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ON A GENERAL DIVISOR PROBLEM RELATED TO A CERTAIN DEDEKIND ZETA-FUNCTION OVER A SPECIFIC SEQUENCE OF POSITIVE INTEGERS

We consider the integral power sums of coefficients of the Dedekind zeta function of a non-normal cubic extension K 3 of rational field Q given by irreducible polynomial f (x) = x 3 + ax 2 + bx + c and investigate the average behavior of a k,K3 (n) over a certain sequences of positive integers for k ≥ 1. More precisely, we prove an asymptotic formula with an error term for the sum a 2 1 +a 2 2 +a 2 3 +a 2 4 +a 2 5 +a 2 6 ≤x (a 1 ,a 2 ,a 3 ,a 4 ,a 5 ,a 6 )∈Z 6 a k,K3 (a 2 1 + a 2 2 + a 2 3 + a 2 4 + a 2 5 + a 2 6 ), where (ζ K3 (s)) k := ∞ n=1 a k,K3 (n) n s .

Introduction

Let K be an algebraic extension of degree m of rational field Q. Define

ζ K (s) := α 1 N (α) s ,
for ℜ(s) > 1, where the summation is running over all the integral ideals α of K and norm of integral ideal α is denoted by N (α). The function ζ K (s) can also be written as

ζ K (s) = ∞ n=1 a K (n) n s ,
where a K (n) denotes the number of integral ideals of K with norm m. It is shown (by Chandrasekharan and Good [START_REF] Chandrasekharan | On the number of integral ideals in Galois extensions[END_REF]) that these coefficients are multiplicative and satisfies the upper bound

a K (n) ≤ d(n) m ,
where m is the degree of extension, i.e., m = [K : Q] and d(n) is the number of divisors of n.

In 1949, Landau [START_REF] Landau | Einführung in die elementare und analytishe Theorie der algebraishen Zahlen und der Ideale[END_REF] showed that

n≤x a K (n) = cx + O x 1-2 m+1 +ϵ ,
where c is the residue of ζ K (s) at its simple pole at s = 1, which is further improved to for quadratic field by Huxley and Watt [START_REF] Huxley | The number of ideals in a quadratic field, II[END_REF]. Some further improvement is also available for cubic fields by Müller [START_REF] Müller | On the distribution of ideals in cubic number fields[END_REF]. In 1993, W.G. Nowak [START_REF] Nowak | On the distribution of integer ideals in algebraic number-fields[END_REF] established that

n≤x a K (n) = cx +    O x 1-2 m + 8 m(5m+2) log 10 5m+2 x for 3 ≤ m ≤ 6, O x 1-2 m + 3 2m 2 log 2 m
x for m ≥ 7.

We also have some significant results (by Chandrasekharan and Narasimhan [START_REF] Chandrasekharan | The approximate functional equation for a class of zeta-functions[END_REF] and by Chandrasekharan and Good [START_REF] Chandrasekharan | On the number of integral ideals in Galois extensions[END_REF]) of n≤x a K (n) k for some higher powers k, if K is the Galois extension of Q.

If h is the class number of K and [K : Q] = r 1 + 2r 2 , where r 1 is the number of real conjugate fields and 2r 2 is the number of complex conjugate fields, then we can write

n≤x a K (n) = hλx + E(x),
where

λ := 2 r1+r2 π r2 R w|∆| 1 2
.

Here, w is the number of roots of unity in K; R is the regulator of K and ∆ is the discriminant of K. When [K : Q] = m ≥ 10, B. Paul and A. Sankaranarayanan proved that

E(x) ≪ x 1-3 m+6 +ϵ ,
where implied constants depend only on K and ϵ (see [START_REF] Paul | On the error term and zeros of the Dedekind zeta function[END_REF]). Also, if K = Q(ζ l ), where l is some positive integer and [K : Q] = m ≥ 8, then,

E(x) ≪ x 1-3 m+5 +ϵ ,
where the implied constants depend only on K and ϵ (see [START_REF] Paul | On the error term and zeros of the Dedekind zeta function[END_REF]).

It is of great interest to study the L-functions related to primitive holomorphic cusp forms. For many years, it has been a profound area in which many authors have contributed. Let L(s, f ) be the L-function connected with the primitive holomorphic cusp form f of weight w for the full modular group SL(2, Z) and λ f (n) are the normalized n th Fourier coefficients of Fourier expansion of f (z) at the cusp ∞, i.e.,

f (z) = ∞ n=1 λ f (n)n w-1 2 e 2πinz
where ℑ(z) > 0, then the L-function attached to λ f (n) is defined as

L(s, f ) = ∞ n=1 λ f (n) n s ,
for ℜ(s) > 1, where λ f (n) are Hecke eigenvalues of Hecke operators T n . Also,

L k (s, f ) = ∞ n=1 λ k,f (n) n s ,
where

λ k,f (n) = n=n 1 n 2 ...n k λ f (n 1 )λ f (n 2 ) . . . λ f (n k ).
In 2012, Kanemitsu, Sankaranarayanan and Tanigawa [START_REF] Kanemitsu | A mean value theorem for Dirichlet series and a general divisor problem[END_REF] proved that for k ≥ 2,

n≤x λ k,f (n) ≪ x 1-3 2k+2 +ϵ ,
where implied constant depends only on f and ϵ, which is further improved by Lü in [START_REF] Lü | On general divisor problems involving Hecke eigenvalues[END_REF].

For such divisor problems connected to holomorphic cusp forms, see the work of H.F. Liu [START_REF] Liu | Mean value estimates of the coefficients of product L-functions[END_REF], [START_REF] Liu | Some problems involving Hecke eigenvalues[END_REF] and Lü [START_REF] Lü | On general divisor problems involving Hecke eigenvalues[END_REF]. Recently, several authors considered the average behavior of λ sym j f (n) over certain sequences of positive integers and established some interesting asymptotic formulas (see, for instance [START_REF] Sharma | Discrete mean square of the coefficients of symmetric square L-functions on certain sequence of positive numbers[END_REF][START_REF] Sharma | Higher moments of the Fourier coefficients of symmetric square L-functions on certain sequence[END_REF][START_REF] Sharma | Average behavior of the Fourier coefficients of symmetric square L-function over some sequence of integers[END_REF][START_REF] Hua | The average behaviour of Hecke eigenvalues over certain sparse sequence of positive integers[END_REF]). Let K 3 be a non-normal cubic extension of a rational field Q. It is natural to study the k th integral power of Dedekind zeta function, i.e.,

(ζ K3 (s)) k = ∞ n=1 a k,K3 (n) n s , for ℜ(s) > 1, where a k,K3 (n) = n=n1n2...n k a K3 (n 1 )a K3 (n 2 ) . . . a K3 (n k ).
In 2012, Lü [START_REF] Lü | Mean values connected with the Dedekind zeta-function of a non-normal cubic field[END_REF] was able to refine the previously known results (by Fomenko [START_REF] Fomenko | Mean values connected with the Dedekind zeta function[END_REF]) of mean square and third power of

a K3 (n) to n≤x a K3 (n) 2 = a 1 log x + a 2 + O x 23 31 +ϵ
where a 1 and a 2 are constants and

n≤x a K3 (n) 3 = xP 3 (log x) + O x 235 259 +ϵ ,
where P 3 (t) is a suitable polynomial in t of degree 4. Throughout this paper, we restrict our attention to non-normal cubic extension

K 3 of rational field Q. Let ζ K3 (s) := ∞ n=1 a K 3 (n) n s
is the Dedekind zeta function which is absolutely convergent in ℜ(s) > 1, continuable as a meromorphic function to the whole complex plane with a pole at s = 1. We are interested in the asymptotic formula for the sum

a 2 1 +a 2 2 +a 2 3 +a 2 4 +a 2 5 +a 2 6 ≤x (a 1 ,a 2 ,a 3 ,a 4 ,a 5 ,a 6 )∈Z 6 a k,K3 (a 2 1 + a 2 2 + a 2 3 + a 2 4 + a 2 5 + a 2 6 ),
for any integer k ≥ 1, where

a k,K3 (n) = n=n 1 n 2 ...n k a K3 (n 1 )a K3 (n 2 ) . . . a K3 (n k ). Note that, a 1,K3 (n) = a K3 (n).
First, we make the following hypothesis.

Hypothesis 1. Let |t| ≥ 1 and ϵ > 0 be any small constant. Then we have

ζ 1 2 + it ≪ (|t| + 1) µ+ϵ .
Remark 1. Phragmén Lindelöf principle leads to

ζ(σ + it) ≪ (|t| + 1) 2µ(1-σ)+ϵ
uniformly for 1 2 ≤ σ ≤ 2 , |t| ≥ 1, under the assumption of our hypothesis.

Unconditionally, the hypothesis is true with µ = 13 84 , see Bourgain [START_REF] Bourgain | Decoupling, exponential sums and the Riemann zeta function[END_REF].

For any integer k ≥ 1, writing, 

1 = n≤x a k,K3 (n)r 6 (n) = M k,K3 (x) + E k,K3 (x),
where M k,K3 (x) is the main term which is of the form x 3 P k-1 (log x), where P k-1 (t) is a polynomial in t of degree k -1. We prove the following theorem.

Theorem 1. Let ϵ > 0 (be any small constant) and define λ k = max (λ k , λ ′ k ) , for k ≥ 1. Then we have for any integer k ≥ 1,

E k,K3 (x) ≪ x 3- 1 2(1+ λ k ) +3kϵ .
To prove Theorem 1, first, we demonstrate the following theorems: Theorem 2. Let ϵ > 0 (be any small constant) and define λ 1 = 3ϵ, λ 2 = min 2µ, 1 4 ,

λ 3 = min µ + 1 2 , 5 8 , λ 4 = min 2µ + 3 4 , 1 , λ 5 = min 3µ + 1, 3 2 and λ k = µ (k -6)+ k 3 for k ≥ 6.
Then we have for any integer k ≥ 1,

E k,K3 (x) ≪ x 3- 1 2(1+λ k ) +3kϵ
,

where n≤x a k,K3 (n)l 1 (n) = M k,K3 (x) + E k,K3 (x).
Remark 2. From [START_REF] Bourgain | Decoupling, exponential sums and the Riemann zeta function[END_REF] of bourgain, we can very well take µ = 13 84 . We notice that 1 7 < 13 84 < 1 6 . Thus the theorem is unconditional with µ = 13 84 . Theorem 3. Let ϵ > 0 (be any small constant) and define λ ′ 1 = 3ϵ, λ ′ 2 = 1 4 , and

λ ′ k = 3k-5 6
for k ≥ 3. Then we have for any integer k ≥ 1,

E ′ k,K3 (x) ≪ x 3- 1 2(1+λ ′ k ) +3kϵ
,

where n≤x a k,K3 (n)v 1 (n) = E ′ k,K3 (x) 
.

Preliminaries and some important lemmas

Let r k (n) := #{(n 1 , n 2 , . . . , n k ) ∈ Z k : n 2 1 + n 2 2 + • • • + n 2 k = n}
allowing zeros, distinguishing signs, and order. We will be concerned with the function r 6 (n).

Lemma 1. For any positive integer n, we have

r 6 (n) = 16 d|n χ(d ′ )d 2 -4 d|n χ(d)d 2 , (1) 
where dd ′ = n, and χ is the non-principal Dirichlet character modulo 4, i.e.,

χ(n) =      1 if n ≡ 1 (mod 4) -1 if n ≡ -1 (mod 4) 0 if n ≡ 0 (mod 2)
.

Proof. See, for instance, Lemma 1 of [START_REF] Sharma | Average behavior of the Fourier coefficients of symmetric square L-function over some sequence of integers[END_REF].

We can reframe the Equation (1) as

r 6 (n) = 16 d|n χ(d) n 2 d 2 -4 d|n χ(d)d 2 =: 16l(n) -4v(n).
We write l 1 (n) = 16l(n), and v 1 (n) = 4v(n). 

a k,K3 (a 2 1 + a 2 2 + a 2 3 + a 2 4 + a 2 5 + a 2 6 ) = n≤x a k,K3 (n) n=a 2 1 +a 2 2 +a 2 3 +a 2 4 +a 2 5 +a 2 6 (a 1 ,a 2 ,a 3 ,a 4 ,a 5 ,a 6 )∈Z 6 1 = n≤x a k,K3 (n)r 6 (n) = n≤x a k,K3 (n) (l 1 (n) -v 1 (n)) (2) = 16 n≤x a k,K3 (n)l(n) -4 n≤x a k,K3 (n)v(n), where l(n) = d|n χ(d) n 2 d 2 , and v(n) = d|n χ(d)d 2 . Lemma 2. [28] For ℜ(s) > 1, we have ζ K3 (s) = ζ(s)L(s, f ).
From Lemma 2, we can write

a K3 (n) = d|n λ f (d).
Also, note that a K3 (p) = 1 + λ f (p).

Lemma 3. For any ϵ > 0, we have

T 1 ζ( 1 2 + it) 4 dt ∼ T (log T ) 4 2π (3) 
and

T 1 ζ( 1 2 + it) 12 dt ≪ T 2+ϵ (4) 
uniformly for T ≥ 1.

Proof. For the proof of (3) see (Theorem 5.1 of [START_REF] Ivic | The Riemann zeta-function: theory and applications[END_REF]) and ( 4) result is due to Heath-Brown [START_REF] Heath-Brown | The twelfth power moment of the Riemann-function[END_REF].

Lemma 4 ([7]

). For any ϵ > 0, we have

T 1 L 1 2 + it 2 dt ≪ T log T,
uniformly for T ≥ 1 and

L(σ + it) ≪ ϵ (1 + |t|) 1 3 (1-σ)+ϵ ,
uniformly for 1 2 ≤ σ ≤ 1 + ϵ, and |t| ≥ t 0 (where t 0 is sufficiently large). Lemma 5 ([25]). For any ϵ > 0, we have

T 1 L 1 2 + it, χ 4 dt ≪ T 1+ϵ , uniformly for T ≥ 1.
Lemma 6. For any ϵ > 0 and for any T ≥ 1 uniformly, we have

T 1 L( 1 2 + it, f ) 2 dt ∼ cT log T (5) 
and

T 1 L( 1 2 + it, f ) 6 dt ≪ T 2+ϵ . (6) 
Proof. Proof of ( 5) and ( 6) follow by A. Good [START_REF] Good | The square mean of Dirichlet series associated with cusp forms[END_REF] and Jutila [START_REF] Jutila | Tata Institute of Fundamental Research[END_REF], respectively.

Lemma 7. For any ϵ > 0, we have

L(σ + it, f ) ≪ (1 + |t|) max( 2(1-σ) 3 ,0)+ϵ uniformly for 1 2 ≤ σ ≤ 2 , |t| ≥ 1.
Proof. Proof follows from a result of A. Good [START_REF] Good | The square mean of Dirichlet series associated with cusp forms[END_REF] on using maximum-modulus principle to a suitable function.

Lemma 8. Let f be a normalized primitive holomorphic cusp form of weight k for SL(2, Z). Let a k,K3 (n) be the n th normalized Fourier coefficient of the k th integral power Dedekind zeta-function, i.e., (ζ K3 (s)) k , where K 3 be a non-normal cubic extension of the rational field Q. If

F k (s) = ∞ n=1 a k,K3 (n)l(n) n s , for ℜ(s) > 3, then F k (s) = G k (s)H k (s),
where

G k (s) = ζ(s -2) k L(s, χ) k L(s -2, f ) k L(s, f ⊗ χ) k ,
and χ is the non-principal character modulo 4. Here, H k (s) is a Dirichlet series which converges uniformly and absolutely in the half plane ℜ(s) > 5 2 , and

H k (s) ̸ = 0 on ℜ(s) = 3.
Proof. We observe that a k,K3 (n)l(n) is multiplicative, and hence

F k (s) = p 1 + a k,K3 (n)l(p) p s + • • • + a k,K3 (p m )l(p m ) p ms + • • • . Note that a k,K3 (n)l(p) = ka K3 (p)l(p) = k (1 + λ f (p)) p 2 + χ(p) = kp 2 + kχ(p) + kp 2 λ f (p) + kλ f (p)χ(p) =: b(p).
From the structure of b(p), we define the coefficients b(n) as

∞ n=1 b(n) n s = ζ(s -2) k L(s, χ) k L(s -2, f ) k L(s, f ⊗ χ) k ,
which is absolutely convergent in ℜ(s) > 3. We also note that

p 1 + b(p) p s + • • • + b(p m ) p ms + • • • = ζ(s -2) k L(s, χ) k L(s -2, f ) k L(s, f ⊗ χ) k =: G k (s), for ℜ(s) > 3.
Observe that b(n) ≪ ϵ n 2+ϵ for any small positive constant ϵ. Now, we note that in the half plane ℜ(s) ≥ 3 + 2ϵ, we have

b(p) p s + b(p 2 ) p 2s + • • • + b(p m ) p ms + • • • ≪ ∞ m=1 p (2+ϵ)m p mσ ≤ ∞ m=1 p (2+ϵ)m p (3+2ϵ)m = ∞ m=1 1 p (1+ϵ)m = 1 p 1+ϵ 1 - 1 p 1+ϵ = 1 p 1+ϵ -1 < 1.

Let us write

A = a k,K3 (p)l(p) p s + • • • + a k,K3 (p m ))l(p m ) p ms + • • • , and 
B = b(p) p s + • • • + b(p m ) p ms + • • • .
From the above calculations, we observe that |B| < 1 in ℜ(s) ≥ 3 + 2ϵ. We note that in the half plane ℜ(s) ≥ 3 + 2ϵ, we have

1 + A 1 + B = (1 + A)(1 -B + B 2 -B 3 + • • • ) = 1 + A -B -AB + higher terms = 1 + a k,K3 (p 2 )l(p 2 ) -b(p 2 ) p 2s + • • • + c m (p m ) p ms + • • • , with c m (n) ≪ ϵ n 2+ϵ . So, we have (in the half plane ℜ(s) > 5 2 ) p 1 + A 1 + B = p 1 + a k,K3 (p 2 )l(p 2 ) -b(p 2 ) p 2s + • • • + c m (p m ) p ms + • • • ≪ ϵ 1.
Thus, we have (in the half plane ℜ(s) > 5 2 )

H k (s) := F k (s) G k (s) = p 1 + A 1 + B ≪ ϵ 1,
and also H k (s) ̸ = 0 on ℜ(s) = 3.

Lemma 9. Let f be a normalized primitive holomorphic cusp form of weight k for SL(2, Z). Let a k,K3 (n) be the n th normalized Fourier coefficient of the k th integral power Dedekind zeta-function, i.e., (ζ K3 (s)) k , where K 3 be a non-normal cubic extension of the rational field Q. If

F k (s) = ∞ n=1 a k,K3 (n)v(n) n s , for ℜ(s) > 3, then F k (s) = G k (s) H k (s),
where

G k (s) = ζ(s) k L(s -2, χ) k L(s, f ) k L(s -2, f ⊗ χ) k ,
and χ is the non-principal character modulo 4. Here, H k (s) is a Dirichlet series which converges uniformly and absolutely in the half plane ℜ(s) > 5 2 , and H k (s) ̸ = 0 on ℜ(s) = 3.

Proof. We observe that a k,K3 (n)v(n) is multiplicative, and hence

F k (s) = p 1 + a k,K3 (n)v(p) p s + • • • + a k,K3 (p m )v(p m ) p ms + • • • . Note that a k,K3 (n)v(p) = ka K3 (p)v(p) = k (1 + λ f (p)) 1 + p 2 χ(p) = k + kp 2 χ(p) + kλ f (p) + kp 2 λ f (p)χ(p) =: h(p).
From the structure of h(p), we define the coefficients h(n) as

∞ n=1 h(n) n s = ζ(s) k L(s -2, χ) k L(s, f ) k L(s -2, f ⊗ χ) k ,
which is absolutely convergent in ℜ(s) > 3. We also note that

p 1 + h(p) p s + • • • + h(p m ) p ms + • • • = ζ(s) k L(s -2, χ) k L(s, f ) k L(s -2, f ⊗ χ) k =: G k (s), for ℜ(s) > 3.
Observe that h(n) ≪ ϵ n 2+ϵ for any small positive constant ϵ. Now, we note that in the half plane ℜ(s) ≥ 3 + 2ϵ, we have

h(p) p s + h(p 2 ) p 2s + • • • + h(p m ) p ms + • • • ≪ ∞ m=1 p (2+ϵ)m p mσ < 1.
Let us write

A = a k,K3 (p)v(p) p s + • • • + a k,K3 (p m ))v(p m ) p ms + • • • , and 
B = h(p) p s + • • • + h(p m ) p ms + • • • .
From the above calculations, we observe that | B| < 1 in ℜ(s) ≥ 3 + 2ϵ. We note that in the half plane ℜ(s) ≥ 3 + 2ϵ, we have

1 + A 1 + B = (1 + A)(1 -B + B 2 -B 3 + • • • ) = 1 + A -B -A B + higher terms = 1 + a k,K3 (p 2 )v(p 2 ) -h(p 2 ) p 2s + • • • + c m (p m ) p ms + • • • , with c m (n) ≪ ϵ n 2+ϵ
. So, we have (in the half plane ℜ(s) > 5 2 )

p 1 + A 1 + B = p 1 + a k,K3 (p 2 )v(p 2 ) -h(p 2 ) p 2s + • • • + c m (p m ) p ms + • • • ≪ ϵ 1.
Thus, we have (in the half plane ℜ(s) > 5 2 )

H k (s) := F k (s) G k (s) = p 1 + A 1 + B ≪ ϵ 1,
and also H k (s) ̸ = 0 on ℜ(s) = 3.

Lemma 10 ([27]

). Let χ be a primitive character modulo q and L d m,n (s, χ) be a general L-function of degree 2A. For any ϵ > 0, we have

2T T L d m,n (σ + it, χ) 2 dt ≪ (qT ) 2A(1-σ)+ϵ ,
uniformly for 1 2 ≤ σ ≤ 1 + ϵ, and T ≥ 1. Also,

L d m,n (σ + it, χ) ≪ (q(1 + |t|)) max{A(1-σ),0}+ϵ ,
uniformly for -ϵ ≤ σ ≤ 1 + ϵ.

Proof of Theorem 2

Let k ≥ 1 be an integer. Firstly, we consider the sum n≤x a k,K3 (n)l 1 (n). We begin by applying Perron's formula (see [START_REF] Granville | Multiplicative number theory: The pretentious approach[END_REF]Chapter 2.4]) to F k (s) with η = 3 + ϵ and 10 ≤ T ≤ x. Thus, we have

n≤x a k,K3 (n)l 1 (n) = 16 n≤x a k,K3 (n)l(n) = 16 2πi η+iT η-iT F k (s) x s s ds + O x 3+3ϵ T .
We move the line of integration to ℜ(s) = 5 2 + ϵ. By Cauchy's residue theorem there is only one pole at s = 3 of order k, coming from the factor ζ(s -2) k .

So, we obtain

n≤x a k,K3 (n)l 1 (n) = Res s=3 F k (s) x s s + 16 2πi 5 2 +ϵ+iT 5 2 +ϵ-iT + 5 2 +ϵ-iT 3+ϵ-iT + 3+ϵ+iT 5 2 +ϵ+iT F k (s) x s s ds + O x 3+3ϵ T =: x 3 P k-1 (log x) + 16 2πi (J 1 (k) + J 2 (k) + J 3 (k)) + O x 3+3ϵ T ,
where P k-1 (t) is a polynomial in t of degree k -1.

Note that the horizontal lines (J 2 (k) and J 3 (k)) contribute (for any fixed integer k ≥ 1), using Lemma 6, Lemma 7 and Remark 1

J 2 (k) + J 3 (k) ≪ x 2 max 1 2 +ϵ≤σ≤1+ϵ x σ T (2kµ+ 2k 3 )(1-σ)+ϵ T -1 ≪ x 2+ϵ max 1 2 +ϵ≤σ≤1+ϵ x T 2kµ+ 2k 3 σ T 2kµ+ 2k 3 -1+ϵ .
For any fixed k, µ(> 0),

x T 2kµ+ 2k 3 σ
is monotonic as a function of σ for 1 2 + ϵ ≤ σ ≤ 1 + ϵ and hence the maximum is attained at the extremities of the interval

1 2 + ϵ, 1 + ϵ . Thus, J 2 (k) + J 3 (k) ≪ x 3+3ϵ T + x 5 2 +3ϵ T 1 2 (2kµ+ 2k 
3 )-1 .

Vertical line contributions :

1. For k =1 J 1 (1) := 5 2 +ϵ+iT 5 2 +ϵ-iT F 1 (s)
x s s ds.

Using Lemma 5, Lemma , Lemma 7 and Cauchy-Schwarz inequality,

J 1 (1) ≪ x 5 2 +ϵ + x 5 2 +ϵ log T max 1≤U ≤T 1 U U U 2 ζ( 1 2 + it) L( 1 2 + it, f ) dt ≪ x 5 2 +ϵ + x 5 2 +ϵ log T    max 1≤U ≤T 1 U U U 2 ζ( 1 2 + it) 2 dt 1 2 U U 2 L( 1 2 + it, f ) 2 dt 1 2    ≪ x 5 2 +ϵ + x 5 2 +ϵ log T max 1≤U ≤T 1 U U 1 2 +ϵ U 1 2 +ϵ ≪ x 5 2 +ϵ + x 5 2 +ϵ T 3ϵ .
Note that with k = 1,

1 2 2kµ + 2k 3 -1 = 1 2 2µ + 2 3 -1 = µ - 2 3 .
Thus, J 1 (1) dominates over J 2 (1) + J 3 (1), since µ ≤ 13 84 (≤ 2 3 ) (by Bourgain [START_REF] Bourgain | Decoupling, exponential sums and the Riemann zeta function[END_REF]). Now,

n≤x a 1,K3 (n)l 1 (n) = x 3 P 0 (log x) + E 1,K3 (x), where E 1,K3 (x) ≪ x 3+3ϵ T + x 5 2 +ϵ + x 5 2 +ϵ T 3ϵ , i.e., E 1,K3 (x) ≪ x 3+3ϵ T + x 5 2 +ϵ + x 5 2 +ϵ T λ1 .
We choose T such that

x 3 T ∼ x 5 2 , i.e., T ∼ x 1 2 . So finally, we have E 1,K3 (x) ≪ x 3- 1 2(1+λ 1 ) +3ϵ . 2. For k =2 J 1 (2) := 5 2 +ϵ+iT 5 2 +ϵ-iT F 2 (s)
x s s ds.

Using Lemma 7, Hypothesis 1 and Lemma 5,

J 1 (2) ≪ x 5 2 +ϵ + x 5 2 +ϵ log T max 1≤U ≤T 1 U U U 2 ζ( 1 2 + it) 2 L( 1 2 + it, f ) 2 dt ≪ x 5 2 +ϵ + x 5 2 +ϵ log T max 1≤U ≤T 1 U U 2µ+2ϵ U log U ≪ x 5 +ϵ + x 5 2 +ϵ T 2µ+4ϵ .
Note that, by Lemma 5

U U 2 L( 1 2 + it, f ) 4 dt ≪ U U 2 L( 1 2 + it, f ) 2 dt 1 2 U U 2 L( 1 2 + it, f ) 6 dt 1 2 ≪ U 3 2 +ϵ .
Also, we have

J 1 (2) ≪ x 5 2 +ϵ + x 5 2 +ϵ log T max 1≤U ≤T 1 U U U 2 ζ( 1 2 + it) 2 L( 1 2 + it, f ) 2 dt ≪ x 5 2 +ϵ + x 5 2 +ϵ log T    max 1≤U ≤T 1 U U U 2 ζ( 1 2 + it) 4 dt 1 2 U U 2 L( 1 2 + it, f ) 4 dt 1 2    ≪ x 5 2 +ϵ + x 5 2 +ϵ log T max 1≤U ≤T 1 U U 1 2 +ϵ U 1 2 ( 3 2 
+ϵ) (using Lemma 2 and above observation)

≪ x 5 2 +ϵ + x 5 2 +ϵ T 1 4 +2ϵ .
Thus, we have [START_REF] Chandrasekharan | The approximate functional equation for a class of zeta-functions[END_REF] ) .

J 1 (2) ≪ x 5 2 +ϵ + x 5 2 +4ϵ T min (2µ, 1 
Note that with k = 2,

1 2 2kµ + 2k 3 -1 = 1 2 4µ + 4 3 -1 = 2µ - 1 3 .
Case (i) If 0 ≤ µ < 1 8 , then min (2µ, 1 4 ) = 2µ, so that 2µ -1 3 ≤ 2µ is true.

Case (ii) If µ ≥ 1 8 , then min 2µ, 1 4 = 1 4 , then 2µ -1 3 ≤ 1 4 happens when µ ≤ 1 8 + 1 6 = 7 24 ,
which is anyway true, since we know µ ≤ 13 84 (≤ 7 24 ) (by Bourgain [START_REF] Bourgain | Decoupling, exponential sums and the Riemann zeta function[END_REF]). Thus,

J 1 (2) ≪ x 1 2 + x 1 2 +4ϵ T min (2µ, 1 4 )
holds good, which dominates over

J 2 (2) + J 3 (2). Now, n≤x a 2,K3 (n) = x 3 P 1 (log x) + E 2,K3 (x)
where

E 2,K3 (x) ≪ x 3+3ϵ T + x 5 2 +ϵ + x 5 2 +4ϵ T min (2µ, 1 4 ) , i.e., E 2,K3 (x) ≪ x 3+3ϵ T + x 5 2 +ϵ + x 5 2 +4ϵ T λ2 .
We choose T such that

x 3 T ∼ x 5 2 T λ2 , i.e., T 1+λ2 ∼ x 1 2 , i.e., T ∼ x 1 2(1+λ 2 ) .
So finally, we have

E 2,K3 (x) ≪ x 3- 1 2(1+λ 2 ) +6ϵ .
3. For k =3,

J 1 (3) := 5 2 +ϵ+iT 5 2 +ϵ-iT F 3 (s)
x s s ds.

Using Lemma 2, Lemma 5, Cauchy-Schwarz Inequality and on the assumption of our Hypothesis 1,

J 1 (3) ≪ x 5 2 +ϵ + x 5 2 +ϵ log T max 1≤U ≤T 1 U U U 2 ζ 1 2 + it 3 L 1 2 + it, f 3 dt ≪ x 5 2 +ϵ + x 5 2 +ϵ log T    max 1≤U ≤T 1 U U µ+ϵ U U 2 ζ 1 2 + it 4 dt 1 2 × U U 2 L 1 2 + it, f 6 dt 1 2    ≪ x 5 2 +ϵ + x 5 2 +ϵ log T max 1≤U ≤T 1 U U µ+ϵ U 1 2 (1+ϵ) U 1 2 (2+ϵ) ≪ x 5 2 +ϵ + x 5 2 +4ϵ T µ+ 1 2 .
Also, we have (using Lemma 2, Lemma 5 and above observation)

J 1 (3) ≪ x 5 2 +ϵ + x 5 2 +ϵ log T    max 1≤U ≤T 1 U U U 2 ζ 1 2 + it 12 dt 1 4 U U 2 L 1 2 + it, f 4 dt 3 4    ≪ x 5 2 +ϵ + x 5 2 +ϵ log T max 1≤U ≤T 1 U U 1 2 +ϵ U 3 4 ( 3 2 +ϵ) ≪ x 5 2 +ϵ + x 5 2 +5ϵ T 5 8
.

Thus, we have

J 1 (3) ≪ x 5 2 +ϵ + x 5 2 +5ϵ T min(µ+ 1 2 , 5 8 
) .

Note that with k = 3,

1 2 2kµ + 2k 3 -1 = 1 2 (6µ + 2) -1 = 3µ. Case (i) If 0 ≤ µ < 1 8 , then min µ + 1 2 , 5 8 = µ + 1 2 .
We observe that 3µ ≤ µ + 1 2 provided 2µ ≤ 1 2 , which is anyway true (by Bourgain [START_REF] Bourgain | Decoupling, exponential sums and the Riemann zeta function[END_REF]).

Case (ii) If µ ≥ 1 8 , then min µ + 1 2 , 5 8 = 5 8 , then 3µ ≤ 5 8 holds only when µ ≤ 5 24 , which is anyway true, since we know µ ≤ 13 84 ≤ 5 24 (by Bourgain [START_REF] Bourgain | Decoupling, exponential sums and the Riemann zeta function[END_REF]). Thus,

J 1 (3) ≪ x 1 2 + x 1 2 +5ϵ T min(µ+ 1 2 , 5 8 )
holds good, which dominates over

J 2 (3) + J 3 (3). Now, n≤x a 3,K3 (n) = x 3 P 2 (log x) + E 3,K3 (x),
where

E 3,K3 (x) ≪ x 3+3ϵ T + x 5 2 +ϵ + x 5 2 +5ϵ T min(µ+ 1 2 , 5 8 ) , i.e., E 3,K3 (x) ≪ x 3+3ϵ T + x 5 2 +ϵ + x 5 2 +5ϵ T λ3 .
We choose T such that

x 3 T ∼ x 5 2 T λ3 , i.e., T 1+λ3 ∼ x 1 2 , i.e., T ∼ x 1 2(1+λ 3 ) .
So finally, we have

E 3,K3 (x) ≪ x 3- 1 2(1+λ 3 ) +9ϵ . 4. For k =4,
First we observe, (using Lemma 2 and Cauchy-Schwarz inequality)

U U 2 ζ 1 2 + it 8 dt ≪ U U 2 ζ 1 2 + it 4 dt 1 2 U U 2 ζ 1 2 + it 12 dt 1 2 ≪ U 1 2 (1+ϵ) U 1 2 (2+ϵ) ≪ U 3 2 +ϵ . Now, U U 2 ζ 1 2 + it 6 dt ≪ U U 2 ζ 1 2 + it 4 dt 1 2 U U 2 ζ 1 2 + it 8 dt 1 2 ≪ U 1 2 (1+ϵ) T 1 2 ( 3 2 +ϵ) ≪ U 5 4 +ϵ . Now, J 1 (4) := 5 2 +ϵ+iT 5 2 +ϵ-iT F 4 (s)
x s s ds.

Using Lemma 2, Lemma 5, Hölder's inequality and on the assumption of our Hypothesis 1,

J 1 (4) ≪ x 5 2 +ϵ + x 5 2 +ϵ log T max 1≤U ≤T 1 U U U 2 ζ 1 2 + it 4 L 1 2 + it, f 4 dt ≪ x 5 2 +ϵ + x 5 2 +ϵ log T    max 1≤U ≤T 1 U U 2µ+2ϵ U U 2 ζ 1 2 + it 6 dt 1 3 × U U 2 L 1 2 + it, f 6 dt 2 3    ≪ x 5 2 +ϵ + x 5 2 +ϵ log T max 1≤U ≤T 1 U U 2µ+2ϵ U 1 3 ( 5 4 +ϵ) U 2 3 (2+ϵ) (using above observation) ≪ x 5 2 +ϵ + x 5 2 +5ϵ T 2µ+ 3 4 .
Also, we have (using Lemma 7, Lemma 2, Lemma 5, and Hölder's inequality)

J 1 (4) ≪ x 5 2 +ϵ + x 5 2 +ϵ log T    max 1≤U ≤T 1 U U U 2 ζ 1 2 + it 12 dt 1 3 U U 2 L 1 2 + it, f 6 dt 2 3    ≪ x 5 2 +ϵ + x 5 2 +ϵ log T max 1≤U ≤T 1 U U 1 3 (2+ϵ) U 2 3 (2+ϵ) ≪ x 5 2 +ϵ + x 5 2 +5ϵ T.
Thus, we have

J 1 (4) ≪ x 5 2 +ϵ + x 5 2 +5ϵ T min(2µ+ 3 4 ,1) .
Note that, with k = 4,

1 2 2kµ + 2k 3 -1 = 1 2 8µ + 8 3 -1 = 4µ + 1 3 . Case (i) If 0 ≤ µ < 1 8 , then min 2µ + 3 4 , 1 = 2µ + 3 4 .
We observe that 4µ + 1 3 ≤ 2µ + 3 4 provided 2µ ≤ 3 4 -1 3 = 5 12 , i.e., µ ≤ 5 24 , which is anyway true (see Bourgain [START_REF] Bourgain | Decoupling, exponential sums and the Riemann zeta function[END_REF]).

Case (ii) If µ ≥ 1 8 , then min(2µ + 3 4 , 1) = 1, then 4µ + 1 3 ≤ 1 holds only when µ ≤ 1 6 , which is anyway true, since we know µ ≤ 13 84 (by Bourgain [START_REF] Bourgain | Decoupling, exponential sums and the Riemann zeta function[END_REF]). Thus,

J 1 (4) ≪ x 1 2 + x 1 2 +5ϵ T min(2µ+ 3 4 ,1)
holds good, which dominates over J 2 (4) + J 3 (4). Now,

n≤x a 4,K3 (n) = x 3 P 3 (log x) + E 4,K3 (x) 
,

where

E 4,K3 (x) ≪ x 3+3ϵ T + x 5 2 +ϵ + x 5 2 +5ϵ T min(2µ+ 3 4 ,1) , i.e., E 4,K3 (x) ≪ x 3+3ϵ T + x 5 2 +ϵ + x 5 2 +5ϵ T λ4 .
We choose T such that

x 3 T ∼ x 5 2 T λ4 , i.e., T 1+λ4 ∼ x 1 2 , i.e., T ∼ x 1 2(1+λ 4 ) .
So finally, we have E 4,K3 (x) ≪ x Using Lemma 2, Lemma 5, Hölder's inequality and on the assumption of our Hypothesis 1,

J 1 (5) ≪ x 5 2 +ϵ + x 5 2 +ϵ log T max 1≤U ≤T 1 U U U 2 ζ 1 2 + it 5 L 1 2 + it, f 5 dt ≪ x 5 2 +ϵ + x 5 2 +ϵ log T    max 1≤U ≤T 1 U U 3µ+3ϵ U U 2 ζ 1 2 + it 12 dt 1 6 × U U 2 L 1 2 + it, f 6 dt 5 6    ≪ x 5 2 +ϵ + x 5 2 +ϵ log T max 1≤U ≤T 1 U U 3µ+3ϵ U 1 6 (2+ϵ) U 5 6 (2+ϵ) ≪ x 5 2 +ϵ + x 5 2 +6ϵ T 3µ+1 .
Also, we have Thus, we have

J 1 (5) ≪ x 1 2 + x 5 2 +5ϵ T min(3µ+1, 3 2 ) .
Observe that, with k = 5,

1 2 2kµ + 2k 3 -1 = 1 2 10µ + 10 3 -1 = 5µ + 2 3 .
Case (i) If 0 ≤ µ < 1 6 , then min(3µ + 1, 3 2 ) = 3µ + 1.

We observe that 5µ + 2 3 ≤ 3µ + 1 provided 2µ ≤ 1 3 , i.e., µ ≤ 1 6 which is anyway true (see Bourgain [START_REF] Bourgain | Decoupling, exponential sums and the Riemann zeta function[END_REF]).

Case (ii) If µ ≥ 1 6 , then min 3µ + 1, 3 2 = 3 2 , then 5µ + 2 3 ≤ 3 2 holds only when 5µ ≤ 5 6 , i.e., µ ≤ 1 6 , which is anyway true (Bourgain [START_REF] Bourgain | Decoupling, exponential sums and the Riemann zeta function[END_REF]).

Therefore,

J 1 (5) ≪ x 1 2 + x 1 2 +5ϵ T min(3µ+1, 3 2 ) 
holds good, which dominates over J 2 (5) + J 3 [START_REF] Deligne | Formes modulaires de poids 1[END_REF]. We choose T such that x 3 T ∼ x 

F k (s)
x s s ds.

Using Lemma 2, Cauchy-Schwarz Inequality, Lemma 5, Lemma 6, and Hypothesis 1 we get

J 1 (k) ≪ x 5 2 +ϵ + x 5 2 +ϵ log T max 1≤U ≤T 1 U U U 2 ζ 1 2 + it k L 1 2 + it, f k dt ≪ x 5 2 +ϵ + x 5 2 +ϵ max 1≤U ≤T 1 U U (k-6)(µ+ϵ) U (k-3)( 1 3 +ϵ) U U 2 ζ 1 2 + it 6 L 1 2 + it, f 3 dt ≪ x 5 2 +ϵ + x 5 2 +2kϵ    max 1≤U ≤T U µ(k-6)+ 1 3 (k-3)-1 U U 2 ζ 1 2 + it 12 dt 1 2 × U U 2 L 1 2 + it, f 6 1 2 dt    ≪ x 5 2 +ϵ + x 5 2 +2kϵ max 1≤U ≤T U µ(k-6)+ 1 3 (k-3)-1 U 1 2 (2+ϵ) U 1 2 (2+ϵ) ≪ x 5 2 +ϵ + x 5 2 +3kϵ T µ(k-6)+ k 3 . Define λ k := µ(k -6) + k 3 , for k ≥ 6, then J 1 (k) ≪ x 5 2 +ϵ + x 5 2 +3kϵ T λ k .
Here, we observe that for k ≥ 6,

E k,K3 (x) ≪ x 3+3ϵ T + x 5 2 +ϵ + x 5 2 +3kϵ T λ k .
We choose T such that

x 3 T ∼ x 5 2 T λ k , i.e., T 1+λ k ∼ x 1 2 , i.e,. T ∼ x 1 2(1+λ k ) .
So finally, we have

E k,K3 (x) ≪ x 3- 1 2(1+λ k ) +3kϵ .
This proves the theorem.

Proof of Theorem 3

Let k ≥ 1 be an integer. Now, we consider the sum n≤x a k,K3 (n)v 1 (n). We begin by applying Perron's formula (see [START_REF] Granville | Multiplicative number theory: The pretentious approach[END_REF]Chapter 2.4]) to F k (s) with η = 3 + ϵ and 10 ≤ T ≤ x. Thus, we have

n≤x a k,K3 (n)v 1 (n) = 4 n≤x a k,K3 (n)v(n) = 4 2πi η+iT η-iT F k (s) x s s ds + O x 3+3ϵ T .
We move the line of integration to ℜ(s) = 5 2 + ϵ. There is no singularity in the rectangle obtained and the function F k (s)

x s s is analytic in this region. Thus, using Cauchy's theorem for rectangles pertaining to analytic functions, we get

n≤x a k,K3 (n)v 1 (n) = Res s=3 F k (s) x s s + 4 2πi 5 2 +ϵ+iT 5 2 +ϵ-iT + 5 2 +ϵ-iT 3+ϵ-iT + 3+ϵ+iT 5 2 +ϵ+iT F k (s) x s s ds + O x 3+3ϵ T =: 4 2πi (J ′ 1 (k) + J ′ 2 (k) + J ′ 3 (k)) + O x 3+3ϵ T ,
Note that the horizontal lines (J ′ 2 (k) and J ′ 3 (k)) contribute (for any fixed integer k ≥ 1), using Lemma 9, Lemma 10 and Lemma 6

J ′ 2 (k) + J ′ 3 (k) ≪ x 2 max 1 2 +ϵ≤σ≤1+ϵ x σ T ( k 3 + 2k 3 )(1-σ)+ϵ T -1 ≪ x 2+ϵ max 1 2 +ϵ≤σ≤1+ϵ x T k σ T k-1+ϵ .
For any fixed k, µ(> 0), x T k σ is monotonic as a function of σ for 1 2 + ϵ ≤ σ ≤ 1 + ϵ and hence the maximum is attained at the extremities of the interval 1 2 + ϵ, 1 + ϵ . Thus,

J ′ 2 (k) + J ′ 3 (k) ≪ x 3+3ϵ T + x 5 2 +3ϵ T k 2 -1 .
Vertical line contributions :

1. For k =1 J ′ 1 (1) := 5 2 +ϵ+iT 5 2 +ϵ-iT F 1 (s)
x s s ds.

Using Lemma 9, Lemma 3, Lemma 10 and Cauchy-Schwarz inequality, Note that with k = 1,

J 1 (1) ≪ x 5 2 +ϵ + x 5 2 +ϵ log T max 1≤U ≤T 1 U U U 2 L( 1 2 + it, χ) L( 1 2 + it, f ⊗ χ) dt ≪ x 5 2 +ϵ + x 5 2 +ϵ log T    max 1≤U ≤T 1 U U U 2 L( 1 2 + it, χ) 2 dt 1 2 U U 2 L( 1 2 + it, f ⊗ χ)
k 2 -1 = -1 2 .
Thus, J ′ 1 (1) dominates over J ′ 2 (1) + J ′ 3 (1). Now, We choose T such that x 3 T ∼ x We choose T such that x 3 T ∼ x Thus, J ′ 1 (k) dominates over J ′ 2 (k) + J ′ 3 (k). Here, we observe that for k ≥ 6,

E ′ k,K3 (x) ≪ x 3+3ϵ T + x 5 2 +ϵ + x 5 2 +3kϵ T λ ′ k .
We choose T such that x 3 T ∼ x ) .

  n≤x a K (n) = cx + O x

J 1 ( 5 ) ≪ x 5 2 +ϵ + x 5 2

 1555 

Now, n≤x a 5 ,T + x 5 2 +ϵ + x 5 2T + x 5 2 +ϵ + x 5 2

 55555 K3 (n) = x 3 P 4 (log x) + E 5,K3 (x),where E 5,K3 (x) ≪x 3+3ϵ +5ϵ T min(3µ+1, 3 2 ) , i.e., E 5,K3 (x) ≪ x 3+3ϵ +5ϵ T λ5 .

5 2 T 1 2 1 2 6 .J 1 (

 21161 λ5 , i.e., T 1+λ5 ∼ x , i.e., T ∼ x For k ≥ 6,

5 2 +ϵ + x 5 2

 55 +ϵ T 3ϵ .

n≤x a 1 ,+ x 5 2 +ϵ + x 5 2 5 2 +ϵ + x 5 2

 15555 K3 (n)v 1 (n) = E ′ 1,K3 (x), where E ′ 1,K3 (x) ≪ x 3+3ϵ T +ϵ T 3ϵ , i.e., +ϵ T λ ′ 1 .

5 2 +ϵ + x 5 2

 55 +4ϵ T λ ′ 2 .

5 2∼ x 1 2

 51 T λ ′ k , i.e., T 1+λ ′ k , i.e,. T ∼ x 1 2(1+λ ′ k

  ,a 2 ,a 3 ,a 4 ,a 5 ,a 6 )∈Z6 

	a k,K3 (a 2 1 + a 2 2 + a 2 3 + a 2 4 + a 2 5 + a 2 6 ) =		a k,K3 (n)
	a 2 1 +a 2 2 +a 2 3 +a 2 4 +a 2 5 +a 2 6 ≤x	n≤x	a 2 1 +a 2 2 +a 2 3 +a 2 4 +a 2 5 +a 2 6 ≤x
			(a 1

(a 1 ,a 2 ,a 3 ,a 4 ,a 5 ,a 6 )∈Z

6 
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Note that, by Lemma 4

Using Lemma 4 and Lemma 10,

So finally, we have

.

This proves the theorem.

Proof of Theorem 1

From (2), we can write 

Thus, Theorem 1 follows from the proof of Theorems 2 and 3.