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Minimisation du Risque Empirique avec
Régularisation par Entropie Relative de Type-II
Résumé : L’effet de l’asymétrie de l’entropie relative est analysé dans le
problème de la minimisation du risque empirique avec régularisation par en-
tropie relative (MRE-RER). Une nouvelle régularisation est introduite, appelée
régularisation de type-II, qui permet la recherche des solutions au problème de
la MRE-RER avec un support qui s’étend en dehors du support de la mesure
de référence. La solution au nouveau problème de la MRE-RER Type-II est
caractérisée analytiquement en termes de la dérivée de Radon-Nikodym de la
mesure de référence par rapport à la solution. L’analyse de la solution dévoile
certaines propriétés de l’entropie relative lorsqu’elle agit comme régularisateur
du problème de la MRE-RER : (a) l’entropie relative force le support de la
solution de type-II à s’étaler sur tout le support de la mesure de référence, ce
qui introduit un fort biais inductif qui domine l’évidence fournie par les données
d’entraînement ; (b) La régularisation de type-II est équivalente à la régular-
isation d’entropie relative classique avec une transformation appropriée de la
fonction du risque empirique. Enfin, une expression sous forme explicite de la
valeur espérée du risque empirique en fonction des paramètres de régularisation
est présentée.

Mots-clés : Apprentissage Supervisé; Minimisation du Risque Empirique;
Entropie Relative; Régularisation; Algorithme de Gibbs; Mesure de Gibbs; Sen-
sitivité; et Généralisation.



Empirical Risk Minimization with Relative Entropy Regularization Type-II 3

Contents
1 Introduction 4

2 Empirical Risk Minimization Problem 5

3 The Type-I ERM-RER Problem 6

4 The Type-II ERM-RER Problem 7
4.1 The Solution to the Type-II ERM-RER Problem . . . . . . . . . 7
4.2 Properties of the Solution . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Discussion on Regularization Properties . . . . . . . . . . . . . . 12

5 Interplay Between the Relative Entropy Asymmetry and the
Risk 12

6 Final Remarks 13

A Proof of Lemma 4.1 15

B Proof of Lemma 4.2 17

C Proof of Lemma 4.3 18

D Proof of Lemma 4.4 25

E Proof of Lemma 4.5 26

RR n° 9508



4 Daunas, Esnaola, Perlaza, and Poor.

1 Introduction

Empirical risk minimization (ERM) is a central tool in supervised machine learn-
ing that enables the characterization, among others, of sample complexity and
probably approximately correct (PAC) learning in a wide range of settings [2].
The application of ERM in the study of theoretical guarantees spans related dis-
ciplines such as machine learning [3], information theory [4,5] and statistics [6,7].
Classical problems such as classification [8, 9], pattern recognition [10, 11], re-
gression [12,13], and density estimation [10,14] can be posed as special cases of
the ERM problem [14,15]. Unfortunately, ERM is prone to training data mem-
orization, a phenomenon also known as overfitting [16–18]. For that reason,
regularization is used to bound the sensitivity of the solution model to training
data and provide generalization guarantees [19–21]. Regularization establishes
a preference over the models by encoding features of interest that conform to
prior knowledge.

In different statistical learning frameworks, such as Bayesian learning [22, 23]
and PAC learning [24–26], the prior knowledge over the set of models can be
described by a reference probability measure. Nonetheless, more general refer-
ences can be adapted as proved in [27] and [28] for the case of σ-finite measures.
In either case, the solution to the ERM problem can be cast as a probabil-
ity distribution over all the candidate models. A common regularizer is the
relative entropy of the solution with respect to the reference over the set of
models [14, 29–31]. The resulting problem formulation, termed ERM with rel-
ative entropy regularization (ERM-RER) has been extensively studied and its
unique solution is the Gibbs probability measure, for which the most salient
properties are well understood [28–34]. Despite the many merits of the ERM-
RER formulation, it has some significant limitations. Firstly, the definition of
the relative entropy in terms of the Radon-Nikodym derivative of the solution
with respect to the reference probability measure, sets a hard barrier to the
exploration of models outside the support of the reference. These models are
not given any consideration by the resulting Gibbs probability measure regard-
less of the evidence provided by the training dataset. Secondly, the choice of
relative entropy over the alternatives often follows arguments based on upper
bounds on the performance, which are hard to obtain and are not always infor-
mative when evaluated in practical settings [35–37]. For these reasons, exploring
the asymmetry of the relative entropy is of particular interest to advancing the
understanding of entropy regularization and its role in generalization.

Interestingly, there is no literature discussing the asymmetry of relative entropy
in the context of ERM regularization. Hence, the issue of regularizing the ERM
problem with the relative entropy of the reference with respect to the solution is
an open problem. To differentiate between the two cases, we denote by Type-I
the use of the relative entropy of the solution with respect to the reference; and
by Type-II the use of the relative entropy of the reference with respect to the
solution. This paper presents the solution to the Type-II ERM-RER problem
and establishes a link to the Type-I ERM-RER problem via a transformation

Inria
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of the risk that can be cast as a tunable loss function [38–40].

The remainder of the paper is organized as follows. Section 2 presents the stan-
dard ERM problem. Section 3 describes the Type-I regularization. The main
contribution of the paper is the solution to the Type-II ERM-RER presented
in Section 4. Section 5 studies the equivalence between Type-I and Type-II
regularization. The conclusions are summarized in Section 6.

2 Empirical Risk Minimization Problem

The elements of the learning problem of interest are the sets models, patterns,
and labels denoted by M ⊆ Rd with d ∈ N, X , and Y, respectively. A pair
px, yq ∈ X×Y is referred to as a labeled pattern or data point. Several data points
denoted by px1, y1q, px2, y2q, . . ., pxn, ynq with n ∈ N, form a dataset, which is
represented by the tuple ppx1, y1q, px2, y2q, . . . , pxn, ynqq ∈ pX × Yq

n.

Let the function f :M×X → Y be such that the label assigned to a pattern x
according to the model θ ∈ M is fpθ, xq. Then, given a dataset, the objective
is to obtain a model θ ∈ M, such that, for all patterns x ∈ X , the assigned
label fpθ, xq minimizes a notion of loss or risk. Let the function

` : Y × Y → r0,+∞q, (1)

be such that given a data point px, yq ∈ X × Y, the loss or risk induced by
choosing the model θ ∈M is `pfpθ, xq, yq. The risk function ` is assumed to be
nonnegative and satisfy `py, yq = 0 for all y ∈ Y. Nonetheless, there might exist
other models θ ∈ M such that `pfpθ, x′q, y′q = 0 for the labelled data point
px′, y′q, revealing the need for a large number of labeled patterns for model
selection.

The empirical risk induced by a model θ with respect to the dataset

z = ppx1, y1q, px2, y2q, . . . , pxn, ynqq ∈ pX × Yq
n
, (2)

with n ∈ N, is determined by the function Lz :M → r0,+∞q, which satis-
fies

Lzpθq,
1

n

n∑
i=1

`pfpθ, xiq, yiq. (3)

The ERM problem is given by the optimization problem

min
θ∈M

Lzpθq, (4)

and the set of solutions to the problem is denoted by

T pzq , arg min
θ∈M

Lzpθq. (5)

RR n° 9508



6 Daunas, Esnaola, Perlaza, and Poor.

Note that if the set M is finite, the ERM problem in (4) has a solution, and
therefore, it holds that |T pzq| > 0. Nevertheless, in general, the ERM problem
does not always have a solution; that is, there exist choices of the loss function
` and the dataset z that yield |T pzq| = 0.

In the Bayesian and PAC frameworks in [25] and [23] solve the problem by
constructing probability measures PΘ|Z=z conditioned on the dataset z, from
which models are randomly sampled. In this context, finding probability mea-
sures that are minimizers of the ERM problem in (4) over the set 4pM,F q of
all probability measures that can be defined on the measurable space pM,F q,
requires a metric that enables assessing the goodness of the probability measure.
A common metric is the notion of expected empirical risk.

Definition 2.1 (Expected Empirical Risk). Given a dataset z ∈ pX × Yq
n, let

the function Rz : 4pM,F q→ r0,+∞q be such that for all probability measures
Q ∈ 4pM,F q,

RzpQq ,
∫

Lzpθq dQpθq, (6)

where the dataset z is defined in (2); and the function Lz is defined in (3).

The expected empirical risk is an important performance indicator of learning
algorithms. However, it only gives an indication of the risk induced over the
training dataset, while the performance of the ERM solutions is characterized
by their generalization capability and sensitivity [28,30,31,33]. In the following,
we review the Type-I relative entropy regularization that serves as the basis for
the analysis of the regularization asymmetry.

3 The Type-I ERM-RER Problem

The Type-I ERM-RER problem is parametrized by a probability measure Q ∈
4pM,F q and a positive real λ, where the measure Q is the reference mea-
sure and λ is the regularization factor. The Type-I ERM-RER problem, with
parameters Q and λ, consists of the following optimization problem:

min
P∈4QpM,Fq

RzpP q + λDpP‖Qq, (7)

where the dataset z is defined in (3), the function Rz is defined in (6), and the
optimization domain is

4QpM,F q , {P ∈ 4pM,F q : P � Q}, (8)

where the notation P � Q stands for P being absolutely continuous with respect
to Q.

The solution to the Type-I ERM-RER problem in (7) is the Gibbs probability
measure [28–30], which is presented by the following lemma.

Inria
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Lemma 3.1 ( [28, Lemma 1]). Given a probability measure Q ∈ 4pM,F q and
a dataset z ∈ pX × Yq

n, let the function KQ,z : R → R be such that for all
t ∈ R,

KQ,zptq = log

ˆ∫
expptLzpθqq dQpθq

˙

, (9)

where the dataset z is defined in (2). Let also the set KQ,z ⊆ R be

KQ,z ,

{
s > 0 : KQ,z

ˆ

−1

s

˙

< +∞
}
. (10)

Then, for all θ ∈ suppQ and for all λ ∈ KQ,z, the solution of the Type-I ERM-
RER problem in (7), is the unique probability measure P pQ,λq

Θ|Z=z ∈4QpM,F q,
whose Radon-Nikodym derivative with respect to Q satisfies that

dP
pQ,λq

Θ|Z=z

dQ
pθq = exp

ˆ

−KQ,z

ˆ

− 1

λ

˙

− 1

λ
Lzpθq

˙

. (11)

4 The Type-II ERM-RER Problem
The Type-II ERM-RER problem is parametrized by a probability measure Q ∈
4pM,F q and a positive real λ. The measure Q is referred to as the reference
measure and λ as the regularization factor. Given the dataset z ∈ pX × Yq

n

in (2), the Type-II ERM-RER problem, with parameters Q and λ, consists of
the following optimization problem:

min
P∈5QpM,Fq

RzpP q + λDpQ‖P q, (12)

where z is defined in (3), the function Rz is defined in (6), and the optimization
domain is

5QpM,F q , {P ∈ 4pM,F q : Q� P}. (13)

4.1 The Solution to the Type-II ERM-RER Problem
The asymmetry of the relative entropy poses a distinct challenge when tackling
the optimization problem given in (12). The approach that leads to the solution
of the Type-I in (7) needs to be adapted to accommodate the challenges posed
by the absolute continuity requirement in (13). The solution of the Type-II
ERM-RER problem in (12) is presented in the following theorem.

Theorem 4.1. Given a measure Q ∈ 4pM,F q and a dataset z ∈ pX × Yq
n,

let the function K̄Q,z : R→ R be such that for all t ∈ p0,∞q it holds that

K̄Q,zptq = β, (14)

where ∫
t

β + Lzpθq
dQpθq = 1, (15)

RR n° 9508



8 Daunas, Esnaola, Perlaza, and Poor.

with Lz being the function defined in (3). The function K̄Q,z in (14) is well
defined for a subset of p0,∞q, which is denoted by K̄Q,z, and satisfies

K̄Q,z ,

{
t ∈ p0,∞q :

∫
t

K̄Q,zptq + Lzpθq
dQpθq = 1

}
. (16)

Then, for all θ ∈ suppQ and for all λ ∈ K̄Q,z, the solution to the optimiza-
tion problem in (12) is the unique probability measure P̄ pQ,λq

Θ|Z=z, whose Radon-
Nikodym derivative with respect to the probability measure Q satisfies

dP̄
pQ,λq

Θ|Z=z

dQ
pθq =

λ

K̄Q,zpλq + Lzpθq
, (17)

where the functions Lz and K̄Q,z are defined in (3) and (14), respectively.

Proof: The proof is divided into two parts. In the first part, an ancillary opti-
mization problem is solved in a subset of the optimization domain of the Type-II
ERM-RER problem. In the second part, it is shown that the solution obtained
in this subset is, in fact, the solution of the Type-II ERM-RER problem.

The first part is as follows. Given the dataset z ∈ pX × Yq
n in (2), the ancillary

optimization problem is given by:

min
P∈©QpM,Fq

RzpP q + λDpQ‖P q, (18)

where the optimization domain is

©Q pM,F q , 5QpM,F q ∩4QpM,F q, (19)

and the sets4QpM,F q and5QpM,F q are respectively defined in (8) and (13).
The solution to the ancillary optimization problem in (18) is presented by the
following lemma.

Lemma 4.1. For all λ ∈ K̄Q,z with K̄Q,z in (14), the solution to the optimiza-
tion problem in (18) is the unique probability measure P̄ pQ,λq

Θ|Z=z in (17).

Proof: From the fact that, for all P ∈ ©QpM,F q, the measure Q is mutu-
ally absolute continuous with respect to P , the ancillary optimization problem
in (18) can be written as follows:

min
P∈©QpM,Fq

„ ∫
Lzpθq

dP

dQ
pθq dQpθq− λ

∫
log

ˆ

dP

dQ
pθq

˙

dQpθq



, (20)

s.t.
∫

dP

dQ
pθq dQpθq = 1. (21)

The Lagrangian of the optimization problem in (20) can be constructed in terms
of a function in the set M of nonnegative measurable functions with respect to

Inria
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the measurable spaces ©QpM,F q and pR,F q. Let L : M × R → R be the
Langragian

L

ˆ

dP

dQ
, β

˙

=

∫ ˆ

Lzpθq
dP

dQ
pθq− λ log

ˆ

dP

dQ
pθq

˙

+ β

ˆ

dP

dQ
pθq− 1

˙˙

dQpθq, (22)

where β is a real value that acts as a Lagrange multiplier due to (21). The
Gateaux differential [41] of the functional L in (22) at

´

dP
dQ , β

¯

∈M ×R in the
direction of h ∈M is

∂L

ˆ

dP

dQ
, β;h

˙

=

∫
hpθq

ˆ

Lzpθq + β

−λ
ˆ

dP

dQ
pθq

˙−1
¸

dQpθq. (23)

The relevance of the Gateaux differential in (23) stems from [41, Theorem 1,
page 178], which unveils the fact that a necessary condition for the functional

L in (22) to have a stationary point at
ˆ

dP̄
pQ,λq

Θ|Z=z

dQ , β

˙

∈ M× R is that for all

functions h ∈M , the following holds:

∂L

¨

˝

dP̄
pQ,λq

Θ|Z=z

dQ
, β;h

˛

‚= 0. (24)

From the fact that h is nonnegative, for all θ ∈M it follows that

Lzpθq− λ

¨

˝

dP̄
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

−1

+ β = 0, (25)

and thus,
dP̄

pQ,λq

Θ|Z=z

dQ
pθq =

λ

K̄Q,zpλq + Lzpθq
, (26)

where the function K̄Q,z is defined in (14).

Finally, note that the objective function in (20) is the sum of two terms.
The first one, i.e.,

∫
Lzpθq dP

dQ pθq dQpθq, is linear in dP
dQ . The second, i.e.,

−
∫

log
´

dP
dQ pθq

¯

dQpθq, is strictly convex with dP
dQ . Hence, given that λ > 0,

the sum of both terms is strictly convex with dP
dQ . This implies the uniqueness

of P̄ pQ,λq

Θ|Z=z. An in depth proof is presented in Appendix A.

This completes the first part of the proof of Theorem 4.1. The second part rests
in the following lemma.

RR n° 9508



10 Daunas, Esnaola, Perlaza, and Poor.

Lemma 4.2. For all λ ∈ K̄Q,z, with K̄Q,z in (16), it holds that

min
P∈5QpM,Fq\©QpM,Fq

RzpP q + λDpQ‖P q > min
P∈5QpM,Fq

RzpP q + λDpQ‖P q.

(27)

Proof: The proof is presented in Appendix B.

More specifically, Lemma 4.2 conveys the fact that the relative entropy regular-
ization penalty for considering models outside of the support is always greater
than the reduction in the expected empirical risk induced by including these
models. This includes the case in which the set T pzq in (5) lies outside of the
support of Q.

From (19), it holds that

©Q pM,F q ⊆ 5QpM,F q. (28)

Hence, from (28), it follows that

min
P∈5QpM,Fq

RzpP q + λDpQ‖P q ≤ min
P∈©QpM,Fq

RzpP q + λDpQ‖P q. (29)

From Lemma 4.2, it holds that

min
P∈5QpM,Fq

RzpP q + λDpQ‖P q ≥ min
P∈©QpM,Fq

RzpP q + λDpQ‖P q. (30)

Thus, the measure P̄ pQ,λq

Θ|Z=z in (17) is the solution of the optimization problem
in (12), which completes the proof of Theorem 4.1.

4.2 Properties of the Solution
The properties of the function K̄Q,z in (14) and the set K̄Q,z in (16) can be
studied using the following mathematical objects. Given a positive real δ and
the dataset z in (2), consider the set

Lzpδq , {θ ∈M : Lzpθq ≤ δ}, (31)

where the function Lz is defined in (3) and δ ∈ r0,∞q. Consider also the
nonnegative real

δ?Q,z , inf{δ ∈ r0,∞q : QpLzpδqq > 0}, (32)

with Q in (12). Let also L?Q,z be the following level set of the empirical risk
function Lz in (3):

L?Q,z ,
{
θ ∈M : Lzpθq = δ?Q,z

}
. (33)

The following lemma introduces the properties of the function K̄Q,z in (14).

Lemma 4.3. The function K̄Q,z in (14), for fixed Q and z, is strictly increas-
ing, continuous, and differentiable infinitely many times.

Inria
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Proof: The proof is presented in Appendix C.

Note that from Lemma 4.3, the value K̄Q,zpλq in (14) increases as the regular-
ization factor λ increases, which is consistent with the notion that it acts as a
scaling factor in (17). This highlights its dependence with the dataset z in (2)
and the reference measure Q in (12).

Similarly, the set K̄Q,z in (16) also depends on the dataset z in (2) and the
probability measure Q in (12). The following lemma presents the properties of
the set K̄Q,z in (16).

Lemma 4.4. The set K̄Q,z in (16) is either the empty set or the set

K̄Q,z = p0,∞q. (34a)

Moreover, for all λ ∈ K̄Q,z it holds that

K̄Q,zpλq ∈
`

−δ?Q,z,∞
˘

, (34b)

with K̄Q,z defined in (14) and δ?Q,z in (32).

Proof: The proof is presented in Appendix D.

Lemma 4.5 below shows that the expected empirical risk induced by the Type-II
ERM-RER solution can be computed in terms of the regularization factor λ and
the function K̄Q,z defined in (16). The relation of the expected empirical risk
induced by P̄ pQ,λq

Θ|Z=z in (17) is presented by the following lemma.

Lemma 4.5. For all λ ∈ K̄Q,z, with K̄Q,z in (16), it holds that

Rz

´

P̄
pQ,λq

Θ|Z=z

¯

= λ− K̄Q,zpλq, (35)

where the functions Rz and K̄Q,z are respectively defined in (6) and (14); and
the measure P̄ pQ,λq

Θ|Z=z is defined in (17).

Proof: The proof is presented in Appendix E.

The equality in (35) provides an upper bound to the expected empirical risk
Rz

´

P̄
pQ,λq

Θ|Z=z

¯

. The following corollary of Lemma 4.5 formalizes this observa-
tion.

Corollary 4.6. For all λ ∈ K̄Q,z, with K̄Q,z in (16), it holds that

Rz

´

P̄
pQ,λq

Θ|Z=z

¯

< λ+ δ?Q,z, (36)

where P̄ pQ,λq

Θ|Z=z is the probability measure in (17) and δ?Q,z is defined in (32).

The upper bound presented in Corollary 4.6 is useful as it gives operational
meaning to the regularization factor. Indeed, this bound shows that the reg-
ularization factor governs the expected empirical risk increase with respect to
the infimum of the empirical risk over the support.

RR n° 9508
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4.3 Discussion on Regularization Properties

The Type-II relative entropy regularizer for the ERM problem in (12) allows for
an exploratory minimization, i.e. models outside the support of the reference
measure are given consideration. However, Theorem 4.1 shows that the support
of the probability measure P̄ pQ,λq

Θ|Z=z in (17) collapses into the support of the
reference. A parallel can be established between Type-I and Type-II, as in both
cases the support of the solution is the support of the reference measure. In
a nutshell, the use of relative entropy regularization inadvertently forces the
solution to coincide with the support of the reference regardless of the training
data.

5 Interplay Between the Relative Entropy Asym-
metry and the Risk

This section presents a connection between the Type-I ERM-RER in (7) and
Type-II ERM-RER problems in (12). The log empirical risk is the function
Vz,λ :M→ R, which satisfies

Vz,λpθq , log
`

K̄Q,zpλq + Lzpθq
˘

, (37)

where the functions Lz and K̄Q,z are defined in (3) and (14), respectively. For
the case in which K̄Q,z 6= ∅, replacing the empirical risk in (4) by the notion
of log empirical risk in (37) leads to the expected log empirical risk, as shown
hereunder.

Definition 5.1 (Expected Log Empirical Risk). Given a dataset z ∈ pX × Yq
n,

let the function R̄z : 4pM,F q → R be such that for all probability measures
P ∈ 4pM,F q and for all λ ∈ p0,+∞q it holds that

R̄z,λpP q ,
∫

Vz,λpθq dP pθq, (38)

where the function Vz,λ is defined in (37).

By considering the expected log empirical risk, an alternative formulation of the
Type-I ERM-RER problem is presented. This formulation, also parametrized
by Q and λ, consists in the following optimization problem:

min
P∈4QpM,Fq

R̄z,λpP q + DpP‖Qq. (39)

Using the elements above, the main result of this section is presented in the
following theorem.

Theorem 5.1. The solution to the optimization problem in (39) is the unique
probability measure P̄ pQ,λq

Θ|Z=z in (17).

Inria



Empirical Risk Minimization with Relative Entropy Regularization Type-II 13

Proof: Denote by P̂
pQ,λq

Θ|Z=z the solution to the optimization problem in (39).
Then, from Lemma 3.1, for all θ ∈ suppQ, it follows that

dP̂
pQ,λq

Θ|Z=z

dQ
pθq=

expp−Vz,λpθqq∫
expp−Vz,λpνqq dQpνq

(40a)

=
exp

´

log
´

1
Lzpθq+K̄Q,zpλq

¯¯

∫
exp

´

log
´

1
Lzpνq+K̄Q,zpλq

¯̄

dQpνq

(40b)

=

´∫
1

Lzpνq+K̄Q,zpλq
dQpνq

¯−1

Lzpθq+K̄Q,zpλq
(40c)

=
λ

Lzpθq + K̄Q,zpλq
(40d)

=
dP̄

pQ,λq

Θ|Z=z

dQ
pθq, (40e)

where the equality in (40b) follows from the definition of log empirical risk
in (37); the equality in (40d) follows from (14) and (15); and the equality in (40e)
follows from Theorem 4.1, which completes the proof.

Theorem 5.1 establishes an equivalence between Type-I and Type-II regulariza-
tion. It is shown therein that the direction of the relative entropy regularizer can
be switched by appropriately transforming the risk function as shown in (37).
Indeed, solving the Type-I ERM-RER problem with the expected log empirical
risk defined in (38) yields the probability measure P̄ pQ,λq

Θ|Z=z that is the solution
to the Type-II ERM-RER problem. In view of this, it is not surprising that the
support for the probability measure that is the solution to the Type-II ERM-
RER collapses into the support of the reference measure. In fact, the mutual
absolute continuity between the solution and the reference probability measures
is a consequence of the relative entropy regularization, regardless of its direc-
tion. Type-I regularization forces the support of the solution to include all the
models in the support of the reference measure; on the other hand, Type-II reg-
ularization constrains the models in the support of the solution to the models
in the support of the reference measure.

6 Final Remarks
This work has introduced the Type-II ERM-RER problem and has presented
its solution through Theorem 4.1. The solution highlights that regardless of the
direction in which relative entropy is used as a regularizer, the models that are
considered by the solution are necessarily in the support of the reference mea-
sure. In that sense, the restriction over the models introduced by the reference
measure cannot be bypassed by the training data when relative entropy is used
as the regularizer. We have shown that this is a consequence of the equivalence
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14 Daunas, Esnaola, Perlaza, and Poor.

that can be established between Type-I and Type-II regularization. Remarkably,
the direction of the relative entropy regularizer can be switched by a logarith-
mic transformation of the risk. The mutual absolute continuity of both Type-I
and Type-II ERM-RER solutions relative to the reference measure can be un-
derstood in the light of the equivalence between both types of regularization.
The analytical results have also enabled us to provide an operationally mean-
ingful characterization of the expected empirical risk induced by the Type-II
solution in terms of the regularization parameters. This is turn reduces the
computational burden of bounding the expected empirical risk. Moreover, the
insight provided by the bounds on the expected empirical risk can be distilled
into guidelines for the selection of the regularization parameter.
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A Proof of Lemma 4.1
All measures in the set ©QpM,F q in (19) are mutually absolutely continuous
with respect to Q. Then, the optimization problem in (18) can be written as
follows:

min
P∈©QpM,Fq

„ ∫
Lzpθq

dP

dQ
pθq dQpθq + λ

∫
dQ

dP
pθq log

ˆ

dQ

dP
pθq

˙

dP pθq



, (41)

with dQ
dP and dP

dQ being the Radon-Nikodym derivative of Q with respect to P ,
and the one of P with respect to Q.

Let M be the set of nonnegative measurable functions with respect to the mea-
surable spaces©QpM,F q and pr0,∞q,Bq. The Lagrangian of the optimization
problem in (18) can be constructed in terms of a function in M , instead of a mea-
sure in the measurable space©QpM,F q. Let such Lagrangian L : M ×R→ R

be of the form

L

ˆ

dP

dQ
, β

˙

=

∫
Lzpθq

dP

dQ
pθq dQpθq− λ

∫
log

ˆ

dP

dQ
pθq

˙

dQpθq

+ β

ˆ∫
dP

dQ
pθq dQpθq− 1

˙

, (42a)

where β is a real value that acts as a Lagrange multiplier due to the constraint:∫
dP

dQ
pθq dQpθq = 1. (42b)

Let h : M → r0,∞q be a function in M . The Gateaux differential [41] of the
functional L in (42) at

´

dP
dQ , β

¯

∈M × r0,∞q in the direction of h is

∂L

ˆ

dP

dQ
, β;h

˙

,
d

dγ
rpγq

ˇ

ˇ

ˇ

ˇ

γ=0

, (43)

where the real function r : R→ R is such that for all γ ∈ R,

rpγq =

∫
Lzpθq

ˆ

dP

dQ
pθq + γhpθq

˙

dQpθq− λ
∫

log

ˆ

dP

dQ
pθq + γhpθq

˙

dQpθq

+ β

ˆ∫ ˆ

dP

dQ
pθq + γhpθq

˙

dQpθq− 1

˙

. (44)

Note that the derivative of the real function r in (44) is

d

dγ
rpγq =

∫
Lzpθqhpθq dQpθq− λ

∫ ˆ

dP

dQ
pθq + γhpθq

˙−1

hpθq dQpθq

+ β

∫
hpθq dQpθq. (45)
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From (43) and (45), it follows that

∂L

ˆ

dP

dQ
, β;h

˙

=

∫ ˜

Lzpθqhpθq− λ
ˆ

dP

dQ
pθq

˙−1

hpθq + βhpθq

¸

dQpθq (46)

=

∫
hpθq

˜

Lzpθq− λ
ˆ

dP

dQ
pθq

˙−1

+ β

¸

dQpθq. (47)

The relevance of the Gateaux differential in (46) stems from [41, Theorem 1,
page 178], which unveils the fact that a necessary condition for the functional

L in (42) to have a stationary point at
ˆ

dP̄
pQ,λq

Θ|Z=z

dQ , β

˙

∈ M× r0,∞q is that for

all functions h ∈M ,

∂L

¨

˝

dP̄
pQ,λq

Θ|Z=z

dQ
;h

˛

‚= 0. (48)

From (48), it follows that
dP̄

pQ,λq

Θ|Z=z

dQ must satisfy for all functions h in M that

∫
hpθq

¨

˚

˝

Lzpθq− λ

¨

˝

dP̄
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

−1

+ β

˛

‹

‚

dQpθq = 0. (49)

From the fact that h is nonnegative and the equality in (49), it follows that for
all θ ∈M,

Lzpθq− λ

¨

˝

dP̄
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

−1

+ β = 0, (50)

and thus,
dP̄

pQ,λq

Θ|Z=z

dQ
pθq =

λ

β + Lzpθq
, (51)

with β chosen to satisfy (15). That is,

dP̄
pQ,λq

Θ|Z=z

dQ
pθq =

λ

K̄Q,zpλq + Lzpθq
, (52)

where the function K̄Q,z is defined in (14).

The proof continues by verifying that the objective function in (A) is strictly
convex, and thus, the measure P̄ pQ,λq

Θ|Z=z that satisfies (51) is the unique mini-
mizer. More specifically, note that the objective function in (A) is the sum of
two terms. The first one, i.e.,

∫
Lzpθq dP

dQ pθq dQpθq, is linear in dP
dQ . The second,

i.e., −
∫

log
´

dP
dQ pθq

¯

dQpθq, is strictly convex with dP
dQ . Hence, given that λ > 0,

the sum of both terms is strictly convex with dP
dQ . This implies the uniqueness

of P̄ pQ,λq

Θ|Z=z, which completes the proof.
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B Proof of Lemma 4.2
Given a probability measure V ∈ 5QpM,F q, with 5QpM,F q in (13), let V0

and V1 be two probability measures on the measurable space pM,F q such that
for all A ∈ F , it holds that

V0pAq =
V pA \ suppQq

V pM\ suppQq
, (53a)

and
V1pAq =

V pA ∩ suppQq

V pM∩ suppQq
. (53b)

Let the real value α be
α = V pM∩ suppQq. (54)

Hence, for all A ∈ F the measure V satisfies that

V pAq = p1− αqV0pAq + αV1pAq. (55)

Moreover, from (55) it holds that: iq If V pAq = 0, then V0pAq = 0, which
implies that V0 is absolutely continuous with respect to V ; iiq If V pAq = 0,
then V1pAq = 0, which implies that V1 is absolutely continuous with respect
to V . Furthermore, from the definition of 5QpM,F q in (13) the probability
measure V is absolutely continuous with respect to Q. Hence, for all A ∈ F , it
follows that

QpAq =

∫
A

dQpθq (56)

=

∫
A

dQ

dV
pθq dV pθq (57)

=

∫
A

dQ

dV
pθq dpp1− αqV0 + αV1qpθq (58)

= p1− αq

∫
A

dQ

dV
pθq dV0pθq + α

∫
A

dQ

dV
pθq dV1pθq (59)

=

∫
A
α

dQ

dV
pθq dV1pθq. (60)

Hence, from (60) and and the Radon-Nikodym Theorem in [42, Theorem 2.2.1,
page 65] the probability measure Q is absolutely continuous with respect to V1.
This implies that for all A ∈ F , it holds that

QpAq =

∫
dQ

dV1
pθq dV1pθq, (61)

where, for all θ ∈ suppV ,

dQ

dV1
pθq = α

dQ

dV
pθq. (62)
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From (62), the following holds:

DpQ‖V q =

∫
log

ˆ

dQ

dV
pθq

˙

dQpθq (63a)

=

∫
log

ˆ

1

α

dQ

dV1
pθq

˙

dQpθq (63b)

=

∫
log

ˆ

dQ

dV1
pθq

˙

dQpθq−
∫

logpαq dQpθq (63c)

= DpQ‖V1q− logpαq. (63d)

From (63) it follows that

RzpV q + λDpQ‖V q = Rzpp1− αqV0 + αV1q + λDpQ‖V1q− λ logpαq (64a)
= p1− αqRzpV0q + αRzpV1q + λDpQ‖V1q

− λ logpαq (64b)
≥ αRzpV q + λDpQ‖V1q− λ logpαq, (64c)

with equality if and only if α = 1, which implies that for all A ∈ F , it holds
that

V pAq = V1pAq (65a)
= V pA ∩ suppQq, (65b)

where the equality in (65b) follows from (53b). This implies that the equality
in (64c) holds if and only if

suppQ = suppV, (66)

which implies that the equality in (64c) holds if and only if the measure V is
mutually absolutely continuous with respect to the reference measureQ. Finally,
the above leads to

min
P∈5QpM,Fq\©QpM,Fq

RzpP q + λDpQ‖P q > min
P∈5QpM,Fq

RzpP q + λDpQ‖P q,

(67)
which completes the proof.

C Proof of Lemma 4.3
To proof the properties of the function K̄Q,z in (14), for which an explicit
expression is unknown, are proven by studying the functional inverse and the
continuous inverse theorem [43, Theorem 5.6]. Hence, the proof is divided in
five parts. The first part introduces the functional inverse of the function K̄Q,z

in (14). The second part provides necessary conditions for the differentiation
lemma [44] to hold, which is used in the third and fourth parts of the proof.
The third part presents the first derivative of the functional inverse and shows
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that its derivative is strictly positive. In the fourth part, the second and third
derivatives of the functional inverse of the function K̄Q,z in (14), are obtained
and it is proven by induction that it is continuous and differentiable infinitely
many times using Faà di Bruno’s lemma. Finally, in the fifth part, the properties
of the function K̄Q,z in (14) are proved using the above results on its functional
inverse via the continuous inverse theorem [43, Theorem 5.6].

The first part is as follows. Under the assumption that the set K̄Q,z in (16) is
not empty, there exists a t ∈ K̄Q,z and a γ ∈ R, such that

1 =

∫ dP̄
pQ,tq
Θ|Z=z

dQ
pθq dQpθq (68a)

=

∫
t

Lzpθq + γ
dQpθq, (68b)

which implies that
K̄Q,zptq = γ, (69)

where K̄Q,z is defined in (14). Let the function K̄−1
Q,z : R→ R be the functional

inverse of K̄Q,z in (14) given by

K̄−1
Q,zpβq =

1∫
1

Lzpθq+β dQpθq
, (70)

which follows from the constraint in (68) and the equality in (69). The proof
continues by showing by contradiction that for all α ∈ K̄Q,z the domain of the
function K̄−1

Q,z in (70) is an open subset of R. Three cases are considered: iq
γ < −δ?Q,z; iiq γ = −δ?Q,z; and iiiq γ > −δ?Q,z.

In the first case, from the definition of δ?Q,z in (32), it follows from (68a) that if
γ < −δ?Q,z, then, for all θ ∈ {θ ∈ suppQ : Lzpθq < −γ}, it holds that

dP̄
pQ,tq
Θ|Z=z

dQ
pθq < 0, (71)

which contradicts (17) (see Radon-Nikodym Theorem [45]). The above implies
that for all α ∈ K̄Q,z, it holds that K̄Q,zpαq 6∈

`

−∞,−δ?Q,z
˘

.

In the second case, let the set of models that induce minimal empirical risk be
denoted by

A =
{
θ ∈ suppQ : Lzpθq = δ?Q,z

}
. (72)

If γ = −δ?Q,z two cases are considered: paq QpAq > 0 ; and pbq QpAq = 0. In
case paq, if γ = −δ?Q,z and QpAq > 0, the integral in (68b) is undefined, which
contradicts (68a). In the alternative case pbq, if γ = −δ?Q,z and QpAq = 0, from
the definition of δ?Q,z in (32) there exists a countably infinite sequence of models
θ1,θ2, . . . in suppQ that satisfies

Lzpθ1q > Lzpθ2q > · · · > δ?Q,z. (73)
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Note that for all i ∈ N, θi ∈ suppQ satisfies that

Lzpθiq = δ?Q,z + εi, (74)

for some εi > 0 such that
lim
i→∞

εi = 0, (75)

where εi is a positive real, which satisfies εi > εi+1. Let the sets B1,B2, . . .
form a partition of the suppQ, such that Bi = {ν ∈ suppQ : Lzpθiq ≥ Lzpνq >
Lzpθi+1q}. Then, the integral in the denominator of (70) satisfies∫

1

Lzpθq− δ?Q,z
dQpθq ≥ lim

n→∞

n∑
i=1

1

Lzpθiq− δ?Q,z
QpBiq (76a)

= lim
n→∞

n∑
i=1

1

εi
QpBiq (76b)

=∞, (76c)

where the equality in (76b) follows from (74); and the equality in (76c) follows
from the fact that the series is divergent as epsilon approaches zero, which con-
tradicts (68a). The above implies that for β = −δ?Q,z, it holds that K̄

−1
Q,zpβq 6∈

K̄Q,z.

Finally, for the third case, if γ > −δ?Q,z, it holds that∫
1

Lzpθq + γ
dQpθq ≤

∫
1

δ?Q,z + γ
dQpθq (77a)

=
1

δ?Q,z + γ
. (77b)

Then, for all β > −δ?Q,z, it holds that K̄
−1
Q,zpβq ∈ K̄Q,z such that the constraint

in (68a) holds.

From the contradictions induced by (71) and (76), it implies that for all α ∈
K̄Q,z, it holds that K̄Q,zpαq ∈

`

−δ?Q,z,∞
˘

. Hence, the functional inverse K̄−1
Q,z

in (70) is well defined for K̄−1
Q,z :

`

−δ?Q,z,∞
˘

→ p0,∞q, which completes the
first part of the proof.

The second part is as follows. From the equality in (77b) and the fact that Q is a
probability measure, it follows that the integral on the right hand side in (77a) is
bounded. Hence, from the dominated convergence theorem [42, Theorem 1.6.9,
page 50] (77b) is integrable for all β ∈

`

−δ?Q,z,∞
˘

. Furthermore, for all θ ∈M
the partial derivative of 1

Lzpθq+β in (77a) with respect to β yields

∂

∂β

ˆ

1

Lzpθq + β

˙

= − 1

pβ + Lzpθqq
2 , (78)

which exists for all β ∈ p−δ?,∞q. Then, from the differentiation lemma [44], the
interchange of the integral with the derivative on the right hand side of (77a) is
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possible. Hence,

d

dβ

∫
1

Lzpθq + β
dQpθq =

∫
∂

∂β

ˆ

1

Lzpθq + β

˙

dQpθq, (79)

which completes the second part of the proof.

The third part is as follows. For all β ∈
`

−δ?Q,z,∞
˘

, the derivative of the
function K̄−1

Q,z in (70) satisfies:

K̄
−1p1q

Q,z pβq =
d

dβ

ˆ∫
1

β + Lzpθq

dQpθq

˙−1

(80a)

= −
ˆ∫

1

β + Lzpθq

dQpθq

˙−2
d

dβ

∫
1

β + Lzpθq

dQpθq (80b)

= −

˜

1∫
1

β+Lzpθq
dQpθq

¸2 ∫
∂

∂β

ˆ

1

β + Lzpθq

˙

dQpθq (80c)

= −
´

K̄−1
Q,zpβq

¯2
∫
− 1

pβ + Lzpθqq
2 dQpθq (80d)

=
´

K̄−1
Q,zpβq

¯2
∫

1

pβ + Lzpθqq
2 dQpθq (80e)

=

∫ ˜

K̄−1
Q,zpβq

β + Lzpθq

¸2

dQpθq (80f)

=

∫ ¨

˝

dP̄
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

2

dQpθq (80g)

=

∫ dP̄
pQ,λq

Θ|Z=z

dQ
pθq dP̄

pQ,λq

Θ|Z=zpθq, (80h)

where the equality in (80c) follows from (79); the equality in (80d) follows
from (78); and the equality in (80g) follows from Theorem 4.1.

From (80f), for all β ∈
`

−δ?Q,z,∞
˘

, with δ?Q,z in (32), it follows that the first
derivative of K̄−1

Q,z satisfies that

K̄
−1p1q

Q,z pβq ≥ 0. (81)

The proof continues by showing that the inequality in (81) is strict. Note that
from (80h), for all β ∈

`

−δ?Q,z,∞
˘

, such that K̄−1p1q

Q,z pβq = 0, it implies that for

all θ ∈ suppQ, the Radon-Nikodym derivative
dP̄

pQ,λq

Θ|Z=z

dQ in (17) satisfies

dP̄
pQ,λq

Θ|Z=z

dQ
pθq = 0. (82)
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However, this is a contradiction to the constraint in (68). This contradiction
implies that for all β ∈

`

−δ?Q,z,∞
˘

, such that K̄−1p1q

Q,z pβq = 0, it holds that
K̄−1
Q,zpβq 6∈ K̄Q,z. Hence, for all K̄−1

Q,zpβq ∈ K̄Q,z it holds that

K̄
−1p1q

Q,z pβq > 0, (83)

and implies that function K̄−1
Q,z in (70) is strictly increasing, which completes

the third part of the proof.

The fourth part is as follows. The 2nd and 3rd derivatives of the function K̄−1
Q,z

are presented bellow. The second derivative satisfies for all β ∈
`

−δ?Q,z,∞
˘

,

K̄
−1p2q

Q,z pβq =
d

dβ

˜

´

K̄−1
Q,zpβq

¯2
∫

1

pβ + Lzpθqq
2 dQpθq

¸

(84a)

=
d

dβ

´

K̄−1
Q,zpβq

¯2
∫

1

pβ + Lzpθqq
2 dQpθq

+
´

K̄−1
Q,zpβq

¯2 d

dβ

∫
1

pβ + Lzpθqq
2 dQpθq (84b)

= 2

ˆ∫
1

β + Lzpθq
dQpθq

˙−3
˜∫ ˆ

1

β + Lzpθq

˙2

dQpθq

¸2

+

ˆ∫
1

β + Lzpθq
dQpθq

˙−2 ∫
−2

ˆ

1

β + Lzpθq

˙3

dQpθq (84c)

= 2
´

K̄−1
Q,zpβq

¯3
˜∫ ˆ

1

β + Lzpθq

˙2

dQpθq

¸2

− 2
´

K̄−1
Q,zpβq

¯2
∫ ˆ

1

β + Lzpθq

˙3

dQpθq, (84d)

and the third derivative of the function K̄−1
Q,z satisfies for all β ∈

`

−δ?Q,z,∞
˘

,

K̄
−1p3q

Q,z pβq =
d

dβ

¨

˝2
´

K̄−1
Q,zpβq

¯3
˜∫ ˆ

1

β + Lzpθq

˙2

dQpθq

¸2

−2
´

K̄−1
Q,zpβq

¯2
∫ ˆ

1

β + Lzpθq

˙3

dQpθq

¸

(85a)

= 2
d

dβ

¨

˝

´

K̄−1
Q,zpβq

¯3
˜∫ ˆ

1

β + Lzpθq

˙2

dQpθq

¸2
˛

‚

− 2
d

dβ

˜

´

K̄−1
Q,zpβq

¯2
∫ ˆ

1

β + Lzpθq

˙3

dQpθq

¸

(85b)

= 2
d

dβ

´

K̄−1
Q,zpβq

¯3
˜∫ ˆ

1

β + Lzpθq

˙2

dQpθq

¸2
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+ 2
´

K̄−1
Q,zpβq

¯3 d

dβ

˜∫ ˆ

1

β + Lzpθq

˙2

dQpθq

¸2

(85c)

− 2
d

dβ

´

K̄−1
Q,zpβq

¯2
∫ ˆ

1

β + Lzpθq

˙3

dQpθq

− 2
´

K̄−1
Q,zpβq

¯2 d

dβ

∫ ˆ

1

β + Lzpθq

˙3

dQpθq (85d)

= 6

∫ ´

K̄−1
Q,zpβq

¯4

pβ + Lzpθqq
2 dQpθq

˜∫ ˆ

1

β + Lzpθq

˙2

dQpθq

¸2

(85e)

+2

¨

˝−4

∫ ˆ

1

β + Lzpθq

˙2

dQpθq

∫ ˜

K̄−1
Q,zpβq

β + Lzpθq

¸3

dQpθq

˛

‚(85f)

−2

˜

2

∫ ˆ

1

β + Lzpθq

˙2

dQpθq

¸ ∫ ˆ

1

β + Lzpθq

˙3

dQpθq (85g)

−2
´

K̄−1
Q,zpβq

¯2

¨

˝−3

∫ ˜

K̄−1
Q,zpβq

β + Lzpθq

¸4

dQpθq

˛

‚ (85h)

= 6
´

K̄−1
Q,zpβq

¯4
˜∫ ˆ

1

β + Lzpθq

˙2

dQpθq

¸3

+ 6
´

K̄−1
Q,zpβq

¯2
∫ ˆ

1

β + Lzpθq

˙4

dQpθq

−8

∫ ˆ

1

β + Lzpθq

˙2

dQpθq

∫ ˜

K̄−1
Q,zpβq

β + Lzpθq

¸3

dQpθq

−4

∫ ˆ

1

β + Lzpθq

˙2

dQpθq

∫ ˜

K̄−1
Q,zpβq

β + Lzpθq

¸3

dQpθq (85i)

= 6
´

K̄−1
Q,zpβq

¯4
˜∫ ˆ

1

β + Lzpθq

˙2

dQpθq

¸3

+ 6
´

K̄−1
Q,zpβq

¯2
∫ ˆ

1

β + Lzpθq

˙4

dQpθq (85j)

−12

∫ ˆ

1

β + Lzpθq

˙2

dQpθq

∫ ˜

K̄−1
Q,zpβq

β + Lzpθq

¸3

dQpθq. (85k)

By induction, from (80), (84), and (85), the derivatives of the function K̄−1
Q,z

in (70) can be expressed in terms of the functions f : R → R and g : R → R,
where the function f is such that

fpxq =
1

x
, (86)
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and the function g is such that

gpxq =

∫
1

x+ Lzpθq
dQpθq, (87)

where the function f and g are differentiable infinitely many times. Furthermore,
for all β ∈

`

−δ?Q,z,∞
˘

, the function composition of f and g satisfies that

pf ◦ gqpβq = K̄−1
Q,zpβq. (88)

Observe that the derivative of the function K̄−1
Q,z is given by Faà di Bruno’s

lemma in [46, page 217], which states that given an n ∈ N, let O be the set of
all integer partitions of n. Then the nth derivative of the function f ◦ g is given
by

dn

dxn
fpgpxqq =

∑
S∈O

f p |S|qpgpxqq
∏
A∈S

gp |A|qpxq. (89)

Hence, from (89), for all β ∈
`

−δ?Q,z,∞
˘

the nth derivative of the function K̄−1
Q,z

in (14) satisfies that

K̄
−1pnq

Q,z pβq =
∑
S∈O

p−1q
|S|

´

K̄−1
Q,zpβq

¯ |S|+1 ∏
A∈S

∫ ˆ

1

β + Lzpθq

˙p |A|q

dQpθq. (90)

From the equality in (90) and the fact that f in (86) and g in (87) are differen-
tiable infinitely many times in p0,∞q and

`

−δ?Q,z,∞
˘

respectively, the function
K̄−1
Q,z in (70) is differentiable infinitely many times in

`

−δ?Q,z,∞
˘

, which implies
the function K̄−1

Q,z is continuous. This completes the proof of the fourth part.

The fifth part is as follows. Let pγ1, γ2q ∈
`

−δ?Q,z,∞
˘2 be two real values, where

γ1 < γ2. Then, it holds that

γ1 < γ2, (91a)
Lzpθq + γ1 < Lzpθq + γ2, (91b)

1

Lzpθq + γ1
>

1

Lzpθq + γ2
, (91c)∫

1

Lzpθq + γ1
dQpθq >

∫
1

Lzpθq + γ2
dQpθq, (91d)

ˆ∫
1

Lzpθq + γ1
dQpθq

˙−1

<

ˆ∫
1

Lzpθq + γ2
dQpθq

˙−1

, (91e)

K̄−1
Q,zpγ1q < K̄−1

Q,zpγ2q. (91f)

From the inequalities in (91a) and (91f) and the continuous inverse theorem
in [43, Theorem 5.6], the function K̄Q,z in (14) is monotone, strictly increasing,
and continuous, which completes the proof.
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D Proof of Lemma 4.4

The proof is divided into three parts. The first part introduces the functional
inverse of the function K̄Q,z in (14). The second part is developed under the
assumption that K̄Q,z in (16) is not empty. The third part tackles the case in
which the set K̄Q,z is empty.

The first part is as follows. Under the assumption that the set K̄Q,z in (16) is
not empty, there exists a t ∈ K̄Q,z and a γ ∈ R, such that

1 =

∫ dP̄
pQ,tq
Θ|Z=z

dQ
pθq dQpθq (92a)

=

∫
t

Lzpθq + γ
dQpθq, (92b)

which implies that

K̄Q,zptq = γ, (93)

where K̄Q,z is defined in (14). Let let the function K̄−1
Q,z : R → R be the

functional inverse of K̄Q,z in (14) given by

K̄−1
Q,zpβq =

1∫
1

Lzpθq+β dQpθq
, (94)

which follows from the constraint in (92) and the equality in (93).

The second part is as follows. Under the assumption that the set K̄Q,z in (16)
is not empty, implies that ∫

1

Lzpθq + γ
dQpθq <∞. (95)

Then, from Lemma 4.3 for all λ ∈ p0,∞q it holds that∫
1

Lzpθq + K̄Q,zpλq
dQpθq ≤

∫
1

δ?Q,z + K̄Q,zpλq
dQpθq (96a)

=
1

δ?Q,z + K̄Q,zpλq
(96b)

<∞. (96c)

Furthermore, from for K̄−1
Q,zpγq ∈ p0,∞q, it holds that γ ∈

`

−δ?Q,z,∞
˘

, which
completes the second part of the proof.

The third part is as follows. Under the assumption that the K̄Q,z is empty there
is nothing to prove. This completes the proof.
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E Proof of Lemma 4.5
From Lemma 4.1 and the fact that the measures P̄ pQ,λq

Θ|Z=z and Q are mutually
absolutely continuous, it holds that for all θ ∈ suppQ,

dQ

dP̄
pQ,λq

Θ|Z=z

pθq =
K̄Q,zpλq + Lzpθq

λ
, (97)

where the functions Lz and K̄Q,z are in (3) and (14), respectively. From (97),
it follows that for all θ ∈ suppQ,

0 = λ
dQ

dP̄
pQ,λq

Θ|Z=z

pθq− Lzpθq− K̄Q,zpλq. (98)

Integrating both sides of (98) with respect to the probability measure P̄ pQ,λq

Θ|Z=z

yields

0 =

∫ ¨

˚

˝

Lzpθq− λ

¨

˝

dP̄
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

−1

+ K̄Q,zpλq

˛

‹

‚

dP̄
pQ,λq

Θ|Z=zpθq (99a)

=

∫
Lzpθq dP̄

pQ,λq

Θ|Z=zpθq− λ
∫ ¨

˝

dP̄
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

−1

dP̄
pQ,λq

Θ|Z=zpθq

+

∫
K̄Q,zpλq dP̄

pQ,λq

Θ|Z=zpθq (99b)

=Rz

´

P̄
pQ,λq

Θ|Z=z

¯

− λ
∫

dQpθq + K̄Q,zpλq (99c)

=Rz

´

P̄
pQ,λq

Θ|Z=z

¯

− λ+ K̄Q,zpλq. (99d)

From (99d), it holds that

Rz

´

P̄
pQ,λq

Θ|Z=z

¯

= λ− K̄Q,zpλq, (100)

which completes the proof.
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