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Abstract. We present a self consistent method to perform a joint analysis of Sunyaev-Zel’dovich and weak gravita-
tional lensing observation of galaxy clusters. The spatial distribution of the cluster main components is described
by a perturbative approach. Assuming hydrostatic equilibrium and the equation of state, we are able to deduce,
from observations, maps of projected gas density and gas temperature. The method then naturally entails a X-ray
emissivity prediction which can be compared to observed X-ray emissivity maps. By comparing with 2 simulated
clusters we find that this prediction turns out to be in very good agreement with the simulations. The simulated
and predicted surface brightness images have a correlation coefficient higher than 0.9 and their total flux differs
by 0.9% or 9%. The method should be able to deal with real data in order to provide a physical description of
the state of the cluster and of its constituents. The tests performed show that we can recover the amount and the
spatial distributions of both the baryonic and non-baryonic material with an accuracy better than 10%. So, in
principle, it might indeed help to alleviate some well known biases affecting, e.g. baryon fraction measurements.
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1. Introduction

Whereas clusters of galaxies, as the largest gravitationaly
bound structures in the universe, are a natural probe of
cosmology, observations, numerical simulations as well as
timing arguments provide compelling evidence that most
clusters are young and complex systems. Interaction with
large-scale structures, merging processes and coupling of
dark matter with the intra-cluster medium complicate the
interpretation of observations and the modeling of each
components. Since clusters are composed of dark matter
(DM), galaxies and a hot dilute X-ray emitting gas (Intra
cluster medium, ICM) accounting respectively for ∼85%,
∼10% and ∼5% of their mass, the physics of the ICM
bounded in a dark matter gravitational potential plays a
major role in cluster formation and evolution.

Each component can be observed in many different
ways. In particular, we refer to gravitational lensing ef-
fects (the weak-lensing regime here, WL) (Mellier 2000;
Bartelmann & Schneider 2001), the Sunyaev-Zel’dovich
(SZ) effect (Sunyaev & Zel’dovich 1972; Birkinshaw 1999)
and X-ray emission (X) (Sarrazin 1988). Whereas the for-
mer probes mostly the dark matter component, both the
latter probe the baryons of the gravitationally bound ICM.
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Due to observational progress, increasingly high qual-
ity data are available that enable multi-wavelength inves-
tigation of clusters down to an arc-minute scale (the most
recent is the spectacular progress in SZ measurements, e.g.
Reese et al. (2000) and Désert et al. (1998). In contrast
with past decades, it is now possible to analyse clusters
of galaxies using X-ray, WL and SZ data at almost the
same resolution, and to produce from them self consis-
tent models. The exploration of reconstruction techniques
to analyse together these high quality data sets and ex-
ploit their complementarity is a recent challenge. It has
been tackled by several groups (Zaroubi et al. 1998; Grego
et al. 1999; Reblinsky & Bartelmann 1999; Zaroubi et al.
2000; Castander et al. 2000; Holder et al. 2000). Zaroubi
et al. and Reblinsky et al. attempted a full deprojection by
assuming isothermality and axial symmetry, using respec-
tively a least square minimization and a Lucy-Richardson
algorithm. Grego et al. compare SZ-derived gas mass to
WL-derived total mass by fitting a spheroidal β model.
Whereas these methods give reasonable results it has been
pointed out, e.g. by Inagaki et al. (1995) in the context
of H0 measurement from SZ and X-ray observations, that
both non-isothermality and asphericity analysis can trig-
ger systematic errors as high as 20%.

In this paper, we propose an alternative direction in
order to to get rid of both isothermal and spherical hy-
potheses. Our method is based on a self-consistent use of
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WL and SZ observables, and on a perturbative develop-
ment of general physical hypotheses. This approach allows
us to test some very general physical hypotheses of the
gas (hydrostatic equilibrium, global thermodynamic equi-
librium) and also naturally provides some X observation
predictions.

Observations only provide 2–D projected quantities
(e.g. mass, gas pressure, . . . ). These quantities are re-
lated to each other by physical hypotheses which express
the 3–D geometrical properties and the dynamical and
thermodynamical stage of matter (e.g. sphericity, hydro-
static equilibrium, equation of state). In most cases, their
3–D mathematical formulations do not have any tractable
equivalent relating 2–D projected quantities: in particu-
lar, projection along the line of sight does not provide
an equation of state or a projected hydrostatic equilib-
rium equation. Therefore, as soon as we want to compare
these data (WL, SZ, X) we have to deproject the rele-
vant physical quantities (Pg, Tg, ρg . . .). This can be done
only using strong assumptions, either by using parametric
models (e.g. a β model, Cavaliere & Fusco-Femaino 1976)
or by assuming mere geometrical hypotheses (the former
necessarily encompassing the latter) (Fabian et al. 1981;
Yoshikawa & Suto 1999).

Because the latter keeps the physical grounds as gen-
eral as possible and also avoids as many theoretical biases
as possible, we preferred to focus on the geometric ap-
proach. Furthermore, this simplest choice is also motivated
by looking at some images of observed clusters (Désert
et al. 1998; Grego et al. 1999). Some do have striking reg-
ularity with almost circular or ellipsoidal appearance, as
we expect for fully relaxed systems. Then, since relaxed
clusters are expected to be spheroidal in favored hierarchi-
cal structure formation scenario, it is natural to try to re-
late the observed quasi-circularity (quasi-sphericity) to the
3–D quasi-sphericity (quasi-spheroidality). We per-
form this by using some linearly perturbed spherical
(spheroidal) symmetries in a self-consistent approach.

The paper is organised as follows: in Sect. 2 we de-
fine our physical hypothesis and notations. The method is
precisely described in Sect. 3. We consider both the spher-
ical as well as spheroidal cases and obtain a predicted X
surface brightness map from a SZ decrement map and a
WL gravitational distortion map. In Sect. 4 a demonstra-
tion with simulated clusters is presented before discussing
its application to genuine data as well as perspectives for
further developments in Sect. 5.

2. Hypotheses, Sunyaev-Zel’dovich effect
and the weak lensing

We now briefly describe our notations as well as our phys-
ical hypothesis.

2.1. General hypotheses

Following considerations fully detailed in Sarrazin (1988)
the ICM can be regarded as a hot and dilute plasma

constituted by ions and electrons, whose respective ki-
netic temperatures Tp and Te will be considered as equal
Tp = Te ≡ Tg. This is the global thermodynamic equilib-
rium hypothesis which is expected to hold up to rvirial (see
Teyssier et al. 1997 and Chièze et al. 1998 for a precise dis-
cussion). Given the low density (from ne ∼ 10−1 cm−3 in
the core to ∼10−5 cm−3 in the outer part) and high tem-
perature of this plasma (∼10 keV), it can be treated as a
perfect gas satisfying the equation of state:

Pg =
ρg kB Tg

µe mp
= β ρgTg (1)

with β ≡ kB
µe mp

. Let us consider in accord with the general
paradigm that most of the mass is constitued by a dark
matter component and thus neglect the gas mass with
regards to it, and let us assume stationarity (no gravita-
tional potential variation on a time scale smaller than the
hydrodynamic time scale, e.g. no recent mergers). Then
the gas assumed to be in hydrostatic equilibrium in the
dark matter gravitational potential satisfies:

∇(ρgvg) = 0 (2)

∇Pg = −ρg∇ΦDM. (3)

At this point there is no need to assume isothermality.

2.2. Sunyaev-Zel’dovich effect and weak lensing

Inverse Compton scattering of cosmic background (CMB)
photons by the electrons in the ICM modifies the
CMB spectrum (Zel’dovich & Sunyaev 1969; Sunyaev &
Zel’dovich 1972; Sunyaev & Zel’dovich 1980). The ampli-
tude of the SZ temperature decrement ∆TSZ

TCMB
is directly

proportional to the Comptonisation parameter y which is
given by:

y =
σT

mec2

∫
dl nekBTe =

σT

mec2

∫
dl pe (4)

=
σT

mec2

∫
dl
ρgkBTg

µemp
= α

∫
dlPg, (5)

where α ≡ σT
mec2

, kB is the Boltzmann’s constant, σT is the
Thomson scattering cross-section and dl is the physical
line-of-sight distance. me, ne, Te and pe are the mass, the
number density, the temperature and the thermal pressure
of electrons. ρg and Tg respectively denote the gas density
and temperature, and µe is the number of electrons per
proton mass. Some further corrections to this expression
can be found in Rephaeli (1995) and Birkinshaw (1999).

In parallel to this spectral distortion, the statistical
determination of the shear field γ affecting the images of
background galaxies enables us to derive the dominant
projected gravitational potential of the lens produced by
dark matter (DM): φDM in our general hypothesis (see
Mellier 2000 for details).
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3. Method

3.1. Principle

Let us suppose we have for a given cluster a set of SZ and
WL data which enables us to construct a 2–D map of pro-
jected gas pressure as well as a 2–D projected gravitational
potential map. We now propose an answer to the follow-
ing question: how should we co-analyze these various data
sets? Our first aim is to develop a method which allows
us to get maps of projected thermodynamical quantities
with as few physical hypotheses as possible.

Our method is the following. Let us suppose then that
these maps have almost a rotationnal symmetry, as is the
case for a vast class of experimental observations as e.g. in
Fig. 1. More precisely, let us suppose that the projected
gas pressure y as well as the observed projected gravita-
tional potential φDM can be well fitted by the following
type of functions:

y(R,ϕ) = y0(R) + εy1(R) m(ϕ) (6)

φDM(R,ϕ) = φDM,0(R) + εφDM,1(R) n(ϕ) (7)

where ε � 1, (R,ϕ) denotes polar coordinates in the im-
age plane and m and n are some particular functions. This
description means first of all that the images we see are lin-
ear perturbations from some perfect circularly symmetric
images, and second that the perturbation might be de-
scribed conveniently by the product of a radial function
and an angular function. Equivalently, we can assert that
to zeroth order in ε our images are circularly symmetric
but they admit some corrections to a first order in ε.

We then assume that these observed perturbed sym-
metries are a consequence of an intrinsic 3–D spherical
symmetry linearly perturbed as well. This point consti-
tutes our key hypothesis. It means that to the zeroth order
in a certain parameter (e.g. ε) our clusters are regular ob-
jects with a strong circular symmetry but they admit some
first order (linear) perturbations away from this symme-
try, whose angular part is separable. As a consequence of
these assumptions we will make use of this linearly per-
turbed symmetry to get a map of some complementary
projected thermodynamical quantities, the gas densityDg

and the gas temperature ζg, successively to zeroth and first
order in ε.

Formulated this way, the problem yields a natural
protocol:

– Looking at some maps with this kind of symmetry,
we compute a zeroth order map (y0(R), φ0(R)) with a
perfect circular symmetry by averaging over some con-
centric annulus. A correction for the bias introduced
by perturbations is included. These zeroth order quan-
tities allow us to derive some zeroth order maps of
Dg,0(R) and ζg,0(R) with a perfect circular symmetry;

– We then take into account the first order corrections to
this perfect symmetry (y1(R)m(ϕ), φ1(R)m(ϕ)) and
infer from them first order correction terms to the ze-
roth order maps: Dg,1(R,ϕ) and ζg,1(R,ϕ).

Fig. 1. Images of the SZ effect observed towards four galaxy
clusters with various redshifts. The contours correspond to 1.5
to 5 times the noise level. Data were obtained with the low-
noise cm-wave receiver installed on the OVRO and BIMA mm-
wave interferometric arrays (Holder & Carlstrom 1999). The
bottom-left white ellipse denotes the synthetised beam for each
observation.

Even if, for the sake of clarity, we formulate our method
assuming a perturbed circular symmetry, it applies equiva-
lently to a perturbed elliptical symmetry, as will be shown
below. In this more general case, we assume that the clus-
ter exhibits a linearly perturbed spheroidal symmetry.

3.2. The spherically symmetric case:
From observations to predictions

Let us now apply the method to the case where the pro-
jected gas density (SZ data) and the projected gravita-
tional potential (WL data) look almost circular. These
observations lead us to suppose that the 3–D gas pres-
sure, the gravitational potential, the gas density and the
gas temperature can be well described by the following
equations:

Pg(r, θ, ϕ) = Pg,0(r) + ε Pg,1(r)f(θ, ϕ)
ΦDM(r, θ, ϕ) = ΦDM,0(r) + ε ΦDM,1(r)g(θ, ϕ)
ρg(r, θ, ϕ) = ρg,0(r) + ε ρg,1(r)h(θ, ϕ)
Tg(r, θ, ϕ) = Tg,0(r) + ε Tg,1(r)k(θ, ϕ)

(8)

where (r, θ, ϕ) are spherical coordinates centered on the
cluster.

3.2.1. The hydrostatic equilibrium

If we first apply the hydrostatic equilibrium equation
∇Pg = −ρg∇ΦDM we get the following equations. To ze-
roth order in ε we have

P ′g,0(r) = −ρg,0(r)Φ′DM,0(r), (9)
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and to first order in ε:

P ′g,1(r)f(θ, ϕ) = −ρg,0(r)Φ′DM,1(r) g(θ, ϕ)
−ρg,1(r)Φ′DM,0(r) h(θ, ϕ) (10)

Pg,1(r) ∂θ f(θ, ϕ) = −ρg,0(r) ΦDM,1(r) ∂θg(θ, ϕ) (11)
Pg,1(r) ∂ϕf(θ, ϕ) = −ρg,0(r) ΦDM,1(r) ∂ϕg(θ, ϕ) (12)

where “ ′ ” denotes the derivative with regards to r.
Combining Eqs. (11) and (12) we get

f(θ, ϕ) = λ1g(θ, ϕ) + λ2 (13)

where λ1,2 are constants. Then, by using Eq. (10) we can
write

f(θ, ϕ) = γ1h(θ, ϕ) + γ2 (14)

where γ1,2 are constants as well. At this point, we can get
rid of λ2 and γ2 by absorbing them in the zeroth order
mere radial term (i.e. ρg,0(r) and ΦDM,0(r)). This means
we can consider λ2 = 0 and γ2 = 0. Similarly, we choose
to rescale ρg,1(r) and ΦDM,1(r) so that we can take γ1 =
λ1 = 1. These simple equalities lead us to assume from
now on:

f(θ, ϕ) = h(θ, ϕ) = g(θ, ϕ). (15)

This is in no way a restriction since it simply means that
we absorb integration constants by redefining some terms.
This is possible since the relevant part of f (and thus h)
will be fitted on observations, as will be shown below.
Taking Eq. (15) into account, Eqs. (10)–(12) simplify to:

P ′g,0(r) = −ρg,0(r)Φ′DM,0(r) (16)
P ′g,1(r) = −ρg,0(r)Φ′DM,1(r) − ρg,1(r)Φ′DM,0(r) (17)
Pg,1(r) = −ρg,0(r)ΦDM,1(r) . (18)

3.2.2. The equation of state

We have now identified the angular part to the first order
correction of Pg, ΦDM and ρg. We still have to link those
quantities to the angular dependent part of the tempera-
ture Tg, namely k(θ, ϕ). This is done naturally by using
the equation of state (1), which directly provides, to zeroth
and first order in ε:

Pg,0(r) = βρg,0(r)Tg,0(r) (19)

Pg,1(r)f(θ, ϕ) = βρg,1(r)Tg,0(r)f(θ, ϕ)
+βρg,0(r)Tg,1(r)k(θ, ϕ). (20)

This last equation leads naturally to f(θ, ϕ) = k(θ, ϕ) if
we decide once again to absorb any multiplicative factor in
the radial part. This way we see that our choice of separat-
ing the radial and angular part is in no way a restriction.
We eventually get

Pg,0(r) = βρg,0(r)Tg,0(r) (21)
Pg,1(r) = βρg,1(r)Tg,0(r) + βρg,0(r)Tg,1(r) . (22)

3.2.3. The observations

Given this description of the cluster physical state, the ex-
perimental SZ and WL data provide the projected quan-
tities y(R,ϕ) and φDM(R,ϕ):

y(R,ϕ) = α

∫
Pg,0(r)dl + ε α

∫
Pg,1(r)f(θ, ϕ)dl

≡ y0(R) + εy1(R)m(ϕ) (23)

φDM(R,ϕ) =
∫

ΦDM,0(r)dl + ε

∫
ΦDM,1(r)f(θ, ϕ)dl

≡ φDM,0(R) + εφDM,1(R)m(ϕ). (24)

Note that in order to get this set of definitions we choose
the polar axis of the cluster along the line of sight so
that the same azimuthal angle ϕ is used for 2–D and 3–D
quantities.

Our aim is now to derive both a projected gas density
map and projected temperature map as defined by:

Dg(R,ϕ) =
∫

ρg(r, ϕ)dl (25)

=
∫
ρg,0(r)dl + ε

∫
ρg,1(r)f(θ, ϕ)dl (26)

≡ Dg,0(R) +Dg,1(R,ϕ) (27)

ζg(R,ϕ) =
∫

Tg(r, ϕ)dl (28)

=
∫

Tg,0(r) dl + ε

∫
Tg,1(r)f(θ, ϕ)dl (29)

≡ ζg,0(R) + ζg,1(R,ϕ). (30)

3.2.4. A projected gas density map to zeroth order. . .

Now that we have expressed our observables in terms of
3–D physical quantities, it is easy to infer a gas density
map successively to zeroth and first order in ε. To zeroth
order the hydrostatic equilibrium condition (9) states that

P ′g,0(r) = −ρg,0(r)Φ′DM,0(r). (31)

In order to use it we need to deproject the relevant quanti-
ties. From the well-known spherical deprojection formula
(Binney & Tremaine 1987) based on Abel’s transform we
have:

α Pg,0(r) = − 1
π

∫ ∞
r

y′0(R)
dR

(R2 − r2)
1
2

(32)

= − 1
π

∫ ∞
0

y′0(r coshu)du (33)

where R = r coshu. Thus, we can write

α P ′g,0(r) = − 1
π

∫ ∞
0

coshu y′′(r coshu)du (34)

= − 1
π

∫ ∞
r

1
r

R

(R2 − r2)
1
2
y′′0 (R)dR. (35)

Similarly,

Φ′DM,0(r) = − 1
π

∫ ∞
r

1
r

R

(R2 − r2)
1
2
φ′′0 (R)dR. (36)
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We then get for the projected gas density

Dg,0(R) = −2
∫ ∞
R

rdr
(r2 −R2)

1
2

P ′g,0(r)
Φ′DM,0(r)

(37)

= − 2
α

∫ ∞
R

rdr
(r2 −R2)

1
2

∫∞r s ds

r(s2−r2)
1
2
y′′0 (s)∫∞

r
s ds

r(s2−r2)
1
2
φ′′0 (s)

 . (38)

3.2.5. . . . and a projected gas temperature map
to zeroth order

Once we build this projected gas density map, we can
recover the projected gas temperature map. If we apply
the equation of state (19) we get:

ζg,0(R) =
1
β

∫
Pg,0(r)
ρg,0(r)

dl (39)

= − 1
β

∫
Pg,0(r)
P ′g,0(r)

Φ′DM,0(r)dl (40)

= − 1
πβ

∫ ∞
R

Pg,0(r)
P ′g,0(r)

Φ′DM,0(r)
rdr

(r2 −R2)
1
2
· (41)

Since all the required functions (Pg,0, P ′g,0, Φ′DM,0) have
been derived in the previous section (Eqs. (33) and (35))
we can get in this way a projected gas temperature map.

3.2.6. Corrections from departure to spherical
symmetry: a projected gas density map to first
order. . .

We now reach the core of our method, namely we aim at
deriving the quantity Dg,1 defined by (27), i.e. the first
order correction to the perfectly circular term :

Dg(R,ϕ) = Dg,0(R) + εDg,1(R,ϕ) (42)

=
∫
ρg,0(r)dl + ε

∫
ρg,1(r)f(θ, ϕ)dl. (43)

If we derive Eq. (18) and combine it with Eq. (17) we note
that

ρ′g,0(r)ΦDM,1(r) = ρg,1(r)Φ′DM,0(r). (44)

Therefore we can write∫
ρg,1(r)f(θ, ϕ)dl =

∫
ρ′g,0(r)

Φ′DM,0(r)
ΦDM,1(r)f(θ, ϕ)dl. (45)

At this point we want to express this quantity either in
terms of WL data or in terms of SZ data depending on
their quality, or even better, in terms of an optimal com-
bination of them.

WL data provide straightforward access to the func-
tion φ1(R)m(ϕ) =

∫
ΦDM,1(r)f(θ, ϕ)dl thus we choose

to approximate (45) by∫
ρg,1(r)f(θ, ϕ)dl '

ρ′g,0(R)
Φ′DM,0(R)

∫
ΦDM,1(r)f(θ, ϕ)dl

'
ρ′g,0(R)

Φ′DM,0(R)
φ1(R)m(ϕ)

'
ρ′g,0(R)

Φ′DM,0(R)
(φDM(R,ϕ)− φ0(R)) (46)

where we used the definitions of Sect. 3.2.3 and where R
corresponds to the radius observed in the image plane, i.e.
the radius r equal to the distance between the line of sight
and the center of the cluster. We will discuss this approxi-
mation in more detail in Sect. 3.2.8 and validate it through
practical implementation on simulations in Sect. 4. We al-
ready can make the following statements: if the line of
sight follows a line of constant r throughout the domain
of the perturbation, this expression would be rigorously
exact. Moreover, it turns out to be a good approximation
because of the finite extent of the perturbation.

On the other hand, SZ data provide a measurement of
the function y1(R)m(ϕ) =

∫
Pg,1(r)f(θ, ϕ)dl therefore,

we can use Eqs. (18) and (16) to write∫
ρg,1(r)f(θ, ϕ)dl =

∫
ρ′g,0(r)
P ′g,0(r)

Pg,1(r)f(θ, ϕ)dl (47)

'
ρ′g,0(R)
P ′g,0(R)

∫
Pg,1(r)f(θ, ϕ)dl (48)

'
ρ′g,0(R)
P ′g,0(R)

y1(R)m(ϕ) (49)

'
ρ′g,0(R)
P ′g,0(R)

(y(R,ϕ)− y0(R)) . (50)

Here again we used the same notation and approximation
as in Eq. (46). Note however that as soon as we assumed
isothermality, the ratio ρ′g,0/P ′g,0 is constant, therefore this
last step is exact. Were we not assuming isothermality, the
departure from isothermality is expected to be weak, thus
this last approximation should be reasonable.

These last two alternative steps are crucial to our
method since these approximations link the non spheri-
cally symmetric components of various quantities. They
are reasonable, as will be discussed in Sect. 3.2.8 and will
be numerically tested in Sect. 4.

Of course, only well-known quantities appear in
Eqs. (46) and (50): y, y0, φDM and φ0 are direct obser-
vational data whereas Pg,0(r) and ρg,0(r) are zeroth order
quantities previously derived.

3.2.7. . . . and a projected gas temperature map to first
order

The projected temperature map can be obtained the same
way as before. By using first the equation of state we can
write :

Tg,0(r) + εTg,1(r)f(θ, ϕ) =
1
β

(Pg,0(r) + εPg,1(r)f(θ, ϕ))
(ρg,0(r) + ερg,1(r)f(θ, ϕ))

' 1
β

(
Pg,0(r)
ρg,0(r)

+ εPg,1(r)
ρg,0(r) − ρg,1(r)

ρ2
g,0(r)

f(θ, ϕ)

)
. (51)

Hence, since

ζ(R,ϕ) = ζ0(R,ϕ) + εζ1(R,ϕ) (52)

=
∫
Tg,0(r) dl + ε

∫
Tg,1(r)f(θ, ϕ)dl (53)
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we have

ζ1(R,ϕ) =
∫
ρg,0(r) − ρg,1(r)

ρ2
g,0(r)

Pg,1(r)f(θ, ϕ)dl. (54)

Here we choose to approximate the last integral as pre-
viously discussed in order to make use of observational
SZ data. Therefore we rewrite this last equation as:

ζ1(R,ϕ) ' ρg,0(R)− ρg,1(R)
ρ2

g,0(R)

∫
Pg,1(r)f(θ, ϕ)dl

' ρg,0(R)− ρg,1(R)
ρ2

g,0(R)
y1(R)m(ϕ) (55)

' ρg,0(R)− ρg,1(R)
ρ2

g,0(R)
(y(R,ϕ)− y0(R)) . (56)

We obtain this way an expression to first order for the pro-
jected temperature in terms of either observed quantities
or previously derived functions.

3.2.8. Why the previous approximation is reasonable
on intuitive grounds

Our previous approximations can be justified on intuitive
grounds even if we will take care in validating it numeri-
cally in Sect. 4 below. It relies on the fact that perturba-
tions have by definition a finite extent, i.e. the first order
correction to the perfectly circular (spherical) term is non
zero only within a finite range. The typical size and ampli-
tude of the perturbation can be easily scaled from the SZ
and WL data set. This guarantees the validity of our as-
sumptions on observational grounds. The key point is that
the perturbation itself has a kind of axial symmetry, whose
axis goes through the center of the cluster and the peak
of the perturbation. This is reasonable if the perturbation
originates in e.g. an incoming filament but not for a sub-
structure. The latter would therefore have to be treated
separately by superposition (see Sect. 5). This leads natu-
rally to the statement that the typical angle we observe in
the image plane is equal to the one we would observe if the
line of sight were perpendicular to its actual direction, i.e.
the perturbation as intrinsically the same angular extent
in the directions along the line of sight and perpendicular
to it. This is illustrated schematically in Fig. 2.

Given this description, we are now in a position to
discuss the validity of our approximation. It consists of
approximating the line of sight integral∫
g(r)ΦDM,1(r)f(θ, ϕ)dl (57)

by

g(R)
∫

ΦDM,1(r)f(θ, ϕ)dl (58)

where g is any radial function. This approximation would
be exact if g(r) were constant in the relevant domain, i.e.
if the line of sight had a constant r. As mentioned before,
this is the case in Eq. (50) if we assume isothermality.

(b)(a)

line of sight

∆ ϕ
∆θ

Image Slice

Fig. 2. We represent schematically in a) an image correspond-
ing to our hypothesis. The full line corresponds to the perfectly
circular 2–D term, e.g. φDM,0, and the dashed line to the first
perturbative correction to it, e.g. φDM,1m(ϕ), ∆ϕ represents
the observed angular extent. In b) we represent a schematic
slice in the 3–D potential responsible for this image. This slice
has been performed along the dash-two-dotted plane indicated
in figure a). Here again, the full line corresponds to the per-
fectly circular 3–D term, e.g. ΦDM,0, and the dashed line to
the first perturbative correction to it, e.g. ΦDM,1f(θ, ϕ). The
line of sight direction is indicated by the full thin line. Were
the line of sight perpendicular to this slice plane, we would
observe the angular extent ∆θ. Giving an axial symmetry to
this perturbation leads us to assess that ∆ϕ ' ∆θ.

However the functions g(r) we might deal with may scale
roughly as r2, as e.g. ρ′g,0(r)/Pg,0(r) in Eq. (46), thus it
is far from being constant. The subsequent error induced
can be estimated by the quantity ∆rg′(r) where ∆r is the
maximum r discrepancy between the value assumed, g(R),
and the actual value as it is schematically illustrated in
Fig. 3. In the worst case, g′(r) scales as r. Then, by using
the obvious notations defined in this figure we get

(∆r)max = R

(
1− 1/ sin

(
θ − ∆θ

2

))
· (59)

Naturally this quantity is minimal for θ ' 90◦ and di-
verges for θ ' 0◦ when ∆θ = 0◦: the error is minimal
when the line of sight is nearly tangential (θ ' 90◦) and
so is almost radial in this domain, and maximal when it is
radial (θ = 0◦). This in principle is a very bad behavior,
but the fact is that the closer θ is to 0deg the weaker the
integrated perturbation is since it becomes always more
degenerate along the line of sight, i.e. the integrated per-
turbations tend to a radial behavior and will therefore be
absorbed in the ΦDM,0(r) term. The extreme situation, i.e.
when θ = 0deg, will trigger a mere radial image as long as
the perturbation exhibits a kind of axial symmetry. This
error is impossible to correct since we are dealing with a
fully degenerate situation but it will not flaw the method
at all since the integrated perturbation will be null. This
approximation will be validated numerically below.

3.3. How to obtain a X-ray prediction

The previously derived map offers an advantage that
we now aim to exploit, namely the ability of precise X
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θ

∆θ

R +∆r

line of sight

Φ0

1Φ

r

R
r

Fig. 3. We define in this figure the notation necessary to dis-
cuss our approximation. rR is the parameter value given to the
function (f(r))R and rR + ∆r is an actual value along the line
of sight.

prediction. Indeed, for a given X spectral emissivity model,
the X-ray spectral surface brightness is

SX(E) =
1

4π(1 + z)4

∫
n2

eΛ(E, Te)dl (60)

where Λ is the spectral emissivity, z is the redshift of the
cluster and E is the energy on which the observed band is
centered. Hence we can write, assuming a satisfying knowl-
edge of z and Λ :

SX(E) ∝
∫

n2
eT

1/2
e dl (61)

∝
∫

ρ2
gT

1/2
g dl (62)

∝
∫

ρ2
g,0T

1/2
g,0 dl + 2 ε

∫
ρg,0T

1/2
g,0 ρg,1f(θ, ϕ)dl

+
1
2
ε

∫
ρ2

g,0T
−1/2
g,0 Tg,1f(θ, ϕ)dl (63)

where we omitted to write the (r)s for clarity’s sake. If
we now make use of the same approximation as used and
discussed before, we can express directly this quantity in
terms of observations y and φ. We get indeed

SX(E) ∝
∫
ρ2

g,0T
1/2
g,0 dl

+ 2 ε ρg,0(R)T 1/2
g,0 (R)

∫
ρg,1f(θ, ϕ)dl

+
1
2
ε ρ2

g,0(R)T−1/2
g,0 (R)

∫
Tg,1f(θ, ϕ) (64)

∝
∫
ρ2

g,0T
1/2
g,0 dl + 2 ε ρg,0(R)T 1/2

g,0 (R) Dg,1(R,ϕ)

+
1
2
ε ρ2

g,0(R)T−1/2
g,0 (R)ζg,1(R,ϕ). (65)

Both the zeroth order terms Tg,0 and ρg,0, and the first
order corrections Dg,1 and ζg,1 have been derived in

the previous sections. We are thus able to generate self-
consistently a X luminosity map from our previously de-
rived maps. This is a very nice feature of this method. We
will further discuss the approximation and its potential
bias in the next section.

This derivation opens the possibility of comparing on
the one hand SZ and WL observations with, on the other
hand, precise X-ray measurements as taken e.g. by XMM
or CHANDRA. Note that in the instrumental bands of
most X-ray satellites the Tg dependence is very weak and
can be neglected. This can be easily taken into account by
eliminating the Tg dependence in the previous formula.
Even if the interest of such a new comparison is obvious,
we will discuss it more carefully in the two following sec-
tions. In principle, one could also easily make some predic-
tions concerning the density weighted X-ray temperature
defined by the ratio

∫
n2

gTgdl/
∫
n2

gdl but the fact is that
since the gas pressure and so the SZ effect tends to have a
very weak gradient, we are not able in principle to repro-
duce all the interesting features of this quantity, namely
the presence of shocks.

4. Application on simulations

In order to demonstrate the ability of the method in a sim-
plified context we used some outputs of the recently devel-
opedN -body + hydrodynamics code RAMSES simulating
the evolution of a Λ-CDM universe. The RAMSES code is
based on Adaptative Mesh Refinement (AMR) technique
in order to increase the spatial resolution locally using a
tree of recursively nested cells of smaller and smaller size.
It reaches a formal resolution of 12 h−1 kpc in the core of
galaxy clusters (see Réfrégier & Teyssier 2000 and Teyssier
2001, in preparation, for details). We use here the struc-
ture of two galaxy clusters extracted from the simulation
to generate our input observables, i.e. X-ray emissivity,
SZ decrement and projected mass density (or projected
gravitational potential).

The relevant observables, i.e. projected mass density,
SZ decrement and, for comparison purpose only, the X-
ray emission measure, of the 2 clusters are depicted us-
ing a logarithmic scaling in Figs. 4 and 5 (upper panels).
These clusters have been extracted from the simulation
at z = 0.0 and thus tend to be more relaxed than high z
ones: they are ordinary clusters of virial mass (defined by
δ334 in our particular cosmology) 4.50×1014 h−1 M� and
4.15× 1014 h−1 M�. Both exhibit a rather regular shape,
i.e. they have not recently undergone a major merging
process. The depicted boxes are respectively 3.5 h−1 Mpc
and 4.0 h−1 Mpc wide. We smooth the outputs using a
Gaussian of width 120 h−1 kpc thus degrading the reso-
lution. We did not introduce any instrumental noise. For
both clusters, the gas temperature decreases by a factor of
less than 2 from the center to the virial radius. Beyond, the
temperature profile is steeper. Nevertheless, for the sake
of simplicity we will assume that Tg is constant, making
the discussion of Tg,0 and Tg,1 useless at this point.
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Fig. 4. The upper panel shows the results of simulations, from left to right, all using a logarithmic scaling, the projected mass
density (M� Mpc−2), the X-ray emission measure (cm−6 Mpc) and the SZ y parameter. This cluster is a good candidate for
our approach since it has a circular core with surrounding perturbations so would be inappropriate for a ellipsoidal fit. The
lower panel shows, from left to right a zeroth order predicted X emission measure, the first order prediction (the zeroth order
term plus the first order correction), both using a logarithmic scaling as well as the the relative error map, i.e. (predicted –
simulated)/simulated X emission measure using a linear scaling. The 10 error contours are linearly separated between −1.0
and 1. Each box is 3.5 h−1 Mpc wide. The correlation coefficient between the predicted and the simulated X-ray emission
measure is 0.978. The total fluxes differ only by 0.91%, thus even if the relative error map increases at high R the total error
remains small due to the great dynamical range involved.

We apply the method previously described using per-
turbed spherical symmetry. We define the pixel with the
highest luminosity to be the center. The zeroth order cir-
cular description of the gas density is computed averaging
data over concentric annuli and we then add to it some
first order corrections. Note that since we assume isother-
mality, SZ data give us straightforwardly a projected gas
density modulo a temperature Tg,0 coefficient, thus we use
the formulation of Eq. (50), which is exact in this context.
This constant temperature is fixed using the hydrostatic
equilibrium and the WL data.

In Figs. 4 and 5 (lower panels) we show the predicted
X-ray emission measure to zeroth and first order as well as
a map of relative errors. Note that to first order the shape
of the emission measure is very well reproduced. The cross-
correlation coefficients between the predicted and simu-
lated X-ray emission measures are 0.978 and 0.986. Of

course this is partly due to the assumed good quality of the
SZ data but nonetheless, it demonstrates the validity of
our perturbative approach as well as of our approximation.
The approximation performed in Eq. (65), i.e. the multi-
plication by the function ρg,0(R) naturally tends to cut out
the perturbations at high R. This is the reason why the
further perturbations are slightly less well reproduced and
the relative errors tend to increase with R. Nevertheless,
since the emission falls rapidly with R, as is visible in
the lower figures (note the logarithmic scaling), the total
flux is well conserved, respectively to 0.9% and 9%. This
last number might illustrate that the large extent of the
perturbations in the second case may limit our method.
An ellipsoidal fit could help decrease this value. Note that
the clump visible mainly in X-ray emission measure in 5 is
not reproduced. This is natural because it does not appear
through the SZ effect since the pressure remains uniform
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Fig. 5. As in the previous figure for a different cluster. The structure of the X-ray emission measure is very well reproduced for
the inner part. The correlation coefficient between the predicted and simulated map is 0.986. As is visible on the relative error
map, whose 10 levels are linearly separated between −1.0 and 1.0, the outer part is naturally smeared by our approximation.
The visible clump on the top-right should be treated separately. Each box is 4.0 h−1 Mpc wide. The total flux differs by 9%.

throughout the clumps. If resolved by WL, this substruc-
ture should be treated separately, e.g. by considering the
addition of a second very small structure. Note that the
first cluster showed exhibits a spherical core elongated in
the outer region, thus it is not actually as ellipsoidal as
it looks, which may explain why our perturbed spherical
symmetry works well.

5. Discussion

5.1. Hypotheses . . . and non hypotheses

The general and robust hypotheses have been introduced
and discussed in Sect. 2.1. Our key hypothesis consists
of assuming the validity of a perturbative approach and
in choosing the nature of this perturbation, i.e. with
a radial/angular separation. It was initially motivated
by theoretical predictions, observations and simulations
which show that relaxed clusters are regular and globally
spheroidal objects. In fact, comparison of our models with
simulated clusters confirms that our assumptions turn out

be reasonable. However, our method cannot deal properly
with sharp features e.g. shocks waves due to infalling fil-
aments. Assuming the validity of the angular and radial
separation implies the equality of this angular part for all
relevant physical quantities (Pg, Tg, φDM. . . ), using to a
first order in ε the hydrostatic equilibrium and the equa-
tion of state. If this is not satisfied in practice, then we
could question the validity of this separation or of the
underlying physics introduced in the cluster model. Our
experience with simulations shows that for reasonably re-
laxed clusters which do not experience a major merging
process, the angular part of the perturbation is constant
amongst observables. In that case, the separation (and
thus the equality of the angular perturbation) seems to be
a good hypothesis in general, whereas its failure is a sign
of non-relaxation, i.e. non-validity of our general physical
hypothesis.

The validity of our approximations also depends on
physical quantities which are assumed to be constant
along the integral. In the case of the gas density obtained
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from the SZ map, it is an exact statement, provided we
assume isothermality. Since clusters in general are not too
far from isothermality, this hypothesis is reasonable.

The strength of the perturbation method we propose
is the fact that we do not need to assume isothermality
and sphericity (or ellipsoidality). This might be of impor-
tance for further applications. An interesting example is
the measurement of the Hubble constant from joint SZ and
X-ray measurements. As it has been stressed by Inagaki
et al. (1995); Roettiger et al. (1997); Puy et al. (2000),
both the asphericity and the non-isothermality of the rel-
evant clusters can yield important biases in the estimate of
H0 (up to 20%). Our approach may be relevant to address
this issue.

Although the comparaison with simulated clus-
ters is conclusive, our perturbative method has two
shortcomings:

– We implicitly assume an equivalent degree of asym-
metry for the physical quantities involved, i.e. mainly
the gas pressure and DM potential. If perturbations of
spherical models is produced by incoming filaments,
as discussed above, this assumption is reasonable.
However, this particular point might require more de-
tailed study.

– We obtain good results by assuming an isothermal dis-
tribution. In fact, although the difference is small, it
turns out that the underlying distribution is closer
to a polytropic one (compatible with the results of
Markevitch 1998). This means that the overall bary-
onic content is well approximated if we assume a
(wrong) isothermal profile but that we would fail to
reproduce precisely the underlying distributions, even
if the total mass of each components is very well esti-
mated.

Note finally that in the previous sections, we chose to pre-
dict the X-ray brightness map from SZ and WL data in-
stead of predicting SZ maps from WL and X-ray. Since
X-ray maps have higher resolution observations than SZ
or WL, this way to proceed may be questionnable (this
situation will remain unchanged even with future SZ ex-
periments). In fact, SZ is the most robust observable. It
only depends on the pressure, which is a very smoothly
varying quantity and its emission model is fairly simple,
in contrast to the X-ray one. Moreover, it probes better
the outer part of the cluster, i.e. it is less concentrated
than the X-ray emission.

5.2. The equivalent spheroidal symmetry case

So far, we have discussed the perturbed spherical symme-
try case. If we turn to spheroidal symmetry, the problem
is similar provided we know the inclination angle i be-
tween the polar axis of the system and the line of sight.
In the appendix we review the basic results of spheriodal
deprojections. It is directly inspired from (Fabricant et al.
1984): once the projection is well parameterized we get

the projected quantity, like the pressure:

y(η) = 2
Be

R

∫ ∞
η

Pg,0(t) tdt
(t2 − η2)

1
2

(66)

Pg,0(t) = − 1
2π

R

Be

∫ ∞
t

P ′g,0(η)
dη

(η2 − t2)1/2
, (67)

following the notations of the appendix. Since we are deal-
ing with the same Abel integral we can proceed in two
steps as we did before.

Even if the inclination angle is a priori not accessi-
ble directly through single observations, it is possible to
evaluate it using the deprojection of an axially symmetric
distribution of either X-ray/SZ maps or SZ/surface den-
sity maps (Zaroubi et al. 1998; Zaroubi et al. 2000). Our
method overcomes this problem since it only focusses on
2–D quantities and avoids as much as possible to deal with
the full 3–D structure. However, in principle the method
can also reconstruct 3–D quantities. This will be discussed
in a forthcoming work. Note also that axially symmetric
configuration elongated along the line of sight may appear
spherical. This is a difficult bias to alleviate without any
prior knowledge of the profile. In our case, our method will
be biased in the sense that the deprojected profile will be
wrong. Nevertheless, we might hope to reproduce prop-
erly global quantities, like abundance of DM or gas and
so to alleviate some well known systematics (see previous
section), e.g. in measuring the baryon fraction.

5.3. Application to true data

When applying the method to true data, the instrumen-
tal noise issue is an important matter of concern. The
distinct advantage of a parametric approach, e.g. using a
β-model, is that it fits the relevant parameters, e.g. rc and
β, on the projected quantities (the image) itself, which is
rather insensitive to noise. However, it might be difficult
to determine the profile and its derivate by a direct de-
projection. In our perturbative approach, as it first relies
on a zeroth order quantity found by averaging over some
annulus, a noise reduction step (at least far from the cen-
ter) prior to working on a projected perturbation should
be quite robust as well. Nevertheless, this problem is not
critical and can be addressed easily by using a more so-
phisticated technique than the mere use of Abel’s integral.
In particular we could decompose the profile into a func-
tion basis whose projection is known analytically (see for
example Durret et al. 1999 in another context).

6. Conclusion

Trying to answer the question of how to coanalyse a set
of WL and SZ data, we have presented and demonstrated
the efficiency of an original method allowing us to per-
form in a self-consistent manner the joint analysis of these
data. Using it on noise-free simulations, we demonstrated
how well it can be used to make predictions of X-ray sur-
face brightness. We discussed also in the previous sections



24 O. Doré et al.: Cluster physics from joint WL and SZ data

some shortcomings that do not seem critical but definitely
require further work.

Compared to other, we choose to hide the deprojection
by using appropriate approximations. Thus, we do not re-
solved fully the 3–D structure of clusters, although this
work is a first step towards a full deprojection (Doré et al.
2001, in preparation).

Nevertheless, since it is based on a self-consistent use
of general physical hypotheses, the X-ray emission predic-
tion of our method when compared to the observed one
constitutes an interesting test of these hypotheses, namely
the stationarity, the hydrostatic equilibrium and the va-
lidity of the equation of state.

This method is furthermore of interest since it should
allow a better treatment of systematics (asphericity, non
isothermality, . . . ) plaguing any measure of the baryon
fraction fb or the Hubble constant H0 using X-ray and
SZ the effect (Inagaki et al. 1995). Thus we plan to apply
it soon on true data.
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Appendix: Deprojection in spheroidal symmetry

In this appendix we recall some useful results concern-
ing spheroid projection derived by Fabricant, Gorenstein
and Rybicki (Fabricant et al. 1984). In the context of
spheroidal systems, cartesian coordinates system are the
most convenient for projection. Thus, if the observer’s co-
ordinate system (x, y, z) is chosen such that the line of
sight is along the z axis and such that the polar axis of the
spheroidal system z′ lies in the x− z plane at an inclina-
tion angle i to the z-axis, then, in the cartesian coordinate
system (x′, y′, z′) the general physical quantities relevant
to our problem depends only on the parameter t defined
by

t2 =
x′2 + y′2

B2
e

+
z′2

A2
e

(68)

=
(x cos i+ yz sin i)2 + y2

B2
e

+
(z cos i− x sin i)2

A2
e

· (69)

If we project a physical quantity G(t) on the observer sky
plane x− y then,

I(x, y) = I(η) (70)

=
∫ +∞

−∞
G(t)dl (71)

= 2
Be

R

∫ ∞
η

G(t) tdt
(t2 − η2)

1
2

(72)

where

η2 ≡ x2

(RAe)2
+

y2

(Be)2
(73)

and R ≡
√
B2

e

A2
e

cos2 i+ sin2 i. (74)

Of course this result shows that if we were to observe a
spheroidal system we would map ellipses with an axial

ratio equal to
B

A
=

1
R

Be

Ae
. But the main result of this ap-

pendix is that we obtain at the end an Abel integral similar
to the one obtained in the case of spherical system, where
the radius as been replaced by the parameter t. This sim-
ple fact justifies the very analogous treatment developed
in this paper for spherical and spheroidal systems.
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