

Deficiency of molecular hydrogen in the disk of *β* **Pictoris**

Alain Lecavelier Des Etangs, Alfred Vidal-Madjara, Aki Roberge, Paul D Feldman, Magali Deleuil, M. André, William Blair, Jean-Claude Bouret, J.-M. Désert, Roger Ferlet, et al.

To cite this version:

Alain Lecavelier Des Etangs, Alfred Vidal-Madjara, Aki Roberge, Paul D Feldman, Magali Deleuil, et al.. Deficiency of molecular hydrogen in the disk of *β* Pictoris. Nature, 2001, 412 (6848), pp.706-708. $10.1038/35089006$. hal-04110946

HAL Id: hal-04110946 <https://hal.science/hal-04110946v1>

Submitted on 29 Nov 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Deficiency of molecular hydrogen in the disk of β Pictoris

A. Lecavelier des Etangs*, A. Vidal-Madjar*, A. Roberge², P. D. Feldman†, M. Deleuil‡, M. André†, W. P. Blair†, J.-C. Bouret‡, J.-M. Désert*, R. Ferlet*, S. Friedman†, G. Hébrard*, M. Lemoine* & H. W. Moost

* Institut d'Astrophysique de Paris, CNRS, 98 bis bld Arago, F-75014 Paris, France ² Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA

³ Laboratoire d'Astrophysique de Marseille, BP 8, F-13376 Marseille Cedex 12, France

E. B. Moore Control and Cont Molecular hydrogen $(H₂)$ is by far the most abundant material from which stars, protoplanetary disks and giant planets form, but it is difficult to detect directly. Infrared emission lines from H₂ have recently been reported¹ towards β Pictoris, a star harbouring a young planetary system². This star is surrounded by a dusty `debris disk' that is continuously replenished either by collisions between asteroidal objects³ or by evaporation of ices on Chironlike objects⁴. A gaseous disk has also been inferred from absorption lines in the stellar spectrum^{5 -8}. Here we present the farultraviolet spectrum of β Pictoris, in which H_2 absorption lines are not seen. This allows us to set a very low upper limit on the column density of H₂: $N(H_2) \le 10^{18}$ cm⁻². This non-detection is puzzling when compared to the quantity of H_2 inferred from the infrared observations, but it does show that H_2 is not in the disk on the direct line of sight. Carbon monoxide (CO) has been seen in absorption against the star $8-10$, yielding a ratio of $CO/H_2 > 6 \times 10^{-4}$. As CO would be destroyed under ambient conditions in about 200 years (refs 9, 11), our result demonstrates that the CO in the disk arises from evaporation of planetesimals.

The age of β Pic (about 20 Myr; ref. 12) indicates that the planetary system around this star is likely to be in the late stage of formation—the clearing of the remaining planetesimals. An extensive spectroscopic survey has revealed very rapid spectral variations, interpreted as hundreds of star-grazing comets passing in front of the star^{13,14}. The gas component also shows the presence of CO, seen in ultraviolet (UV) absorption lines $8-10$.

Observation of far-UVelectronic transitions is the most powerful tool for detection of cold molecular hydrogen. Although very abundant, this symmetric molecule does not radiate at radio wavelengths, and thus remained undetected until its absorption signatures from Werner and Lyman series were detected by space

missions, such as the Copernicus satellite in the early $1970s^{15-17}$. As absorption lines of CO were easily detected towards β Pic, it was expected that H_2 would be detected by the Far Ultraviolet Spectroscopic Explorer (FUSE)¹⁸ satellite. Moreover, a large quantity of H_2 has recently been inferred to exist in the β Pic system, on the basis of detection by the ISO satellite of its infrared emission lines¹. If this \rm{H}_{2} is co-spatial with the dust, it should be readily detectable by far-UV spectroscopy of the star seen through its edge-on disk.

FUSE observations of β Pic were made on 18 March 2000 with a test exposure of 5,800 s, and on 1 and 3 March 2001 for a total time of about 28,800 s. This star is very faint in the far-UV, and hence its continuum is almost undetectable at the wavelengths of the H_2 transitions (Fig. 1): in the $1,108-\text{\AA}$ region where we could expect to see the $H₂$ (0–0) band in absorption, the signal-to-noise ratio is less than 1 per 0.1 A. However, the clear presence of the stellar OVI emission doublet at 1,031.9 and 1,037.6 \AA , and the faint emission from C II at 1,036.3 Å, provide the opportunity to strongly constrain the $H₂$ content along the line of sight. With rest wavelengths of 1,036.55 Å $(J = 0)$, 1,037.15 Å and 1,038.16 Å $(J = 1)$, and 1,038.69 Å ($J = 2$), the H₂ (5–0) lines are exactly superimposed on the weaker line of the O v_I doublet. The H₂ lines at $J = 3 (1,031.20 \text{ Å})$ and $J = 4 (1,032.35 \text{ Å})$ are superimposed on the stronger line of the doublet.

The OVI emission lines that we detect cannot originate in the interstellar medium, nor can they be scattered solar light. Indeed, the interstellar diffuse emission is 100 times fainter and, furthermore, simultaneous spectra acquired with the MDRS (medium resolution) aperture of FUSE, pointed about 200 arcsec away from b Pic, do not show any emission other than airglow lines. These O v_I lines thus originate from β Pic¹⁹, and allow us to probe the line of sight towards the star through the edge-on circumstellar disk.

If $H₂$ were present in substantial quantity in the line of sight, the O vi line at $1,038$ Å would be absorbed, and hence would appear abnormally weak—less than half the intensity of the other O vi line at $1,032 \text{ Å}$ (Fig. 2). For instance, in the spectrum of the Herbig Ae star AB Aurigae, the O vi line at $1,038$ Å is almost totally absorbed and a corresponding H₂ column density of 7×10^{19} cm⁻² has been derived²⁰. In β Pic, emission is seen in both lines of the O vI doublet with an integrated flux ratio close to the expected value of 2. This implies that H_2 is not present in a quantity sufficient to significantly absorb the O v_I emission around $1,038$ Å. We have detected more than 6,000 photons in the O \vee I line, compared to 3,000 photons due to the background noise; H_2 column density above a few times 10^{20} cm⁻² is thus excluded at the \sim 45 σ level.

A better upper limit on the amount of $H₂$ can be estimated by assuming the intrinsic width of the $H₂$ lines to be very small. The absence of wide absorption lines thus gives a conservative upper

down to \sim 1,100 Å. This continuum is well reproduced by a Kurucz model with an effective temperature of 8,200 K, a turbulent velocity of 2 km s $^{-1}$, and surface gravity log g $= 4.25$. C I photospheric lines predicted by the stellar model are seen near 1,140 Å. From the position of a few stellar photospheric lines, the uncertainty in the wavelength calibration is less than 40 km s⁻¹. C II , C III and O vi are also detected in emission.

limit on the column density of H_2 , which corresponds to the limit at which the 'wings' of saturated absorption lines in the lorentzian part of the profile would start to become detectable.

We may have marginally detected an absorption line of H_2 at $J = 0$. We infer a corresponding column density $N_{J=0}$ of 8×10^{17} cm⁻², assuming that the emission line is smooth in this wavelength region. However, because the line is located between the C_{II} and O_{VI} emission lines, this `detection' could be an artefact arising from the lack of emission precisely at this wavelength. In any case, the absence of a wide absorption line allows us to constrain the column density of H₂ at J = 0. A column density $N_{J=0} = 3 \times 10^{18} \text{ cm}^{-2}$ increases the χ^2 of the fit to the data by 4 in comparison to the fit of the emission lines without H₂. We conclude that the column density of H₂ at $J = 0$ is below 3×10^{18} cm⁻² at the 95% confidence level.

The column densities of H₂ at $J = 1$ to $J = 4$ are better constrained, because they are well superimposed on the OVI lines. We find the following upper limits at the 95% confidence level: $N_{I=1} \leq 5$

Figure 2 Plot of the observed O vi emission doublet and H_2 absorption lines. a, For the Herbig star AB Aur²⁰, the O v line at 1,032 Å is well fitted by a gaussian (dashed line). The O vi emission line at 1,038 Å is almost completely absorbed by a H_2 column density of $N(H_2) = 7 \times 10^{19}$ cm⁻². The normalized H₂ model is shown with a dotted line. Only a small window between the two $J = 1$ lines of H₂ allows a fraction of the emission to be seen (solid line). **b**, For β Pic, the wide O vi and C \parallel emission lines are fitted with a polynomial (dashed line). The flux ratio of the two 0 vi lines is close to the theoretical value of 2 , providing a direct indication of the low column density of H₂. The thick solid line shows the expected spectrum for a H₂ column density of $N(H_2) = 10^{18}$ cm⁻² in each J-level. Except for $J = 0$, such a high column density is excluded at more than the 99% confidence level. The thin solid line shows the modelled spectrum if H_2 were present with a total column density of 5×10^{19} cm⁻² and a temperature of 109 K, as given by the ISO observations of the 17- and 28- μ m emission lines¹. At this temperature, 34% of the H₂ molecules are at $J = 0$, whereas 64% are at $J = 1$. The total column density of 5×10^{19} cm⁻² is actually only one-tenth of the lowest possible H_2 column density indicated by the ISO observations, if the H₂ were co-spatial with the dust. Such a model is rejected at more than \sim 20 σ . If the H₂ detected by ISO were uniformly distributed in the disk, the O vi emission line at 1,038 \AA would be completely absorbed and rendered undetectable in the present observation.

 $\times 10^{17}$ cm⁻², $N_{J=2} \le 8 \times 10^{17}$ cm⁻², $N_{J=3} \le 4 \times 10^{17}$ cm⁻² and $N_{J=4} \le 1$ \times 10¹⁷ cm⁻². The upper limit for $N_{J=0}$ is slightly less well constrained. However, the probability that $N_{J=0}$ is larger than $N_{J=1}$ is low; this would require a temperature lower than 20 K at thermodynamic equilibrium. With the assumption that $N_{I=0} \leq N_{I=1}$, we obtain an upper limit for the total H₂ column density toward β Pic: $N(H_2) \le$ 10^{18} cm⁻² at the 95% confidence level (Fig. 2).

This upper limit on the $H₂$ column density obtained from the FUSE spectrum is very low, which has several consequences. First, the CO detected in UV spectra of β Pic (obtained by the Hubble Space Telescope) has a column density $N(CO)$ of 6×10^{14} cm⁻² (ref. 8). Without any geometrical assumptions, we find $N({\rm CO})/N({\rm H_2}) > 6 \times 10^{-4}$. This ratio towards β Pic is two orders of magnitude higher than the value for interstellar translucent clouds having a similarly low column density of CO (ref. 21). This proves that the CO is not interstellar, but is instead located in the disk. However, the published modelling of the β Pic CO abundance—which assumes chemical equilibrium within a dense molecular circumstellar disk—predicts a H_2 column density of the order of 10^{22} cm⁻² (ref. 22), in disagreement with the present observation. Such a high column density is required to shield CO from dissociation by interstellar UV photons, and thus to allow the formation of CO. The present result shows that the gaseous disk has a low density, and that CO cannot form by the same chemical reaction that produces interstellar CO. On the contrary, at the estimated low column density of H_2 , photodissociation dominates, destroying CO on a timescale of about 200 years (refs 9, 11). This implies that CO must be re-supplied to the circumstellar disk by release from a pre-existing reservoir. Two processes have been proposed: either evaporation of star-grazing comets, or a slow evaporation of planetesimals on moderately eccentric orbits at several tens of astronomical units (AU) from the star, as observed for Chiron in the Solar System²³. The evaporation naturally explains the large $CO/H₂$ ratio: CO is trapped in the ices sublimed from the evaporating bodies, whereas H_2 cannot be trapped in this way.

The present H_2 upper limit is well below the recently reported H_2 detection from ISO observations using the SWS spectrometer¹. From the two emission lines of H₂ at 17 and 28 μ m, a total H₂ mass of 0.17 Jupiter masses was inferred within the ISO beam $(280 \text{ AU} \times 540 \text{ AU}$ and $400 \text{ AU} \times 540 \text{ AU}$ for the two lines, respectively). If this H_2 were distributed like the dust in the edge-on disk, a column density of 5×10^{20} to 5×10^{22} cm⁻² should have been detected in absorption, depending on the geometry and inclination of the system. In other words, the present upper limit on the H_2 column density constrains the total mass in the disk to be below \sim 3 \times 10⁻⁴ Jupiter masses. This discrepancy of three orders of magnitude needs to be explained.

ISO has detected H_2 only in the high rotational levels $J = 2$ and $J = 3$, which contain less than 2% of the total mass, at a temperature of 109 K determined by the ratio of the two emission lines. FUSE gives access to the $J = 0$ and $J = 1$ levels as well, where most of the H₂ is found, at the typical temperatures of the interstellar medium or circumstellar disks. The present upper limit for H₂ ($J = 2$) implies that the mass of H₂ ($J = 2$) in the disk is more than ten times smaller than the mass of H₂ ($J = 2$) seen in the infrared.

We therefore conclude that the H_2 detected by ISO cannot be uniformly distributed within the disk of β Pic (the opening angle of the dust disk is larger than its inclination). Nor can it be distributed in a single large cloud in front of β Pic: 0.17 Jupiter masses distributed homogeneously across the full ISO beam would yield a H₂ column density of the order of 2×10^{21} cm⁻². Any such cloud in the foreground of β Pic would have been readily detected. The possibility that ISO detected an interstellar molecular cloud beyond β Pic is also excluded, because the non-detection of CO radio emission in a similar beam would imply a very abnormal $CO/H₂$ ratio²⁴. Finally, we note that, because the O \vee I emission lines are more than 2 Å wide, only H_2 gas Doppler-shifted by more than

600 km s⁻¹ could escape detection; this is unlikely, as 600 km s⁻¹ is greater than the escape velocity. Consequently, neither J-level population ($J = 2$ is not detected) nor Doppler shift can explain the discrepancy. If the H_2 seen in the infrared were located in the disk, it would have been detected in our FUSE observation.

By the three digits are for the content of the base and the state of the state of the content of the A solution to this problem is to consider that H_2 is not distributed widely throughout the disk. If the ISO detection is confirmed by further observations, we suggest that the H_2 could be confined into individual clouds, none of which intersected the small volume of the β Pic line of sight at the time of our FUSE observations. Such H₂ clouds would easily escape detection in absorption, but would be seen in emission. The nature of these clouds remains unclear; however, we speculate that they might be remnants of gaseous planet embryos which captured a significant amount of protoplanetary material before its recent dissipation. The stability, number and density of these putative clouds need to be analysed. Given that 0.17 Jupiter masses is a huge amount of gas, these clouds should have large physical sizes and/or be relatively numerous. The discrepancy between the ISO detection and the present negative FUSE result remains a challenging issue.

Using ISO, even larger amounts of H_2 have been reported¹ for other similar, albeit younger, circumstellar disks. Again the nature and the geometrical distribution of this H_2 remain to be determined. The present result shows that, in the circumstellar disks, dust is not a good indicator of the H_2 distribution; it also shows that CO may not generally be as depleted in the disks as may be concluded simply from the observed ratio of CO and H_2 emission. On the contrary, CO could be over-abundant compared to the standard $CO/H₂$ ratio; this provides a clue to the evaporation activity related to large-scale motions of the remnant planetesimals being cleared from the young planetary disk. \Box

- 1. Thi, W. F. et al. Substantial reservoirs of molecular hydrogen in the debris disks around young stars. Nature 409, 60-63 (2001).
- 2. Vidal-Madjar, A., Lecavelier des Etangs, A. & Ferlet, R. Beta Pictoris, a young planetary system? A review. Planet. Space Sci. 46, 629-648 (1998).
- Backman, D. E. & Paresce, F. Main-sequence stars with circumstellar solid material—The Vega phenomenon. Protostars and Planets III (eds Levy, E. H. & Lunine, J. I.) 1253-1304 (Univ. Arizona Press, 1993).
- 4. Lecavelier des Etangs, A., Vidal-Madjar, A. & Ferlet, R. Dust distribution in disks supplied by small bodies: is the Beta Pictoris disk a gigantic multi-cometary tail? Astron. Astrophys. 307, 542-550 (1996).
- 5. Hobbs, L. M., Vidal-Madjar, A., Ferlet, R., Albert, C. E. & Gry, C. The gaseous component of the disk around Beta Pictoris. Astrophys. J. 293, L29-L33 (1985).
- 6. Vidal-Madjar, A., Ferlet, R., Hobbs, L. M., Gry, C. & Albert, C. E. The circumstellar gas cloud around Beta Pictoris. II. Astron. Astrophys. 167, 325-332 (1986).
- 7. Lagrange, A.-M. et al. The Beta Pictoris circumstellar disk. XXIV. Clues to the origin of the stable gas. Astron. Astrophys. 330, 1091-1108 (1998).
- 8. Roberge, A. et al. High-resolution Hubble Space Telescope STIS spectra of CI and CO in the Beta Pictoris circumstellar disk. Astrophys. J. 538, 904-910 (2000).
- 9. Vidal-Madjar, A. et al. HST-GHRS observations of Beta Pictoris: additional evidence for infalling comets. Astron. Astrophys. 290, 245-258 (1994).
- 10. Jolly, A. et al. HST GHRS observations of CO and CI in the Beta Pictoris circumstellar disk. Astron. Astrophys. 329, 1028-1034 (1998).
- 11. van Dishoeck, E. F. & Black, J. H. The photodissociation and chemistry of interstellar CO. Astrophys. J. 334, 771±802 (1988).
- 12. Barrado y Navascués, D., Stauffer, J. R., Song, I. & Caillault, J.-P. The age of Beta Pictoris. Astrophys. J 520, L123-L126 (1999).
- 13. Ferlet, R., Vidal-Madjar, A. & Hobbs, L. M. The Beta Pictoris circumstellar disk. V- Time variations of the CA II-K line. Astron. Astrophys. 185, 267-270 (1987).
- 14. Beust, H., Vidal-Madjar, A., Ferlet, R. & Lagrange-Henri, A. M. The Beta Pictoris circumstellar disk. X-Numerical simulations of infalling evaporating bodies. Astron. Astrophys. 236, 202-216 (1990).
- 15. Carruthers, G. R. Rocket observation of interstellar molecular hydrogen. Astrophys. J. 161, L81-L85 (1970).
- 16. Spitzer, L. et al. Spectrophotometric results from the Copernicus satellite. IV. Molecular hydrogen in interstellar space. Astrophys. J. 181, L116-L121 (1973).
- 17. Shull, J. M. & Beckwith, S. Interstellar molecular hydrogen. Annu. Rev. Astron. Astrophys. 20, 163-190 (1982).
- 18. Moos, H. W. et al. Overview of the Far Ultraviolet Spectroscopic Explorer Mission. Astrophys. J. 538, L1-L6 (2000).
- 19. Deleuil, M. et al. Is Beta Pictoris an active star? Astrophys. J. (in the press).
- 20. Roberge, A. et al. FUSE and HST STIS observations of hot and cold gas in the AB Aurigae system. Astrophys. J. 551, L97-L100 (2001).
- 21. Magnani, L., Onello, J. S., Adams, N. G., Hartmann, D. & Thaddeus, P. The variation of the CO to H2 conversion factor in two translucent clouds. Astrophys. J. 504, 290-299 (1998).
- 22. Kamp, I. & Bertoldi, F. CO in the circumstellar disks of Vega and Beta Pictoris. Astron. Astrophys. 353, 276±286 (2000).
- 23. Lecavelier des Etangs, A. Circumstellar disks and outer planet formation. Planets Outside the Solar System: Theory and Observations (eds Mariotti, J.-M. & Alloin, D.) 95-103 (Kluwer Academic, Dordrecht/Boston, 1999).
- 24. Liseau, R. & Artymowicz, P. High sensitivity search for molecular gas in the Beta Pic disk. On the low gas-to-dust mass ratio of the circumstellar disk around Beta Pictoris. Astron. Astrophys. 334, 935-942 (1998).

Acknowledgements

We thank Gopal-Krishna, G. Pineau des Forêts and S. Cabrit for discussions, and R. Kurucz for providing a model of the β Pic stellar atmosphere. The work at Johns Hopkins University was supported by NASA; the work at the Institut d'Astrophysique de Paris and at LAM was supported by CNES. The work reported here is based on data obtained by the NASA-CNES-CSA FUSE mission, operated by the Johns Hopkins University.

Correspondence and requests for materials should be addressed to A.L.d.E. (e-mail: lecaveli@iap.fr).