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The transport of charged particles in disorganized magnetic fields is an important issue which concerns the
propagation of cosmic rays of all energies in a variety of astrophysical environments, such as the interplanetary,
interstellar and even extragalactic media, as well as the efficiency of Fermi acceleration processes. We have
performed detailed numerical experiments using Monte Carlo simulations of particle propagation in stochastic
magnetic fields in order to measure the parallel and transverse spatial diffusion coefficients and the pitch angle
scattering time as a function of rigidity and strength of the turbulent magnetic component. We confirm the
extrapolation to high turbulence levels of the scaling predicted by the quasilinear approximation for the
scattering frequency and parallel diffusion coefficient at low rigidity. We show that the widely used Bohm
diffusion coefficient does not provide a satisfactory approximation to diffusion even in the extreme case where
the mean field vanishes. We find that diffusion also takes place for particles with Larmor radii larger than the
coherence length of the turbulence. We argue that transverse diffusion is much more effective than predicted by
the quasilinear approximation, and appears compatible with chaotic magnetic diffusion of the field lines. We
provide numerical estimates of the Kolmogorov length and magnetic line diffusion coefficient as a function of
the level of turbulence. Finally we comment on applications of our results to astrophysical turbulence and the
acceleration of high energy cosmic rays in supernovae remnants, in superbubbles, and in jets and hot spots of
powerful radiogalaxies.
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[. INTRODUCTION that the mean free path for scatteribjv of a particle of
velocity v, is given by the Larmor radius_. This approxi-
The knowledge of the transport properties of charged parmation originates from laboratory experiments which led
ticles in turbulent magnetized plasmas is a long-standin@ohm to the empirical formul®z;=0.06T/B for a plasma
problem, which bears directly on many astrophysical issuesyith temperaturel. A theoretical derivation of this formula
such as the penetration of low-energy cosmic rays in thevas proposed later by Taylor and McNam#6é4, and then
heliospherg 1], the propagation and escape of galactic cosextended to relativistic particlgd], but no theory of Bohm
mic rays in and out of the interstellar magnetic figkd-4],  diffusion (relativistic or no} in magnetic irregularities has
or even the efficiency of Fermi acceleration mechanisms, iheen derivedstricto-sensuso far. Therefore it appears that
particular at shock§3]. The diffusion coefficient transverse important physical and astrophysical issues are yet to be an-
to the mean component of the magnetic field plays a particuswered:
larly important role in these issues, but to date, there is no How do the transport properties change when the level of
satisfactory description of perpendicular transport. Somenagnetic turbulence is increased? What are the transport
studies have built upon or tried to extend the results of theyroperties when the mean field vanishes? Notably, what is
“quasilinear theory”[5], whose validity is limited to very the relevance of the Bohm scaling?
low level turbulence, i.e., a turbulent component much Even for low level turbulence, transverse space diffusion
weaker than the uniform magnetic field, and which calculate$s not well known. It nevertheless plays a crucial role in the
the transport coefficients by statistical averages of the disconfinement of cosmic rays in galaxies or other extragalactic
placements perturbed to first order in the inhomogenousbjects(notably radiogalaxies jetslts magnitude is also of
field. Other studies have appealed to phenomenological apfirect relevance to the performance of Fermi acceleration at
proximations such as the Bohm estimate for the diffusionperpendicular shocks.
coefficient D~r v, which corresponds to the assumption Do subdiffusive and more generally anomalous diffusion
regimes exist? If yes, they are also of importance for Fermi
acceleration.
*Now at FOM-Institute for Plasma physics, Postbus 1207 NL- In order to shed light on these issues, we have performed
3430 BE Nieuwegein, Netherlands. Email address: fcasse@rijnh.réxtensive numerical experiments to determine the pitch angle
TAlso at Institut Universitaire de France. scattering rate, and the parallel and perpendicular spatial dif-
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fusion coefficients for a wide range of rigidities and turbu- particles, and the electric force is thus smaller than the mag-
lence levels. Our experiments are conducted by Monte Carloetic force by a factov 5, /c. The first correction to the theory
simulations in which we follow the propagation of a relativ- is the celebrated second order Fermi process which can be
istic test particle in a stochastic magnetic field constructedlescribed by diffusion in momentum space, with diffusion
from three-dimensional Kolmogorov turbulence, and calcu<oefficient I'(p) ~ vsp?va/c?, with p particle momentum,
late the diffusion coefficients from the statistical correlationsand v, the angular scattering frequency, is an outcome of
along the trajectory. Our study is similar to the recent workour studly.

of Giacalone and Jokipii8] in which the spatial diffusion The magnetic perturbations are distributed according to
coefficients in two- and three-dimensional magnetostatic turisotropic turbulence, whose power spectrum is written in
bulence were measured using Monte Carlo simulations foterms of Fourier momenturk as: (B(k)?)<k ™ #72 for Ky
various turbulence levels and rigidities. Our study is howevekk<k.,, zero otherwise, andB(k))=0, i.e., random
more extensive than that of RgB]. In particular we mea- phases. The exponeg characterizes the properties of the
sure the diffusion coefficients in a broader range of rigidities turbulence, and we will concentrate on the cgse5/3 in

by studying the diffusion of particles with Larmor radii our numerical applications, which describes Kolmogorov
larger than the coherence length, and in a broader range @frbulence. The smallest turbulence wave number is related
turbulence levels, by going up to pure turbulence in whichto the maximum scale of the turbulende,,, via: Kmin
there is no uniform component of the magnetic field. In con-=27/L .. This largest scale also corresponds to the corre-
trast, Ref.[8] studies the case of lower-enegy particles andation length of the magnetic field to within a factor of order
smaller turbulence levels, with a turbulent magnetic fieldunity [see Eq.(13)].

never exceeding the uniform component in strength. We also  Qur notations are as follows. The quantities we will be
study in detail the pitch angle scattering rate, which is ofinterested in are the scattering ratgor scattering timer,
central interest in applications to shock acceleration pro=1/y, defined as the correlation time of the pitch angle, the
cesses, and study in more detail the issue of transverse dkf;patial diffusion coefficient along the mean fiédj and the
fusion and its relation to the chaotic wandering of field lines.transverse spatial diffusion coefficie®, . These coeffi-

Finally we will repeatedly compare our results to RE]  cients are evaluated in terms of turbulence level
where there is overlap, which is important since these nu'E(Bz>/(§2>=(Bz>/[Bz+(BZ)] and rigidiity )
o) ]

mexr?]?)lnex?)i?T(:}sntfﬁsarveved?:ltl)%?itren;n the extrapolation to high~ 27" t/Lma=TLKmin. FOr convenience, the Larmor radius
9 ' b g r. is defined with respect to the total magnetic fietdq:

turbulence levels of the scalings predicted by the quasilinear — , i
theory for the scattering rate and the parallel diffusion coef-=€/2€B for a particle with energy and chargeZe. The
ficient at low enough rigidity. The perpendicular diffusion Larmor pulsation of a particle of energy is defined, for
coefficient is shown to follow a law which is quite different convenience, asw =ZeBc/e, and the Larmor timet,

from the predictions of the quasilinear theory at low rigidi- E(;L)_l_ We define the scattering function agp,7)

ties. We argue that its behavior is compatible with chaotic— Vs/;LZtL/Ts- When useful, we will denote by, the
wandering and diffusion of the magnetic field lines to which | 5rmor pulsation in the mean field.

particles are “attached.” In particular, we demonstrate the Tpq paper is organized as follows. In Sec. II, we recall the
chaotic behavior of the magnetic field lines and calculate thgg|ation between spatial diffusion and the scattering off mag-
associated Kolmogorov length and diffusion coefficient inpegic disturbances and present the numerical method. In Sec.
terms of the turbulence level. We also show that the Bohny ‘\ye present our numerical results and discuss the issue of
diffusion coefficient only holds in a limited range of rigidi- {4nsyerse diffusion and the measurement of magnetic chaos
ties 0.} p=1 for pure turbulence, and does not exist whencparacteristics. A discussion with direct astrophysical conse-
the mean field is nonvanishing. In this latter case the Bohmy,ances of our results is given in Sec. V, and conclusions are
value for the _coefﬁment is only obtame_d at maximum pitch gffered in Sec. VI. Finally, in Appendix A, we propose a
angle scattering, i.e., for particules with Larmor radius ofiheqretical interpretation of the regimes of diffusion ob-
order of the coherence scale. Finally, we also found that d'f'served, and in particular of the existence of diffusion for

fusion operates even for particles whose Larmor radii iS_grmor radii larger than the maximum scale of turbulence.
larger than the coherence length, as far as we have searched

in rigidity (1.5 decade On these scales, the scattering rate
decays as expected, albeit moderately, as the peweir/3
of the rigidity.
~ Our study is conducted with the following main simplify-  High energy particles interact with cosmic matter mostly
Ing assumptions: through scattering on the magnetic field which is more or
The magnetic field is composed of a mean homogeneougss frozen in the medium. The interaction is elastic in the
field B, and an inhomogeneous componeBt B=B, frame of a magnetic disturbance and it can be considered as
+B(X). elastic in the plasma rest frame to lowest ordew jyc, if
The magnetic disturbances are considered to be statithe disturbance propagates at small enough velagitgc.
This assumption is well justified as the waves propagate witlWith respect to a given direction, chosen as that of the uni-
velocities of the order of the Alfue velocity v ,, smaller  form component of the magnetic field if this latter is nonva-
than the velocity of particles-c (we consider relativistic nishing, the pitch angle of the particle changes almost ran-

II. MOMENTUM SCATTERING
AND SPATIAL DIFFUSION
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domly if the magnetic field is sufficiently disorganizéthis
will be made more precise further piTherefore the position

of the particle changes according to a random walk on a time
scale which is longer than the coherence time of the pitch

angle cosine, and pitch angle scattering is thus responsib
for the diffusion of particles. However it is generally be-
lieved that transverse diffusion may also occur through wan
dering of the magnetic field lines. In this picture, the trans
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|e Here as well the average can be made according to one of
tﬁe three ways explained above. The main goal of the com-
putation is then to determine the dependenceofor the
scattering functiorg, in terms of the rigidityp and the tur-

verse velocity of the particle changes through resonanl?ylence levely. The theoretical result is known in the re-

diffusion as before while the guiding center of the approxi-
mate helical motion wanders with the magnetic field line to

gime of weak turbulencb], if the correlation timer, of the
force suffered by the particle is much smaller than the scat-

which it is attached, and performs a random walk in thetéring time 7. To make it more precise, particles undergo

transverse direction. These notions will be quantified in thd€senances with the MHD modes such thgiu* w =0.
forthcoming sections. Our main objective here is indeed tof he correlation time is related to the width of the resonance

quantify these various contributions to the process of diffu-

sion.

A. Definitions: Scattering time and diffusion coefficients

We define the pitch angle with respect to the mean field
direction when it exists, otherwise the direction can be arbi

trarily chosen. The convenient random function is the pitch

angle cosine:u(t)=cos), and « is a function of time.

Since we assume a static spectrum of magnetic perturbation%,

the autocorrelation function gf(t) will become stationary
in the large time limit. It can then be defined as

C(n)=(u(t+ 7 u(t))/{(u(t)?) (1)

in the mode spectrum, such that

Ak

— 5
K ®)

TC_1=A(kHv,ui w,_)=v|,u|Ak“=w|_

whereAk; denotes the spectrum width, in the parallel direc-
Since 7. '~nw , 7.<7s is equivalent to 7
<AK /Ky . In this case the memory of the initial pitch angle
an even be kept and the scattering functian
~n(p|m|)?L. However diffusion coefficients calculated on
time scales larger than, must be averaged over.

Due to rotation invariance around the mean field direc-
tion, there is a single transverse diffusion coefficiemhen
diffusion occurg, given by

tion.

where the average can be performed in three different ways.

In the original quasilinear theory, this average is taken ove

the phases of the magnetic disturbances. In the theory of

chaos, the average is performed over the phase space sub
of chaotic motions. In practice, and this is what we will use
in the numerical experiment, we assume ergodicity and mak
temporal average. Our procedure of calculating averages
explicited further below.

The scattering timerg can then be defined as the coher-
ence time of the pitch angle cosine:

T f: drC(7). 2

In particular, if the autocorrelation function falls off expo-
nentially C(7) = exp(—7T) thenr,="T. Turning to the spatial
diffusion coefficienD, letx; be the coordinate of a particle
along the mean field direction. Therxg=v u(t)dt with a
constant velocity (in our casev =c), since energy is con-
served. Consider now a random variatiam of x| during
the time intervalAt supposed to be larger than the scattering
time 7. One hagAx)~0, and

2 t+At t+At
<AX\|>:UZJ dtlf dixu(t)u(ty)). ()
t t

Beyond the scattering time, if the stationary random
processu(t) explores uniformly the interval«1,+1), the

r =<Axf>

24t ©

1

set

Wi

ehere AXx, denotes the displacement perpendicular to the

mean field during the time intervalt. In weak turbulence
lﬂs']eory (p<1), the gyro-phase) of the particle is only
weakly perturbed by the disorganized component of the field

and = w,_, where the gyropulsatiom, is determined with
respect to the mean field. The transverse velocity can be
approximated by

V, =v sina(t)[ e cosy—sgnq)e, siny], (7)
whereq denotes the charge of the particle, and we implicitly
assumed the mean field to lie along the directegn The
pitch angle sine sin(t) varies on the time scale,, which is
much longer than the Larmor time in the weak turbulence
regime. The time correlation function of the pitch angle is
obviously the same as that of the cosines sifces(;
+a,)y=0, hence (sina, sina,)=(cosa, cosa,). Therefore
the transverse diffusion coefficient reads

D, (8)

=3V

3 Zf: drC(71)cog w 7).

Assuming that the correlation functid@\ 7) decays expo-

space diffusion coefficient parallel to the mean field stemsientially on the characteristic time;, one finally obtains a

straightforwardly from its definition, Eq.3) and Eq.(2):

result similar to the so-called classical diffusion that reads

023002-3
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1 7o magnetic field and propagating a particle is much more
D, =—v2—2. (9) costly than taking averages along the trajectory.
3 1+ (wL Ty In principle one could as well take the avergg@ex®)/At

) - _ ) as the variance of the displacement at tixteover a popu-
This transverse diffusion based on pitch angle scattering onlyation of particles originally concentrated at the origin, as in
leads to the ratio Ref. [8]. However this method requires to follow the trajec-

tory of a large number of particles 10° in order to achieve
D, 1 a reasonable signal-to-noise ratio. The method we employ,
D_”_ 1+(M|/VL)2, (10 whiqh measures the co_rrelations along thg trajectory of eaph
particle, before averaging over a population of particles, is
less costly in computer timgbut requires much more
Hwemory). Nevertheless, we also checkgshd found that the
ethod which measures the variance of the displacement
gave results in agreement with our method within the error
attached to the small number of particles propagated.

The magnetic field can be constructed in two different
ways which both present pros and cons. The first method
uses fast-Fourier transforifiFFT) algorithms to set up the
magnetic field on a discrete grid in configuration space, start-
ing from the magnetic field defined through its power spec-
um in Fourier space, i.e.

where\=3D /v is the mean free path of a particle along
the mean magnetic field. This relation can also be obtaine
by treating the magnetic disturbances as hard sphere scatt
ing centers with weak or strong turbulence. It is also a resul
of the study of Ref[9], which estimate phenomenological
diffusion coefficients by using well-motivated assumptions
for the velocity autocorrelation functions of the particle orbit.
Finally, since (v, 79?>1 in the weak turbulence regime, one
expectsD , <D when »<1. However the transverse diffu-
sion may turn out to be larger than predicted by quasilinea
theory, even for moderate turbulence. In particular note tha
Eq. (4) for the parallel diffusion coefficient rests on the sole 2i
assumption that(r) vanishes on timescales longer than B(X)EKE e(n)A(n)ex;{
while the quasilinear result for the transverse diffusion coef- n L max
ficient, Eq.(9), assumes that the particle orbit is only weakly

perturbed and the timescale of variation of the pitch angle isln this equationn is the tridimensional wave number vector,

much longer than the Larmor time, i.e., that the level ofW'th integer coordinates taking values between 1 and

turbulencen<<1. We refer to this result as a prediction of Kima/2Kpin, &(1) IS @ unit vector orthogonal to (this ensures

o L o : VB=0), A(n) is the amplitude of the field component, and
quasilinear theory; it neglects the diffusion of the guide cen- defined such thatA(n))=0 and(A(n)A*(n))=k #~2,

ter carrying field line and the associated process of chaoti here the average concerns the phases of the maanetic field
magnetic diffusion which has been analyzed by Jokipii and_. . ge c phas g '
Parker[10], and to which we will come back in the follow- inally, x is a numerical prefactor which ensures the correct

! normalization of the inhomogenous magnetic component

ing section. Finally in all cases one should obt&in—D; : ) . . .
when »—1, since the mean field vanishes in this limit andWlth respec_t to the rzm.'-:an field, by using the following ergodic
approximation to/B<):

there is no preferred direction anymore.

X
. (12)

1
B. Numerical simulations (BY)= vJ’ dxB2(x), (12

In order to evaluate the transport coefficients, we follow
the propagation of particles in stochastic magnetic fields byand as beforen=(B?)/(Bj+(B?). In practice, the field
integrating the standard equation of motigrmrentz force, components are calculated at each verexf a discrete grid
and measure the statistical quantities of interest to us, namelif configuration space beforehand. The boundary conditions
vs=1r, D, andD, , using the estimators defined respec-are periodic with period .y, and the fundamental cubic
tively in Egs.(2),(4),(6). Strictly speaking, the averages con- cell size isLy,,/Ng, where Ny represents the number of
tained in these expressions should be taken over the phas¢gve number modes along one direction. One thus has:
of the magnetic inhomogeneities. In practice however, on&max/Kmin=L max/Lmin=Ng/2, where the factor 2 comes from
may as well take these averages as follows. For a given the fact that one must consider both negative and positive
[using the notations of Eq$4),(6)], a timet is picked at modes to respect the hermiticity B{k). In our simulation,
random over the trajectory, and the correlation between thwe typically useNy=256 and in some caség,= 512 which
positions at timeg andt+ At is recorded; this operation is gives us a dynamic range of two orders of magnitude.
repeated many times and the average is kept. This latter is During the propagation of particles, it is of course neces-
then further averaged over a population of particles with ransary to know the magnetic field at any poinfor the inte-
dom initial positions, and then over an ensemble of magnetigration of the equations of motion. Our numerical code cal-
field realizations with random phases. In practice, we propaculates the valueB(x) either by trilinear interpolation
gate 20-50 particles, measure the correlations at 5000between the known values of the field components on the 8
10000 different times along the trajectory of each particlevertices of the cell to whick belongs, or by taking the value
and use a few magnetic realizations. This procedure allowsf B at the vertex closest to, which amounts to assuming a
to reach a sufficiently high signal-to-noise ratio in the simu-constant in cells of sizel ,,,/N4 centered on each vertex.
lation for a moderate computer time, as indeed setting up th&/hile the former method does not resp¥d =0, the latter
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implies a discontinuous magnetic field on each cubic cell C(r)=<u(0)u(r)>/<p*>
face. We will show in the following that the results obtained 15[ ' ' '
by these methods differ only when scales smaller than the r
cell size are concerned, as expected. I
A second algorithm for computing the magnetic field has 1.0
been proposed by Giacalone & JokigisJ) [8] and calcu-
lates the magnetic field as a sum over plane wave modes
The expression definin@®(x) is very similar to Eq.(11) 0.5
above, except that needs not have integral coordinates any-
more, as fast-Fourier transform methods are not used. In
deed, one does not calculate the field on a discrete grid be
forehand, but its values are calculated where and wher
needed during the propagation directly from the sum over
plane waves. Also the sum is not tridimensional, but one-_; 5 , , , ,
dimensional; the wave numbers directions are drawn at ran o1 1.0 10.0 100.0 1000.0 100000
dom, and the amplitudé\(k)>k # to account for phase T/t

space volume. In practice, it is convenient to have logarith- ) . ) )
P b 9 FIG. 1. Self-correlation function of the pitch angle cosine shown

mic spacing of th&k modes betweeR,;, and K- . . : X ;
; . . _as a function of timer (in units of Larmor timet, =1/w ) for
One main advantage of the GJ method is that there is Q. i\ ioidin »—0.072,0.12,0.19,0.32,0.52,0.85 and fpr 0.1,
restriction in dynamic range due to memory usage, and con-
sequentlykna/Kmin Can be as large as required. However,
one is limited in terms of computer usage time since it is lll. RESULTS AND DISCUSSION
expensive to perform the sum over the wave number modes A. Pitch angle scattering and parallel diffusion

at each point of the trajectory if the number of modés,

7n=0.1

The first numerical investigation to perform is the self-

becomes significant. In practichl,,, =500 is a strict upper . . . ) )
limit for ourgapplications[pll] andpvéven WithN... = 200 Ft)ﬁe correlation function of the pitch angle cosine. The behavior
’ b of this function is shown in Fig. 1 vs time interval for

calculation is already much slower than a similar calculation”
with the above FFT algorithm. various levels of turbulence. Two bumps are observed at

The number of modes is important as it controls the effi-°N€ and ;WO Larlmor perloo_ls.f_'l'hese bumps are r(})bsderved as
ciency of diffusion, since pitch angle scattering proceed4Ong as the regular magnetic fiel}, exists. Since the deco-

mainly through resonance of the particle momentum on thérélation times fory<1 are larger than one Larmor period,

magnetic field modes. In quasilinear theory the resonanch® L.armor motions are not conjplete_ly disorganized ‘?”d
condition read ukj =+ Knin, Wherek; is the component of contribute to the correlation function with some harmonics

the wave number along the mean magnetic field directiongenerated by nonlinearities. The inflexion of the function in-

The FFT and GJ algorithm share a similar number of resodicates that it behaves as®” as7—0 and then decreases
nance modes in this limip<<1. However for each resonant exponentially ine™"” as7—c. Thus the determination af;
k, the FFT algorithm ha$\l§~ 10*—10° transverse compo- gnd vs by a numerical integration of the correlation function
nents to be compared with one for the GJ algorithm. OndS accurate. .
thus expects that at higher turbulence levels, diffusion should N Fig. 2 we show the scattering frequenay(#,p)
be more effective in the FFT algorithm due to the much=ws/w_, which is the main quantity of interest for evaluat-
larger total number of modes than in the GJ algorithm. Furing the transport coefficients. This figure shows several in-
thermore, in order to preserve a correct spacing of modes iteresting features which deserve further comments. First of
the GJ algorithm, one cannot indefinitely increase the dyall, one finds that both methods for calculating the magnetic
namic rangekmay/Kmin sinceNy,, is fixed for practical rea- field, i.e., FFT and GJ, agree well within the range of validity
sons, i.e., computer time. of the former method, namely fopin=<p=<pmax; Where
However the FFT algorithm suffers from other limitations pmin=Kmin/Kmax,» and pmax=27. These two limiting rigidi-
(apart from the limitation in dynamic rangethe interpola- ties correspond to Larmor radii of order of the cell size and
tion of B on scales smaller than the cell size, and the periof the maximum scale of turbulence respectively, and result
odicity on the scald. ... These limitations are not present from the discreteness and periodicity of the magnetic field
in the GJ algorithm, and imply that the results of the FFTgrid, as explained in Sec. Il B. One finds that the scattering
method obtained for Larmor radii much smaller than the celfunction behaves as a power law with different slopes de-
size, i.e.p<1/Ng, or much bigger than the periodicity scale, pending on the rigidity and turbulence level. R0 pyy,, it
p>1, cannot be trusted, since these regimes are likely to bmust be emphasized that the results cannot be trusted for the
dominated by systematic effects related to the discreteness 6FT results, i.e., all symbols except filled circles, and the
to the periodicity. change of slope may be artificial. For<1 and p<1, it
Overall both methods appear complementary to eaclhppears thag(»,p) 7p?3, in accordance with the quasilin-
other, and we use them in turn to compare and discuss thear prediction since 2B38—1.
robustness of our numerical results with respect to the as- For p>1, one findsg(#,p)><np~*~, an unexpected re-
sumptions made. sult, since the resonance conditions cannot be satisfied at

—4/3
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FIG. 2. The scattering function(,p) = v s/w, as a function of FIG. 3. Behavior of the aver_agéA_x2>/At in units ofr.c, as a
rigidity p. The symbols correspond to the measurements madg,mctlon of the time intervalAt in units oft, , for varloqs turbu-
through our Monte Carlo experiments and correspond to varioul€nce levels £=0.848), and for both the transverse displacement
turbulence levels, as indicated. These results have been obtainégWer thin line curves and parallel displacemertupper thick
using the FFT numerical methodee tex, except for the filled curves. One sees the transition from the weakly perturbed propa-

; ; 2 2 SO ; 2
circles which correspond to the GJ algorithm. The vertical dashe@@tion regime(Ax“)«At” to the diffusion regime(Ax®)xAt,
lines indicate the range of validity of our FFT algorithiire., all which appears here as a plateau. The transition duration depends on

symbols except filled circles delimited by prin=Kmin/Kia: and the tu_rbulence_ I_evel, and i_s of order ef the scattering time. The _

pma=27, Which correspond respectively to Larmor radij diffusion coefficients are given by the Ievel_s of th(=T plateau. Obvi-

=L max/ ™Ng (1/7r cell size andr =L .. The simulation forp ously, Dj>D, for n<1 and the two meet in the limiyp—1, as

=1 shown by filled circles has been obtained with a much large€XPected.

dynamic range than the others, i.&ya/Kmin=10". Finally, the

dotted lines correspond to power law approximations with slopesyith S(k)Ek2<Bz(k)> the power spectrum. This integral

2/3 and—4/3. See text for comments. cannot be integrated analytically for a power-law spectrum
S(k) =<k~ # but one can check numerically that the maximum

these high rigidities, and the quasi-linear theory thus predictgf the correlation function occurs at scaldcy,

a sudden drop of the scattering frequencyatl. In Appen-  =0.7maf27. o . o

dix A, we provide a first theoretical explanation of this result ~ Turning to the spatial diffusion coefficients, it is interest-

by expansion of the particle trajectory in the random dis-Nd to plot the statistical estimators for; andD, given by

placement and statistical averaging of a non-perturbative ré=ds: (4),(6) as a function of time for different turbulence

summation of an infinity of graphs of correlations along thelevels, a'f‘d the. result is shown in '.:'.g' s . .
trajectory. This figure illustrates the transition from the regime in

For =0.99 andp=1 one notes a flattening of the scat- which the particle orbit is weakly perturbed and memory of
. N . the initial conditions is kept to the regime in which this
tering function with recovery of the exponent 2/3 power Iawmemory is lost and the particle diffuse) x?)/ At~ constant.
at smaller rigidities. This flattening is definitely present for.l.he level of this plateau gives the magnitude of the diffusion
7=1 (no mean component of the magnetic fieldnd cor-

, A . coefficient; Fig. 3 also gives an idea of the uncertainty in our
respond to the phenomenological Bohm diffusion regime, agyeasurement of diffusion coefficients. Finally, this figure

will be seen further below; however, it only extends over, 5o confirms the expected resus>D, when ;<1 and
slightly less than a decade in rigidity for G=p=1, even p /5 .1 asy—1. It should be pointed out that the initial
though for that simulation the dynamic range was very largg 5 e of the pitch angle cosine was=1/42 in all simula-

Kmax/Kmin=10". At maximum pitch angle scattering, i.e., tions; we have checked that our results are insensitive to this

whenp=1 and»=1, the scattering functiog=0.5, i.e., the 51 e a5 |ong as the turbulence levgt 0.1, as expected.
pitch angle scattering time, is (.)f order 2 _Lz_irmo_r times, . In Fig. 4, we show the behavior of the parallel diffusion
It should be noted that we define the rigidity with respect ©Ocoefficient as a function of rigidity for various turbulence

the maximum scale of turbulence, which strictly speakingje\e|s. The dotted lines correspond to the approximation of
does not co!nc!de with the coherence_ sdalg of the turbu-_ D/ obtained from the calculation af; using Eq.(4), and the
lent magnetic field. In effect,_ the ;panal correlation f“”Ct'O”agreement appears excellent. This study does not confirm the
of the turbulent component is defined as existence of a Bohm scaling. More precisely, the Bohm dif-
sin(kr) fusion coefficienDger v only applies aty=1 in the range

f dk S(k) 0.1=p=1, in agreement with the similar conclusion for the
, (13) sfcatt'ering.f'uncti'on. In all other cases the quasi-linear predic-
f dkS(k) tpn is vern‘le_d, |.e.,E_)”o<p1’3 fc_)r_p_<_1. We also found that a
diffusion regime exists for rigidities greater than the upper

kr
(B(x+T1)B(x))=(B?)
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FIG. 4. The parallel diffusion coefficie| in units ofr c as a FIG. 6. The square root dd, /D as a function of rigidity for

function of rigidity for various turbulence levels. The symbols and various values ofy. The notations of symbols are as indicated and
vertical dashed lines are as in Fig. 2. The dotted lines are obtaine@s in previous figures. The dotted curves overlaid on this figure
from the pitch angle scattering rate, using E4). correspond to the classical scattering result given by(Eg, and
correspond from bottom to top to the represented valueg of
bound of the resonance region, i.p>1, for as far as we increasing order except foy=1. These models account marginally

have searched, or about 1.5 decade. In this regimd., forbthle numleric?I Le(s)usltsbfordhigh ”giqityfartiﬁ"?ﬁel art:d small
DHOCPWS, for all values 01:7} turbu gnce eve 9]~ .9, but diverge significantly from the experi-
ment in other regimes.

B. The issue of transverse diffusion early as 1966 in order to correct the quasilinear result; how-
ever this derivation does not apply to high turbulence levels.

In Fig. 5, we plot the behavior of the transverse diffusion - .
Finally, the ratioD, /D converges as expected to 1 for all

coefficient as a function of rigidity for various turbulence o :
levels. It is useful to plot also the quantit)DUD”)”z as when »— 1. However it is interesting to note that even at

shown in Fig. 6. Indeed, the noise of the simulation is then?~0-99, there remains the power law dependence pfor

-2
reduced and this figure allows to compare directly the powe?l' D, /Dyxp=. . o . 5
law behaviors oD, andD. We have found evidence for subdiffusive reginfes<)

This figure indeed reveals a clear trend. For glithe ~ <At™ withm<1, at low enough rigiditiep=10"2 and for
ratio D, /D, is independent of rigidity fop<1, and scales 7=1: ON analytical grounds one expeats=1/2, corre-
asp~2 for p>1. A similar regime has been found by Giaca- sponding to the so-called process of compound diffusion

lone and Jokipi{8] for p<<1, albeit with slightly lower val- [12,13, and we have found values i close to this value

ues than ours. This constancy is interpreted in the followindndeed' However we have not been able to investigate in

as the signature of diffusion due to the chaotic wandering ofi€tail this issue, as it is very consuming in terms of computer

the guide center carrying field lines. The importance of thd!Me- In effect, this can be studied only using the GJ algo-
guiding center diffusion was pointed out by Jokipii] as

rithm, since it takes place at low rigidities outside the dy-
namic range of the FFT algorithm. We have thus decided to
postpone the study of these anomalous regimes to a subse-

T T T T
10'000; . . * _ guent publication.
i o 1Prin 1Pmex ]
X * 2 6o i 0 ® ; ° Eo ] C. Characterization of magnetic chaos
¢ J
1.000¢ i B 0o 0% Qo000 | 3 When the magnetic field is a superposition of a mean field
oy . oo 0o | ] and an irregular component depending on all three spatial
> 5100k ApQoo o | ] coordinates, the field line system generically exhibits chaotic
= : y " Aa Y00 ) i solutions. For instance it is sufficient to use a distribution of
[ \ Ag® | ] Fourier modes following a power law in wavenumber to ob-
0.010E 3323188 : u| ° © - tain a chaotic system. However a two-dimensional field can-
E ar0E s E a I not have chaotic field lines, and a one-dimensional system
- An=0.10 \ A 1 cannot produce transverse diffusion, as the particles are con-
000 Lt bl fined in a flux tube by conservation of the adiabatic invariant
0-001 0-010 0‘1037 1.000 10.000 [14]. An example of this phenomenon is shown in Fig. 7 in

which we show the transverse wandering of a particle in
FIG. 5. The transverse diffusion coefficient as a function ofthree-dimensional and one-dimensional turbulence.

rigidity for various turbulence levels, with the same notations for  In a three-dimensional chaotic system the separation be-

the symbols as in Fig. 4. tween two initially adjacent field lines first increases expo-
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FIG. 7. Transverse displacement of particles in three- F|G. 9. Kolmogorov length and magnetic diffusion coefficient
dimensional chaotic turbulenghick line) and in one-dimensional  as functions ofy. The two lengths are normalized to the largest
non-chaotic turbulencéhin line). In both cases;=0.5, and for  scale of turbulence yyy.
one-dimensional turbulence, the inhomogeneous component is
taken to depend on the coordinaewith the homogeneous mag- tyo-step behavior and confirms that the transition from one
netic field component lying along theaxis. Note the difference in regime to the other occurs When- L .
behavior: in one-dimensior?al turbulence, the particle is confined to This calculation allows us to measure the two lendths
a flux tube and does not diffuse. and D, with a relatively good accuracy. The results are re-

ported as function of; in Fig. 9.
nentially cexp@/li) as a function of the abscissalong the The effective transverse diffusion of particles in a chaotic
field line, with characteristic Lyapunov exponeli, also  magnetic field has been derived by Rechester and Rosen-
called the Kolmogorov length. When the separation has bepjyth [15]. Here we extend their argument by assuming that
come Iarger than the coherence Iength of the magnetic fle'dhe primary transverse diffusion is anomak}jggb_ or super-
it behaves diffusively with magnetic diffusion coefficient diffusive). The problem can be stated as follows. After
Dy=(Ar?)/2As, whereAr denotes the separation betweenscattering times, parallel diffusion leads to a diffusion in cur-
the two field lines. _ - _ vilinear abscisséAs2) = 2D 7, whereas the transverse pri-

Our numerical computation of the field lines clearly dis- mary variation causes transverse displacement such that
plqys this two-step behavior. Ip Fig. 8, we plotted .the sepa Axf)~rfn“, with o= 1 for normal diffusion, andv<1 for
ration squared between two field lines as a function of they,pgiffusion. Because of field line exponential divergence,
curvilinear abscissa fo;=0.08. These calculations have .| the separation is of order the correlation length, say
been obtained by integrating the equations defining the fieldger scatterings, the transverse displacement is amplified
lines, namely ®/B,=dy/By=dz/B,, instead of integrating exponentially by a factoe?sn’'x with s,,= \/m After n,
the particle equation of motion. Figure 8 clearly shows thisscatterings i§.>1), an effective transverse diffusion coeffi-

cient can then be estimated as

102 T T T T T 2
I ! ] (AXT) As
1 P."2as At 19
1073 . Because the particles almost follow the field lines, the first
% i i factor can be approximated by the magnetic diffusion coef-
<1074 1 ficient D,,,, and one gets
5 L |
1078 . v
| ] D,=D . (15
10781 N - " 3n/2
10—10_ . . . . . | The numbem, is obtained by equating the separation dis-
0001 0010 0.100 1.000 10.000 100.000 1000.00 tance and the transverse correlation length of the field lines
85/ L I, (in our casd | =L y:

FIG. 8. The square of the separation distance between two field \/7
lines as a function of the curvilinear abscissa along the field line. al2 ZDHTSnC _
T o T rong “ex =, (16)
The exponential divergence followed by the diffusion regime is 1%
clearly identified. The transition between these two regimes occurs
at s~L pmax- which leads to

023002-8



TRANSPORT OF COSMIC RAYS IN CHAQOTIC.. .. PHYSICAL REVIEW B5 023002

31y IV. SOME APPLICATIONS

\/n—czi I——|09

L1

E(K ' (17 In this section, we offer revised estimates of the maximal
energy that can be attained by Fermi acceleration mecha-

o nisms by comparing the acceleration time and the time of

wherel =v 4 (the scattering lengih The main result is that escape of cosmic rays outside of the accelerating region us-

magnetic chaos amplifies the transverse diffusion in such #g the results obtained in the previous section. We first con-

way that it becomes a sizable fraction of the parallel diffu-sider the case of galactic supernovae remn&gi$R) and

sion: so-called superbubbles, and then turn to the case of jets in

extragalactic sources.

D, - 2Dm_ D, (18) A. Supernovae remnants and superbubbles
I log E(L) } The lagging questions of the production of cosmic rays in
K ro\ g supernovae remnants has been recently reviewed in Ref.

[18]. One of the major problems in accounting for the obser-
vational data is that the maximum energy achieved by the
Eermi process in the SNR shock is well below the so-called
“knee” range 13%-10'" eV. If one uses the Bohm approxi-
mation to the diffusion coefficient, there is hope to reach the
knee energy with sufficient efficiency to expect significant
y-ray emission resulting fromr® decay generated bpp
collisions. The lack of detection of these gamma &y or
their marginal detection at best, ruined these optimistic as-

As can be seen, the primary subdiffusion does not refrain th
effective diffusion due to chaos. When=1 (nonanomalous
primary diffusion, the logarithmic factor reads
=log(l, /glk), with g the scattering function as before.
Finally note that the above regime of diffusion applies at
late times aften, scattering times. The intermediate regime,
for n scattering times, witlh<n., leads to subdiffusive mo-

tion (compound diffusioh Wit.h Axifxmm’ see for ir_lstance sumptions. The Fermi acceleration at a shock of veloaity

Ref.[13]. We have found evidence for such a regime, but s characterized by an acceleration time sdalg=2D/u?.

detailed study of its behavior lies beyond the present worlin most of the shock regionD=D; hence tr;=r. /52
- F17 /sl Ps

and is defered to a later study. th/(gﬂg), where B;=ug/c. The maximum energy is lim-

No theory gives the rati®,,/l¢, except for some toy .
models such as the Chirikov-Taylor mappifig]. However |tEd by the age of the supernovae remnants, and one thus
obtains

our numerical experiment can provide a fairly accurate esti-
mate of this ratio. In particular we find that the Kolmogorov P 2/ ¢ \?/ B
lengthl L ya~ > and that the magnetic diffusion co- ¢ 1. 8x10%zg| —= ( ) ( ) eVv.
efficient D o L max>* % as long asy=<0.5 [see Fig. 9. 1072/ 1300 yr \1 uG

Beyond this limit, our calculations oD,, and|x do not (20
provide accurate estimates of these lengths, especially for the

Kolmogorov length which loses its physical meaning when This result differs from{18] only by the factor §. This

7 reaches unity. Therefore bearing in mind that the two dif-factor is close to unity when the Bohm scaling applies; but,

fusion coefficients become the samezas 1, we conjecture ~ as we have found in Sec. 11, in fage: p?~. Strictly speaking
that the result should be this scaling is valid for Kolmogorov turbulence, and one ex-

pects the turbulent magnetic field downstream to differ from
93000 isotropic three-dimensional Kolmogorov, but the above scal-
D, =7 D (19 ing serves well for order of magnitude estimates. Moreover,
p<<1 for Larmor radii smaller than turbulence correlation
length which could be the case even for the most energetic
particles. The Bohm approximation thus appears very opti-
mistic.

Superbubbles correspond to huge cavities created by
~100 SNR shock waves built around massive stars associa-
tions. The size of these regions can be a sizable fraction of
the galaxy disk thickneds=120 pc. In effect, a typical su-
perbubble radius can be estimated 28]

when#=<0.5. This non perturbative result would be in agree-
ment with the perturbative result obtained by Chuvilgin and
Ptuskin [16] for small amplitude(written A) large scale
varying fields, the ratio between the two coefficients being
proportional toA*.

Finally, it is important to note that our numerical results
for D, /Dy shown in Fig. 6 have been obtained indepen-
dently of the above magnetic diffusion law. We find, in

-1/8

agreement with the above relation, that /D is indepen- 5
dent ofp for p<1, and thaD , /D »** provides a good fit Reg(1)~66 p L No 305
to the scaling observed ay<1. However the numerical S8 10*% erg/ 1 cm3 Myr >

prefactor in this relation is rather of order0.2 for <1, (21
whereas it should be-1 if the extrapolation could be taken

up to »=1. Nevertheless, the above provides solid evidencevhereL measures the mechanical luminosity of the OB-stars
in favor of a dominant contribution of magnetic diffusion to associationn, the particle density of the surrounding inter-
the process of transverse diffusion. stellar medium=1 cm 3, andty,,~ 30 is the superbubble
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lifetime in units of Myr. The bubble plasma is more dilute M 12

than the interstellar medium by at least two orders of mag- BR~0.1 G p{ * ) , (26)
nitude and thus the Alfwe velocity is much greater. This 1Mo

density read$20]

where M, is the mass of the central black hole. Indeed,
asymptotically, the magnetic field at the edge of the jet is
dominated by its toroidal component; therefore the product
) _ ) BR; is governed by the current generated by the central en-
where «q is a number of order unity20]. The bubble is fgine along the axis. It slightly decreases along the jet, be-
traversed by many shock fronts propagating with velocity ofcayse the return current progressively establishes through
order or greater than the Alfmevelocity; a second order type \yrapped lines off axis like butterfly wind@1,22. These jets

of Fermi acceleration is thu;s at work. Its acceleration time,re |aunched if the magnetic field intensity is close to equi-
scale is given byte,~(¢/Va)“7s=(C/Va)t /9. The maxi-  partition with the radiation pressure in the central region, i.e.,
mal energy is limited by escape of the particles, which iSyjthin 10 gravitational radii. This corresponds t8
governed by the diffusion across the galaxy disk thickness_ { KG(M, /10°M o)~ Y2 within 10 a.u. M,/10EM).

for the most energetic. A strict lower limit to the time of 1,5 the performance of the jets as ultrahigh endtyiE)

escaperes; can be obtained by using the parallel diffusion cosmic rays accelerators tightly depends on the nature of the
coefficient, sincerese<1/D with D the diffusion coefficient.  cantral engine. At the base of the j@=100 mG forR;

Transverse diffusion would improve the confinement time_ 1 pc is a reasonable number. In the hot spots of the FR2
and thus lead to a higher maximal energy; however ONGsts such as those of Cygnus B=10"* G for a region of
should then take into account the fact that magnetic ””e§ize~1 kpc. Thus withl =10, the confinement condition

come out of the galaxy disk and unfold in the halo. Let usj jets rules out the possibility of generating ultrahigh energy

Nse=1.6x10"2 cm L3N %%, 2%, (22

consider the lower estimate: cosmic rays of energies larger tharl0?® eV. In the case of
FR1 jets, which are less powerful, less collimated, and with-
h?  3h? out hot spots, the limiting energy is even smaller since the

Tes 3D, 2c2t,_g' (23 productBR;, although not well known, is very likely lower.

As usual, the escape of the highest energy cosmic rays is

) . governed by diffusion across the jet and
The maximal energy for acceleration by second order Fermi

process in superbubbles then correspondseig=tr,, and R2 3 R? g
reads Toem = — — L 2 (27)
©C2D, 2 232t
B \? : .
€sp=4Xx 10" eVgZ(—) toar, (24)  where we have use our previous result that perpendicular
1 G diffusion is governed by magnetic diffusion of the field line,

and D, ~0.27**D. One thus finds that indeed most high
where we usedh,=1 cm 3. Therefore the second order energy cosmic rays escape before reaching the end of the jet,
Fermi process in superbubbles might cover the knee ranggince
with slightly optimistic assumptions, since the magnetic field

intensity can easily reach 1@.G in these super-bubbles, and 9z R; \3 B € -1
tyy~30. Moreover, at that maximal energy the rigidity Tese=2X 10" yr—2_3(1 pc) (1 G) 108 ev
reaches unity and therefoig~0.57, smaller but close to Y €

unity. At this point it is useful to recall that the confinement (28)

Iimiting energy of cosmi_c rays in the _galaxy_ obtained byto be compared with a travel time ef1 Myr to travel 300
equating the Larmor radius with the thicknesss of order - e typical length of extragalactic jets. Here as well the
ZXx10" eV, maximal energy for Fermi acceleration is obtained by equat-
ing 7esc With the acceleration timescale for acceleration in
B. Extragalactic jets and hot spots shocks moving at spee@.c. This gives

Extragalactic jets emanating from active galactic nuclei
have been considered as possible sources of ultrahigh energy
cosmic rays witlE=10*® eV because the confinement limit
in a jet of radiusR; and bulk Lorentz factol” is

€max=PBs 771_:|_5€(:I . (29

With the plausible assumption of Kolmogorov turbulence,

25 g~0.E§77p2’3, we finally obtain the maximal energy as a frac-
tion B; of the confinement energy, the estimate being weakly
sensitive to the turbulence level:

and for the powerful, strongly collimated and with terminal B R

hot spots FR2 jets, the produBR. is roughly uniform in the el 3 j

jet ar?d is estinjwated asp J o ma=10° eVBSZF<E)(1 pc)' (30

B R;
€q=10° eVZF(l G)(—l o
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Centaurus A is a well-known example of active galactic Buoe
nucleus, actually the closest to (distance 3.4 Mpg which tsynzﬁ (35
displays FR1 nonrelativistic jets moving at speed$ 4o7CcB%y

X 10° km/s. The jets have both radio and x-ray band syn- . , )
chrotron emission with luminositl,=1G* erg/s extending Whereor is the Thomson cross section apg the magnetic
over several kpc. They have been studied in detail with higtP€rmittivity of vacuum. By equating this loss time with the
resolution interferometrj23] and recently with the Chandra first-order Fermi acceleration time sc_ale, we obtain the maxi-
x-ray satellite[24]. The radio knots and the x-ray knots are Mum Lorentz factor that can be achieved

identical in the inner jet. The minimum pressure magnetic 12

field is Bgg=60 G and the maximum Lorentz factor of the e _1010p 412

eIectronsqymaX:SX 10". The inner jet has radiusR; Vina=107B:0 ( ’ (36
=30 pc and a constant opening angle of 6 °. The product

BRj~1.8X 1073 Gpc is clearly too low to produce ultra- and the scattering function is calculated for the maximum
high energy cosmic rays. In any case it has been shown thaigidity p.. Therefore, assuming again Kolmogorov turbu-
even if Centaurus A could accelerate cosmic rays to the highence with g(p,)=0.57p2°, we obtain the approximate
est energies observed 10°° eV, their transport to Earth, value of the turbulence level by equating the two expressions
affected by diffusion according to the rules derived in thisfgr Ve

paper would lead to strong energy losses by increased travel

107* G

distance and anisotropy incompatible with present observa- B.| 2 B Ry |23
tions[25]. n= 2(0—51) — )(1 ks ) (37)
In the hot spots, the escape is again dominated by diffu- : 10° G Pe

sion at high energies, but parallel diffusion is more likely
unless there is no ordered field. For a hot spot of $tze
~afew kpc and magnetic field intensiB~10"* G as in
Cygnus A, the confinement limit is

SinceBs>0.1 is very likely, the required turbulence level is
rather low. This, in turn, reduces drastically the maximum
energy of cosmic ray acceleration, using E8R), Eq. (31)
and knowing thag~ 7p? 1

Rhs
€=10° evVZ| —, ( ) (31 _ (2 ) B Rins 0
1074 G/ \1 kpc €max=(7Bs) Z 104 o)1 kpc 107 eV,
and the maximum energy achievable with a nonrelativistic (38)
shock is where we explicited the scaling witB the exponent of the
power spectrum of magnetic fluctuations; however note that
€max=PsJ€c- B2 the estimate ofy must be changed wits. For Kolmogorov

] ) turbulence 8=5/3 and using the upper bound gnEqg. (37)
The most extreme energy that can be obtained is when thehoye the prefactor is of order 18(840.1)"3, and accel-
turbulence is high enough that no organised field is set up igration is not sufficient to account for the highest energy
the hot spot, and the shock is midly relativisig=1. But  gsmic rays by several orders of magnitude.
synchrotron emission of hot spots, like those of Cygnus A,  Thjs |limit cannot be circumvented easily, since it is se-
does not favor this view. Indeed the synchrotron emission by,erely constrained by the cut-off frequency of the electrons
relativistic electrons cuts off in the infrared range. Since angynchrotron emission. The only parameter that could be
electron of Lorentz factoty synchrotron radiates around a mogified without affecting this cut-off frequency is the tur-
frequency vs,~=115(8,/10"* G)y* Hz, an observational pylence indexg. If one considers Kraichnan turbulenge
upper bound on the electron Lorentz factor is =3/2 instead of Kolmogorov turbulence, the prefactor
(Bsm)® is changed into B.7)?, but 7 itself is lowered by a
factor 10 due to the modified dependencegadn p.. Fur-
thermore if hot spots were to radiate synchrotron emission in
x rays, this would increaser,,, by a factor 10 only, and
would not affect drastically our conclusions. Finally the
numbers considered above are consistent with recent obser-
32 _1 vations of the Cygnus A hot spots by Chandig®], which
( Rns ) give an accurate measurement of the magnetic field intensity
1 kpc ~1.5x10* G to within a few tens of percents, as obtained
(34) by the ratio of the synchrotron-self Compton luminosity over
the synchrotron luminosity, a value which is furthermore
Now this maximum electron energy is obtained by the samelose to the equipartition value if there are no protons. These
Fermi acceleration process, limited by synchrotron lossesneasurements also confirm model dependent estimates pro-
We recall that the characteristic time for a synchrotron radiaposed in 198627]. Finally, as an aside, the same reasoning
tive process of an electron of energy: ymc? is allows to estimate the level of turbulence required to get the

~12
: (33

B
107% G

’y(ranax: 106(
and the corresponding rigidity is

_ 2T gax1077
Pe= Rhs . 1

0% G
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x-ray emission in Centaurus A: Withy,,,,=8%X10", pe Our paper left open several important issues that we are
=1.2x10 4 and = 10‘2/B§. currently investigating. In particular it seems crucial to in-
vestigate in more detail the existence of subdiffusive regimes
at low ridigities for which we have found evidence. These
regimes play a crucial role in the acceleration processes at
Let us first summarize the results we have obtained. Th@erpendicular shockil3]. Furthermore, we have described
scattering functiong has been found to follow the scaling magnetic turbulence as an ensemble of magnetostatic modes
predicted by quasilinear theory in the inertial rangg,<p  distributed according to a power law spectrum. This approxi-
<1 for weak to strong turbulence. However we found thatmation is justified by the small Alfwe velocity when com-
scattering still operates far< p,, contrary to the predicted pared to the velocity of the particles. However it would be
sudden drop of the scattering function; this facilitates thenteresting to investigate the effect of temporal and spacial
injection of particles in Fermi processes. For Larmor radiiintermittency on the transport properties. Finally we are cur-
larger than the correlation lengii> 1, scattering decreases rently investigating the transport properties of particles in
as a power law in rigidity unlike the predicted sudden dropnonisotropic turbulence as may be encountered in the vicin-
of g. Therefore high rigidity particles still diffuse. One ity of a shock wave, in particular in the downstream medium.
should also mention that the lack of scattering encountered ihe consequences on Fermi acceleration will be presented in
weak turbulence theory for particles having pitch angle closé forthcoming paper.
to 90 ° is cured in strong enough turbulence.
The perpendicular diffusion turns out to be very different APPENDIX A: THEORETICAL APPROACH
from the prediction of the quasilinear theory. Our investiga- - ) o
tion of the chaos of magnetic field lines characterized by a The diffusion resulting from the random variations of the
Kolmogorov length and a diffusion coefficient with space momentum due to the irregular magnetic field can be formal-
increment indicates that this process of magnetic diffusioriz€d as follows. Energy conservation, and tfpusonserva-
governs the transverse diffusion of particles. tlon, allows to treat the problem as random rotations of the
Our numerical experiment shows that the phenomenologiunit vectoru such thatp=pu: u(t) = R(t,to) u(to) . Assum-
cal Bohm approximation, characterized heregoy0.5 and  Ing that the correlation functions of the componentsiafre
D= agr v With ag~0.7, only applies in a limited range of mtegrable over a characteristic timeg, the diffusion coeffi-
rigidities 0.1=p=1, and only in the case of pure turbulence Ci€Nts are given by
n=1. Many estimates in astroparticle physics, that rely on
the Bohm conjecture, mu_st be reconsi_dered. _ D;. =02Jm(ui(t)u-(t+ m)dr. (A1)
The slow decreasgep~*? of scattering for cosmic rays : 0 :
with Larmor radius larger than the correlation length of the
magnetic field, which implie®«p”? is of potential impor-  The correlation matrix is derived by making the appropriate
tance to the transport of high energy cosmic rays in our Galaverage, after solving the stochastic equation:
axy as well as ultrahigh energy cosmic rays in the interga-
lactic medium. u=Q(t)u (A2)
The accurate knowledge of the transport coefficients al-
lows us to be more conclusive than before on the perforwhere the gyromatrif)(t)=sgn@)=,b,(t)J,, b,(t) be-
mances of Fermi acceleration in some astronomical sourcefg the reduced components of the magnetic field experi-
of high energy cosmic rays such as supernovae remnantspnced by the wandering particle adg is a 3x3 matrix,
super-bubbles and extragalactic jets. Using new Chandr@ith components 1)jk= €k, Whereej is the fully anti-
data, the turbulence level and the maximum energy for elecsymmetric Levi-Civita tensor, anel,,=1.
trons and for cosmic rays can be determined. We confirm the Note that thel,, are generators of a Lie algebra such that
difficulty to obtain energies larger than *£0eV in superno-
vae remnants and shows that the “knee” range of the cosmic Jadp=e50e,— 8,44 (A3)
ray spectrum could be accounted for by second order Fermi
acceleration in super bubbles. We also confirm that FR1 jetsyhere |, represents the identity matrix)>=—1II- and

such as Centaurus A, although radiating synchrotron in x 3 3.3 =¢_, J., where{e,} is the orthonormal basis
rays, cannot produce UHE cosmic rays. On th trary, FRR{. "o b 2E707 o ’
yS, produ smic rays. On the contrary, FRE[L ‘the orthogonal projector over the plane transverse to the

jets can produce cosmic rays up t4@V, but presumably ¢ > > B ~
not more, owing to a fairly good confinement; however mostdlrecnona' We haveb, =Dy, b;=b,, andb;= b, + b, with

high energy cosmic rays escape before reaching the end 6p°)=7 and bg=1-75. Moreover, b(t)=b[xo+p&(t)],

the jet. Hot spots of powerful radiogalaxies have alwayswith é=u. The time variable is measured in Larmor time
been considered as a promising source, but we have founhits, the space variables are reducet tg, and wave num-
that, because of the low turbulence level implied by the synbers are accordingly dimensionless and varies from 1 to
chrotron cut off frequency, cosmic rays escape rapidly alond/p,,, wherep,=Kmin/Kmax= Lmin/Lmax- We make the three
the mean field lines by fast parallel diffusion and accelerafollowing assumptions:

tion is not effective above,,,~ 10" eV for a shock veloc- (i) The random process becomes stationary beyond the
ity Bs=0.1. correlation timers.

V. CONCLUSION
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(i) The random process can be approximated by avhich one then solves to lowest order R as a function of

Markoff process beyond the integration timg 5Q and inserts the result in the evolution equation Ror
(iii) The random procedx(t) is supposed to be specified. Then we use the isotropy of the spectrum to obtain
For instance, it is Gaussian with a known correlation func-

tion (B(t)-b(t'))=T(t—t"). lef“d r WEY AL0
Assumptiondi) and(ii) allow to calculate the correlation 3Jo T (T)% oRo(7)Ja- (AL0)
function with an average matrix that describes the relaxation
of the correlations: The sum of operators can be simplified to
(Uit u;(t+ 7)) =Ry (1){ui(t)u; (1)) (A4) > JuRo(1)J,=—2 coswyrll|— (14 coswom)IT,
whereﬁij(r)=<Rij(t+ 7,t)). Assumption(iii) is not exact, .
of course; however the numerical experiments provide cor- ~SinwoTs, (A11)

relation functions that allow to get a good “guess.” Then the . L .
theoretical method allows to calculate the solution throughV"€"€«o is the reduced Larmor pulsation in the mean field,
iterations, starting with a Gaussian approximation, and thef'US ®o= Vi=—7. _ _ .
estimating, if necessary, non-Gaussian corrections, given a S€cond, the correlation function of the magnetic irregu-

skewness factor. larities experienced by the particles is calculated with unper-
The formal solution reads turbed trajectories
_ t d’k - )
R(t,to)=( Tex f drQ(7)|), (A5) F(T)=F0(7)=fﬁsgo(k)e” ol (A12)
to T

where the symbol represents the “time ordering operator” where&,(7)=[;d 7' Ro(7")-u(0), andS;p, as the notation
that organises the expansion of the exponential operator iimdicates is the three-dimensional power spectrum in Fourier
products of non commutative operators that are in chronospace. These two calculations, thanks to commutation prop-
logical order. The result can be factorized as the product oérties, lead to a matrix of the form

the unperturbed rotation in the mean field times some relax-

ation operator: R(t)=Ry(t)exd — glljt—g, 11, t—goJst]. (AL3)

R(t,to) =Ry(t—to) -<Texp[ ft drQ(7)
t

0

The factorgy are small numbers of ordey that contrains the
. (AB) - .
> usual resonances of the quasi linear theorymii(kjp| |
—Nwg). These resonances come from the cosine and sine
with (Nl(t)ERgl(t—to) SQ(t)Ry(t—to) (see [28—3Q for factors in Eq.(All) and from the_ ex.pansion !nto a Fourier
technical details sequence imwq of the exponential involved ih'y(7), see
Eqg. (A12), which introduces Bessel functions of all orders.
However, in pratice, only the main resonances rier = 1
are retained because the higher resonances involve shorter
For » small and for a broad magnetic spectrum insuring aand shorter wavelengths which contain less and less energy
short correlation time of the random force compared to theor usual power law spectra. The contributionJinmodifies
scattering time, the quasilinear theory appli&$ This al-  the gyropulsation in the rotation matrR,(t) and therefore
lows to make two approximations. First, the relaxation op-is unimportant. We finally retain the following result:
erator can be calculated to the lowest order, the so-called
“Bouret approximation” [29,30, which corresponds to a ﬁ(t):e*g”tHHjLe*gnRé(t), (A14)
summation of all the “unconnected diagrams:”

1. Quasilinear approximation <1

whereRg (1) is the product of the rotation and the transverse

projector. We thus obtain the unexpected result that the trans-

verse relaxation is longer than the parallel relaxation since

g;=29, - Then the correlation functions are obtained by av-

. eraging over(0) and there comes a major problem of qua-

M:f dr>, (b, ()b (t—7))J,Re(7)J,. (A8)  silinear theory because the functiogsare proportional to
0 a n(plul)?~* for |ul>pum=pm/p and vanish for|u|<um

because of the lack of resonance. This introduces long tail

The simplest way to derive this result is to linearize the evotontributions to the correlation functions. This is the symp-

R(t)=e(@otM)t (A7)

with

lution equation forR(t,to): tom of the “sticky” regime for pitch angles close to 90 ° that
q tends to dominate the diffusion coefficients; which requires
Y 5 to take into account mirroring effects and/or overlapping of
dt5R QodR+ AR -+, (A9) the resonances fon>0 close tou,, and those foru<0
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close to—u,,, as suggested if81]. This difficulty disap- - 1, .,

pears in strong turbulence and for large enough Larmor radii. (e'PkEy=exp — 3K thC(T) dr|. (Al8)
2. Theoretical hints with no mean field Inserted into the integral over the spectrirastricted tok

The fully deductive theory of this regime is quite difficult. =1/p), it leads to

However some attempt can be proposed in the case where 1 .

g<1,ie,t <7, when the correlation timgdecay time of F(T)zf dkS(k)ex;{ _ _kzpsz C(T')dT’}.

I'(7)] is shorter than the scattering time. Thus, for a time k>1/p 3 0

longer than the correlation time, we can keep part of the (A19)

quasilinear theory, namely the expression of the relaxation . ot .
operator involving the integral ovef(7). Technically, this N the integral,[oC(7")d 7" can be approximated by for

corresponds to the summation of the unconnected diagranfs~7s (=1/g in reduced unitsand by 1¢ for 7> 5. There-

of the expansion oR(t,tp) in Eq. (A5), the other diagrams fore

(“nested” and “crossed’) being of smaller orders. Therefore

the correlation function<C;;(t) asymptotically decay like g:_f dkS(k)
e 9t and 3 k>1/p

N3 (k_P)+ 39 e—k2p2/392

S P
g k2p2

2kp
(A20)

929*2§f0 I'(ndr. (AL5) where ®(x) = (2/\/7) [%e ¥’ dy. Wheng is small, because
kp=1, we get a simple result close to the previous one:
Now the main difference comes from the estimation of the
correlation function of the field experienced by the particles: g~ \ﬁJ’ dkS(k)
3 Jk=1p

o (A21)

3
F(T):f (277)353D(k)<elpk ). (Al8)  This Gaussian evaluation indicates the error made by the
previous assumption. Thus, for smajlwe obtain the exten-
We propose the following heuristic estimate. Because th&ion of the quasilinear result, namety-p#~*, and forp
particles follow the field lines when their Larmor radius is >1 to g~1/p. These two approximations are in agreement
smaller than the wavelength of the modes, we consider onlyith the numerical experiments, except that the measured
the modes such thip>>1. The dominant contribution in the drop is in p~*2 instead ofp~* here. Now the range of
averaged exponential is then for short ting¢7)=ru(0).  values whereg is on the order of unity corresponds to the
Because of the random distribution ©f0) over the unitary ~“Bohm estimate,” which is, in fact, the maximum value of

sphere, we get achieved forp~1 only. We thus propose the following final
estimate for the scattering function:
() Stk KR (A17)
T)= . k
=1 kpT A L (A22)
3 kp>1 kp

A similar result is obtained with a Gaussian evaluation of the
average The error on the coefficient is of order ten percent.
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