ln1 cs 1 cs ! 1 3c 2 s 2 a  p 2 3 2 2 1 cs ln 2 1 cs 2Li 2 2cs ! ' X 20 
Fig. 1 shows the radial dependence of the radial velocity dispersion. The upper panel of the figure presents how the results depend on the concentration parameter in the isotropic case, while the lower panel compares predictions for different anisotropy models with c 10X

The energy distributions

The potential energy associated with the mass distribution of equation ( 8) is

Ws 2 1 r v s 0 GMs s dMs ds ds 2W 1 1 2 1 1 cs 2 2 2 ln1 cs 1 cs ! Y 21
where

W 1 2lim s31 Ws cg 2 cGM 2 v 2r v X 22 
The kinetic energy for arbitrary b is given by

TsY b 2pr 3 v s 0 3 2 2brss 2 r sY bs 2 dsX 23
For the three cases of b 0Y 0.5 and 1, we obtain, respectively,

TsY b 0 1 2 W 1 23 3 1 cs 2 2 ln1 cs & cs5 3 ln1 cs 2 c 2 s 2 7 6 ln1 cs c 3 s 3 p 2 2 ln c 2 ln s ln1 cs 3 ln 2 1 cs 6Li 2 2cs ' Y 24 TsY b 0X5 1 3 W 1 23 3 1 cs 2 3 ln1 cs & 6cs1 ln1 cs 2 c 2 s 2 p 2 3 ln 2 1 cs 6Li 2 2cs ' Y 25 TsY b 1 1 2 W 1 & 22 ln1 cs cs p 2 3 2 1 1 cs ln 2 1 cs 2Li 2 2cs ! ' Y 26 
where we have used in each case the corresponding expression for s 2 r sY b from equations ( 14)±( 16). For the Osipkov±Merritt model the calculation has to be done numerically.

The results for the potential and kinetic energy ( 21)±( 26) lead to a virial ratio lim s31 2TajWj 1 for any value of c, in agreement with the virial theorem. Fig. 2 shows how the virial ratio depends on distance for three different values of the concentration parameter in the isotropic case (upper panel) and compares the ratios obtained for different b with c 10 (lower panel). At low radii, the virial ratio is large, especially for low concentration parameters and models with much anisotropy. However, as demonstrated by Fig. 3, at the virial radius r v s 1, 2TajWj is still greater than unity and grows with the amount of anisotropy in the model. We see that the virial theorem is better satisfied at s 1 for objects with larger concentration parameters, as lim c31 2TajWjs 1 1X Since objects of smaller mass have larger concentration parameters, they are closer to dynamical equilibrium.

The scalar virial theorem we referred to above is expected to be satisfied for self-gravitating systems in the steady state. In more realistic situations, the system is never isolated and experiences an external gravitational field; there is also continuous infall of matter. We may conclude from the results above that objects with NFW density profiles and different velocity distributions are close to dynamical equilibrium. However, the virial ratio cannot be used to define the boundary of the virialized object.

Structural parameters

A useful quantity is the half-mass radius. Unfortunately, the divergence of the mass of the NFW profile forces one to define the half-mass radius within a cut-off radius r cut . The most natural choice is r cut r v Y since the density distribution is only reliable out to the virial radius. With r cut r v Y the half-mass radius r h satisfies the following relation for the mass of the dimensionless radius:

M r h r v M1 2 X 27
Numerical values of r h /r v are easily obtained using equation ( 8) and over the range 1 , c , 100 they can be approximated to better than 2 per cent accuracy by

r h r v 0X6082 2 0X1843 log c 2 0X1011 log 2 c 0X03918 log 3 cX 28 
The lowest thick solid line in Fig. 4 shows how r h ar v decreases with increasing concentration parameter.

It is useful to estimate the concentration g of a dynamical system, such that

ks 2 l g GM r h Y 29
where ks 2 l ks 2 r s 2 u s 2 f l is the mass weighted mean-square velocity dispersion. As first noted by Spitzer (1969) for polytropes, many realistic density profiles have g 0X4X For example, it is easy to show that for the Hernquist (1990) model with b 0Y g 1 2 p a6 . 0X403 [START_REF] Mamon | Proc. XVth IAP Meeting, Dynamics of Galaxies: From the Early Universe to the Present[END_REF]. Using equation ( 29) and limiting again the mass to r cut r v Y we define g with

g r h ks 2 l r<rv GM1 2 r h T1Y b GM 2 1 Y 30
where we made use of

TxY b 1 2 Mxks 2 l r<xrv X 31
The values of g for different velocity anisotropy models, derived from equations ( 7), ( 8), ( 22), ( 22)±( 26), ( 28) and ( 30), are shown in Fig. 4 and in the case of b 0 yield numbers closest to 0.4: g 0X56 for c 5 and g 0X51 for c 10X Thus the NFW model produces gs that are higher than the canonical value of 0.4, especially if more velocity anisotropy is assumed. This may be caused by the ill-defined cut-off radius.

In models with homogeneous cores, the central density, the core radius r c and the central 3-D velocity dispersion s 2 (0) are related through Using equations ( 2), ( 6) and ( 7), one has 4pGrr s r 2 s cgcV 2 v a4 and from equation ( 31) for x 1ac one obtains

h 3cgcV 2 v M1ac 8T1acY b X 34
For different velocity anisotropy models we then have hb 0 32 ln 2 2 1 2p 2 2 7 2 8 ln 2 6 ln 2 2

. 2X797Y 35 hb 0X5 91 2 2 ln 2 4p 2 2 9 2 6 ln 2 6 ln 2 2 . 2X138Y 36 hb 1 92 ln 2 2 1 2p 2 2 3 2 12 ln 2 6 ln 2 2

. 1X212Y 37

where we have used equations ( 8) and ( 24)±( 26), and the fact that Li 2 21 2p 2 a12X Note that h is independent of c in all cases with b constX For the Osipkov±Merritt model h is no longer a constant but we find 1X902 , h , 2X797 in the range 1 , c , 100 with the limiting cases of h 3 hb 1 for c 3 0 and h 3 hb 0 for c 3 1X Such limiting behaviour is due to the fact that for large c the integration of T(1/c,b ), equation ( 23 brought forward by Seidov & Skvirsky (2000) with the motivation of WUM being constant for different self-gravitating objects of simple geometry. Using equations ( 8), ( 9) and ( 21) we find that for the NFW model WUM cs2 cs 2 21 cs ln1 cs 21 cs2cs 1 cs ln1 cs 39 so the parameter turns out to be a function of cs rar s only. It grows with s from zero at s 3 0 reaching a maximum value of 0.196 at rar s 4X62 and decreases to zero again as s 3 1X The values of this parameter at the virial radius are 0.196, 0.187 and 0.125, respectively, for c 5Y 10 and 100.

The distribution function

A quantity of great dynamical importance is the distribution function. For a spherical system with an isotropic velocity tensor, the distribution function depends on the phase-space coordinates only through the energy (e.g. [START_REF] Binney | Galactic Dynamics[END_REF], and can be derived through the Eddington (1916) formula (e.g. [START_REF] Binney | Galactic Dynamics[END_REF]:

f i 1 8 p p 2 i 0 d 2 r dC 2 dC i 2 C p 1 i 1a2 dr dC C0 ! Y 40 
where i and C are the conventionally defined relative energy and potential; here i 2EY where E is the total energy per unit mass and C 2FY where F is given by equation ( 9). It is easy to show that, given equations ( 6) and ( 9), the second term in brackets in equation ( 40) is zero. The simplest way to perform the integration of the first term is to introduce dimensionless variables C CaC 1 and r raC 2 Y where C 1 gcV 2 v and C 2 c 2 gcM v a4pr 3 v X Then the integration variable should be changed to s and the limit of integration corresponding to i found numerically for each i by solving the equation Cs i X Otherwise, with a few per cent accuracy, the integration in equation ( 40) can be done directly with an approximation s apx 21X75 ln Caca CX

The calculations of the distribution function are usually performed in units such that G M R e 1 [START_REF] Binney | Galactic Dynamics[END_REF], where M is the total mass of the system and R e is its effective radius. Since in the case of the NFW profile the total mass is infinite, a reasonable choice seems to be to put M v 1X The effective radius is not well defined either but can be approximated as r v /2 (see the next section). Therefore we choose the units so that G M v r v a2 1 and arrive at the numerical results shown in Fig. 5. This choice of normalization is equivalent to measuring f in units of 8 p M v ar v V v 3 and E in units of V 2 v X Fig. 5 proves that the distribution function turns out to be similar to the distribution functions obtained from other density profiles (see e.g. figs 4±12 in [START_REF] Binney | Galactic Dynamics[END_REF], except that the NFW distribution functions do not display the cut-off at nearly unbound energies characteristic of King (1966) models. The results shown in Fig. 5 indicate a proper behaviour of the distribution function (it is nowhere negative). Quantitative comparisons with other models should, however, be made with caution because of the aforementioned problem with normalization. Distribution functions for more realistic velocity dispersion models, like the Osipkov±Merritt model, were recently considered in detail by Widrow (2000).

Projected distributions

Of primary importance for comparisons with observations are the projected distributions. The surface mass density of an object is obtained by integrating the density along the line of sight: where

S M R 2 1 R rrr r 2 2 R 2 1a2 dr c 2 gc 2p M v r 2 v 1 2 jc 2 R2 2 1j 21a2 C 21 1ac R c 2 R2 2 1 Y 41
C 21 x cos 21 x if R . r s cosh 21 x if R , r s Y @ 42
In the above expressions, R is the projected radius and R Rar v X For the singular case R r s Y the R Ä -dependent expression in equation ( 41) equals 1/3 and we have S M R c 2 gcM v a6pr 2 v X An analytical formula equivalent to equation ( 41) was derived independently by Bartelmann (1996).

The projected mass is then given by

M p R 2p R 0 RS M R dR gcM v C 21 1ac R jc 2 R2 2 1j 1a2 ln c R 2 4 5 Y 43
which is logarithmically divergent at large R Ä . C 21 (x) is again given by equation ( 42).

Another important projected quantity is the line-of-sight velocity dispersion, which for a spherical non-rotating system, is (Binney & Mamon 1982)

s 2 los R 2 S M R 1 R 1 2 b R 2 r 2 rs 2 r rY br r 2 2 R 2 p drY 44
where S M (R) is given by equation ( 41) and the radial velocity dispersions s r (r, b) for our four models are given by equations ( 14)±( 16) and ( 20). For circular orbits, s r 0Y and one has

s 2 los R 1 S M R 1 R R r 2 rV 2 r r 2 2 R 2 p drY 45
where V is the circular velocity given by equations ( 10) and ( 11).

The upper panel of Fig. 6 shows the profiles of line-of-sight velocity dispersion (with isotropic orbits), obtained through numerical integration of equation ( 44) for different concentration parameters. The lower panel of Fig. 6 compares the radial profiles of line-of-sight velocity dispersions obtained for c 10 for different velocity anisotropy models.

For more distant or intrinsically small galaxies, as well as for groups and clusters, spectroscopic observations are often limited to a single large aperture centred on the object. The mean velocity dispersion within an aperture (hereafter, aperture-velocity dispersion) is

s 2 ap R S 2 R M p R Y 46
where

S 2 R 2p R 0 S M Ps 2 los PP dPX 47 
In the above expressions R is the radius of the aperture, S M (P) is the surface mass distribution, equation ( 41), and M p (R) is the projected mass given by equation ( 43).

Inserting the expression for s los (equation 44) into equation ( 47), we obtain a double integral, which after inversion of the order of integration is reduced to an easily computable single integral:

S 2 R c 2 gcM v 1 0 s 2 r sY bs 1 cs 2 1 2 2b 3 ds & 1 R s 2 r sY bs 2 2 R2 1a2 1 cs 2 b R2 2s 2 3s 2 2 1 ! ds ' Y 48 
where as before, R Rar v Y s rar v and s 2 r sY b for different b are given by equations ( 14)±( 16) and ( 20). Analogous expression for circular orbits can be obtained from equation ( 48 

C O M PA R I S O N W I T H O B S E RVAT I O N S

Comparisons of the surface-mass-density with surface-brightness observations are usually performed with the assumption of constant mass-to-light ratio Y constX This assumption is not likely to be physical, because of the different physics involved in the assemblies of the dark matter and baryonic components of galaxies. In particular, the baryons in elliptical galaxies may well settle at an early epoch, within a radius that is the lower of the radius with virial overdensity v . 200 and the radius at which gas can cool to form molecular clouds and later stars. The baryons in ellipticals will then sit today in a region of overdensity v @ 200 and one then expects Y to rise with r, at least at large radii.

Nevertheless, for simplicity, we check whether the observations of elliptical galaxies are consistent with the idea that stars are distributed within elliptical galaxies according to the NFW density profile, characterized by a virial radius where the mean overdensity is 200. Such a situation may arise if the dark matter were negligible within elliptical galaxies or distributed precisely like the luminous matter. In a forthcoming paper (Mamon & èokas, in preparation), we will check in more detail whether the observations of elliptical galaxies are compatible or not with NFW density profiles for the mass distribution.

For constant mass-to-light ratio we have S M R YIRY where I is the surface brightness. The radial profiles of I S M aY and M p are shown in Fig. 8. Both quantities are normalized to their values at the virial radius. Fig. 8 shows that the surface mass density depends weakly on the concentration parameter, especially at larger distances from the centre.

Since the surface mass density (equation 41) behaves as 1/R 2 at large distances, one may therefore compare it with the Hubble± Reynolds formula (Reynolds 1913), which was the first model used to describe the surface-brightness profiles of elliptical galaxies:

I HR R I 0 1 RaR HR 2 X 49
R HR is the characteristic radius of the distribution, where the surface brightness falls to one-quarter of its central value. The thin curves of Fig. 8 show that the surface mass density of the NFW model (equation 41) is very well fitted by equation ( 49) and the best-fit values of RHR R HR ar v are 0.119, 0.0640 and 0.00743, respectively, for c 5Y 10 and 100. The surface-brightness profiles of astrophysical objects are often scaled with the effective radius, which we denote R e , where the projected luminosity is half the total luminosity. Given the divergence of the projected mass, we are forced again to introduce a cut-off at some scale R cut Rcut r v X We then have

M p R e M p R cut a2X 50 
Fig. 9 shows the effective radius, calculated numerically from equations ( 43) and ( 50). For Rcut 1Y a useful approximation, good to better than 2 per cent relative accuracy, is:

R e ar v 0X5565 2 0X1941 log c 2 0X0756 log 2 c 0X0331 log 3 cX 51 
The prediction for the surface brightness I S M aY with S M given by equation ( 41) expressed in terms of the effective radius and the corresponding effective brightness I e IR e is shown in the upper panel of Fig. 10 for different values of the concentration parameter c. For comparison, we also show the de Vaucouleurs (1948) R 1/4 law describing the observed surface-brightness distribution in giant elliptical galaxies:

IR I e exp{ 2 bRaR e 1a4 2 1}Y 52

where b 7X67X Clearly, the NFW surface-brightness profiles are poorly fitted by the R 1/4 law, when using R cut r v to define the effective radius of the NFW profile.

The lower panel of Fig. 10 shows how the results depend on the choice of cut-off for c 10 and Rcut 3Y 3.5, 4, 4.5 and 5. At first glance, it seems that the NFW profile is well fitted by the R 1/4 law, especially for Rcut . 4X However, the range of surface mass densities where the fit is excellent is roughly 10 2 and the fit is adequate for a range smaller than 10 3 . In contrast, the surfacebrightness profile of the nearby giant elliptical galaxy NGC 3379 (M 105) follows the R 1/4 law in a range of 10 mag (de Vaucouleurs & Capaccioli 1979), i.e. a factor 10 4 in intensity.

In order to see how good is the de Vaucouleurs's fit in this case, in both panels of Fig. 10 we plotted a number of data points equally spaced in R 1/4 . Since de Vaucouleurs & Capaccioli (1979) do not provide the error bars for their data, the error bars shown in the figure were taken from Goudfrooij et al. (1994). The excess of the data above the R 1/4 law for small R was already noted by de Vaucouleurs & Capaccioli (1979). The error bars are negligible for R , R e and smaller than 15 per cent out to 2.5R e , the maximum distance from the centre reached in the data of Goudfrooij et al. (1994).

According to de Vaucouleurs & Capaccioli (1979), in this galaxy the R 1/4 surface-brightness profile extends to R lim 7X5R e 26X4 kpcY given a distance of 12.4 Mpc to NGC 3379 (Salaris & Cassisi 1998). Within R lim , de Vaucouleurs & Capaccioli (1979) report a blue magnitude, corrected for galactic extinction of B 10X10Y yielding a total blue luminosity of 2X2 Â 10 10 L ( Y hence a blue luminosity density of 2X8 Â 10 5 L ( kpc 23 X Since the mass within R lim must be greater than the mass in stars, we infer that within this radius, Y B . 8 (the typical mass-to-blueluminosity ratio for old stellar populations), yielding an overdensity of the galaxy, relative to the critical density r c of v . 1X6 Â 10 4 aH 0 a70 km s 21 Mpc 21 2 X Therefore, since v @ 100 (the value at r v ), we conclude that R lim ! r v Y hence R e ! r v a7X5X In contrast, with Rcut 1Y the effective radius of the NFW model c 10 is .0.3r v (Fig. 9). This discrepancy in R e /r v between NFW and R 1/4 law gets even worse if one adopts Rcut 4Y which provides the best fits of the NFW surface mass density to the R 1/4 law: indeed, Fig. 9 indicates R e . 0X8r v for the NFW model.

In summary, the NFW surface mass density profile resembles an R 1/4 law in a fairly wide range of radii, but (1) one has to resort to an abnormally large effective radius, very close to the virial radius, and assume that the effective radius measures half the projected light (or mass) within 4 times the virial radius, and (2) the fit is good in a considerably smaller range of radii than is observed in the nearby giant elliptical NGC 3379.

The generalization of the R 1/4 law into an R 1/m law, first proposed by Se Ârsic (1968), is known to fit the surface-brightness profiles of elliptical galaxies within a much larger mass range than the de Vaucouleurs law (Caon, Capaccioli & D'Onofrio 1993). The surface brightness of the Se Ârsic profile is
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where b(m) is tabulated by Ciotti (1991), who gives the empirical relation bm . 2m 2 0X324Y good to 0.1 per cent relative accuracy. The de Vaucouleurs law is reproduced for m 4Y while m 1 corresponds to an exponential law as in spiral discs. In Fig. 11, we plot the NFW surface brightness I S M aYY with S M given by equation ( 41) and c 10Y as a function of (R/R e ) 1/m for various values of the Se Ârsic parameter m. We compare them to the Se Ârsic profiles given by the straight dashed lines. The agreement is good for all values of m, within ranges of I/I e that increase with increasing m. Comparison of the plots for different m shows that the Se Ârsic models with lower m generally agree better with the NFW surface brightness for smaller radii, while those with larger m are in better agreement at larger radii, closer to the virial radius. Overall, the NFW profile matches best the m 3 Se Ârsic law, over a factor of 10 3 in intensity (7.5 mag).

For a more quantitative comparison, we performed twoparameter fits of the Se Ârsic models (53) to the projected NFW formula (41). The NFW profile was sampled in the range 0X01 , R , 1 with a given c. The fitted Se Ârsic parameters 1/m and R e /r v obtained for different c are shown in Fig. 12. Fig. 13 compares the two projected profiles for c 10X The best-fit parameters of the Se Ârsic model in this case are m 3X07 and R e ar v 0X55X

While Caon et al. (1993) find similar ranges of agreement between observed profiles and Se Ârsic laws, this range in intensity is still smaller than the range of 10 4 found for NGC 3379 by de Vaucouleurs & Capaccioli (1979). Moreover, while Caon et al. (1993) find that the best fitting Se Ârsic models for elliptical galaxies have indices spanning a wide range, from m 2 for faint ellipticals to m 10 for bright ellipticals, the Se Ârsic laws that match the NFW models span a much smaller range, roughly m 3 ^0X5 2X71 , m , 3X41 for 5 , c , 15Y see Fig. 12). Moreover, the problem of very high values of R e ar v 0X46 , R e ar v , 0X81 for 5 , c , 15Y see Fig. 12), remains in the fits of Se Ârsic profiles to projected NFW models.

D I S C U S S I O N

The main disadvantage of the NFW model is the logarithmic divergence of its mass (and luminosity for constant mass-to-light ratio). In contrast, the Jaffe (1983) and Hernquist (1990) models converge in mass, and their properties can be expressed in units of their asymptotic mass. For the NFW model, one is restricted to a mass at a physical radius such as the virial radius. This mass divergence also complicates the analysis of surface-brightness profiles, which involve the effective radius where the aperture luminosity is half its asymptotic value. However, independently of the radial cut-off introduced to define the effective radius, the projected NFW density profile is consistent with constant mass-tolight ratio, given the observed Se Ârsic profiles of elliptical galaxies, but only in a limited range of radii, with unusually high values of R e and in a smaller interval of Se Ârsic shape parameters than observed. On the other hand, the Hernquist (1990) model, whose density profile scales as r 24 at large radii, produces better fits to the R1/4 law.

The upper panel of Fig. 10 suggests that, for reasonable effective radii, if indeed dark matter follows the NFW profile, the mass-to-light ratio, Y, is not constant but increases with radius, not only in the outer regions, as is inferred from the commonly accepted picture of galaxies embedded in more spatially extended dark haloes, but also in the inner regions. This is at odds with the observed kinematics of ellipticals that Bertola et al. (1993) inferred from observations of ionized and neutral gas around specific ellipticals. Moreover, increasing Y throughout the galaxy implies radial velocity anisotropy throughout elliptical galaxies, whereas violent relaxation should cause isotropic cores. 1 Thus it appears difficult to reconcile the photometry and kinematics of elliptical galaxies with NFW models. In a forthcoming paper (Mamon & èokas, in preparation), we will omit the assumption of mass follows light in a more detailed assessment of the compatibility of the observations of elliptical galaxies with the NFW model.

The results presented in this paper can be directly applied to the analysis of the mass and light distribution in clusters of galaxies. A standard procedure to do it is to measure the surface brightness and the line-of-sight velocity dispersion and assuming some form of velocity distribution or mass-to-light ratio calculate the luminosity density and the velocity dispersion by solving the Abel integral equations ( 41) and ( 44) and the Jeans equation (Binney & Mamon 1982;Tonry 1983;Solanes & Salvador-Sole  1990;Dejonghe & Merritt 1992). The results of this procedure are uncertain because it involves derivatives of observed quantities that are usually noisy. One also experiences a degeneracy because different models fit the data equally well (Merritt 1987). Instead of solving the Abel equations one can also model the luminosity density and velocity dispersion with simple functions and fit their parameters so that they reproduce their projected counterparts (Carlberg et al. 1997).

Our results are useful for the simpler approach of assuming realistic forms of the density distribution, velocity distribution and mass-to-light ratio. Here we provide the tools for modelling the NFW density profile with different velocity distributions and mass-to-light ratio Y constY and obtain exact predictions for the surface-brightness and the line-of-sight as well as aperture-velocity dispersion that can be directly compared with observations.

Figure 2 .

 2 Figure 2. The radial dependence of the virial ratio in the isotropic model (equations 21 and 24) for three different values of the concentration parameter (upper panel) and for the four considered anisotropy models with c 10 (lower panel).

Figure 1 .

 1 Figure 1. Radial velocity dispersion profile (in units of the circular velocity at the virial radius), given by in isotropic model, equation (14), for three different values of the concentration parameter c (upper panel) and for the four considered anisotropy models with c 10 (lower panel).

  models have h 9X In models with cuspy cores, we propose the scaling relation 4pGrr s r 2 s 1 3 hks 2 l r,rs X 33

Figure 3 .

 3 Figure 3. Dependence on the concentration parameter of the virial ratio at the virial radius for the four considered anisotropy models.

Figure 4 .

 4 Figure 4. Dependence on the concentration parameter of the half-mass radius, scaled to the virial radius (thicker lower solid line, see equation 28) and g for the four anisotropy models (equation 30, four upper lines).

  ), probes only the range of s where b is close to zero, while for small c the integral is dominated by the contribution from large s where b is close to unity.Finally, we consider the structural parameter WUM Ws MsF0 38

Figure 5 .

 5 Figure 5. The distribution function for isotropic model (equation 40) for three different values of the concentration parameter.

  ) by replacing s 2 r by V 2 , keeping only the terms proportional to b and dividing by (22b ).

Fig. 7

 7 displays the radial profiles of aperture-velocity dispersion, computed numerically from equation (48). From the upper panel of the figure we see that in the isotropic case the dependence of the results on the concentration parameter is rather strong and monotonic for a given R. The lower panel of the Figure compares the predictions for different velocity anisotropy models.

Figure 6 .

 6 Figure 6. Upper panel: radial dependence of the line-of-sight velocity dispersion for isotropic orbits (equation 44) on the projected radius for three values of the concentration parameter. Lower panel: comparison of the line-of-sight velocity dispersion profiles for four anisotropy models calculated with c 10X

Figure 7 .Figure 8 .

 78 Figure 7. Upper panel: radial profiles of the aperture-velocity dispersion in the isotropic model for three concentration parameters. Lower panel: comparison of the aperture-velocity dispersions for four anisotropy models calculated with c 10X

Figure 9 .

 9 Figure 9. The dependence of the effective radius, defined in equation (50), on the concentration parameter, with various choices of R Ä cut .

Figure 10 .

 10 Figure 10. Upper panel: surface-brightness profiles (equation 41) for three concentration parameters and Rcut 1X Lower panel: the dependence of the surface brightness profiles on the cut-off R Ä cut for c 10 and Rcut 3Y 3.5, 4, 4.5 and 5 (bottom to top curves). In both panels, the R 1/4 law (equation 52) is shown as long dashed lines. The vertical lines represent the virial radius (for the three concentration parameters in the upper panel and for the 5 values of R Ä cut in the lower panel, with R Ä cut increasing from right to left). The circles are the data points for the galaxy NGC 3379.

Figure 11 .

 11 Figure 11. Comparisons of c 10 projected NFW models (using equation 41) to Se Ârsic models (equation 41). The curves represent the NFW models (for equally spaced values of R Ä cut within the interval indicated in each plot, with R Ä cut increasing upwards on the left portion of each plot). The Se Ârsic law is shown as long dashed lines. The vertical lines represent the virial radius (with R Ä cut increasing from right to left).

Figure 12 .

 12 Figure 12. The best fitting parameters of the Se Ârsic law, equation (53), as functions of concentration: 1/m (dashed line) and R e /r v (solid line).
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Note that recent state-of-the-art observations and modelling bySaglia et al. (2000) andGebhardt et al. (2000) do not strongly constrain the gravitational potentials of elliptical galaxies, although NFW potentials may turn out to be inconsistent with the current data. On the other hand,Kronawitter et al. (2000) are able to rule out constant Y for some elliptical galaxies.
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