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Minimisation du Risque Empirique avec
Régularisation par l’Entropie Relative Tapez-II

Résumé : L’effet de l’asymétrie de l’entropie relative est analysé dans le
problème de la minimisation du risque empirique avec régularisation par en-
tropie relative (MRE-RER). Une nouvelle régularisation est introduite, appelée
régularisation de Type-II, qui permet la recherche des solutions au problème de
la MRE-RER avec un support qui s’étend en dehors du support de la mesure
de référence. La solution au nouveau problème de la Type-II MRE-RER est
caractérisée analytiquement en termes de la dérivée de Radon-Nikodym de la
mesure de référence par rapport à la solution. L’analyse de la solution dévoile
certaines propriétés de l’entropie relative lorsqu’elle agit comme régularisateur
du problème de la MRE-RER : (a) l’entropie relative force le support de la
solution de Type-II à s’étaler sur tout le support de la mesure de référence, ce
qui introduit un fort biais inductif qui domine l’évidence fournie par les données
d’entraînement ; (b) La régularisation de Type-II est équivalente à la régula-
risation d’entropie relative classique avec une transformation appropriée de la
fonction du risque empirique. Enfin, une expression sous forme explicite de la
valeur espérée du risque empirique en fonction des paramètres de régularisation
est présentée.

Mots-clés : Apprentissage Supervisé; Minimisation du Risque Empirique;
Entropie Relative; Régularisation; Algorithme de Gibbs; Mesure de Gibbs; Sen-
sitivité; et Généralisation
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1 Introduction

Empirical risk minimization (ERM) is a central tool in supervised machine learn-
ing. Among other uses, it enables the characterization of sample complexity and
probably approximately correct (PAC) learning in a wide range of settings [1].
The application of ERM in the study of theoretical guarantees spans related dis-
ciplines such as machine learning [2], information theory [3,4] and statistics [5,6].
Classical problems such as classification [7,8], pattern recognition [9,10], regres-
sion [11, 12], and density estimation [9, 13] can be posed as special cases of the
ERM problem [13,14]. Unfortunately, ERM is prone to training data memoriza-
tion, a phenomenon also known as overfitting [15–17]. For that reason, ERM is
often regularized in order to provide generalization guarantees [18–21]. Regular-
ization establishes a preference over the models by encoding features of interest
that conform to prior knowledge. In different statistical learning frameworks,
such as Bayesian learning [22,23] and PAC learning [24–26], the prior knowledge
over the set of models can be described by a reference probability measure. More
general references can be adapted as proved in [27, 28] for the case of σ-finite
measures. Prior knowledge on the set of datasets can also be represented by
probability measures, e.g., the worst-case data-generating probability measure
introduced in [29]. In either case, the solution to the regularized ERM problem
can be cast as a probability distribution over the set of models.

A common regularizer of the ERM problem is the relative entropy of the op-
timization probability measure with respect to a given reference measure over
the set of models [13, 30–32]. The resulting problem formulation, termed ERM
with relative entropy regularization (ERM-RER) has been extensively studied
for both the case in which the reference measure is a probability measure [30–33]
and the case in which it is a σ-finite measure [27, 28, 34]. While in both cases
the solution is unique and corresponds to a Gibbs probability measure, the exis-
tence of the solution is ensured only in the case in which the reference measure
is a probability measure [28]. Despite the many merits of the ERM-RER for-
mulation, it has some significant limitations. Firstly, absolute continuity of the
optimization measure with respect to the reference measure is required for the
existence of the corresponding Radon-Nikodym derivative, which is used by the
relative entropy regularization. This absolute continuity sets an insurmount-
able barrier to the exploration of models outside the support of the reference
measure. More specifically, models outside the support of the reference measure
exhibit zero probability with respect to the Gibbs probability measure solution
to ERM-RER. More importantly, this holds regardless of the evidence provided
by the training dataset. Secondly, the choice of relative entropy over alterna-
tive divergences often follows arguments based on the simplicity of obtaining
generalization guarantees in the form of bounds [18]. Nonetheless, such bounds
are often hard to calculate and are not always informative when evaluated in
practical settings [35–37].

From all the above, exploring the asymmetry of the relative entropy is of par-
ticular interest to advancing the understanding of entropy regularization and
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6 Daunas, Perlaza, Esnaola, and Poor

its role in generalization. The problem of ERM with a general f -divergence
regularization has been explored in [38] and [39] in the case of a finite count-
able set of models, and recently extended to uncountable sets of models in [40].
Nonetheless, the authors in [38–40] constrain the optimization domains to sets
of measures that are mutually absolutely continuous with respect to the refer-
ence probability. The use of the relative entropy of the optimization measure
with respect to the reference in ERM-RER is termed Type-I ERM-RER. Alter-
natively, the use of the relative entropy of the reference measure with respect
to the optimization measure, introduced here, is termed Type-II ERM-RER.
Interestingly, the existing results in [38–40], which lead to special cases of the
Type-I and Type-II ERM-RER problems by assuming that fpxq = −x logpxq

and fpxq = − logpxq, respectively, do not study the impact of the asymmetry of
relative entropy in the context of ERM regularization.

This paper presents the solution to Type-II ERM-RER optimization problem
using a new method of proof. In particular, mutual absolute continuity of the
measures in the optimization domain with respect to the reference measure is
not imposed. Nonetheless, such a mutual absolute continuity is exhibited by the
solution as a consequence of the structure of the problem. The main properties
of the solution are highlighted and an equivalence between Type-I and a Type-II
ERM-RER problems is presented by replacing the empirical risk in the Type-I
problem by another function, which can be cast as a tunable loss function as
in [41–43].

The remainder of the paper is organized as follows. Section 2 presents the
standard ERM problem. Section 3 describes the Type-I regularization. The
main contribution of this paper, which is the solution to the Type-II ERM-
RER problem, is presented in Section 4. Section 7 studies the equivalence
between Type-I and Type-II regularization. The conclusions are summarized in
Section 8.

2 Empirical Risk Minimization
Let M, X and Y, with M ⊆ Rd and d ∈ N, be sets of models, patterns, and
labels, respectively. A pair px, yq ∈ X × Y is referred to as a labeled pattern or
as a data point. Given n data points, with n ∈ N, denoted by px1, y1q, px2, y2q,
. . ., pxn, ynq, the corresponding dataset is represented by the tuple

z = ppx1, y1q, px2, y2q, . . . , pxn, ynqq ∈ pX × Yq
n
. (1)

Let the function f :M×X → Y be such that the label assigned to the pattern
x according to the model θ ∈M is fpθ, xq. Let also the function

` : Y × Y → r0,∞q (2)

be such that given a data point px, yq ∈ X ×Y, the risk induced by a model θ ∈
M is `pfpθ, xq, yq. In the following, the risk function ` is assumed to be
nonnegative and for all y ∈ Y, `py, yq = 0.

Inria
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The empirical risk induced by the model θ, with respect to the dataset z in (1)
is determined by the function Lz :M→ r0,∞q, which satisfies

Lzpθq =
1

n

n∑
i=1

`pfpθ, xiq, yiq. (3)

Using this notation, ERM consists of the following optimization problem:

min
θ∈M

Lzpθq. (4)

Let the set of solutions to the ERM problem in (4) be denoted by

T pzq , arg min
θ∈M

Lzpθq. (5)

Note that if the set M is finite, the ERM problem in (4) always possesses a
solution, and thus, |T pzq| > 0. Nonetheless, in general, the ERM problem does
not necessarily possess a solution, i.e., it might happen that |T pzq| = 0.

The PAC and Bayesian frameworks, c.f. in [23] and [25], solve the problem in (4)
by constructing probability measures conditioned on the dataset z, from which
models are randomly sampled. In this context, finding probability measures that
are minimizers of the ERM problem in (4) over the set of all probability measures
that can be defined on the measurable space pM,F q, which is denoted by
4pMq, requires a metric that enables assessing the goodness of the probability
measure. From this perspective, the underlying assumption in the reminder of
this work is that the functions f and ` in (3) are such that for all px, yq ∈ X ×Y,
the function gx,y : M → r0,∞s, such that gx,ypθq = `pfθpxq, yq, is measurable
with respect to the Borel measurable spaces pM,F q and pR,BpRqq, where
F and BpRq are respectively the Borel σ-fields on M and R. Under these
assumptions, a common metric is the notion of expected empirical risk.

Definition 2.1 (Expected Empirical Risk). Given the dataset z ∈ pX × Yq
n

in (1), for all probability measures P ∈ 4pMq let the functional Rz : 4pMq→
r0,∞q be such that

RzpP q ,
∫

Lzpθq dP pθq, (6)

where the function Lz is defined in (3).

In the following section, the Type-I relative entropy regularization is reviewed
as it serves as the basis for the analysis of the regularization asymmetry.

3 The Type-I ERM-RER Problem

The Type-I ERM-RER problem is parametrized by a probability measure Q ∈
4pMq and a real λ ∈ p0,∞q. The measure Q is referred to as the reference

RR n° 9508



8 Daunas, Perlaza, Esnaola, and Poor

measure and λ as the regularization factor. The Type-I ERM-RER problem,
with parameters Q and λ, is given by the following optimization problem:

min
P∈4QpMq

RzpP q + λDpP‖Qq, (7)

where the functional Rz is defined in (6), and the optimization domain is

4QpMq , {P ∈ 4pMq : P � Q}. (8)

The notation P � Q stands for P being absolutely continuous with respect
to Q.

The solution to the Type-I ERM-RER problem in (7) is the Gibbs probability
measure [27,30,31], which is presented in the following lemma.

Lemma 3.1 ( [28, Theorem 3.1]). The solution of the Type-I ERM-RER prob-
lem in (7), denoted by P pQ,λq

Θ|Z=z ∈4pMq, is unique, always exists, and satisfies
for all θ ∈ suppQ

dP
pQ,λq

Θ|Z=z

dQ
pθq = exp

ˆ

−KQ,z

ˆ

− 1

λ

˙

− 1

λ
Lzpθq

˙

, (9)

where the function KQ,z : R→ R is such that

KQ,zptq = log

ˆ∫
expptLzpθqq dQpθq

˙

. (10)

4 The Type-II ERM-RER Problem
The Type-II ERM-RER problem is parametrized by a probability measure Q ∈
4pMq and a real λ ∈ p0,∞q. As in Type-I ERM-RER problem, the measure
Q is referred to as the reference measure and λ as the regularization factor.
Given the dataset z ∈ pX × Yq

n in (1), the Type-II ERM-RER problem, with
parameters Q and λ, consists of the following optimization problem:

min
P∈5QpMq

RzpP q + λDpQ‖P q, (11)

where the functional Rz is defined in (6), and the optimization domain is

5QpMq , {P ∈ 4pMq : Q� P}. (12)

The difference between Type-I and Type-II ERM-RER problems lies on the
regularization. While the former uses the relative entropy DpP‖Qq, the latter
uses DpQ‖P q. This translates into different optimization domains due to the
asymmetry of the relative entropy. More specifically, in the Type-I ERM-RER
problem, the optimization domain is the set of probability measures on the Borel
measurable space pM,F q that are absolutely continuous with the reference

Inria
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measure Q. That is, the set 4QpMq in (8). Alternatively, in the Type-II
ERM-RER problem, the optimization domain consists of probability measures
defined on the Borel measurable space pM,F q, with the additional condition
that the reference measure Q must be absolutely continuous with respect to
them. This corresponds to the set denoted as 5QpMq in Equation (12). From
this perspective, the techniques used in [28] for solving the Type-I ERM-RER
no longer hold. As shown in the next section, a new technique is used for solving
the Type-II ERM-RER.

The problem in (11) exhibits a trivial solution when the functional Rz is such
that for all P ∈ 5QpMq, it holds that RzpP q = c, for some c ∈ r0,∞q. In
such a case, the solution is unique and equal to the probability measure Q,
independently of the parameter λ. In order to avoid this trivial case, which
arises under particular conditions over the empirical risk function Lz in (3)
and the probability measure Q, the notion of separability of the empirical risk
function with respect to the measure Q is borrowed from [28]. A separable
empirical risk function with respect to a given probability measure P is defined
as follows.

Definition 4.1 (Definition 4.1 in [28]). The empirical risk function Lz in (3) is
said to be separable with respect to the probability measure P ∈ 4pMq, if there
exist a positive real c > 0 and two subsets A and B ofM that are nonnegligible
with respect to P , and for all pθ1,θ2q ∈ A× B,

Lzpθ1q< c <Lzpθ2q <∞. (13)

A nonseparable empirical risk function Lz in (3) with respect to a measure P
is a constant almost surely with respect to the measure P . More specifically,
there exists a real a ≥ 0, such that

P p{θ ∈M : Lzpθq = a}q = 1. (14)

When the empirical risk function Lz in (3) is nonseparable with respect to all
measures in P ∈ 5QpMq, the trivial case described above is observed. The
notion of separable empirical risk functions would play a central role in the
study of the optimization problem in (11).

4.1 The Solution to the Type-II ERM-RER Problem
The solution of the Type-II ERM-RER problem in (11) is presented in the
following theorem, where the measure Q is a parameter of the optimization
problem in (11) and the function Lz is defined in (3).

Theorem 4.1. If there exists a real β such that

β ∈ {t ∈ R : ∀θ ∈ suppQ, 0 < t+ Lzpθq}, (15a)

and ∫
λ

β + Lzpθq
dQpθq = 1, (15b)

RR n° 9508



10 Daunas, Perlaza, Esnaola, and Poor

then the solution to the optimization problem in (11), denoted by P̄
pQ,λq

Θ|Z=z ∈
4pMq, is unique and for all θ ∈ suppQ, it satisfies

dP̄
pQ,λq

Θ|Z=z

dQ
pθq =

λ

β + Lzpθq
. (16)

Before introducing the proof of Theorem 4.1, two important results are pre-
sented. The first result consists in the solution to the optimization problem
in (11) when the optimization domain is restricted to

©Q pMq , 5QpMq ∩4QpMq, (17)

where the sets 4QpMq and 5QpMq are defined in (8) and (12), respectively.
Such an ancillary problem can be formulated as follows:

min
P∈©QpMq

RzpP q + λDpQ‖P q. (18)

The solution to such an ancillary problem is described by the following lemma.

Lemma 4.1. The solution to the optimization problem in (18) is unique and
identical to the probability measure P̄ pQ,λq

Θ|Z=z in (16).

Proof: The proof is presented in Appendix A.

The second result consists of comparing the optimal values resulting from the op-
timizations in (11) and (18). The following lemma formalizes this result.

Lemma 4.2. The optimization problems in (11) and (18) satisfy

min
P∈5Q

RzpP q + λDpQ‖P q ≥ min
P∈©Q

RzpP q + λDpQ‖P q. (19)

Proof: The proof is presented in Appendix B.

Lemma 4.2 unveils the fact that the objective function in (11) when evaluated
at measures whose support extends beyond the support of Q is larger than such
an objective function evaluated at measures whose support is identical to the
reference measure. This includes the case in which the set T pzq in (5) lies
outside the support of Q.

Using these results, the proof of Theorem 4.1 is as follows.

Proof of Theorem 4.1: The proof follows by observing that from (17), it holds
that

©Q pMq ⊆ 5QpMq. (20)

Hence, from (20), it follows that

min
P∈5Q

RzpP q + λDpQ‖P q ≤ min
P∈©Q

RzpP q + λDpQ‖P q. (21)

Inria
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From the inequalities in (19) and (21), it follows that

min
P∈5Q

RzpP q + λDpQ‖P q = min
P∈©Q

RzpP q + λDpQ‖P q. (22)

Thus, the measure P̄ pQ,λq

Θ|Z=z in (16) is the solution of the optimization problem
in (11), which completes the proof of Theorem 4.1.

Lemma 4.2 implies that the solution to the optimization problem in (11) is in
the set ©QpMq in (16). A consequence of this observation is the following
corollary.

Corollary 4.3. The probability measures Q and P̄ pQ,λq

Θ|Z=z in (16) are mutually
absolutely continuous.

Corollary 4.3 also follows from Theorem 4.1 by observing that the solution to the
Type-II ERM-RER problem in (11) is expressed in terms of its Radon-Nikodym
with respect to Q, which implies the absolute continuity of P̄ pQ,λq

Θ|Z=z with respect

to Q. The absolute continuity of the measure Q with respect to P̄ pQ,λq

Θ|Z=z follows
from the optimization domain of the Type-II ERM-RER problem. From this
perspective, Corollary 4.3 conveys the fact that there does not exist a dataset
that can overcome the inductive bias induced by the reference measure Q. That
is, set of models outside the support of Q exhibit zero probability measure with
respect to the measure P̄ pQ,λq

Θ|Z=z.

This observation is important as at a first glance, the Type-II relative entropy
regularization for the ERM problem in (11) does not restrict the solution to
be absolutely continuous with respect to the reference measure Q. However,
Theorem 4.1 shows that the support of the probability measure P̄ pQ,λq

Θ|Z=z in (16)
collapses into the support of the reference. A parallel can be established between
Type-I and Type-II cases, as in both cases the support of the solution is the
support of the reference measure. In a nutshell, the use of relative entropy
regularization inadvertently forces the solution to coincide with the support of
the reference regardless of the training data.

4.2 Properties of the Solution
This section introduces a function referred to as the normalization function and
its properties. This function as well as its properties are central for studying
the solution to the ERM-RER problem in (11).

4.2.1 The Normalization Function

Let the function
K̄Q,z : p0,∞q→ A, (23a)

with A ⊆ R, and Q and z in (11), be such that for all t ∈ p0,∞q

K̄Q,zptq = α, (23b)

RR n° 9508



12 Daunas, Perlaza, Esnaola, and Poor

where α satisfies ∫
t

α+ Lzpθq
dQpθq = 1, (24)

and the function Lz is defined in (3). The function K̄Q,z is referred to as the
normalization function. This is essentially due to the observation that β and λ
in (16) satisfy

K̄Q,zpλq=β, (25)

which guarantees that the measure P̄ pQ,λq

Θ|Z=z∈4pMq in (16) is a probability mea-
sure. Hence, the Radon-Nikodym derivative in (16) satisfies for all θ ∈ suppQ

dP̄
pQ,λq

Θ|Z=z

dQ
pθq =

λ

K̄Q,zpλq + Lzpθq
. (26)

The properties of the function K̄Q,z in (23b) are studied using the notion of
Rashamon sets [44]. Given a real δ ∈ r0,∞q, consider the Rashamon set

Lzpδq , {θ ∈M : Lzpθq ≤ δ}. (27)

Consider also the nonnegative real number

δ?Q,z , inf{δ ∈ r0,∞q : QpLzpδqq > 0}. (28)

Let also L?Q,z be the following level set of the empirical risk function Lz in (3):

L?Q,z ,
{
θ ∈M : Lzpθq = δ?Q,z

}
. (29)

Using the objects defined above, the following lemma introduces one of the main
properties of the function K̄Q,z in (23).

Lemma 4.4. The function K̄Q,z in (23) is strictly increasing and continuous.

Proof: The proof is presented in Appendix C.

As a consequence of Lemma 4.4, the continuity of function K̄Q,z in (23) and
equality (24), it follows that for all α ∈ A, with A in (23a), the functional
inverse K̄−1

Q,z : A → p0,∞q is given by

K̄−1
Q,zpαq =

1∫
1

Lzpθq+α dQpθq
. (30)

Note that the function K̄−1
Q,z in (30) allows defining the codomain of the function

K̄Q,z in (23b), which is formalized by the following lemma.

Inria
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Lemma 4.5. The set A in (23a) satisfies
`

−δ?Q,z,∞
˘

⊆ A ⊆
“

−δ?Q,z,∞
˘

. (31)

Moreover, the set A is identical to
“

−δ?Q,z,∞
˘

if and only if∫
1

Lzpθq− δ?Q,z
dQpθq <∞, (32)

with δ?Q,z defined in (28).

Proof: The proof is presented in Appendix D.

Observe that for all finite sets of modelsM, the subset L?Q,z as defined in (29)
satisfies Q

`

L?Q,z
˘

> 0. This implies that the integral in (32) is not finite. The
formalization of this observation is presented in the following corollary.

Corollary 4.6. If the set M is finite, then the set A in (23a) is identical to
`

−δ?Q,z,∞
˘

.

An additional remark, is that from Lemma 4.4 and Lemma 4.5, if the set A
in (23a) is equal to the closed set

“

δ?Q,z,∞
˘

in (31), there exists a minimum
regularization factor λ? > 0, where λ? = K̄−1

Q,z

`

−δ?Q,z
˘

, with K̄−1
Q,z defined

in (30). This implies that the mapping of the function K̄Q,z in (23) is such
that K̄Q,z : rλ?,∞q→

“

−δ?Q,z,∞
˘

. This minimum regularization implies that
the existence of a solution to the optimization problem in (11) only exists for
regularization factors λ ≥ λ?.

Based on Lemma 4.5, the existence of the minimum regularization factor de-
pends on whether the integral in (32) is finite. The finiteness of the integral is
conditioned by the reference measure Q; the functions ` and f in (3); and the
dataset z in (1). The subsequent examples illustrate situations where the set A
is the open set

`

δ?Q,z,∞
˘

and closed set
“

δ?Q,z,∞
˘

in (31).

Example 4.1. Consider the Type-II ERM-RER problem in (11) and assume
that: paq M = X = Y = r0,∞q; pbq z = p1, 0q and pcq Q � µ, with µ the
Lebesgue measure, such that for all θ ∈ suppQ,

dQ

dµ
pθq = 4θ2 expp−2θq. (33)

Let also the function f :M×X → Y be

fpθ, xq = xθ, (34)

and the loss function ` in (2) be

`pfpθ, xq, yq = pxθ − yq
2
, (35)

which implies

Lzpθq = pxθ − yq
2
, (36)
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with the function Lz defined in (3). Under the current assumptions the objective
of this example is to show that A =

“

δ?Q,z,∞
˘

. For this purpose, it is sufficient
to show that the inequality in (32) holds. From Theorem 4.1, it follows that
P̄

pQ,λq

Θ|Z=z in (16) satisfies for all θ ∈ suppQ,

dP̄
pQ,λq

Θ|Z=z

dµ
pθq =

λ

Lzpθq + β
4θ2 expp−2θq, (37)

with β satisfying (15). Thus,∫
1

Lzpθq− δ?Q,z
dQpθq =

∫
1

Lzpθq− δ?Q,z
4θ2 expp−2θq dµpθq (38a)

=

∫ ∞
0

4θ2 expp−2θq

pxθ − yq
2 − δ?Q,z

dθ (38b)

=

∫ ∞
0

4θ2 expp−2θq

θ2 − δ?Q,z
dθ (38c)

=

∫ ∞
0

4θ2 expp−2θq

θ2
dθ (38d)

=

∫ ∞
0

4 expp−2θq dθ (38e)

= 2, (38f)

where equality (38a) follows from equality (33); equality (38c) follows from the
assumption that px, yq = p1, 0q; and equality (38d) follows from the fact that
δ?Q,z = 0. Finally, the function K̄Q,z in (23) satisfies K̄Q,z

`

1
2

˘

= 0, which
implies δ?Q,z = 0 ∈ A.

Example 4.2. Consider Example 4.1 with z = p1, 1q. Under the current as-
sumptions, the objective of this example is to show that A =

`

δ?Q,z,∞
˘

. For this
purpose, it is sufficient to show that the inequality in (32) does not hold:∫

1

Lzpθq− δ?Q,z
dQpθq =

∫
1

Lzpθq− δ?Q,z
4θ2 expp−2θq dµpθq (39a)

=

∫ ∞
0

4θ2 expp−2θq

pxθ − yq
2 − δ?Q,z

dθ (39b)

=

∫ ∞
0

4θ2 expp−2θq

pθ − 1q
2 dθ (39c)

=∞. (39d)

where equality (39a) follows from equality (33); equality (39b) follows from
the assumption that px, yq = p1, 0q; equality (39c) follows from the fact that
δ?Q,z = 0; and the equality (39d) follows from an algebraic development shown
in Appendix T. Finally, the function K̄Q,z in (23) is undefined at zero, which
implies δ?Q,z = 0 6∈ A.
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The aforementioned examples demonstrate that even if the reference measure
Q and functions ` and f in (3) are fixed, the set A might be either

“

δ?Q,z,∞
˘

or
`

δ?Q,z,∞
˘

depending on the dataset z. This observation underscores that
the existence of the minimum regularization factor λ? is coupled on the specific
choices of Q, `, f , and z. Finally, from Lemma 4.5 it is implied that if the set
M is finite, then the set A is the open set

`

−δ?Q,z,∞
˘

in (31), as shown by the
following example.

Example 4.3. Consider the Type-II ERM-RER problem in (11) and assume
that: paq B is a proper subset ofM, and pbq the probability measure Q satisfies

QpBq = ε, and (40a)
QpM\Bq = 1− ε, (40b)

with ε > 0. Let the empirical risk function Lz in (3) be

Lzpθq =

{
0 if θ ∈ B
c if θ ∈M \ B, (41)

with c > 0.

Under the current assumptions, the objective of this example is to show that for
all z ∈ pX × Yq

n, it holds that A =
`

δ?Q,z,∞
˘

. For this purpose, it is sufficient
to show that for all c ∈ p0,∞q, the function K̄Q,z in (23b) is strictly greater
than −δ?Q,z. From the current assumptions it follows that δ?Q,z = 0 and that for
all λ ∈ p0,+∞q the function K̄Q,z in (23b) satisfies

K̄Q,zpλq = − pc− λq

2
+

d

ˆ

c− λ
2

˙2

+ λcQpBq. (42)

The proof of equality (42) is presented in appendix S. From equality (42), it
holds that

K̄Q,zpλq = − pc− λq

2
+

d

ˆ

c− λ
2

˙2

+ λcQpBq (43a)

> − pc− λq

2
+

d

ˆ

c− λ
2

˙2

(43b)

= − pc− λq

2
+

ˇ

ˇ

ˇ

ˇ

c− λ
2

ˇ

ˇ

ˇ

ˇ

(43c)

≥ 0 (43d)
= −δ?Q,z, (43e)

which proves that for all c ∈ p0,∞q, A =
`

−δ?Q,z,∞
˘

.

Another immediate consequence of Lemma 4.4 is the following corollary.

Corollary 4.7. If the real value δ?Q,z = 0, with δ?Q,z in (28), then the func-
tion K̄Q,z in (23b) is strictly positive.
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The following lemma characterizes the limit of K̄Q,z as λ approaches zero from
the right, under the assumption that the set A is

`

−δ?Q,z,∞
˘

.

Lemma 4.8. If the set A is
`

−δ?Q,z,∞
˘

, the function K̄Q,z in (23b) satisfies

lim
λ→0+

K̄Q,zpλq = −δ?Q,z, (44)

where δ?Q,z is defined in (28).

Proof: The proof is presented in Appendix E.

Studying cases in which the choice of the reference measure Q, empirical risk
function Lz and dataset z induce the set A to be equal

`

−δ?Q,z,∞
˘

is relevant in
the context of learning algorithm, from the fact that ifM is countable the set
A is equal

`

−δ?Q,z,∞
˘

. Furthermore, as the number of data points in datasets
increases, choosing a prior Q such that (32) is satisfied becomes less likely.
Hence, in the paper, it will be assumed that Q, Lz and z induce A =

`

−δ?Q,z,∞
˘

unless otherwise stated.

4.2.2 Bounds on the Radon-Nikodym Derivative

Note that from Theorem 4.1 models resulting in lower empirical risks correspond
to greater values of the Radon-Nikodym derivative. The following corollary
formalizes this observation.

Lemma 4.9. For all pθ1,θ2q ∈ psuppQq
2, such that Lzpθ1q ≤ Lzpθ2q, with Lz

in (3), the Radon-Nikodym derivative in (16) satisfies

dP̄
pQ,λq

Θ|Z=z

dQ
pθ2q ≤

dP̄
pQ,λq

Θ|Z=z

dQ
pθ1q, (45)

with equality if and only if Lzpθ1q = Lzpθ2q.

Proof: The proof is presented in Appendix F.

The Radon-Nikodym derivative
dP̄

pQ,λq

Θ|Z=z

dQ in (16) is always finite and strictly
positive. This observation is formalized in the following lemma.

Lemma 4.10. The Radon-Nikodym derivative
dP̄

pQ,λq

Θ|Z=z

dQ in (16) satisfies for
all θ ∈ suppQ

0 <
dP̄

pQ,λq

Θ|Z=z

dQ
pθq ≤ λ

δ?Q,z + K̄Q,zpλq
<∞, (46)

where the equality holds if and only if θ ∈ L?Q,z ∩ suppQ.

Proof: The proof is presented in Appendix G.
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4.2.3 Asymptotes of the Radon-Nikodym Derivative

In the asymptotic regime, when the regularization factor grows to infinity,
i.e., λ→∞, the measure P̄ pQ,λq

Θ|Z=z becomes identical to the reference measure Q,
as described in the following lemma.

Lemma 4.11. The Radon-Nikodym derivative
dP̄

pQ,λq

Θ|Z=z

dQ in (16) satisfies for
all θ ∈ suppQ,

lim
λ→∞

dP̄
pQ,λq

Θ|Z=z

dQ
pθq = 1. (47)

Proof: The proof is presented in Appendix H.

Lemma 4.11 unveils a similarity between Type-I and Type-II regularization as
the Type-I measure P pQ,λq

Θ|Z=z in (9) exhibits a similar behavior [28].

In the asymptotic regime, when the regularization factor decreases to zero from

the right, i.e., λ→ 0+, the Radon-Nikodym derivative
dP̄

pQ,λq

Θ|Z=z

dQ in (16) exhibits
the following behavior.

Lemma 4.12. If Q
`

L?Q,z
˘

> 0, with the set L?Q,z in (29), then the Radon-

Nikodym derivative
dP̄

pQ,λq

Θ|Z=z

dQ in (16) satisfies for all θ ∈ suppQ,

lim
λ→0+

dP̄
pQ,λq

Θ|Z=z

dQ
pθq =

1

Q
´

L?Q,z
¯1{θ∈L?Q,z}. (48)

Alternatively, if Q
`

L?Q,z
˘

= 0, then for all θ ∈ suppQ, it holds that

lim
λ→0+

dP̄
pQ,λq

Θ|Z=z

dQ
pθq =

{
∞ if θ ∈ L?Q,z
0 otherwise.

(49)

Proof: The proof is presented in Appendix I.

Lemma 4.12 highlights that in the asymptotic regime, when the regularization

factor decreases to zero from the right, i.e., λ→ 0+, the value
dP̄

pQ,λq

Θ|Z=z

dQ pθq does
not depend on the exact model θ but rather on whether θ ∈ suppQ ∩ L?Q,z. In

the case in which θ ∈ suppQ∩L?Q,z, it holds that limλ→0+

dP̄
pQ,λq

Θ|Z=z

dQ pθq > 0. Oth-

erwise, limλ→0+

dP̄
pQ,λq

Θ|Z=z

dQ pθq = 0. In the special case in which δ?Q,z = 0, with δ?Q,z
in (28), the set L?Q,z satisfies L?Q,z = T pzq, where T pzq is defined in (5). This
implies a concentration of probability over T pzq ∩ suppQ, which establishes a
connection with the ERM problem without regularization in (4).

Furthermore, in the asymptotic regime, when the regularization factor decreases
to zero from the right, the solutions to the Type-I and Type-II ERM-RER prob-
lems exhibit the same asymptotic behavior, as shown in [28]. This aligns with
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the observation that as λ decreases, the optimization problems in (7) and (11)
exhibit a weaker relative entropy constraint. A stronger result follows from
Lemma 4.12 and is presented in the following lemma.

Lemma 4.13. The measure P̄ pQ,λq

Θ|Z=z in (16) and the set L?Q,z in (29) satisfy

lim
λ→0+

P̄
pQ,λq

Θ|Z=z

`

L?Q,z
˘

= 1. (50)

Proof: The proof is presented in Appendix J.

Lemma 4.13 shows that indeed when the regularization factor approaches zero
from the right, the probability of the measure P̄ pQ,λq

Θ|Z=z in (16), in the asymptotic
regime, concentrates in the set of models that induce the minimum empirical
risk in suppQ.

5 The Expected Empirical Risk
This section focuses on the expected empirical risk induced by the probability
measure P̄ pQ,λq

Θ|Z=z in (16). Some important properties of the functional Rz in (6)

and the value Rz

´

P̄
pQ,λq

Θ|Z=z

¯

are introduced.

The expected empirical risk can be calculated in terms of the regularization
parameter λ and the function K̄Q,z defined in (23b), as shown by the following
lemma.

Lemma 5.1. The probability measure P̄ pQ,λq

Θ|Z=z in (16) satisfies

Rz

´

P̄
pQ,λq

Θ|Z=z

¯

= λ− K̄Q,zpλq, (51)

where the functional Rz, the function K̄Q,z and the measure P̄ pQ,λq

Θ|Z=z are defined
in (6), (23b), and (26), respectively.

Proof: The proof is presented in Appendix K.

Lemma 5.1 highlights that the function r : p0,∞q → r0,∞q such that rpλq =

Rz

´

P̄
pQ,λq

Θ|Z=z

¯

, with Q and z fixed, inherits all properties of the function K̄Q,z

in (23b). The following lemma formalizes this observation.

Lemma 5.2. The expected empirical risk Rz

´

P̄
pQ,λq

Θ|Z=z

¯

, with the functional Rz

in (6) and the measure P̄ pQ,λq

Θ|Z=z in (16), is nondecreasing with respect to λ.
Moreover, it is strictly increasing if and only if the empirical risk function Lz
in (3) is separable with respect to the probability measure Q.

Proof: The proof is presented in Appendix L.

The following lemma highlights a connection existing between the expected em-
pirical risks RzpQq and Rz

´

P̄
pQ,λq

Θ|Z=z

¯

; and the relative entropy D
´

Q‖P̄ pQ,λq

Θ|Z=z

¯

.
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Lemma 5.3. The functional Rz defined in (6) and the measures Q and P̄ pQ,λq

Θ|Z=z

in (16) satisfy

RzpQq− Rz

´

P̄
pQ,λq

Θ|Z=z

¯

≥ λ
´

exp
´

D
´

Q‖P̄ pQ,λq

Θ|Z=z

¯¯

− 1
¯

. (52)

Proof: The proof is presented in Appendix M.

Note that D
´

Q‖P̄ pQ,λq

Θ|Z=z

¯

≥ 0, which leads to the observation that

´

exp
´

D
´

Q‖P̄ pQ,λq

Θ|Z=z

¯¯

− 1
¯

≥ 0, (53)

in (52). Hence, from Lemma 5.3, it follows that the solution to the Type-II
ERM-RER problem induces an expected empirical risk that is smaller than
the one induced by reference measure Q. This is formalized by the following
corollary.

Corollary 5.4. The probability measures Q and P̄ pQ,λq

Θ|Z=z in (16) satisfy

Rz

´

P̄
pQ,λq

Θ|Z=z

¯

≤ RzpQq, (54)

where the functional Rz is defined in (6) and equality holds if and only if the
empirical risk function Lz in (3) is nonseparable.

The following lemma presents a lower bound and an upper bound on the ex-
pected empirical risk Rz

´

P̄
pQ,λq

Θ|Z=z

¯

in which the regularization parameter plays
a central role.

Lemma 5.5. The probability measure P̄ pQ,λq

Θ|Z=z in (16) satisfies

δ?Q,z ≤ Rz

´

P̄
pQ,λq

Θ|Z=z

¯

< λ+ δ?Q,z, (55)

where the functional Rz is defined in (6) and δ?Q,z is defined in (28). Moreover,
equality holds if and only if the empirical risk function Lz in (3) is nonseparable.

Proof: The proof is presented in Appendix N.

The bounds presented in Lemma 5.5 highlight that the regularization parameter
λ in (11) governs the increase of the expected empirical risk Rz

´

P̄
pQ,λq

Θ|Z=z

¯

with
respect to its minimum, i.e, δ?Q,z in (28). Moreover, the lower bound is tight
for the probability measure P̄ pQ,λq

Θ|Z=z in (16) in the asymptotic regime when λ

decreases to zero from right, as shown hereunder.

Lemma 5.6. The probability measure P̄ pQ,λq

Θ|Z=z in (16) satisfies

lim
λ→0+

Rz

´

P̄
pQ,λq

Θ|Z=z

¯

= δ?Q,z, (56)

where δ?Q,z is defined in (28) and the functional Rz is defined in (6).
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Proof: From Lemma 5.1, it holds that

lim
λ→0+

Rz

´

P̄
pQ,λq

Θ|Z=z

¯

= lim
λ→0+

λ− lim
λ→0+

K̄Q,zpλq (57a)

= − lim
λ→0+

K̄Q,zpλq (57b)

= δ?Q,z, (57c)

where equality (57c) follows from Lemma 4.8. This completes the proof.

Finally, note that the functional Rz in (6) is nonnegative. This observation
together with Lemma 5.1 lead to a new property for the function K̄Q,z in (23b),
which is stated by the following corollary

Corollary 5.7. The function K̄Q,z in (23b) satisfies, for all t ∈ p0,∞q,

K̄Q,zptq ≤ t. (58)

6 pδ, εq-Optimality
This section presents a PAC guarantee of optimality for models sampled from the
probability measure P̄ pQ,λq

Θ|Z=z in (16) within the setting of the Type-II ERM-RER
problem in (11). Such guarantee is presented using the notion of pδ, εq-optimality
introduced in [28].

Definition 6.1 (pδ, εq-Optimality). Given a pair of positive reals pδ, εq, with ε <
1, the probability measure P ∈ 4pMq is said to be pδ, εq-optimal if the set Lzpδq

in (27) satisfies

P pLzpδqq > 1− ε. (59)

The pδ, εq-optimality guarantee ensures that with probability at least 1−ε, sam-
pling models from P̄

pQ,λq

Θ|Z=z in (16) yields models that induce empirical risks not
greater than δ. The following theorem presents an pδ, εq-optimality guarantee
for the Type-II ERM-RER solution.

Theorem 6.1. For all pδ, εq ∈
`

δ?Q,z,∞
˘

×p0, 1q, with δ?Q,z in (28), there always
exists a λ ∈ p0,∞q, such that the probability measure P̄ pQ,λq

Θ|Z=z in (16) is pδ, εq-
optimal.

Proof: The proof is presented in Appendix O.

7 Interplay Between the Relative Entropy Asym-
metry and the Empirical Risk

This section presents a connection between the Type-I ERM-RER in (7) and
Type-II ERM-RER problems in (11) established via a transformation of the
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empirical risk function. The transformation used is termed log-empirical risk
and is defined hereunder.

Definition 7.1 (Log-Empirical Risk). Consider the empirical risk function Lz
in (3) and let the function Vz,λ :M→ R, with Q and λ in (11), be such that

Vz,λpθq , log
`

K̄Q,zpλq + Lzpθq
˘

, (60)

with the function K̄Q,z defined in (23b). The value Vz,λpθq is said to be the
log-empirical risk induced by the model θ ∈M.

The notion of log-empirical risk in (60) leads to the expected log-empirical risk,
which is denoted as follows.

Definition 7.2 (Expected Log-Empirical Risk). Consider the log-empirical risk
function Vz,λ in (60) and let the functional R̄z,Q,λ : 4pMq → R be such that
for all probability measures P ∈ 4pMq, it holds that

R̄z,Q,λpP q ,
∫

Vz,λpθq dP pθq. (61)

The value R̄z,Q,λpP q is the expected log-empirical risk induced by the measure P .

7.1 The Connection between Type-I and Type-II

Using the objects defined above, a new Type-I ERM-RER problem is pre-
sented:

min
P∈4QpMq

R̄z,Q,λpP q + DpP‖Qq, (62)

with λ and Q being problems of the Type-I and Type-II ERM-RER problems
in (7) and (11). The main result of this section is presented in the following
theorem.

Theorem 7.1. The solution to the optimization problem in (62) is unique and
identical to the probability measure P̄ pQ,λq

Θ|Z=z in (16).

Proof: Denote by P̂
pQ,λq

Θ|Z=z the solution to the optimization problem in (62).
From Lemma 3.1, for all θ ∈ suppQ, it follows that

dP̂
pQ,λq

Θ|Z=z

dQ
pθq=

expp−Vz,λpθqq∫
expp−Vz,λpνqq dQpνq

(63a)

=
exp

´

log
´

1
Lzpθq+K̄Q,zpλq

¯¯

∫
exp

´

log
´

1
Lzpνq+K̄Q,zpλq

¯̄

dQpνq

(63b)

=

´∫
1

Lzpνq+K̄Q,zpλq
dQpνq

¯−1

Lzpθq+K̄Q,zpλq
(63c)
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=
λ

Lzpθq + K̄Q,zpλq
(63d)

=
dP̄

pQ,λq

Θ|Z=z

dQ
pθq, (63e)

where the equality in (63b) follows from the definition of log-empirical risk
in (60); the equality in (63d) follows from (23b) and (15b); and the equality
in (63e) follows from Theorem 4.1, which completes the proof.

Theorem 7.1 establishes an equivalence between the regularization of Type-I
and Type-II. More specifically, Theorem 7.1 highlights that by transforming
the empirical risk function Lz in (60) into the log-empirical risk Vz,λ in (60),
the Type-II ERM-RER problem in (11) can be solved by solving the Type-I
ERM-RER problem in (62). In view of this, it is interesting to note that Type-I
regularization forces the support of the solution to be included into the support
of the reference measure as a consequence of the optimization domain 4QpMq.
Hence, supp P̄

pQ,λq

Θ|Z=z ⊆ suppQ. Moreover, as a consequence of the solution, all
the models in the support of the reference measure are in the support of the
solution. That is, suppQ ⊆ supp P̄

pQ,λq

Θ|Z=z. Alternatively, Type-II regularization
forces the support of the solution to be included into the support of the reference
measure as a consequence of the optimization domain5QpMq. Hence, suppQ ⊆
supp P̄

pQ,λq

Θ|Z=z. Moreover, as a consequence of the solution, all the models in the
support of the solution are in the support of the reference measure. That is,
supp P̄

pQ,λq

Θ|Z=z ⊆ suppQ. Hence, supp P̄
pQ,λq

Θ|Z=z = suppQ, regardless of whether
the regularization is of Type-I or Type-II.

Finally, the Type-I - Type-II relation can be used to establish an equality involv-
ing the relative entropies D

´

Q‖P̄ pQ,λq

Θ|Z=z

¯

and D
´

P̄
pQ,λq

Θ|Z=z‖Q
¯

; and the expected

log-empirical risks R̄z,Q,λ
´

P̄
pQ,λq

Θ|Z=z

¯

and R̄z,Q,λpQq, as shown hereunder.

Lemma 7.1. The functional R̄z,Q,λ in (61) and the probability measures P̄ pQ,λq

Θ|Z=z

and Q in (16) satisfy

R̄z,Q,λ

´

P̄
pQ,λq

Θ|Z=z

¯

+ D
´

P̄
pQ,λq

Θ|Z=z‖Q
¯

= logpλq, (64)

and
R̄z,Q,λpQq− D

´

Q‖P̄ pQ,λq

Θ|Z=z

¯

= logpλq. (65)

Proof: The proof is presented in Appendix P.

7.2 Sensitivity of the Log-Empirical Risk

The sensitivity of the expected empirical risk, as presented in [28, Definition
10.1], is defined as follows.
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Definition 7.3 (Sensitivity of the Expected Empirical Risk). Consider the
functional Rz defined in (6) and let SQ,λ : pX × Yq

n × 4QpMq → R be a
functional such that

SQ,λpz, P q = RzpP q− Rz

´

P
pQ,λq

Θ|Z=z

¯

, (66)

where the probability measure P pQ,λq

Θ|Z=z is in (9). The sensitivity of the expected

empirical risk due to a deviation from P
pQ,λq

Θ|Z=z to P is SQ,λpz, P q.

Following the same idea, the sensitivity of the expected log-empirical risk is
defined as follows.

Definition 7.4 (Sensitivity of the Expected Log-Empirical Risk). Consider the
functional R̄z,Q,λ in (61) and let S̄Q,λ : pX × Yq

n×5QpMq→ R be a functional
such that

S̄Q,λpz, P q = R̄z,Q,λpP q− R̄z,Q,λ

´

P̄
pQ,λq

Θ|Z=z

¯

, (67)

where the probability measure P̄ pQ,λq

Θ|Z=z is in (16). The sensitivity of the expected

log-empirical risk due to a deviation from P̄
pQ,λq

Θ|Z=z to P is S̄Q,λpz, P q.

The sensitivity of the expected log-empirical risk due to a deviation from P̄
pQ,λq

Θ|Z=z

to P exhibits the following closed-form expression.

Lemma 7.2. The sensitivity S̄Q,λ in (67) satisfies for all probability mea-
sures P ∈ ©QpMq that

S̄Q,λpz, P q = D
´

P‖P̄ pQ,λq

Θ|Z=z

¯

− DpP‖Qq + D
´

P̄
pQ,λq

Θ|Z=z‖Q
¯

, (68)

where the probability measures Q and P̄ pQ,λq

Θ|Z=z are defined in (16).

Proof: The proof is presented in Appendix Q.

An interesting interpretation of Lemma 7.2 follows from rewriting (68) using the
objective function of the Type-I ERM-RER problem in (62) as follows:

D
´

P‖P̄ pQ,λq

Θ|Z=z

¯

= R̄z,Q,λpP q + DpP‖Qq− R̄z,Q,λ

´

P̄
pQ,λq

Θ|Z=z

¯

− D
´

P̄
pQ,λq

Θ|Z=z‖Q
¯

. (69)

That is, the relative entropy D
´

P‖P̄ pQ,λq

Θ|Z=z

¯

represents the variation of the
objective function of the Type-I ERM-RER problem in (62) due to a deviation
from the solution P̄ pQ,λq

Θ|Z=z to an alternative probability measure P .

In Lemma 7.2, when P is chosen to be identical to the reference measure Q, it
follows that

S̄Q,λpz, Qq = D
´

Q‖P̄ pQ,λq

Θ|Z=z

¯

+ D
´

P̄
pQ,λq

Θ|Z=z‖Q
¯

, (70)
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where the right-hand side is a Jeffrey’s divergence, also known as the sym-
metrized Kullback-Liebler divergence, between the measures P̄ pQ,λq

Θ|Z=z and Q.

Furthermore, by observing that D
´

P̄
pQ,λq

Θ|Z=z‖Q
¯

≥ 0, and D
´

Q‖P̄ pQ,λq

Θ|Z=z

¯

≥ 0,
Lemma 7.2 leads to the following corollary.

Corollary 7.3. The probability measures Q and P̄ pQ,λq

Θ|Z=z in (16) satisfy

R̄z,Q,λ

´

P̄
pQ,λq

Θ|Z=z

¯

≤ R̄z,Q,λpQq, (71)

where the functional R̄z,Q,λ is defined in (61).

7.3 Type-I and Type-II Optimal Measures

The probability measures P pQ,αq

Θ|Z=z and P̄ pQ,λq

Θ|Z=z in (9) and in (16), respectively,
exhibit the following property.

Lemma 7.4. The probability measures P pQ,αq

Θ|Z=z and P̄ pQ,λq

Θ|Z=z in (9) and in (16),
respectively, satisfy

D
´

P
pQ,λq

Θ|Z=z‖Q
¯

− D
´

P̄
pQ,αq

Θ|Z=z‖Q
¯

= logpαq +KQ,z

ˆ

− 1

λ

˙

, (72)

where the function KQ,z is defined in (10).

Proof: The proof is presented in Appendix R.

Finally, two important properties of the Type-I and Type-II optimal measures
are presented. The first one quantifies the variation of the expected log-empirical
risk due to a deviation from the probability measure P̄ pQ,λq

Θ|Z=z in (9) to the proba-

bility measure P pQ,αq

Θ|Z=z in (16) via the sensitivity S̄Q,α

´

z, P
pQ,λq

Θ|Z=z

¯

. The second
result quantifies the variation of the expected empirical risk due to a deviation
from the probability measure P pQ,αq

Θ|Z=z in (16) to the probability measure P̄ pQ,λq

Θ|Z=z

in (9) via the sensitivity SQ,α

´

z, P̄
pQ,λq

Θ|Z=z

¯

.

Corollary 7.5. The probability measures P pQ,αq

Θ|Z=z and P̄ pQ,λq

Θ|Z=z in (9) and in
(16), respectively, satisfy

S̄Q,α

´

z, P
pQ,λq

Θ|Z=z

¯

= D
´

P
pQ,αq

Θ|Z=z‖P̄
pQ,λq

Θ|Z=z

¯

−
ˆ

logpαq +KQ,z

ˆ

− 1

λ

˙˙

(73)

and
1

λ
SQ,λ

´

z, P̄
pQ,λq

Θ|Z=z

¯

= D
´

P̄
pQ,λq

Θ|Z=z‖P
pQ,αq

Θ|Z=z

¯

+ logpαq +KQ,z

ˆ

− 1

λ

˙

, (74)

where the functionals SQ,λ and S̄Q,α are respectively defined in (66) and in (67);
and the function KQ,z is defined in (10).
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8 Final Remarks
This work has introduced the Type-II ERM-RER problem and has presented
its solution through Theorem 4.1. The solution highlights that regardless of the
direction in which relative entropy is used as a regularizer, the models that are
considered by the solution are necessarily in the support of the reference mea-
sure. In that sense, the restriction over the models introduced by the reference
measure cannot be bypassed by the training data when relative entropy is used
as the regularizer. This limitation has been shown to be a consequence of the
equivalence that can be established between Type-I and Type-II regularization.
Remarkably, the direction of the relative entropy regularizer can be switched by
a logarithmic transformation of the risk. The mutual absolute continuity of both
Type-I and Type-II ERM-RER solutions relative to the reference measure can
be understood in light of the equivalence between both types of regularization.
The analytical results have also enabled us to provide an operationally mean-
ingful characterization of the expected empirical risk induced by the Type-II
solution in terms of the regularization parameters. This, in turn, reduces the
computational burden of bounding the expected empirical risk. Moreover, the
insight provided by the bounds on the expected empirical risk can be distilled
into guidelines for selecting the regularization parameter.
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A Proof of Lemma 4.1
Proof: The optimization problem in (11) can be re-written in terms of the
Radon-Nikodym derivative of the optimization measure P with respect to the
measure Q, which yields:

min
P∈©QpMq

∫
Lzpθq

dP

dQ
pθq dQpθq

+ λ

∫
dQ

dP
pθq log

ˆ

dQ

dP
pθq

˙

dP pθq, (75a)

s.t.

∫
dP

dQ
pθq dQpθq = 1. (75b)

The remainder of the proof focuses on the problem in which the optimization
is over the function dP

dQ : M → R, instead of optimizing the measure P . This
is due to the fact that for all P ∈ ©QpMq, the Radon-Nikodym derivate dP

dQ
is unique up to sets of zero measure with respect to Q. Let M be the set of
measurable functions M → R with respect to the measurable spaces pM,F q

and pR,BpRqq that are absolutely integrable with respect to Q. That is, for all
ĝ ∈M , it holds that ∫

|ĝpθq| dQpθq<∞. (76)

Hence, the optimization problem of interest is:

min
g∈M

∫
Lzpθqgpθq dQpθq− λ

∫
logpgpθqq dQpθq (77a)

s.t.

∫
gpθq dQpθq = 1. (77b)

Let the Lagrangian of the optimization problem in (77) be L : M × R → R

such that

Lpg, βq=

∫
Lzpθqgpθq dQpθq− λ

∫
logpgpθqq dQpθq

+ β

ˆ∫
gpθq dQpθq− 1

˙

(78)

=

∫
´

gpθqpLzpθq + βq− λ logpgpθqq

¯

dQpθq− β, (79)

where β is a real that acts as a Lagrange multiplier due to the constraint (77b).
Let ĝ :M→ R be a function in M . The Gateaux differential of the functional
L in (78) at pg, βq ∈M ×R in the direction of ĝ, if it exists, is

∂Lpg, β; ĝq,
d

dγ
Lpg + γĝ, βq

ˇ

ˇ

ˇ

ˇ

γ=0

. (80)

The proof continues under the assumption that the function g and ĝ are such
that the Gateaux differential in (80) exists. Under such an assumption, let
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the function r : R → R satisfy for all γ ∈ p−ε, εq, with ε arbitrarily small,
that

rpγq=Lpg + γĝ, βq (81)

=

∫
Lzpθqpgpθq + γĝpθqq dQpθq− λ

∫
logpgpθq + γĝpθqq dQpθq

+β

ˆ∫
pgpθq + γĝpθqq dQpθq− 1

˙

(82)

=−β +

∫
gpθqpLzpθq + βq dQpθq + γ

∫
ĝpθqpLzpθq + βq dQpθq

+λ

∫
logpgpθq + γĝpθqq dQpθq, (83)

where the last equality is simply an algebraic re-arrangement of terms. From
the assumption that the function g and ĝ are such that the Gateauz differential
in (80) exists, it follows that the function r in (81) is differentiable at zero. Note
that the first two terms in (83) are independent of γ; the third term is linear
with γ; and the fourth term can be written using the function r̂ : R → R such
that for all γ ∈ p−ε, εq, with ε arbitrarily small, satisfies

r̂pγq=−λ
∫

logpgpθq + γĝpθqq dQpθq. (84)

Under the same assumption, it follows that the function r̂ in (84) is differentiable
at zero. That is, the limit

lim
δ→0

1

δ
pr̂pγ + δq− r̂pγqq (85)

exists for all γ ∈ p−ε, εq, with ε arbitrarily small. The proof of the existence of
such a limit relies on the fact that log is strictly concave and continuous. This
implies that − log is also Lipschitz continuous, which implies that for all θ ∈M
and for all γ ∈ p−ε, εq, with ε > 0 arbitrarily small, it holds that

|logpgpθq + γĝpθqq− logpgpθq + pγ + δqĝpθqq| ≤ c |ĝpθqδ|, (86)

with δ > 0, for some constant c positive and finite, which implies that
ˇ

ˇ

ˇ

ˇ

logpgpθq + γĝpθqq− logpgpθq + pγ + δqĝpθqq

δ

ˇ

ˇ

ˇ

ˇ

≤ c |ĝpθq|. (87)

Using these arguments, the limit in (85) satisfies for all γ ∈ p−ε, εq, with ε > 0
arbitrarily small, that

lim
δ→0

1

δ
pr̂pγ + δq− r̂pγqq=λ lim

δ→0

1

δ

ˆ∫
logpgpθq + γĝpθqq dQpθq

−
∫

logpgpθq + pγ + δqĝpθqq dQpθq

˙

(88)

RR n° 9508



28 Daunas, Perlaza, Esnaola, and Poor

=λ lim
δ→0

∫
logpgpθq + γĝpθqq

δ

− logpgpθq + pγ + δqĝpθqq

δ
dQpθq (89)

=λ

∫
d

dγ
logpgpθq + γĝpθqq dQpθq (90)

<∞, (91)

where both the equality in (90) and the inequality in (91) follow from noticing
that the conditions for the dominated convergence theorem hold [45, Theo-
rem 1.6.9], namely:

• For all γ ∈ p−ε, εq, with ε > 0, the inequality in (87) holds;

• The function ĝ in (87) satisfies the inequality in (76); and

• For all θ ∈M and for all γ ∈ p−ε, εq, with ε > 0 arbitrarily small, it holds
that

lim
δ→0

logpgpθq + pγ + δqĝpθqq− logpgpθq + γĝpθqq

δ

=
d

dγ
logpgpθq + γĝpθqq (92)

=
ĝpθq

pgpθq + γĝpθqq
, (93)

which follows from the fact that log is differentiable.

Hence, the derivative of the real function r in (83) is

d

dγ
rpγq =

∫
ĝpθqpLzpθq + βq dQpθq− λ

∫
ĝpθq

pgpθq + γĝpθqq
dQpθq (94)

=

∫
ĝpθq

ˆ

Lzpθq + β − λ

pgpθq + γĝpθqq

˙

dQpθq. (95)

From (80) and (95), it follows that

∂Lpg, β; ĝq=

∫
ĝpθq

ˆ

Lzpθq + β − λ

gpθq

˙

dQpθq. (96)

The relevance of the Gateaux differential in (96) stems from [46, Theorem 1,
page 178], which unveils the fact that a necessary condition for the functional

L in (78) to have a stationary point at
ˆ

dP
pQ,λq

Θ|Z=z

dQ , β

˙

∈ M× r0,∞q is that for

all functions ĝ ∈M ,

∂L

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
, β; ĝ

˛

‚= 0. (97)
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From (96) and (97), it follows that
dP

pQ,λq

Θ|Z=z

dQ must satisfy for all functions ĝ in
M that

∫
ĝpθq

¨

˚

˝

Lzpθq + β − λ

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

−1
˛

‹

‚

dQpθq = 0. (98)

This implies that for all θ ∈ suppQ,

Lzpθq + β − λ

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

−1

= 0, (99)

and thus,

dP
pQ,λq

Θ|Z=z

dQ
pθq =

λ

β + Lzpθq
, (100)

where β is chosen to satisfy (77b) and guarantee that for all θ ∈ suppQ, it holds

that
dP

pQ,λq

Θ|Z=z

dQ pθq ∈ p0,∞q. That is,

β ∈
{
t ∈ R : ∀θ ∈ suppQ, 0 <

λ

t+ Lzpθq

}
, and (101)

1 =

∫
λ

Lzpθq + β
dQpθq. (102)

which is an assumption of the theorem.

The proof continues by verifying that the measure P̄ pQ,λq

Θ|Z=z that satisfies (100)
is the unique solution to the optimization problem in (75). Such verification is
done by showing that the objective function in (75) is strictly convex with the
optimization variable. Let P1 and P2 be two different probability measures in
pM,F q and let α be in p0, 1q. Hence,

RzpαP1 + p1− αqP2q + λDpαP1 + p1− αqP2‖Qq (103)
= RzpαP1q + Rzpp1− αqP2q + λDpαP1 + p1− αqP2‖Qq (104)
> RzpαP1q + Rzpp1− αqP2q + λDpαP1‖Qq + λDpp1− αqP2‖Qq (105)

(106)

where the functional Rz is defined in (6). The equality above follows from
the properties of the Lebesgue integral, while the inequality follows from [28,
Theorem 2.2., page ]. This proves that the solution is unique due to the strict
concavity of the objective function, which completes the proof.
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B Proof of Lemma 4.2
Proof: Given a probability measure V ∈ 5QpMq, with 5QpMq in (12), let V0

and V1 be two probability measures on the measurable space pM,F q such that
for all A ∈ F , it holds that

V0pAq =
V pA \ suppQq

V pM\ suppQq
, (107a)

and
V1pAq =

V pA ∩ suppQq

V pM∩ suppQq
. (107b)

Let the real value α be
α = V pM∩ suppQq. (108)

Hence, for all A ∈ F the measure V satisfies that

V pAq = p1− αqV0pAq + αV1pAq. (109)

Moreover, from (109) it holds that: iq If V pAq = 0, then V0pAq = 0, which
implies that V0 is absolutely continuous with respect to V ; iiq If V pAq = 0,
then V1pAq = 0, which implies that V1 is absolutely continuous with respect to
V . Furthermore, from the definition of 5QpMq in (12) the probability measure
V is absolutely continuous with respect to Q. Hence, for all A ∈ F , it follows
that

QpAq =

∫
A

dQpθq (110)

=

∫
A

dQ

dV
pθq dV pθq (111)

=

∫
A

dQ

dV
pθq dpp1− αqV0 + αV1qpθq (112)

= p1− αq

∫
A

dQ

dV
pθq dV0pθq + α

∫
A

dQ

dV
pθq dV1pθq (113)

=

∫
A
α

dQ

dV
pθq dV1pθq. (114)

Hence, from (114) and the Radon-Nikodym Theorem in [45, Theorem 2.2.1,
page 65] the probability measure Q is absolutely continuous with respect to V1.
This implies that for all A ∈ F , it holds that

QpAq =

∫
dQ

dV1
pθq dV1pθq, (115)

where, for all θ ∈ suppV ,

dQ

dV1
pθq = α

dQ

dV
pθq. (116)
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From (116), the following holds:

DpQ‖V q =

∫
log

ˆ

dQ

dV
pθq

˙

dQpθq (117a)

=

∫
log

ˆ

1

α

dQ

dV1
pθq

˙

dQpθq (117b)

=

∫
log

ˆ

dQ

dV1
pθq

˙

dQpθq

−
∫

logpαq dQpθq (117c)

= DpQ‖V1q− logpαq. (117d)

From (117) it follows that

RzpV q + λDpQ‖V q = Rzpp1− αqV0 + αV1q + λDpQ‖V1q− λ logpαq (118a)
= p1− αqRzpV0q + αRzpV1q + λDpQ‖V1q

− λ logpαq (118b)
≥ αRzpV1q + λDpQ‖V1q− λ logpαq, (118c)

with equality if and only if α = 1, which implies that for all A ∈ F , it holds
that

V pAq = V1pAq (119a)
= V pA ∩ suppQq, (119b)

where the equality in (119b) follows from (107b). This implies that the equality
in (118c) holds if and only if

suppQ = suppV, (120)

which implies that the equality in (118c) holds if and only if the measure V is
mutually absolutely continuous with respect to the reference measureQ. Finally,
the above leads to

min
P∈5QpMq\©QpMq

RzpP q + λDpQ‖P q > min
P∈5QpMq

RzpP q + λDpQ‖P q, (121)

which completes the proof.

C Proof of Lemma 4.4
Proof: The properties of the function K̄Q,z in (23b), for which an explicit ex-
pression is unknown, are proven by studying the functional inverse and the
continuous inverse theorem [47, Theorem 5.6]. Hence, the proof is divided into
two parts. The first part introduces the functional inverse of the function K̄Q,z

in (23b) and properties. The second part proves the continuity of the function
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K̄Q,z in (23b) is proved using its functional inverse via the continuous inverse
theorem [47, Theorem 5.6]

The first part is as follows. For K̄Q,z defined in (23), assume that t ∈ p0,∞q

and γ ∈ A, with A defined in (23a) satisfy that

K̄Q,zptq = γ, (122)

which implies that

1 =

∫ dP̄
pQ,tq
Θ|Z=z

dQ
pθq dQpθq (123a)

=

∫
t

Lzpθq + γ
dQpθq. (123b)

Let the function K̄−1
Q,z : A → p0,∞q be the functional inverse of K̄Q,z in (23b)

given by

K̄−1
Q,zpγq =

1∫
1

Lzpθq+γ dQpθq
, (124)

which follows from the constraint in (123) and the equality in (122).

From (123) and the fact that t ∈ p0,∞q, it holds that

0 <

∫
1

Lzpθq + γ
dQpθq <∞, (125)

which implies that for all γ ∈ A, with A in (23a), the function K̄−1
Q,z in (124) sat-

isfies

∞ > K̄−1
Q,zpγq > 0. (126)

Note that from (125), for all pγ1, γ2q ∈ A2, such that γ1 < γ2, for all θ ∈ suppQ
it holds that

1

Lzpθq + γ1
>

1

Lzpθq + γ2
, (127)

which implies that∫
1

Lzpθq + γ1
dQpθq >

∫
1

Lzpθq + γ2
dQpθq. (128)

Therefore, from equality (124) and inequality (128) for all pγ1, γ2q ∈ A2, such
that γ1 < γ2, the function K̄−1

Q,z in (124) satisfies

K̄−1
Q,zpγ1q < K̄−1

Q,zpγ2q, (129)
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which implies that the function K̄−1
Q,z in (124) is strictly increasing. Furthermore,

from inequality (129) and the fact that P̄ pQ,tq
Θ|Z=z is unique (see Theorem 4.1), it

follows that K̄−1
Q,z is bijective, which completes the proof of the first part.

The second part is as follows. The continuity of the function K̄−1
Q,z in (124) is

shown by considering an arbitrary ε > 0 and a pair pγ1, γ2q ∈ A2 under the
condition

ε >
ˇ

ˇ

ˇ
K̄−1
Q,zpγ2q− K̄−1

Q,zpγ1q

ˇ

ˇ

ˇ
. (130)

From the fact that K̄−1
Q,z is bijective and strictly increasing, let the pair γ1, and

γ2 satisfy γ1 < γ2, without loss of generality. Thus, it holds that
ˇ

ˇ

ˇ
K̄−1
Q,zpγ2q− K̄−1

Q,zpγ1q

ˇ

ˇ

ˇ
= K̄−1

Q,zpγ2q− K̄−1
Q,zpγ1q. (131)

Substituting equality (131) into (130) yields

K̄−1
Q,zpγ1q + ε > K̄−1

Q,zpγ2q. (132)

From the fact that K̄−1
Q,z is bijective, evaluating inequality (132) with K̄Q,z in

(23a) leads to

K̄Q,z

´

K̄−1
Q,zpγ1q + ε

¯

> K̄Q,z

´

K̄−1
Q,zpγ2q

¯

(133a)

= γ2. (133b)

Subtracting γ1 from both sides in (133), results in

K̄Q,z

´

K̄−1
Q,zpγ1q + ε

¯

− γ1 > γ2 − γ1 (134a)

= |γ2 − γ1|, (134b)

where equality (134b) follows from the condition that γ2 > γ1. Thus, from (134)
it follows that for all ε > 0, there exist a δ > 0 that satisfies

δ = K̄Q,z

´

K̄−1
Q,zpγ1q + ε

¯

− γ1, (135)

which implies the function K̄−1
Q,z in (124) is continuous for all γ ∈ A. From (135)

the function K̄−1
Q,z is continuous and strictly increasing. Hence, from the con-

tinuous inverse theorem in [47, Theorem 5.6], the inverse of the function K̄−1
Q,z

in (124), which is given by K̄Q,z in (23) is continuous and strictly increasing,
which completes the proof.

D Proof of Lemma 4.5
Proof: The proof shows by exhaustion that the codomain of the function K̄Q,z

in (23) is an interval of R by evaluating β in (25). Three cases are considered:
iq β < −δ?Q,z; iiq β > −δ?Q,z; and iiiq β = −δ?Q,z, with δ?Q,z in (28).

RR n° 9508



34 Daunas, Perlaza, Esnaola, and Poor

In the first case, from the definition of δ?Q,z in (28), it follows from (15b) that if
β < −δ?Q,z, then for all θ ∈ {θ ∈ suppQ : Lzpθq < −β}, it holds that

dP̄
pQ,tq
Θ|Z=z

dQ
pθq =

λ

Lzpθq + β
(136a)

< 0, (136b)

which contradicts the fact that the function
dP̄

pQ,tq

Θ|Z=z

dQ in (16) is nonnegative [45,
Corollary 2.2.2]. The above implies that for all t ∈ p0,∞q, the function K̄Q,z in
(23) satisfies that K̄Q,zptq 6∈

`

−∞,−δ?Q,z
˘

.

In the second case, if β > −δ?Q,z, it holds that∫
1

Lzpθq + β
dQpθq ≤

∫
1

δ?Q,z + β
dQpθq (137a)

=
1

δ?Q,z + β
. (137b)

Moreover, from (137) for all β > −δ?Q,z, there exists a λ ∈ p0,∞q such that the
constraint in (24) holds, which implies K̄−1

Q,zpβq ∈ p0,∞q.

Finally, under the assumption that β = −δ?Q,z and L?Q,z defined in (29), two
cases are considered: paq Q

`

L?Q,z
˘

> 0; and pbq Q
`

L?Q,z
˘

= 0. In case paq, if
β = −δ?Q,z and Q

`

L?Q,z
˘

> 0, then the integral in the denominator of (30) is
undefined, contradicting (24). In the alternative case pbq, if β = −δ?Q,z and
Q
`

L?Q,z
˘

= 0, then the integral in (30) is either∫
1

Lzpθq− δ?Q,z
dQpθq <∞, (138a)

which implies that −δ?Q,z ∈ A, with A defined in (23a), or the integral is∫
1

Lzpθq− δ?Q,z
dQpθq =∞, (138b)

which implies that, −δ?Q,z /∈ A. Note that the integral is always positive from
the fact that for all θ ∈ suppQ, it holds that Lzpθq > δ?Q,z. Moreover, the
integral in (138) is never zero as it would be a contradiction with (2). Hence,
from (136), (137) and (138) the set A in (23a) is either the open set

`

−δ?Q,z,∞
˘

or the closed set
“

−δ?Q,z,∞
˘

, which completes the proof.

E Proof of Lemma 4.8
Proof: From (15b), for all λ ∈ p0,∞q, it follows that

λ =
1∫

1
Lzpνq+β dQpνq

(139a)
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=
1∫

1
Lzpνq+K̄Q,zpλq

dQpνq
, (139b)

where equality (139a) follows from (15b), and equality (139b) follows from the
nominal function in (23b). From the definition of δ?Q,z in (28), for all ν ∈ suppQ,
the empirical risk satisfies

Lzpνq ≥ δ?Q,z. (140)

Taking the limit of (139) as λ approaches zero from the right satisfies

lim
λ→0+

λ = lim
λ→0+

1∫
1

Lzpνq+K̄pλq
dQpνq

(141a)

≥ lim
λ→0+

1∫
1

δ?Q,z+K̄pλq
dQpνq

(141b)

= lim
λ→0+

1
1

δ?Q,z+K̄pλq

(141c)

= lim
λ→0+

`

δ?Q,z + K̄pλq
˘

(141d)

= δ?Q,z + lim
λ→0+

K̄pλq, (141e)

where inequality (141b) follows from (140). Hence, from (141) it holds that

0 ≥ δ?Q,z + lim
λ→0+

K̄pλq. (142)

From (15a) and Lemma 4.4, for all λ ∈ p0,∞q, it holds that

0 ≤ δ?Q,z + K̄Q,zpλq. (143)

Taking the limit when λ approaches zero from the right in (143) yields

0 ≤ δ?Q,z + lim
λ→0+

K̄Q,zpλq. (144)

Then, from (142) and (144) it follows that

lim
λ→0+

K̄Q,zpλq = −δ?Q,z, (145)

which completes the proof.

F Proof of Lemma 4.9
Proof: For all θ1 ∈ suppQ and for all θ2 ∈ L?Q,z, it follows that

Lzpθ1q ≥ Lzpθ2q, (146)

and thus, for all λ ∈ p0,∞q, it holds that

1

K̄Q,zpλq + Lzpθ1q
≤ 1

K̄Q,zpλq + Lzpθ2q
, (147a)
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which implies
`

K̄Q,zpλq + Lzpθ1q
˘−1∫ `

K̄Q,zpλq + Lzpνq
˘−1

dQpνq
≤

`

K̄Q,zpλq + Lzpθ2q
˘−1∫ `

K̄Q,zpλq + Lzpνq
˘−1

dQpνq
. (148)

Hence, under the assumption that L?Q,z ∩ suppQ 6= ∅, for all θ1 ∈ suppQ and
for all θ2 ∈ L?Q,z ∩ suppQ, it holds that

dP̄
pQ,λq

Θ|Z=z

dQ
pθ1q ≤

dP̄
pQ,λq

Θ|Z=z

dQ
pθ2q, (149)

with equality if and only if θ1 ∈ L?Q,z ∩ suppQ, which completes the proof.

G Proof of Lemma 4.10

Proof: From Lemma 4.9, it follows that for all λ ∈ p0,∞q, for all θ ∈ suppQ,
and for all φ ∈ L?Q,z ∩ suppQ, it holds that

dP̄
pQ,λq

Θ|Z=z

dQ
pθq ≤

dP̄
pQ,λq

Θ|Z=z

dQ
pφq (150a)

=
λ

Lzpφq + K̄Q,zpλq
(150b)

=
λ

δ?Q,z + K̄Q,zpλq
(150c)

<∞, (150d)

where equality (150a) follows from (16); equality (150b) follows from the fact
that Lzpφq ≥ δ?Q,z; and the equality in (150d) follows from the fact that for all
λ > 0, the function K̄Q,zpλq <∞. From the definition of δ?Q,z in (28) and L?Q,z
in (29) equality in (150a) holds if and only if θ ∈ L?Q,z ∩ suppQ. This completes
the proof of finiteness.

For the proof of positivity, observe that from Lemma 4.4 for all λ ∈ p0,∞q, it
holds that

− δ?Q,z < K̄Q,zpλq <∞, (151)

which implies
0 < δ?Q,z + K̄Q,zpλq. (152)

From (151), it follows that

dP̄
pQ,λq

Θ|Z=z

dQ
pθq =

λ

K̄Q,zpλq + Lzpθq
(153a)
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=

1∫
1

K̄Q,zpλq+Lzpνq
dQpνq

K̄Q,zpλq + Lzpθq
(153b)

> 0, (153c)

which completes the proof.

H Proof of Lemma 4.11

Proof: From Theorem 4.1, the Radon-Nikodym derivative of the measure P̄ pQ,λq

Θ|Z=z
with respect to Q, for all θ ∈ suppQ, satisfies that

dP̄
pQ,λq

Θ|Z=z

dQ
pθq =

λ

K̄Q,zpλq + Lzpθq
(154a)

=

∫
1

K̄Q,zpλq+Lzpνq
dQpνq

K̄Q,zpλq + Lzpθq
(154b)

=

˜

K̄Q,zpλq + Lzpθq∫ `
K̄Q,zpλq + Lzpνq

˘−1
dQpνq

¸−1

(154c)

=
exp

`

− log
`

K̄Q,zpλq + Lzpθq
˘˘∫

exp
´

log
´

1
K̄Q,zpλq+Lzpνq

¯¯

dQpνq
(154d)

From Lemma 4.4, the case in which λ → ∞ implies K̄Q,zpλq → ∞, and from
(154), it follows that

lim
λ→∞

dP̄
pQ,λq

Θ|Z=z

dQ
pθq = lim

λ→∞

exp
`

− log
`

K̄Q,zpλq + Lzpθq
˘˘∫

exp
´

log
´

1
K̄Q,zpλq+Lzpνq

¯¯

dQpνq
(155)

=
1∫

dQpνq
(156)

= 1, (157)

where the function Lz is defined in (3). This completes the proof.

I Proof of Lemma 4.12

Proof: Assume that t ∈ p0,∞q and γ ∈ R satisfy that

1 =

∫
t

Lzpθq + γ
dQpθq, (158)

which implies
K̄Q,zptq = γ. (159)
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Let the function K̄−1
Q,z : R→ p0,∞q be the functional inverse of K̄Q,z in (159).

Thus,
K̄−1
Q,zpγq = t, (160)

with γ and t in (158). From (158), the function K̄−1
Q,z in (160) satisfies

K̄−1
Q,zpγq =

1∫
1

Lzpθq+γ dQpθq
. (161)

From Theorem 4.1, for all λ ∈ p0,∞q and for all θ ∈ suppQ, it follows that

dP̄
pQ,λq

Θ|Z=z

dQ
pθq =

λ

Lzpθq + K̄Q,zpλq
(162a)

=
K̄−1
Q,z

`

K̄Q,zpλq
˘

Lzpθq + K̄Q,zpλq
(162b)

=

1∫
1

Lzpνq+K̄Q,zpλq
dQpνq

Lzpθq + K̄Q,zpλq
(162c)

=

ˆ∫
Lzpθq + K̄Q,zpλq

Lzpνq + K̄Q,zpλq
dQpνq

˙−1

. (162d)

Given θ ∈ suppQ, consider the partition of the set M formed by the sets A0,
A1, and A2, which satisfy the following:

A0 =
{
ν ∈M : Lzpνq = δ?Q,z

}
, (163a)

A1 =
{
ν ∈M : Lzpνq > δ?Q,z

}
, (163b)

A2 =
{
ν ∈M : Lzpνq < δ?Q,z

}
, (163c)

with δ?Q,z defined in (28). Using the sets A0, A1, and A2 in (162), for all
λ ∈ p0,∞q and for all θ ∈ suppQ the following holds

dP̄
pQ,λq

Θ|Z=z

dQ
pθq

=

ˆ∫
A0

Lzpθq + K̄Q,zpλq

Lzpνq + K̄Q,zpλq
dQpνq +

∫
A1

Lzpθq + K̄Q,zpλq

Lzpνq + K̄Q,zpλq
dQpνq

+

∫
A2

Lzpθq + K̄Q,zpλq

Lzpνq + K̄Q,zpλq
dQpνq

˙−1

(164a)

=

˜∫
L?Q,z

Lzpθq + K̄Q,zpλq

Lzpνq + K̄Q,zpλq
dQpνq +

∫
A1

Lzpθq + K̄Q,zpλq

Lzpνq + K̄Q,zpλq
dQpνq

¸−1

(164b)

=

˜∫
L?Q,z

Lzpθq + K̄Q,zpλq

δ?Q,z + K̄Q,zpλq
dQpνq +

∫
A1

Lzpθq + K̄Q,zpλq

Lzpνq + K̄Q,zpλq
dQpνq

¸−1

,(164c)

where equality (164b) follows from the fact that the A2 has measure zero with
respect to Q and that the set A0 = L?Q,z, with L?Q,z in (29); and equality

Inria



Empirical Risk Minimization with Relative Entropy Regularization Type-II 39

(164b) follows from the definition of δ?Q,z in (28). Following this observa-
tion, the rest of the proof is divided into three parts. The first part evaluates

limλ→∞
dP̄

pQ,λq

Θ|Z=z

dQ pθq, with θ ∈
{
ν ∈M : Lzpνq = δ?Q,z

}
. The second part con-

siders the case in which θ ∈
{
ν ∈M : Lzpνq > δ?Q,z

}
. The third part considers

the remaining case.

The first part is as follows. Consider that θ ∈
{
ν ∈M : Lzpνq = δ?Q,z

}
and

note that A0 = L?Q,z. From (164), for all θ ∈
{
ν ∈M : Lzpνq = δ?Q,z

}
it holds

that

dP̄
pQ,λq

Θ|Z=z

dQ
pθq =

˜∫
L?Q,z

δ?Q,z + K̄Q,zpλq

δ?Q,z + K̄Q,zpλq
dQpνq

+

∫
A1

δ?Q,z + K̄Q,zpλq

Lzpνq + K̄Q,zpλq
dQpνq

¸−1

(165a)

=

˜

Q
`

L?Q,z
˘

+

∫
A1

δ?Q,z + K̄Q,zpλq

Lzpνq + K̄Q,zpλq
dQpνq

¸−1

. (165b)

The equality in (165) implies that for all θ ∈
{
ν ∈M : Lzpνq = δ?Q,z

}
the limit

satisfies

lim
λ→0+

dP̄
pQ,λq

Θ|Z=z

dQ
pθq

=

˜

Q
`

L?Q,z
˘

+ lim
λ→0+

∫
A1

δ?Q,z + K̄Q,zpλq

Lzpνq + K̄Q,zpλq
dQpνq

¸−1

(166a)

=

ˆ

Q
`

L?Q,z
˘

+ lim
λ→0+

`

δ?Q,z + K̄Q,zpλq
˘

lim
λ→0+

∫
A1

1

Lzpνq + K̄Q,zpλq
dQpνq

˙−1

(166b)

=

ˆ

Q
`

L?Q,z
˘

+

ˆ

δ?Q,z + lim
λ→0+

K̄Q,zpλq

˙

∫
A1

1

Lzpνq + limλ→0+ K̄Q,zpλq
dQpνq

˙−1

(166c)

=

˜

Q
`

L?Q,z
˘

+ 0

∫
A1

1

Lzpνq− δ?Q,z
dQpνq

¸−1

(166d)

=
`

Q
`

L?Q,z
˘˘−1

, (166e)

where equality (166d) follows from Lemma 4.8.

The second part is as follows. Consider that θ ∈
{
ν ∈M : Lzpνq > δ?Q,z

}
.

Hence, for all θ ∈
{
ν ∈M : Lzpνq > δ?Q,z

}
, there exists a real value ε > 0 such
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that the function Lz satisfies

Lzpθq− δ?Q,z = ε. (167)

From (164), for all θ ∈
{
ν ∈M : Lzpνq > δ?Q,z

}
it holds that

dP̄
pQ,λq

Θ|Z=z

dQ
pθq =

˜∫
L?Q,z

δ?Q,z + ε+ K̄Q,zpλq

δ?Q,z + K̄Q,zpλq
dQpνq

+

∫
A1

δ?Q,z + ε+ K̄Q,zpλq

Lzpνq + K̄Q,zpλq
dQpνq

¸−1

(168a)

=

˜

δ?Q,z + ε+ K̄Q,zpλq

δ?Q,z + K̄Q,zpλq
Q
`

L?Q,z
˘

+

∫
A1

δ?Q,z + K̄Q,zpλq

Lzpνq + K̄Q,zpλq
dQpνq

¸−1

. (168b)

The equality in (168) implies that for all θ ∈
{
ν ∈M : Lzpνq = δ?Q,z

}
, the limit

satisfies

lim
λ→0+

dP̄
pQ,λq

Θ|Z=z

dQ
pθq =

˜

lim
λ→0+

δ?Q,z + ε+ K̄Q,zpλq

δ?Q,z + K̄Q,zpλq
Q
`

L?Q,z
˘

+ lim
λ→0+

∫
A1

δ?Q,z + ε+ K̄Q,zpλq

Lzpνq + K̄Q,zpλq
dQpνq

¸−1

(169a)

=

˜

δ?Q,z + ε+ limλ→0+ K̄Q,zpλq

δ?Q,z + limλ→0+ K̄Q,zpλq
Q
`

L?Q,z
˘

+ lim
λ→0+

`

δ?Q,z + K̄Q,zpλq
˘

lim
λ→0+

∫
A1

1

Lzpνq + K̄Q,zpλq
dQpνq

˙−1

(169b)

=

˜

∞ Q
`

L?Q,z
˘

+ ε

∫
A1

1

Lzpνq− δ?Q,z
dQpνq

¸−1

.(169c)

The proof continuous by considering the cases in which QpA0q > 0 and QpA0q =
0 for the limit in (169). Under the assumption that QpA0q > 0, from (169b) the
limit satisfies

lim
λ→0+

dP̄
pQ,λq

Θ|Z=z

dQ
pθq = 0. (170a)

Under the assumption that QpA0q = 0, from the definition of δ?Q,z in (28), if
QpA0q = 0, then it is implied that there is at least an infinite countable sequence
of models ν1,ν2, . . . in suppQ that satisfies

Lzpν1q > Lzpν2q > · · · , (171)
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such that
lim
i→∞

Lzpνiq = δ?Q,z. (172)

From (172) the function inside the integral in (169c) is unbounded over the set
A1. Therefore,

lim
λ→0+

dP̄
pQ,λq

Θ|Z=z

dQ
pθq =

1

0 + p∞qε
(173a)

= 0. (173b)

The third part of the proof follows by noticing that the set
{
ν ∈ suppQ : Lzpνq<δ?Q,z

}
has measure zero with respect toQ and thus, for all θ ∈

{
ν ∈ suppQ : Lzpνq<δ?Q,z

}
,

the value
dP̄

pQ,λq

Θ|Z=z

dQ pθq is unchanged. Hence, it is assumed that for all θ ∈{
ν ∈ suppQ : Lzpνq<δ?Q,z

}
, it holds that

dP̄
pQ,λq

Θ|Z=z

dQ
pθq = 0. (174)

This completes the third part and the entire proof.

J Proof of Lemma 4.13
Proof: Consider the following partition of the setM formed by the sets

A0 =
{
θ ∈M : Lzpθq = δ?Q,z

}
, (175a)

A1 =
{
θ ∈M : Lzpθq > δ?Q,z

}
, (175b)

A2 =
{
θ ∈M : Lzpθq < δ?Q,z

}
, (175c)

with δ?Q,z in (28) and the function Lz in (3). Note that A0 = L?Q,z, with L?Q,z
in (29).

For all λ ∈ p0,∞q, it holds that

1 = P̄
pQ,λq

Θ|Z=zpA0q + P̄
pQ,λq

Θ|Z=zpA1q + P̄
pQ,λq

Θ|Z=zpA2q (176a)

= P̄
pQ,λq

Θ|Z=zpA0q + P̄
pQ,λq

Θ|Z=zpA1q (176b)

= P̄
pQ,λq

Θ|Z=zpA0q +

∫
A1

dP̄
pQ,λq

Θ|Z=zpθq, (176c)

where equality (176b) follows from the fact that P̄ pQ,λq

Θ|Z=zpA2q = 0, which follows
from the definition of δ?Q,z in (28) and the fact that the probability measure
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P̄
pQ,λq

Θ|Z=z is mutually absolutely continuous with respect to the reference measure
Q. The above implies that

lim
λ→0+

ˆ

P̄
pQ,λq

Θ|Z=zpA0q +

∫
A1

dP̄
pQ,λq

Θ|Z=zpθq

˙

= lim
λ→0+

P̄
pQ,λq

Θ|Z=zpA0q + lim
λ→0+

∫
A1

dP̄
pQ,λq

Θ|Z=z

dQ
pθq dQpθq (177a)

= lim
λ→0+

P̄
pQ,λq

Θ|Z=zpA0q +

∫
A1

lim
λ→0+

dP̄
pQ,λq

Θ|Z=z

dQ
pθq dQpθq (177b)

= lim
λ→0+

P̄
pQ,λq

Θ|Z=zpA0q, (177c)

= 1, (177d)

where, the equality in (177b) follows from the dominated convergence theo-
rem [45, Theorem 1.6.9 page 50], given that from Lemma 4.10 for all λ ∈

K̄Q,z, the Radon-Nikodym derivative
dP̄

pQ,λq

Θ|Z=z

dQ is positive and finite; and the
equality in (177c) follows from the fact that for all θ ∈ A1, it holds that

limλ→0+

dP̄
pQ,λq

Θ|Z=z

dQ pθq = 0 from Lemma 4.12.

Hence, it holds that

lim
λ→0+

P̄
pQ,λq

Θ|Z=z

`

L?Q,z
˘

= 1, (178)

which completes the proof.

K Proof of Lemma 5.1
Proof: From Lemma 4.1 and the fact that the measures P̄ pQ,λq

Θ|Z=z and Q are
mutually absolutely continuous, it holds that for all θ ∈ suppQ,

dQ

dP̄
pQ,λq

Θ|Z=z

pθq =
K̄Q,zpλq + Lzpθq

λ
, (179)

where the functions Lz and K̄Q,z are in (3) and (23b), respectively. From (179),
it follows that for all θ ∈ suppQ,

0 = λ
dQ

dP̄
pQ,λq

Θ|Z=z

pθq− Lzpθq− K̄Q,zpλq. (180)

Integrating both sides of (180) with respect to the probability measure P̄ pQ,λq

Θ|Z=z
yields

0 =

∫ ¨

˚

˝

Lzpθq− λ

¨

˝

dP̄
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

−1

+ K̄Q,zpλq

˛

‹

‚

dP̄
pQ,λq

Θ|Z=zpθq (181a)
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=

∫
Lzpθq dP̄

pQ,λq

Θ|Z=zpθq− λ
∫ ¨

˝

dP̄
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

−1

dP̄
pQ,λq

Θ|Z=zpθq

+

∫
K̄Q,zpλq dP̄

pQ,λq

Θ|Z=zpθq (181b)

= Rz

´

P̄
pQ,λq

Θ|Z=z

¯

− λ
∫

dQpθq + K̄Q,zpλq (181c)

= Rz

´

P̄
pQ,λq

Θ|Z=z

¯

− λ+ K̄Q,zpλq. (181d)

From (181d), it holds that

Rz

´

P̄
pQ,λq

Θ|Z=z

¯

= λ− K̄Q,zpλq, (182)

which completes the proof.

L Proof of Lemma 5.2

Proof: The proof is divided into four parts. The first part characterizes the
functional inverse of the function K̄Q,z in (23b). The second part provides
necessary conditions for the differentiation lemma [48, Theorem 6.28, page 160]
to hold, which is used in the third and fourth parts of the proof. The third
part presents the first derivative of the functional inverse and shows that its
derivative is strictly positive. The forth part shows the expected empirical risk
Rz

´

P̄
pQ,λq

Θ|Z=z

¯

decreases with lambdas decreasing.

The first part is as follows. Under the assumption that t ∈ p0,∞q and γ ∈ R
satisfy that

1 =

∫ dP̄
pQ,tq
Θ|Z=z

dQ
pθq dQpθq (183a)

=

∫
t

Lzpθq + γ
dQpθq, (183b)

which implies that
K̄Q,zptq = γ, (184)

where K̄Q,z is defined in (23b). From Lemma 4.4, let the functional K̄−1
Q,z :

`

−δ?Q,z,∞
˘

→ p0,∞q be the functional inverse of K̄Q,z in (23b) given by

K̄−1
Q,zpβq =

1∫
1

Lzpθq+β dQpθq
, (185)

which follows from the constraint in (15b) and completes the first part of the
proof.
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The second part is as follows. From Lemma 4.4, for all λ ∈ p0,∞q, it holds
that

K̄Q,zpλq > −δ?Q,z. (186)

Then, for the third case, if γ > −δ?Q,z, it follows that∫
1

Lzpθq + γ
dQpθq ≤

∫
1

δ?Q,z + γ
dQpθq (187a)

=
1

δ?Q,z + γ
. (187b)

From the equality in (187b) and the fact that Q is a probability measure, it
follows that the integral on the right-hand side in (187a) is bounded. Hence,
from the dominated convergence theorem [45, Theorem 1.6.9, page 50] the left-
hand side of (187a) is finite for all β ∈

`

−δ?Q,z,∞
˘

. Furthermore, for all θ ∈M
the partial derivative of 1

Lzpθq+β in (187a) with respect to β yields

∂

∂β

ˆ

1

Lzpθq + β

˙

= − 1

pβ + Lzpθqq
2 , (188)

which exists for all β ∈ p−δ?,∞q. Then, from the differentiation lemma [48,
Theorem 6.28, page 160], the interchange of the integral with the derivative on
the right-hand side of (187a) is possible. Hence,

d

dβ

∫
1

Lzpθq + β
dQpθq =

∫
∂

∂β

1

Lzpθq + β
dQpθq, (189)

which completes the second part of the proof.

The third part is as follows.

For all β ∈
`

−δ?Q,z,∞
˘

, the derivative of the function K̄−1
Q,z in (185) satisfies:

K̄
−1p1q

Q,z pβq =
d

dβ

ˆ∫
1

β + Lzpθq
dQpθq

˙−1

(190a)

= −
ˆ∫

1

β + Lzpθq
dQpθq

˙−2
d

dβ

´

K̄−1
Q,zpβq

¯−1

(190b)

= −

˜

1∫
1

β+Lzpθq
dQpθq

¸2
d

dβ

´

K̄−1
Q,zpβq

¯−1

(190c)

= −
d

dβ

´

K̄−1
Q,zpβq

¯−1

´∫
1

β+Lzpθq
dQpθq

¯2 (190d)

= −

∫
− 1

pβ+Lzpθqq2 dQpθq

´∫
1

β+Lzpθq
dQpθq

¯2 (190e)
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=

∫
1

pβ+Lzpθqq2 dQpθq

´∫
1

β+Lzpθq
dQpθq

¯2 . (190f)

where the equality in (190b) follows from (189); and the equality in (190d)
follows from (188).

Note that from Jensen’s inequality, it follows that
ˆ∫

1

β + Lzpθq
dQpθq

˙2

≤
∫

1

pβ + Lzpθqq
2 dQpθq. (191)

Then, from (190f) and (191), for all β ∈
`

δ?Q,z,∞
˘

it holds that

K̄
−1p1q

Q,z pβq ≥ 1. (192)

which completes the third part of the proof.

The fourth part is as follows. Let the real values pλ1, λ2q ∈ p0,∞q
2 be such

that λ2 > λ1, which implies from Lemma 4.4 that K̄Q,zpλ2q > K̄Q,zpλ1q. Then,
from Lemma 5.1 it follows that

Rz

´

P̄
pQ,λ2q

Θ|Z=z

¯

− Rz

´

P̄
pQ,λ1q

Θ|Z=z

¯

= λ2 − λ1 + K̄Q,zpλ1q− K̄Q,zpλ2q (193a)

= K̄−1
Q,zpβ2q− K̄−1

Q,zpβ1q + β1 − β2, (193b)

where equality (193b) follows from substituting (185) into (193a). Note that
(192) implies that

K̄−1
Q,zpβ2q− K̄−1

Q,zpβ1q ≥ β2 − β1. (194)

Thus, from (193b) and (194) it follows that

Rz

´

P̄
pQ,λ2q

Θ|Z=z

¯

− Rz

´

P̄
pQ,λ1q

Θ|Z=z

¯

≥ 0, (195)

Furthermore, from Lemma 4.4 and Lz in (3), for all θ ∈ suppQ the frac-
tion pβ + Lzpθqq

−1 is strictly convex. Hence, equality in (192) and in (195)
holds if and oln if Lz is nonseparable with respect to Q, which completes the
proof.

M Proof of Lemma 5.3
Proof: From Theorem 4.1 and the definition of the Type-II relative entropy, it
holds that

D
´

Q‖P̄ pQ,λq

Θ|Z=z

¯

=

∫
log

¨

˝

dQ

dP̄
pQ,λq

Θ|Z=z

˛

‚dQpθq (196a)
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≤ log

¨

˝

∫
dQ

dP̄
pQ,λq

Θ|Z=z

pθq dQpθq

˛

‚ (196b)

= log

ˆ∫
K̄Q,zpλq + Lzpθq

λ
dQpθq

˙

(196c)

= log

ˆ

1

λ

∫
K̄Q,zpλq + Lzpθq dQpθq

˙

(196d)

= log

ˆ

1

λ

`

K̄Q,zpλq + RzpQq
˘

˙

, (196e)

where inequality (196b) follows from Jensen’s Inequality. From (196e), it follows
that

RzpQq ≥ exp
´

D
´

Q‖P̄ pQ,λq

Θ|Z=z

¯¯

λ− K̄Q,zpλq. (196f)

Hence, the difference between the expected empirical risk of the probability
measures P̄ pQ,λq

Θ|Z=z and Q, from Lemma 5.1 and (196f), satisfies that

RzpQq− Rz

´

P̄
pQ,λq

Θ|Z=z

¯

≥ λ
´

exp
´

D
´

Q‖P̄ pQ,λq

Θ|Z=z

¯¯

− 1
¯

, (197)

which completes the proof.

N Proof of Lemma 5.5
Proof: From Lemma 4.4 and Lemma 5.1, it holds that

Rz

´

P̄
pQ,λq

Θ|Z=z

¯

< λ+ δ?Q,z. (198)

Similarly, from the definition of the Rashmon set in (27) and δ?Q,z in (28), it
follows that

Rz

´

P̄
pQ,λq

Θ|Z=z

¯

≥ δ?Q,z. (199)

The proof continues by determining the conditions for which the equality in
(199) holds. Assume the empirical risk Lz in (3) is separable with respect to
the probability measure P̄ pQ,λq

Θ|Z=z in (16) (see Definition 4.1). Then, there exists
a real value ε > 0 and two nonnegligible sets A and B with respect to the
probability measure P̄ pQ,λq

Θ|Z=z in (16), such that

A =
{
θ ∈M : Lzpθq < δ?Q,z + ε

}
, and (200a)

B =
{
θ ∈M : Lzpθq ≥ δ?Q,z + ε

}
. (200b)

Under the assumption that Lz is separable, the expected empirical risk satisfies

Rz

´

P̄
pQ,λq

Θ|Z=z

¯

=

∫
A
Lzpθq dP̄

pQ,λq

Θ|Z=zpθq
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+

∫
B
Lzpθq dP̄

pQ,λq

Θ|Z=zpθq (201a)

≥
∫
A
δ?Q,z dP̄

pQ,λq

Θ|Z=zpθq

+

∫
B

`

δ?Q,z + ε
˘

dP̄
pQ,λq

Θ|Z=zpθq (201b)

= δ?Q,zP̄
pQ,λq

Θ|Z=zpAq

+
`

δ?Q,z + ε
˘

P̄
pQ,λq

Θ|Z=zpBq, (201c)

= δ?Q,zP̄
pQ,λq

Θ|Z=zpAq

`

δ?Q,z + ε
˘

´

1− P̄ pQ,λq

Θ|Z=zpAq

¯

(201d)

= δ?Q,z + ε
´

1− P̄ pQ,λq

Θ|Z=zpAq

¯

(201e)

> δ?Q,z, (201f)

where inequality (201b) follows from the fact that δ?Q,z and
`

δ?Q,z + ε
˘

are the
minimum empirical risk for the set A and B respectively; and inequality (201f)
follows from the fact that the sets A and B are nonnegligible with respect to the
probability measure P̄ pQ,λq

Θ|Z=z, which implies P̄ pQ,λq

Θ|Z=zpAq < 1. This proves that
for separable empirical risk functions Lz the inequality in (199) is strict.

Considering the case in which the empirical risk Lz in (3) is not separable with
respect to P̄ pQ,λq

Θ|Z=z in (16). Then, for all θ ∈ supp P̄
pQ,λq

Θ|Z=z, the empirical risk

satisfies Lzpθq = δ?Q,z, which implies Rz

´

P̄
pQ,λq

Θ|Z=z

¯

= δ?Q,z. Hence, equality in
(199) holds for all nonseparable empirical risk functions Lz, which completes
the proof.

O Proof of Theorem 6.1

Proof: Let δ be a real in
`

δ?Q,z,∞
˘

, with δ?Q,z in (28). Let also γ ∈ p0,∞q satisfy
the following equality:

Rz

´

P̄
pQ,γq

Θ|Z=z

¯

≤ δ. (202)

Note that from Lemma 4.4 the function K̄Q,z is continuous and from Lemma 4.4
the set p0,∞q is convex. Moreover, from Lemma 5.6, it follows that such γ in
(202) always exists. From (27), for all δ ∈

`

δ?Q,z,∞
˘

, it holds that

Lzpδq ⊇ L?Q,z, (203)

and thus,

P̄
pQ,γq

Θ|Z=zpLzpδqq ≥ P̄ pQ,γq

Θ|Z=z

`

L?Q,z
˘

, (204)
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with L?Q,z defined in (29). Let
lambda be a positive real such that λ ≤ γ, and

P̄
pQ,λq

Θ|Z=zpLzpδqq > 1− ε. (205)

The existence of such a positive real λ that satisfies (205) follows from Lemma 4.13.
From Theorem 4.1 and (203), it follows that

P̄
pQ,γq

Θ|Z=zpLzpδqq ≥ P̄ pQ,γq

Θ|Z=z

`

L?Q,z
˘

(206a)

Hence, from equality (206a) it holds that

1− ε < P̄
pQ,λq

Θ|Z=z

`

L?Q,z
˘

(207)

≤ P̄ pQ,λq

Θ|Z=zpLzpδqq. (208)

The equality in (208) implies that the probability measure P̄ pQ,λq

Θ|Z=z is pδ, εq-
optimal (Definition 6.1), which completes the proof.

P Proof of Lemma 7.1
Proof: From Theorem 4.1, it follows that for all θ ∈M,

log

¨

˝

dP̄
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚= log

ˆ

λ

K̄Q,zpλq + Lzpθq

˙

(209a)

= logpλq− log
`

K̄Q,zpλq + Lzpθq
˘

(209b)
= logpλq− Vz,λpθq, (209c)

where the function Vz,λ is defined in (60). Thus,

D
´

P̄
pQ,λq

Θ|Z=z‖Q
¯

=

∫
log

¨

˝

dP̄
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚dP̄
pQ,λq

Θ|Z=zpθq (210a)

= logpλq−
∫

Vz,λpθq dP̄
pQ,λq

Θ|Z=zpθq (210b)

= logpλq− R̄z,λ

´

P̄
pQ,λq

Θ|Z=z

¯

, (210c)

where the functional R̄z,λ is defined in (61). Hence, it follows from (210c)
that

logpλq = R̄z,λ

´

P̄
pQ,λq

Θ|Z=z

¯

+ D
´

P̄
pQ,λq

Θ|Z=z‖Q
¯

, (211)

which completes the proof for (64).

From (209), it follows that

D
´

Q‖P̄ pQ,λq

Θ|Z=z

¯

=−
∫

log

¨

˝

dP̄
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚dQpθq (212a)
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=− logpλq +

∫
Vz,λpθq dQpθq (212b)

=− logpλq + R̄z,λpQq, (212c)

Hence, it follows from (210c) that

logpλq = R̄z,λpQq− D
´

Q‖P̄ pQ,λq

Θ|Z=z

¯

, (213)

which completes the proof for (65).

Q Proof of Lemma 7.2

Proof: The proof uses the fact that the probability measure P̄ pQ,λq

Θ|Z=z in (16)
is mutually absolutely continuous with the probability measure Q in Theo-
rem 4.1. Hence, the probability measure P is mutually absolutely continuous
with P̄ pQ,λq

Θ|Z=z, as a consequence of the assumption that P ∈ ©QpMq.

The proof follows by noticing that for all θ ∈M,

log

¨

˝

dP

dP̄
pQ,λq

Θ|Z=z

pθq

˛

‚= log

¨

˝

dP

dQ
pθq

dQ

dP̄
pQ,λq

Θ|Z=z

pθq

˛

‚ (214a)

= log

ˆ

dP

dQ
pθq

˙

− log

¨

˝

dP̄
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚ (214b)

= log

ˆ

dP

dQ
pθq

˙

− log

ˆ

λ

K̄Q,zpλq + Lzpθq

˙

(214c)

= log

ˆ

dP

dQ
pθq

˙

− logpλq

+ log
`

K̄Q,zpλq + Lzpθq
˘

(214d)

= log

ˆ

dP

dQ
pθq

˙

− logpλq + Vz,λpθq, (214e)

where the functions Lz, K̄Q,z and Vz,λ are defined in (3), (23b) and in (60),
respectively; and the equality in (214c) follows from (16). Hence, the relative
entropy D

´

P‖P̄ pQ,λq

Θ|Z=z

¯

satisfies,

D
´

P‖P̄ pQ,λq

Θ|Z=z

¯

=

∫
log

¨

˝

dP

dP̄
pQ,λq

Θ|Z=z

pθq

˛

‚dP pθq (215a)

=

∫ ˆ

log

ˆ

dP

dQ
pθq

˙

− logpλq + Vz,λpθq

˙

dP pθq (215b)

=

∫
log

ˆ

dP

dQ
pθq

˙

dP pθq− logpλq
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+

∫
Vz,λpθq dP pθq (215c)

= DpP‖Qq− logpλq + R̄z,λpP q (215d)

= DpP‖Qq− R̄z,λ

´

P̄
pQ,λq

Θ|Z=z

¯

− D
´

P̄
pQ,λq

Θ|Z=z‖Q
¯

+ R̄z,λpP q, (215e)

where equality (215b) follows from (214); and equality (215e) follows from
Lemma 7.1. Thus, from (215), it follows that

R̄z,λpP q− R̄z,λ

´

P̄
pQ,λq

Θ|Z=z

¯

= D
´

P‖P̄ pQ,λq

Θ|Z=z

¯

− DpP‖Qq

+D
´

P̄
pQ,λq

Θ|Z=z‖Q
¯

, (216)

which completes the proof.

R Proof of Lemma 7.4
Proof: The proof is presented in two parts. First, the sensitivity SQ,λ ( [49,
Definition 3.1 page 9]) is evaluated with respect to the probability measure
P̄

pQ,λq

Θ|Z=z in (16). Second, the log sensitive defined S̄Q,λ in (67) is evaluated with

respect to the probability measure P pQ,λq

Θ|Z=z in (9).

For the first part, from Lemma 7.1, for all α ∈ p0,∞q, it holds that

D
´

P̄
pQ,αq

Θ|Z=z‖Q
¯

= −R̄z,α
´

P̄
pQ,αq

Θ|Z=z

¯

+ logpαq, (217)

where the functional R̄z,α is defined in (61).

Similarly, from [49, Lemma 2.2, page 8], for all λ ∈ p0,∞q, it holds that

Rz

´

P
pQ,λq

Θ|Z=z

¯

= −λ
ˆ

D
´

P
pQ,λq

Θ|Z=z‖Q
¯

+KQ,z

ˆ

− 1

λ

˙˙

, (218)

with the functional Rz defined in (6).

From [49, Theorem 3.1 page 9] the sensitivity of the probability measure P̄ pQ,αq

Θ|Z=z
satisfies

SQ,λ

´

z, P̄
pQ,αq

Θ|Z=z

¯

= Rz

´

P̄
pQ,αq

Θ|Z=z

¯

− Rz

´

P
pQ,λq

Θ|Z=z

¯

(219a)

= λ
´

D
´

P̄
pQ,αq

Θ|Z=z‖P
pQ,λq

Θ|Z=z

¯

− D
´

P̄
pQ,αq

Θ|Z=z‖Q
¯

+ D
´

P
pQ,λq

Θ|Z=z‖Q
¯¯

. (219b)

Plugging (217) and (218) into (219) yields

1

λ
Rz

´

P̄
pQ,αq

Θ|Z=z

¯

− R̄z,α

´

P̄
pQ,αq

Θ|Z=z

¯
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= D
´

P̄
pQ,αq

Θ|Z=z‖P
pQ,λq

Θ|Z=z

¯

− logpαq−KQ,z

ˆ

− 1

λ

˙

, (220)

which completes the first part of the proof.

For the second part, from Lemma 7.1, for all α ∈ p0,∞q, it holds that

R̄z,α

´

P̄
pQ,αq

Θ|Z=z

¯

= −D
´

P̄
pQ,αq

Θ|Z=z‖Q
¯

+ logpαq, (221)

where the functional R̄z,α is defined in (61).

Similarly, from [49, Lemma 2.2, page 8], for all λ ∈ p0,∞q, it holds that

D
´

P
pQ,λq

Θ|Z=z‖Q
¯

=
1

λ
Rz

´

P
pQ,λq

Θ|Z=z

¯

+KQ,z

ˆ

− 1

λ

˙

, (222)

with the functional Rz defined in (6).

From Lemma 7.2 the logarithmic sensitivity of the probability measure P pQ,λq

Θ|Z=z
is

R̄z,α

´

P
pQ,λq

Θ|Z=z

¯

− R̄z,α

´

P̄
pQ,λq

Θ|Z=z

¯

= D
´

P
pQ,λq

Θ|Z=z‖P̄
pQ,αq

Θ|Z=z

¯

− D
´

P
pQ,λq

Θ|Z=z‖Q
¯

+ D
´

P̄
pQ,αq

Θ|Z=z‖Q
¯

. (223)

Plugging (221) and (222) into (223) yields
1

λ
Rz

´

P
pQ,λq

Θ|Z=z

¯

− R̄z,α

´

P
pQ,λq

Θ|Z=z

¯

= −D
´

P
pQ,λq

Θ|Z=z‖P̄
pQ,αq

Θ|Z=z

¯

−
ˆ

logpαq +KQ,z

ˆ

− 1

λ

˙˙

. (224)

The proof proceeds by subtracting (224) from (220), resulting in
1

λ
SQ,λ

´

z, P̄
pQ,αq

Θ|Z=z

¯

− S̄Q,α

´

z, P
pQ,λq

Θ|Z=z

¯

= D
´

P̄
pQ,αq

Θ|Z=z‖P
pQ,λq

Θ|Z=z

¯

− D
´

P
pQ,λq

Θ|Z=z‖P̄
pQ,αq

Θ|Z=z

¯

+2

ˆ

logpαq +KQ,z

ˆ

− 1

λ

˙˙

, (225)

where the functions SQ,λ and S̄Q,α are respectively defined in [49, Definition 8]
and (67). From [34, Theorem 1] and Lemma 7.4, it follows that

1

λ
SQ,λ

´

z, P̄
pQ,αq

Θ|Z=z

¯

− S̄Q,α

´

z, P
pQ,λq

Θ|Z=z

¯

= 2
´

D
´

P
pQ,λq

Θ|Z=z‖Q
¯

− D
´

P̄
pQ,λq

Θ|Z=z‖Q
¯¯

+ D
´

P̄
pQ,αq

Θ|Z=z‖P
pQ,λq

Θ|Z=z

¯

−D
´

P
pQ,λq

Θ|Z=z‖P̄
pQ,αq

Θ|Z=z

¯

. (226)

Substituting (226) into (225) yields

D
´

P
pQ,λq

Θ|Z=z‖Q
¯

− D
´

P̄
pQ,λq

Θ|Z=z‖Q
¯

= logpαq +KQ,z

ˆ

− 1

λ

˙

, (227)

which completes the proof.
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S Example 4.3
Proof. The Lagrangian multiplier β for the optimization problem in (11) satisfies∫

λ

β + Lzpνq
dQpνq = 1. (228)

From the empirical risk function Lz : M → R+
0 in (41), which is a simple

function, and the probability measure Q in (40a), it holds that∫
λ

β + Lzpνq
dQpνq =λ

ˆ

1

β + c0
QpT pzqq +

1

β + c1
QpM\ T pzqq

˙

(229a)

=λ

ˆ

1

β + c0
QpT pzqq +

1

β + c1
p1−QpT pzqqq

˙

(229b)

=λ

ˆ

pβ + c1qQpT pzqq + pβ + c0qp1−QpT pzqqq

β2 + βpc0 + c1q + c0c1

˙

(229c)

=λ

ˆ

pc1 − c0qQpT pzqq + β + c0
β2 + βpc0 + c1q + c0c1

˙

. (229d)

From (228) and (229d), it follows that

0 =β2 + βpc0 + c1q + c0c1 − λppc1 − c0qQpT pzqq + β + c0q (230a)

=β2 + βpc0 + c1 − λq + c0c1 − λc0 − λpc1 − c0qQpT pzqq. (230b)

From (230b) and the fact that c0 = 0 in equation (41), it holds that

0 = β2 + βpc1 − λq− λc1QpT pzqq. (230c)

Observe that the equality in (230c) is a quadratic polynomial that has two roots
r1 and r2. Hence, (230c) in terms of r1 and r2 satisfies

0 =β2 − pr1 + r2qβ + r1r2 (231a)
=pβ − r1qpβ − r2q, (231b)

where the roots r1 and r2 are given by the quadratic formula such that

r1 =− pc1 − λq

2
−

d

ˆ

c1 − λ
2

˙2

+ λc1QpT pzqq, (232a)

and

r2 =− pc1 − λq

2
+

d

ˆ

c1 − λ
2

˙2

+ λc1QpT pzqq. (232b)

The proof continues by verifying that the roots in (232a) and (232b) are real and
there is only one positive root for all λ ∈ p0,+∞q and for all QpT pzqq ∈ r0, 1q.
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Note that for all c1 ∈ p0,∞q and for all λ ∈ r0,+∞q, it holds that

−c1 − λ
2
≤
ˇ

ˇ

ˇ

ˇ

c1 − λ
2

ˇ

ˇ

ˇ

ˇ

(233)

=

d

ˆ

c1 − λ
2

˙2

(234)

≤

d

ˆ

c1 − λ
2

˙2

+ λc1QpT pzqq. (235)

Observe that for all QpT pzqq ∈ r0, 1q, c1 ∈ p0,∞q and λ ∈ r0,∞q the expressions
`

c1−λ
2

˘2
and λc1QpT pzqq are always positive. Thus, the square roots in (232a)

and (232b) are real, which implies that r1 and r2 are real. From (235), for all
λ ∈ r0,+∞q and for all QpT pzqq ∈ r0, 1q, it holds

r1 <0; (236a)

and following the same arguments

r2 >0. (236b)

Hence, the solution for the Lagrange Multiplier β that satisfies (228) given the
empirical risk function Lz in (41) and the probability measure Q in (40a) is

β = − pc1 − λq

2
+

d

ˆ

c1 − λ
2

˙2

+ λc1QpT pzqq, (237)

which completes the proof.

T Example 4.2

Proof. Consider the Type-II ERM-RER problem in (11) and assume that: paq

λ = 0.5; pbq M = X = Y = r0,∞q; pcq z = pp1, 1qq and pdq Q � µ, with µ the
Lebesgue measure, such that for all θ ∈ suppQ,

dQ

dµ
pθq = 4θ2 expp−2θq. (238)

Let also the function f :M×X → Y be

fpθ, xq = xθ, (239)

and the loss function ` in (2) be

`pfpθ, xq, yq = pxθ − yq
2
. (240)
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Hence, from the fact that z is a single data point and the definition of Lz in (3),
it follows that

Lzpθq = `pfpθ, xq, yq (241a)
= pxθ − yq

2
. (241b)

Based on the previous assumptions regarding the functions ` and f , as well as
the setsM, X , Y, and the measure Q, the definition of δ?Q,z in (28) implies that
δ?Q,z = 0.

From Theorem 4.1, the solution to the Type-II ERM-RER problem in (11) is the
probability measure P̄ pQ,λq

Θ|Z=z that is mutually absolutely continuous with respect
to Q, which implies that under the above assumptions P̄ pQ,λq

Θ|Z=z is absolutely
continuous with respect to the Lebesgue measure µ such that

dP̄
pQ,λq

Θ|Z=z

dµ
pθq =

λ

Lzpθq + β
4θ2 expp−2θq. (242)

Hence, it follows that

P̄
pQ,λq

Θ|Z=zpMq =

∫
M

dP̄
pQ,λq

Θ|Z=z

dQ
pθq dQpθq (243a)

=

∫
M

dP̄
pQ,λq

Θ|Z=z

dµ
pθq dµpθq (243b)

=

∫ ∞
0

λ4θ2 expp−2θq

pxθ − yq
2

+ β
dθ (243c)

= 4λ

∫ ∞
0

θ2 expp−2θq

pθ − 1q
2 dθ (243d)

(243e)

The integral in (243d) can be rewritten as∫ ∞
0

θ2 expp−2θq

pθ − 1q
2 dθ

=

∫ ∞
0

˜

θ expp−2θq + 1
2 expp−2θq

θ − 1
+

1
2θ expp−2θq + 1

2 expp−2θq

pθ − 1q
2

¸

dθ(244)

=
1

2

∫ ∞
0

2θ expp−2θq + expp−2θq

θ − 1
dθ

+
1

2

∫ ∞
0

θ expp−2θq + expp−2θq

pθ − 1q
2 dθ. (245)

Using integration by parts on the second integral in (245) yields∫ ∞
0

θ expp−2θq + expp−2θq

pθ − 1q
2 dθ
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= − pθ + 1q expp−2θq

pθ − 1q
−
∫ ∞

0

2θ expp−2θq + expp−2θq

θ − 1
dθ. (246)

Plugging (246) into (245) yields∫ ∞
0

θ2 expp−2θq

pθ − 1q
2 dθ =

„

− pθ + 1q expp−2θq

2pθ − 1q

∞

0

. (247)

From (247), it follows that

4λ

∫ ∞
0

θ2 expp−2θq

pθ − 1q
2 dθ = 4λ

„

− pθ + 1q expp−2θq

2pθ − 1q

∞

0

(248a)

= 4λ

„

− pθ + 1q expp−2θq

2pθ − 1q

1

0

+

+4λ

„

− pθ + 1q expp−2θq

2pθ − 1q

∞

1

(248b)

≥ 4λ

„

− pθ + 1q expp−2θq

2pθ − 1q

1

0

(248c)

= lim
a→1−

4λ

„

− pθ + 1q expp−2θq

2pθ − 1q

a

0

(248d)

= lim
a→1−

−4λ
pa+ 1q expp−2aq

2pa− 1q

−4λ
p0 + 1q expp−0q

2p0− 1q
(248e)

= lim
a→1−

−4λ
pa+ 1q expp−2aq

2pa− 1q
− 2λ (248f)

=∞, (248g)

which completes the proof.
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