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A B S T R A C T

Gravitational lensing causes a correlation between a population of foreground large-scale

structures and the observed number density of the background distant galaxies as a

consequence of the flux magnification and the lensing area distortion. This correlation has not

been taken into account in calculations of the theoretical predictions of the cosmic shear

statistics but may cause a systematic error in a cosmic shear measurement. We examine its

impact on the cosmic shear statistics using the semi-analytic approach. We find that the

lensing magnification has no practical influence on the cosmic shear variance. Exploring the

possible shapes of the redshift distribution of source galaxies, we find that the relative

amplitude of the effect on the convergence skewness is 3 per cent at most.

Key words: gravitational lensing – cosmology: theory – dark matter – large-scale structure of

Universe.

1 I N T R O D U C T I O N

The cosmic shear (coherent distortions in distant galaxy images resulting from the weak lensing by large-scale structures) is now recognized

as a powerful tool for measuring the mass distribution in the universe, as well as a promising way to measure the cosmological parameters

(Mellier 1999; see Bartelmann & Schneider 2001 for reviews). Although its signal is very weak, recent reports on the detections demonstrate

that a well-developed data analysis algorithm has been established (Van Waerbeke et al. 2000, 2001a; Wittman et al. 2000; Bacon, Refregier

& Ellis 2000; Kaiser, Wilson & Luppino 2000; Maoli et al. 2001).

So far, the detections were obtained from relatively small fields, which limits the statistical analyses of the surveys to second order

statistics (the variance or two-point correlation function of the cosmic shear). Their amplitude reflects the amplitude of the density contrast,

and thus provides a constraint on the combination of the values of Vm and s8 (Bernardeau, Van Waerbeke & Mellier 1997, hereafter

BvWM97; Jain & Seljak 1997; Maoli et al. 2001). The skewness of the lensing convergence is, on the other hand, known to be sensitive to Vm

almost independently on s8 (BvWM97; Van Waerbeke et al. 2001b, hereafter vWHSCB01), and thus it may break the degeneracy among the

cosmological parameters constrained from the second-order statistics. A precise measurement of the skewness is, therefore, one of main

goals of ongoing wide-field cosmic shear surveys such as the DESCART project.1

It was pointed out by Hu & Tegmark (1999) that such wide-field cosmic shear surveys have the potential for probing the cosmological

models as accurately as the cosmic microwave background radiation measurements. In order to get the ability to the fullest, there are,

however, some issues which should be developed/examined in detail, listed below.

(i) Accurate theoretical predictions of the cosmic shear statistics at intermediate scales ð0:5–10 arcminÞ. On such scales the signals will be

detected easily, however neither perturbation theory nor the hierarchical ansatz apply (e.g. Jain & Seljak 1997; vWHSCB01).

(ii) Examination of possible corrections which arise from higher order correction terms in calculations of the theoretical predictions, for

example, Born approximation and lens–lens couplings (BvWM97; Schneider et al. 1998; vWHSCB01), and the source clustering

(Bernardeau 1998; Hamana et al. 2000). They are especially important for the convergence skewness because it is (in the perturbation theory

sense) a quantity of the fourth order of d (1) (see Section 2 for details).

(iii) Examination the impact of the intrinsic shape correlation of source galaxies; in the theoretical calculations of the cosmic shear

statistics it is supposed to be negligible (Croft & Metzler 2000; Heavens, Refregier & Heymans 2000; Catelan, Kamionkowski & Blandford

2001; Crittenden et al. 2000a,b).

†Present address: National Astronomical Observatory, Mitaka, Tokyo 181-8588, Japan.

PE-mail: hamana@yukawa.kyoto-u.ac.jp
1 For more information about DESCART project, see http://terapix.iap.fr/Descart/
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(iv) Development of a robust way to correct defects in instruments, in particular the point spread function anisotropy (Kaiser, Squires &

Broadhurst 1995; Kuijken 1999; Erben et al. 2001; Bacon et al. 2000).

In this paper, we focus on the lensing magnification effects on the cosmic shear statistics, which have not been taken into consideration

in the theoretical calculation of the cosmic shear statistics but may cause a systematic error in their measurements. The lensing magnification

has two effects on a deep galaxy survey: One is the flux magnification: the lensing changes the apparent galaxy size, leaving the surface

brightness invariant, therefore the flux of a distant galaxy is magnified.2 The other is the area distortion: the lensing also changes the unit solid

angle at the source plane, and thus the number density of the distant galaxies varies with the direction in the sky even if the intrinsic source

distribution is uniform. As a consequence, the lines of sight to distant sheared galaxies may not be random lines of sight in the presence of the

lensing magnification. In fact, the lensing magnification effects are prominent within the galaxy cluster region where the number density of

distant galaxies in the optical or near-infrared (near-IR) bands is measured to be smaller than the average value. Furthermore, the variation of

the galaxy number density as a function of the distance from the cluster centre (the so-called ‘depletion curve’) were measured in some

distant clusters of galaxies (e.g. Broadhurst, Taylor & Peacock 1995; Fort, Mellier & Dantel-Fort 1997; see also Mellier 1999 for a review).

These observational facts indicate that the lensing magnification induces an (anti-)correlation between the distribution of the distant galaxies

in the sky and the population of the lensing structures, i.e. the number density of the galaxies behind a lensing structure tends to be smaller

than the average number density, whereas that behind a void tends to be larger than the average value.

The purpose of this paper is to quantitatively examine the lensing magnification effects on the cosmic shear statistics, especially on the

convergence skewness. To do this, we use the non-linear semi-analytic approach, i.e. the perturbation theory approach combined with the

non-linear fitting formula of the density power spectrum (Jain & Seljak 1997; Hamana et al. 2000; vWHSCB01). We focus on correction

terms which arise from the presence of the lensing magnification, and are not concerned with other correction terms caused by, for example,

the lens–lens coupling (vWHSCB01) and the source clustering (Hamana et al. 2000).

The outline of this paper is as follows. The calculations of the moments of the lensing convergence in presence of the lensing

magnification are made in Section 2. In Section 3, the effect on the convergence skewness is quantitatively examined in three cold dark matter

(CDM) models with realistic models of the redshift distributions of the source galaxy. We conclude in Section 4.

2 T H E S E M I - A N A LY T I C A L A P P R OAC H

2.1 Fluctuation in a galaxy number count as a result of the lensing magnification

Let nsð. S; zÞ be the unlensed number density of galaxies with redshift within Dz of z and with flux larger than S. Then, at an angular position

f where the lensing magnification is m(z, f), the number counts are changed by the lensing magnification effects as (e.g. Bartelmann &

Schneider 2001),

nobs
s ð. S; z;fÞ ¼

1

mðz;fÞ
ns .

S

mðz;fÞ
; z

� �
: ð1Þ

Supposing that the number counts of the faint galaxies can be approximated by a power law over a wide range of fluxes, i.e.

nsð. S; zÞ ¼ nðzÞS 2aðzÞ, then the lensed number counts are rewritten as

nobs
s ð. S; z;fÞ ¼ nsð. S; zÞmðz;fÞaðzÞ21: ð2Þ

The magnification factor relates to the lensing convergence (k ) and shear (g ) by m21 ¼ |ð1 2 kÞ2 2 g 2|. We now rewrite the lensed source

counts as nobs
s ð. S; z;fÞ ¼ nsð. S; zÞ½1 1 dnsð. S; z;fÞ�. Taking advantage of the power-law form of the number counts and also of the

weak lensing approximation ðk ! 1, g ! 1Þ, the fluctuation in the number counts caused by the lensing magnification is given by

dnsðz;fÞ ¼ mðz;fÞaðzÞ21 2 1 . 2½aðzÞ2 1�ksðz;fÞ; ð3Þ

where ks(z, f) is the lensing convergence at an angular position f for a source with redshift z (Mellier 1999; Bartelmann & Schneider 2001),

ksðz;fÞ ¼
3Vm

2

H0

c

ðxsðzÞ

0

dx gðx; xsÞdðx;fÞ; ð4Þ

where g is the so-called lensing efficiency function defined by

gðx;xsÞ ¼
H0

c

f ðxÞf ðxs 2 xÞ

f ðxsÞaðxÞ
: ð5Þ

Here x denotes the radial comoving distance, a is the scale factor normalized by its present value, and f(x ) denotes the comoving angular

diameter distance, defined as f ðxÞ ¼ K 21=2 sin K 1=2x, x and ð2KÞ21=2 sinhð2KÞ1=2x for K . 0, K ¼ 0 and K , 0, respectively, where K is the

curvature that can be expressed as K ¼ ðH0/ cÞ2ðVm 1 Vl 2 1Þ. The lensing convergence is therefore the projected density contrast weighted

by the distance combination and the scale factor along the line of sight to a source. Note that, in the expression (3), the fluctuation does not

2 We should note here that the lensing causes not only magnification ðm . 1 with m denoting the magnification factor) but also demagnification ðm , 1Þ.

Throughout this paper, following the usual convention, we use the term ‘magnification’ irrespective of the value of the magnification factor.
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depend on the flux because of the power-law form of the number-counts. In the following sections, we will therefore not explicitly denote the

flux dependence of the source counts.

2.2 Cosmic shear statistics in the presence of the lensing magnification

Let us consider the measured convergence that results from averages made over many distant galaxies located at different distances. Denoting

the smoothing scale by u, such an average can formally be written as

ku ¼

XNs

i¼1

WuðfiÞksðzi;fiÞ

XNs

i¼1

WuðfiÞ

; ð6Þ

where Wu(x ) denotes the weight function of the average, Ns is the number of source galaxies, and fi and zi are the direction and redshift of ith

source, respectively. For the weight function, the angular top-hat filter (BvWM97) and/or compensated filter (Schneider et al. 1998) are

commonly adopted (e.g., Van Waerbeke et al. 2001b). In what follows, we consider the top-hat filter for the weight function, and in this case

equation (6) is reduced to ku ¼
PN

j
s

i¼1 ksðzi;fiÞ/Nj
s, where Nj

s is the number of source galaxies within an aperture u centered on a direction fj.

Taking the continuous limit for the source distribution,3 equation (6) can be rewritten by,

ku ¼

ð
d2fWuðf

ðxH

0

dx ksðx;fÞn
obs
s ðx;fÞð

d2fWuðfÞ

ðxH

0

dx nobs
s ðx;fÞ

; ð7Þ

where xH is the distance to the horizon and nobs
s ðx;fÞ is the source number count as defined by equation (3), which effectively describes the

redshift distribution of the source.

In what follows, the distance distribution of the unlensed number counts is supposed to be normalized to unity,
Ð xH

0
dx nsðxÞ ¼ 1. Let us

now expand equation (7) in terms of d using the perturbation theory approach (BvWM97). The presence of the lensing magnification does not

change the expression of the first-order term,

k
ð1Þ
u ¼

3VmH0

2c

ð
d2fWuðfÞ

ðxH

0

dx nsðxÞ

ðx
0

dx0 gðx0; xÞd ð1Þðx0;fÞ: ð8Þ

The second-order convergence consists of two terms. One comes from the second order density perturbation, which is formally written by

replacing the subscript (1) in the first-order expression (8) with (2) (BvWM97). The other is a result of the lensing magnification,

k
mag:ð2Þ
u ¼ 2

3VmH0

2c

� �2ð
d2fWuðfÞ

ðxH

0

dx nsðxÞ½aðxÞ2 1�

ðx
0

dx0 gðx0; xÞd ð1Þðx0;fÞ

ðx
0

dx00 gðx00;xÞd ð1Þðx00;fÞ

2 k
ð1Þ
u

3VmH0

c

ð
d2fWuðfÞ

ðxH

0

dx nsðxÞ½aðxÞ2 1�

ðx
0

dx0 gðx0; xÞd ð1Þðx0;fÞ: ð9Þ

Using the small-angle approximation (Kaiser 1992), equation (8) is rewritten in terms of the Fourier transform of the density contrast, d(k ),

by,

k
ð1Þ
u ¼

3VmH0

2c

ðxH

0

dx nsðxÞ

ðx
0

dx0 gðx0; xÞ

ð
d3k

ð2pÞ3
W½f ðx0Þk’u�d

ð1Þ½k; x0� exp½ikxf ðx0Þ�; ð10Þ

where the wavevector k is decomposed into the line-of-sight component kx and perpendicular to it, k’, and W(x ) is the Fourier transform of

the weight function. In the case of the top-hat filter, WðxÞ ¼ 2J1ðxÞ/ x where J1 is the spherical Bessel function. In the same manner, equation

(9) is rewritten as

k
mag:ð2Þ
u ¼ 2

3VmH0

2c

� �2ðxH

0

dx nsðxÞ½aðxÞ2 1�

ðx
0

dx0 gðx0; xÞ

ðx
0

dx00 gðx00; xÞ

ð
d3k0

ð2pÞ3
d ð1Þ½k0; x0� exp ½ik0xf ðx0Þ�

�

ð
d3k00

ð2pÞ3
d ð1Þ½k00; x00� exp ½ik00xf ðx00Þ�W½| f ðx0Þk0’ 1 f ðx00Þk00’|u�2 k

ð1Þ
u

3VmH0

c

ðxH

0

dx nsðxÞ½aðxÞ2 1�

�

ðx
0

dx0 gðx0;xÞ

ð
d3k0

ð2pÞ3
W½f ðx0Þk0’u�d

ð1Þ½k0; x0� exp ½ik0xf ðx0Þ�: ð11Þ

3 See Bernardeau (1998) for a discussion on this point.
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The lensing magnification effect makes the average of the convergence non-zero;

kkul ¼ kkmag:ð2Þ
u l ¼ 2

3VmH0

2c

� �2ðxH

0

dx nsðxÞ½aðxÞ2 1�

ðx
0

dx0 g 2ðx0; xÞI0ðx
0; 0Þ2 2

3VmH0

2c

� �2

�

ðxH

0

dx nsðxÞ

ðxH

0

dx0 nsðx
0Þ½aðx0Þ2 1�

ðx
0

dx00 gðx00; xÞgðx00; x0ÞI0ðx
00; uÞ; ð12Þ

where

I0ðx; uÞ ¼
1

2p

ð
dk kW 2½f ðx00Þku�Plinðx; kÞ; ð13Þ

with Plin(x, k) being the linear matter power spectrum. The variance is not affected by the lensing magnification and is given by,

VkðuÞ ¼ kðku 2 kkulÞ2l ¼ kkð1Þu
2
l ¼

3VmH0

2c

� �2ðxH

0

dx nsðxÞ

ðx
0

dx0 g 2ðx0; xÞI0ðx
0; uÞ: ð14Þ

In presence of the lensing magnification, the skewness parameter, defined by S3ðuÞ ¼ kðku 2 kkulÞ3l/V2
kðuÞ, consists of two terms. One comes

from the second-order perturbation, kk3
ul2PT

¼ 3kkð1Þu
2
k
ð2Þ
u l (see BvWM97 and Hamana et al. 2000 for the explicit expression). The other

arises from the lensing magnification,

kk3
ulmag

¼ k½kð1Þu 1 k
mag:ð2Þ
u 2 kkul�3l ¼ 3kkð1Þu

2
k

mag:ð2Þ
u l 2 3kkð1Þu

2
lkkmag:ð2Þ

u l

¼ 12
3VmH0

2c

� �4ðxH

0

dx nsðxÞ½aðxÞ2 1�

ðxH

0

dx0 nsðx
0Þ

ðx0
0

dx00 gðx00; xÞgðx00; x0ÞI0ðx
00; uÞ

" #2

2 VkðuÞ � 12
3VmH0

2c

� �2ðxH

0

dx nsðxÞ

ðxH

0

dx0 nsðx
0Þ½aðx0Þ2 1�

ðx
0

dx00 gðx00; xÞgðx00; x0ÞI0ðx
00; uÞ: ð15Þ

To derive the last expression, we used an approximation,
Ð 2p

0
dq sinqWð|k 1 k0 |Þ . 2pWðkÞWðk0Þ, with q being the angle between the

wavevectors k and k0. For the top-hat window function, the error this approximation induces is extremely weak, for instance it is less than 1

per cent for n , 21:5 with n being the effective power-law index of the matter power spectrum (Bernardeau 1998). Notice that, in the case of

aðxÞ ¼ 0, which corresponds to the case that sources are selected on a surface brightness criterion (see Section 4 for a discussion on this

point), the second term reduces to 12V2
kðuÞ. As this immediately suggests, the cosmology dependence in the skewness correction term is

weak, Vm in the coefficients of equation (15) is actually cancelled out by that in V2
kðuÞ (this point is demonstrated in Fig. 1).

The above calculations are based on the perturbation theory approach. It is well known that on sub-degree scales the non-linearity in the

evolution of the density field is very important for the cosmic shear statistics (Jain & Seljak 1997; wVHSCB). We take the non-linearity into

account in our computations in the following way. For the variance, the effect of the non-linear evolution of the density power spectrum can

be included by replacing the linear power spectrum with the non-linear power spectrum, i.e. Plinða; kÞ!PNLða; kÞ (Jain & Seljak 1997). We

use the fitting formula for the non-linear power spectrum given by Peacock & Dodds (1996). For the skewness correction term, all density

contrast terms needed for its calculation (equation 11), correspond to the linear order. This is the same situation as for the variance. Following

the procedure used for this latter case, we simply replace the linear power spectrum with the non-linear one to include non-linear effects. We

adopt the semi-analytic calculation of the skewness in the non-linear regime developed by vWHSCB01, which is based on the fitting formula

of the density bi-spectrum by Scoccimarro & Couchman (2000).

It should be here noted that, comparing equations (12) and (14), the amplitude of the shift in average of the convergence from zero is

found to be the same order of the variance, and thus is of order of O(1024). This shift has no practical effect on cosmic shear statistics because

the constant shift has no effect on the second- and higher-order statistics by definition.

3 N U M E R I C A L R E S U LT S

In this section, we numerically examine the lensing magnification effect on the convergence skewness. We take three CDM models, a flat

model with (LCDM) and without a cosmological constant (SCDM), and an open model (OCDM). We use the fitting formula of the CDM

power spectrum given by Bond & Efstathiou (1984) normalized by the local galaxy cluster abundance (Eke, Cole & Frenk 1996; Kitayama &

Suto 1997). The parameters in the models are listed in Table 1.

We assume that ns(z ) takes the form

nsðzÞ ¼
b

z*G½ð1 1 aÞ/ b�

z

z*

 !a

exp 2
z

z*

 !b
24 35: ð16Þ

where G(x ) is the gamma function. We explore four models for the shape of the distribution. The parameters as well as characteristics (the

mean redshift kzl and the rms of the distribution Dz ) in each model are listed in Table 2. Note that only model A matches roughly the observed
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Figure 1. Upper panels. Skewness parameter S3 of the lensing convergence evaluated without taking the lensing magnification effect into account. The dot-

dashed line is the quasi-linear perturbation theory computation for A model. The other curves represent the semi-analytic computations with the non-linear

matter bi-spectrum fitting formula (vWHSCB01). Lower panels. Skewness correction term due to the lensing magnification effects (for a case of aðzÞ ¼ 0Þ. The

dot-dashed line is the linear theory computation for A model. The other lines represent the semi-analytic non-linear computations.

Table 1. Cosmological parameters.

Model Vm Vl h s8

SCDM 1.0 0.0 0.5 0.6
OCDM 0.3 0.0 0.7 0.85
LCDM 0.3 0.7 0.7 0.9

Table 2. Parameters in models of the
redshift distribution of source galaxies (a,
b, z*) and their characteristics (the mean
redshift kzl and the rms of the distribution
Dz ).

Model a b z* kzl Dz

A 2 1.5 0.798 1.2 0.572
B 3 1.8 0.813 1.2 0.456
C 5 2.5 1.11 1.5 0.400
D 2 1.5 0.598 0.9 0.429
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redshift distribution of galaxies in current cosmic shear detections (Van Waerbeke et al. 2000). However, we test the other models to see a

variation in the lensing magnification effect caused by possible changes in the shape of the redshift distribution.

The upper panels of Fig. 1 show the skewness parameter S3(u ) evaluated without taking the magnification effects into account. As the

figure clearly shows, the skewness is very sensitive to both Vm and the mean redshift of sources, but insensitive to the shape of the redshift

distribution (comparing model A with B).

The lower panels of Fig. 1 show the skewness correction caused by the lensing magnification effects. We took aðzÞ ¼ 0 which gives the

strongest estimate of the lensing magnification effect, as will be discussed in Section 4. The non-linear result deviates from the linear one on a

sub-degree scale and the non-linearity reduces the amplitude of the magnification effect as it has stronger influence on Vk(u ) than on kk3
ulmag

.

Between the scales displayed, the skewness correction is almost constant, the variation is less than 1.4. The lensing magnification effect

becomes stronger as the mean redshift becomes lower and as the distribution becomes broader. This redshift distribution dependence is, at

least qualitatively, similar to that on the source clustering effect, which may be a result of the similarity in their phenomena (Hamana et al.

2000). The most important point found in Fig. 1 is, however, that the correction term is small, 3 per cent at the most.

4 D I S C U S S I O N A N D C O N C L U S I O N

We have examined the lensing magnification effects on the convergence skewness using the non-linear semi-analytic approach. Numerical

computations were done only for the case of aðzÞ ¼ 0. Does this choice have a special meaning? So far, little is known about the number

counts of distant galaxies with measured redshifts, in particular at z . 0:2 where most of the source galaxies are located. We can, however,

put a constraint on the range of the ‘effective value’ of a (under the assumption of no strong redshift evolution in a ) as follows: (i) a . 0 by

definition and (ii) the observational facts that the number density of the distant galaxies behind the lensing galaxy clusters in optical or near-

IR bands is smaller than that measured in the field region (e.g. Fort et al. 1997). This indicates that a , 1, which comes from equation (2)

with m . 1 within cluster region. Therefore, it may be said that the possible range of the ‘effective value’ of a is 0 , a , 1. Within this

range, a ¼ 0 gives the upper limit of the lensing magnification effect on the convergence skewness. We may, therefore, conclude that the

lensing magnification has no significant effect on the convergence skewness: its amplitude could be at most 3 per cent.

In the above discussion, we implicitly assumed that the source galaxies are selected by a flux threshold. However, one can adopt the

selection with a surface brightness criterion. In this case, the flux magnification has no influence on the cosmic shear measurements, but the

area magnification still exists. Therefore, the lensing magnification effect in this case can be estimated by setting a ¼ 0. Thus, the effect is

stronger for the surface brightness selection than for the flux selection.

Finally, we notice a limitation of our calculation. We used the weak lensing approximation to derive equation (3). This approximation

works well except for very rare directions, such as the core of clusters of galaxies where the lensing surface mass density is very high. Such

regions where a strong lensing event can take place are very small: u & 0:5 arcmin at most. Therefore, it is expected that the strong lensing

may change the above results on scales below 1 arcmin.
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