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Abstract—The problem of multiple integrity attacks (attackers)
detection and identification (MIADI) in cyber-physical systems
(CPSs) is still a challenging problem to date. The goal of
this paper is to develop a knowledge-based method capable
of simultaneously detecting and identifying multiple integrity
attacks aiming at different sensors in a CPS. In this paper, with
the help of labeled random finite set (RFS) theory, a new solution
to solve the MIADI problem is proposed. The main contributions
of this paper, lie in the the following two aspects, the first is the
novel formulation of the MIADI problem, in which labeled RFSs
are used to model the behaviors of multiple integrity attackers
for the first time, and the second is the proposed labeled RFS-
based solution, which provides an elegant framework to cope
with the MIADI problem. Numerical experiments are conducted
and experimental results demonstrate the effectiveness of the
proposed solution. This proposed solution further extends the
feasibility of the labeled RFS theory in the context of CPSs
cybersecurity.

Index Terms—Cyber-physical systems, cybersecurity, integrity
attacks, multiple attackers detection, random finite set.

I. INTRODUCTION

AS cyber-physical systems (CPSs) become more and more
ubiquitous in vertical industries and critical infrastruc-

tures such as the industrial Internet of Things, industrial
control systems, and electrical power systems, and their risks
of exposure to cyber attacks are dramatically increasing [1–3].
Due to the frequent interaction in cyberspace, and the access
to numerous devices with security vulnerabilities, CPSs are
vulnerable to malicious attacks [4–6]. These malicious attacks
include, but not be limited to, availability, integrity and con-
fidentiality attacks. Among them, integrity attack, which aims
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at compromising sensor or actuator data by using malicious
signals, has recently become a major threat to CPSs [7].

Therefore, as one of the effective strategies to protect CPSs
from integrity attacks, integrity attack (attacker) detection is
becoming more and more paramount. Fortunately, integrity
attack (attacker) detection for the CPSs has attracted great
interest in considerable literatures, as demonstrated by refer-
ences [8–10]. However, most of the existing detection methods
are designed to cope with the problem of detecting only
one integrity attack (attacker), and the problem of multiple
integrity attacks (attackers) detection (MIAD), has been rarely
considered by the existing literatures up to now.

To improve the chance of success and the power of integrity
attacks, multiple attackers might simultaneously attempt to
launch multiple integrity attacks in a cooperative or uncoop-
erative way. According to the recent report published by the
Sophos company, the issue of multiple attackers is becoming
a clear and present danger [11, 12]. However, in comparison
with the problem of detecting only one integrity attack (at-
tacker), the MIAD problem is much more challenging. In this
regard, according to the different levels of multiple integrity
attacks detection, the following three objectives need to be
tackled:

1) The accurate detection of the number of integrity attacks
(attackers) is a challenging objective. On the one hand,
due to the attack strategy, stealthiness demand, and
energy limit of each attacker, the number of integrity
attacks (attackers) is usually dynamic versus time. On
the other hand, false alarms produced by attack detectors
will cause errors in accurately detecting the number of
attacks (attackers).

2) The accurate detection of attacked sensors, nodes, chan-
nels, or links in a CPS. This vital objective is an essential
precondition for isolating the attacked sensors, nodes,
channels, or links, further reducing the damage caused
by integrity attacks. However, it is not easy because of
the following two reasons. First, it is natural that the
simultaneous launch of multiple integrity attacks will
increase the chance of escaping from detection. Second,
it is inevitable that the attack detector equipped by each
attacked sensor, node, channel, or link will produce false
alarms.

3) The accurate identification of each integrity attacker,
i.e., to confirm that each attacked sensor, node, channel,
or link is attacked by which integrity attacker. This
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objective is helpful in understanding and profiling the
attackers’ behaviors, which can not only guide in dis-
covering, visualizing, and predicting attacks, but can also
further alleviate the damage to CPSs [13].

Reference [14] addressed the MIAD problem, wherein mul-
tiple integrity attacks that can be detected by the χ2 detector
were considered, and introduced the random finite set (RFS)
theory to cope with the first two kinds of objectives of the
MIAD problem. In reference [15], to simultaneously detect
the jamming attack and the false data injection attack which
is one of the integrity attacks, a resilient attack detection
estimator was proposed. However, as far as we know, very
few existing literatures have dealt with the MIAD problem
involving the third objective. For briefness, in the rest of this
article, this kind of the MIAD problem is re-called as the
problem of multiple integrity attacks (attackers) detection and
identification (MIADI).

Motivated by this, the MIADI problem is studied in this
article. Specifically, this article deals with the problem of
how to simultaneously detect and identify multiple integrity
attacks (attackers) aiming at different sensors in a CPS. We
take advantage of the latest advances in the labeled RFS
theory and formulate the behaviors of multiple attackers as
labeled RFSs. Differing from [14] in which the behaviors
were modeled by using common RFSs, the labeled RFS-based
problem formulation integrates the unique label information
of each attacker, which makes it possible to identify each
integrity attacker. Furthermore, the MIADI problem is posed
in a Bayesian framework, and a solution based on the δ
generalized labeled multi-Bernoulli (δ-GLMB) filter which
simultaneously achieves all objectives of the MIAD problem is
developed. To our best knowledge, this work is the first work
on the MIADI problem and is also the first attempt to exploit
the labeled RFS theory in the context of CPSs cybersecurity.

The main contribution of the article is the proposed frame-
work for the MIADI problem, which includes two steps, i.e.,
the labeled RFS-based problem formulation and the solution
based on the δ-GLMB filter. The proposed framework poses
the following advantages:

• It provides a systemic labeled RFS-based problem for-
mulation for the MIADI problem, in which both the
behaviors and label information of multiple integrity
attackers are capsuled, making it feasible to detect and
identify multiple integrity attacks (attackers).

• It develops a δ-GLMB filter-based solution to the MIADI
problem, which simultaneously achieves the detection of
the number of attackers, the detection of each attacked
sensor, and the identification of each attacker.

• Since the δ-GLMB filter is an analytic solution to the
multi-object Bayesian filter [16], whereas the probability
hypothesis density (PHD) filter in [14] is the first moment
approximation to the multi-object Bayesian filter, it poses
a better detection performance than the existing method
in [14], leading to smaller joint detection errors.

The rest of this article is organized as follows: Section II
presents an overview of the related work. Section III states the
considered problem. Section IV and Section V present the two

steps of the proposed framework, i.e., the labeled RFS-based
problem formulation and the solution based on the δ-GLMB
filter, respectively. Section VI presents numerical experiments.
Finally, Section VII concludes this article.

II. RELATED WORK

This section presents a brief review of the recent advances in
the issue of attack detection for CPSs. Recently, considerable
attention to this issue has been attracted, and various detec-
tion methods have been reported [17–21]. Generally speak-
ing, the existing attack detection methods can be classified
into two categories, i.e., knowledge-based and data-driven
methods [18]. For the knowledge-based methods, the authors
in [19] and [20] summarized four main detection methods,
i.e., Bayesian detector, WLS-detector, χ2-detector, and Quasi-
FDI detector, and recent advances in these methods were
reviewed. In addition, some remarkable advances referring to
the knowledge-based methods include a distributed strategy to
detect attacks on the communication networks in the large-
scale CPSs [22], a real-time resilient CPS framework to
detect and isolate the pole-dynamics attack [23], and a control
architecture capable of detecting the setpoint attack [24], to
name a few.

The data-driven methods fall into two categories, ma-
chine/deep learning-based, and graph-based methods. Thanks
to the booming of machine/deep learning technologies, it
is observed that many machine/deep learning-based methods
have been proposed to detect attacks. For instance, in [25],
a new machine learning-based method and the review of
both semisupervised and supervised machine learning-based
methods for attack detection were presented. In [26, 27],
dictionary learning, as a powerful machine learning method,
was demonstrated to perform well in process monitoring and
attack detection. In [17], a deep learning-based method to
detect the distributed denial-of-service attack was proposed.
In [21], a comprehensive review of deep learning-based attack
detection methods in the context of CPSs was presented.
Compared with machine/deep learning, a graph neural network
(GNN) is better at coping with irregular and imbalanced
data [28]. Thus, graph-based attack/intrusion detection meth-
ods are also attracting increased attention. For instance, Zhang
et al. proposed a new GNN-based algorithm that can efficiently
exploit the rare and imbalanced training data for intrusion
detection with high accuracy [28]. Deng et al. proposed a
graph deviation network that can detect anomalous events,
including attacks and system faults from high-dimensional
time series data [29].

As mentioned before, although considerable literatures have
concentrated on the issue of attack detection, it is worth
noting that rare work has paid attention to the problem of
how to detect multiple attacks simultaneously. Thus, in this
article, we represent a step forward in the direction of mul-
tiple attacks detection. Particularly, the problem of detecting
multiple integrity attacks is addressed, and a novel framework
that simultaneously achieves the detection of the number
of attackers, the detection of each attacked sensor, and the
identification of each attacker is proposed.
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III. PROBLEM STATEMENT

A. Notations

Throughout this article, the following notations are used.
Scalars or random vectors are denoted by lowercase letters
(e.g., x,x). RFSs are represented by uppercase letters (e.g.,
X). Especially, labeled RFSs are represented by bold upper-
case letters (e.g., X). Blackboard bold uppercase letters such
as X stand for spaces. Additionally, the following operators
are defined. ⌊v⌋ represents the floor function that outputs the
greatest integer, which is no more than v. The inner product is
defined as ⟨f, g⟩ ≜

∫
f(x)g(x)dx, and δ·(·) is the Kronecker

delta function. The following indicator function is defined as

1Y (X) ≜

{
1, if X ⊆ Y ,
0, otherwise.

For a real-valued function h and an RFS Y , the notation hY

is defined by
hY =

∏
y∈Y

h(y),

with h∅ = 1.

B. System Model

Consider a CPS that consists of the physical part, the cyber
part and the communication networks between the two parts.
Thereinto, the cyber part consists of a remote estimator and a
remote controller to ensure the operation and security of the
CPS, and the physical part usually includes numerous sensors.
For illustration purposes, we present a CPS deployed in a
smart manufacturing workshop. As shown in Fig. 1, large-
scale industrial facilities in the physical part are connected
through industrial networks, and scheduled and controlled by
the cyber part via the communication networks. Although
these industrial facilities are various, including manufacturing
facilities, logistics facilities, monitoring facilities, and so on,
for the sake of analysis, these facilities are taken as sensors,
and each sensor is identified by an ordered index x, where
x ∈ X and X is the discrete space of all sensors’ indices.

To prevent the CPS from potential integrity attacks, similar
to [22, 30, 31], we assume that each sensor is equipped with
a χ2 detector, and the remote estimator will collect detection
reports for further analysis. It is worth noting that further
analysis is necessary since the detection of multiple integrity
attacks is not equivalent to a simple count of the collected
detection reports. In fact, due to the inherent characteristics of
a χ2 detectors, both missing reports and false alarms exist in
the collected detection reports.

C. Attack Model

To degrade system performance or even cause disastrous
consequences [32], assume that multiple attackers are em-
ployed by a malicious party to launch integrity attacks on the
above CPS, as illustrated in Fig. 1. Although the assumptions
of attackers’ abilities are various in the existing literatures,
ranging from omniscient to ignorant, to better meet the needs
of real scenarios, the following reasonable assumptions of the
limited abilities are considered.

Physical  

part 

(Industrial

facilities )

Manufacturing facilities 
Logistics robots 

Industrial/wireless routers
Monitoring facilities

Quality testing

facilities 

Data storage/server facilities

Mobile facilities

Communication 

networks 

Cyber  

part 

Base stations

Remote 

controller
Remote 

estimator

Attackers

Fig. 1: Illustration of a CPS for a smart manufacturing
workshop in the presence of multiple integrity attacks.

• All of the launched integrity attacks aim at the sensors
in the physical part, rather than the cyber part or com-
munication networks. The reasons are two-fold. First, the
protection of the cyber part or communication networks
is usually much more elaborate than that of the sensors.
For example, encryption communication is often used
in communication networks [33]. Second, the integrity
attacks aiming at the sensors are ubiquitous. For instance,
many types of integrity attacks such as false data injection
attacks and replay attacks can be easily launched on the
sensors [32].

• Similar to [34, 35], the energy resources of all of the
attackers are limited, which means that they can not
launch attacks all the time.

• Due to the limited abilities of the attackers, similar
to [14], each attacker can only simultaneously attack no
more than one sensor at the same time.

D. Problem Statement

Intuitively, from the view of the CPS, it needs to detect all
of the launched multiple attacks at each time. As mentioned
before, the detection includes three objectives, while all of
them are considered in this article. Specifically:

1) The first is to detect the time-varying number of the
active attackers. It is worth noting that the number of
active attackers does not simply equal to the number
of detection reports, due to missing detection and false
alarms.

2) The second is to detect the attacked sensors among all
of the detection reports, which are the superposition of
real reports and false alarms. To some extent, attack
detection has been simply completed by the detector
equipped with each sensor. However, it is inaccurate to
directly take the collection of reports as the attacked
sensors. Further analysis will be carried out in the remote
estimator to overcome the negative effects caused by
missing detection and false alarms, leading to better
detection performance.

3) The third is to identify each active attacker, i.e., to
know each attacked sensor is attacked by which attacker.
Identifying multiple attackers is helpful in understanding
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and profiling the attackers’ behaviors, which can not
only provide guidance on discovering, visualizing, and
predicting attacks but also further alleviate the damage
to the CPS.

In summary, the considered problem is: How to achieve
the above three objectives simultaneously only based on the
reports from each sensor?

IV. LABELED RFS-BASED PROBLEM FORMULATION

A. Background on Labeled Random Finite Sets

A set, like X = {x1, x2, · · · , xn}, where xi ∈ X and X
represents a state space, is an RFS on X if its cardinality (the
number of elements) |X| = n is random, and xi is random and
unordered [36, 37]. Similar to a random vector, the statistical
characteristics of an RFS can also be characterized by its
probability density function (PDF) (called multi-object PDF).
Subsequently, we introduce the following three kinds of RFSs.

(1) Poisson RFS: A Poisson RFS X on X satisfies: Its
cardinality |X| follows a Poisson distribution with mean ⟨v, 1⟩
and its elements are independently and identically distributed
subjected to the PDF v(·)/⟨v, 1⟩ [16].

(2) Bernoulli RFS and multi-Bernoulli RFS: A Bernoulli
RFS X has an existence probability ε to contain only one
element x distributed according to p(x), and has a probability
1− ε to be an empty set [16]. Its multi-object PDF is usually
denoted by parameter set {ε, p(x)}. A multi-Bernoulli RFS X
on X is a union of a fixed number of independent Bernoulli
RFSs (components) X(i) with existence probability ε(i) and
PDF p(i) [16], and its multi-object PDF is usually abbreviated
as {ε(i), p(i)}λi=1.

By augmenting each state x ∈ X with a unique and distinct
label l ∈ L, where L denotes a discrete label space, we define
a labeled RFS X = {x1,x2, · · · ,xn}, where x = (x, l). Let
L be the projection from X × L to L, i.e., L((x, l)) = l, we
define the distinct label indicator ∆(X) = δ|X|(|L(X)|).

Labeled multi-Bernoulli (LMB) RFS: Intuitively speaking,
an LMB RFS is a multi-Bernoulli RFS on X augmented
with distinct labels corresponding to the non-empty Bernoulli
components [16, 38]. An LMB RFS X defined on X × L is
distributed according to the multi-object PDF

π(X) = ∆(X)w(L(X))pX , (1)

where

w(L) =
∏
l′∈L

(1− ε(l
′
))
∏
l∈L

1L(l)ε
(l)

1− ε(l)
,

p(x, l) = p(l)(x),

and {ε(l), p(l)(x)} is the parameter set of the Bernoulli compo-
nent with label l. For simplicity, π(X) is usually abbreviated
as {ε(l), p(l)}l∈L.

B. Labeled RFS-Based Formulation for Multiple Attackers’
Behaviors

1) Label Space and Multi-state: Due to the attack strategy
and limited energy resources of each attacker, at each time
step, all of the attackers fall into two categories: active and

inactive attackers. The former is the attackers launching attacks
at this time step, while the latter is the attackers who do not
launch any attack at this time step. For ease of analysis, similar
to [14, 39], suppose that both the active and inactive attackers
are mutually independent.

Each active attacker is uniquely identified by a unique label
l = (k, i), where k is the time step when the attacker becomes
active, and i is a unique index to distinguish the attackers
becoming active at the same time step. The label space Lk

for newborn active attackers (i.e., the attackers who become
active at time step k) is {k}×N, where N denotes the integer
space, and the label space L0:k for the active attackers at time
step k can be recursively formed by L0:k = L0:k−1 ∪ Lk

[16]. Let x = (x, l) denote the sensor attacked by the active
attacker with label l, where x ∈ X is the index of this sensor.
Then, x can be treated as the state of this active attacker, and
the labeled RFS Xk = {x1,x2, · · · ,xn(k)} is regarded as the
multi-state of these active attackers at time step k, where n(k)
is the number of these active attackers.

Accordingly, at time step k, a newborn active attacker, has
a state x ∈ X × Lk, and for these active attackers, a multi-
state Xk is a finite subset of X×L0:k [16]. For convenience,
detailed references to the current time index “k” are omitted,
and those for the next time index “k + 1” are abbreviated as
“+” in the following part of this section. As a result, L, B,
and L+ = L∪B represent the label spaces for active attackers
at the current time step, for newborn active attackers at the
next time step, and for all active attackers at the next time
step, respectively.

2) LMB RFS-based Formulation of Surviving Attackers:
Each active attacker at the current time step either continues
to be active at the next time step with probability ps or
becomes inactive with probability qs = 1 − ps [14]. Namely,
given the current multi-state Xk, at the next time step, each
state x = (x, l) ∈ Xk either continues to survive with
probability ps(x, l), and transfers to a new state (x+, l+)
with PDF f(x+|x, l)δl(l+), or dies with probability qs(x, l) =
1− ps(x, l) [16], where f(x+|x, l) denotes the attack strategy
of the active attacker with label l, and δl(l+) means that the
label of the active attacker is preserved [16]. Thus, the state of
each active attacker turns to be a Bernoulli RFS with parameter
set {ps(x, l), f(x+|x, l)δl(l+)}.

Since all of the active attackers are mutually independent,
it follows that the multi-state W of surviving active attackers
at the next time step is an LMB RFS with parameter set
{ps(x, l), f(x+|x, l)δl(l+)}l∈L. According to (1), the distri-
bution of W follows

fs(W |X) = ∆(W )∆(X)w(L(W ))pW , (2)

where

w(L) = 1L(X)(L)
∏

l′∈L(X)

qs(x, l
′
)
∏
l∈L

1L(X)(l)ps(x, l)

qs(x, l)
,

p(x+, l) = f(x+|x, l), (x+, l) ∈ W ,

∆(W )∆(X) indicates that both W and X have distinct la-
bels, and 1L(X)(L) implies that the labels in X are preserved
in W .
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3) LMB RFS-based Formulation for Newborn Attackers:
For each inactive attacker at the current time step, it either
becomes active at the next time step with probability εb, and
the index of its first attacked sensor follows the PDF pb or
continues to keep inactive with probability 1− εb

1. In other
words, the state of a newborn attacker can be modeled by a
Bernoulli RFS with parameter set {εb, pb}. Since each inactive
attacker is independent of each other, the multi-state Y of
these newborn attackers at the next time step can be modeled
by an LMB RFS with label space B. Hence, it follows that
from (1), the distribution of Y is captured by the following
multi-object PDF

fb(Y ) = ∆(Y )wb(L(Y ))pYb , (3)

where

wb(L) =
∏
l′∈B

(1− ε
(l

′
)

b )
∏
l∈L

1B(l)ε
(l)
b

1− ε
(l)
b

,

pb(x, l) = p
(l)
b (x).

It can be seen that the active attackers at the next time step
are made up of the surviving active attackers and newborn ac-
tive attackers. Therefore, the multi-state of the active attackers
at the next time step, X+, is the combination of the multi-state
of the surviving active attackers W and that of the newborn
active attackers Y , i.e., X+ = W ∪ Y . According to [16],
the multi-object PDF of X+ conditioned on X can be written
as

f(X+|X) = fs(X+ ∩ (X× L))fb(X+ − X× L). (4)

Remark 1: Differing from the work on modeling the behaviors
of multiple attackers by using common RFSs in [14], here the
attackers’ behaviors are formulated by using labeled RFSs.
The significant difference is that the state of an attacker not
only contains the index of its attacked sensor but also contains
the unique label of this attacker. In contrast, only the former is
captured in [14]. Benefited from the introduction to the unique
labels of attackers, it becomes possible to identify each active
attacker.

C. RFS-based Formulation for Attack Detection Scheme

A χ2 detector, characterized by its detection probability pd
and false alarm probability pf , is equipped by each sensor
to detect whether the sensor is under integrity attack or not.
Intuitively, if detected, it will report the sensor’s index z =
D(x = (x, l)) = x to the remote estimator, where D(x) is a
projection from X × L to X. If undetected, it will report an
empty set to the remote estimator [14]. From the mathematical
point of view, the formulation of an attack detection scheme
can be described as follows.

Firstly, for a given multi-state X of the current multiple
active attackers, each active attacker denoted by x ∈ X is
either detected with detection probability pd and generates
a report z with likelihood g(z|x) = 1, or undetected with
probability 1 − pd and generates an empty report z = ∅.

1Note that the inactive attacker who becomes active at the next time step
will be treated as a new active attacker even if it ever was active.

Therefore, the reports generated by x can be modeled as a
Bernoulli RFS with parameter set {pd, g(·|x)}. Accordingly,
suppose that the detection process of each attack detector is
independent. Then, the set of these reports generated by X
is a multi-Bernoulli RFS denoted as D with the following
multi-object PDF

πd(D|X) = {(pd, g(·|x)) : x ∈ X}. (5)

Secondly, apart from the reports from the detectors equipped
by the attacked sensors, the remote estimator possibly receives
the false alarm reports from the detectors equipped by the un-
attacked sensors due to the non-zero false alarm probabilities
of the detectors. On the premise of the independence of
each detector, the received false reports can be modeled by
a Poisson RFS C with mean < κ, 1 >, which follows the
multi-object PDF [16]

πc(C) = e−<κ,1>κC . (6)

The collected reports at the remote estimator, represented
by an RFS Z, are the superposition of all sensors’ reports,
i.e., Z = D ∪ C. According to [16], the likelihood of Z can
be described as

g(Z|X) =
∑
D⊆Z

πd(D|X)πc(Z −D). (7)

Remark 2: In this section, the behaviors of multiple active
attackers are modeled by the labeled RFS X+ distributed
according to (4), which not only includes the indices of the
attacked sensors but also contains the labels of the active
attackers. The collected reports at the remote estimator are
formulated by the RFS Z distributed according to (7). Note
that (4) and (7) are the centerpiece of the formulation of the
MADI problem via the labeled RFS theory.
Remark 3: Since the information about the attackers is
completely captured by the labeled RFS X at each time
step, the first three objectives of the CPS can be achieved by
iteratively estimating the posterior multi-object PDF of Xk

conditioned on the collected reports Z1:k, i.e., πk(X|Z1:k).

V. A SOLUTION TO THE MADI PROBLEM VIA THE
δ-GLMB FILTER

Suppose that the posterior multi-object PDF of Xk−1 at
the last time step k − 1, πk−1(X|Z1:k−1), is given. After
receiving the collected detection reports Zk, the posterior
conditional multi-object PDF at time step k, πk(X|Z1:k), can
be calculated by the following iterative multi-object Bayesian
filter

πk|k−1(X|Z1:k−1) =

∫
f(X+|X)πk−1(X|Z1:k−1)dX,

(8)

πk(X|Z1:k) =
g(Z|X)πk|k−1(X|Z1:k−1)∫
g(Z|X)πk|k−1(X|Z1:k−1)dX

, (9)

where (8) and (9) are the prediction step and update step,
respectively, f(X+|X) and g(Z|X) have been derived in (4)
and (7). In general, it is difficult to analytically solve the above
multi-object Bayesian filter due to the abstract and complicated
set integration. Hence a tractable solution is necessary.
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A. The δ-GLMB Filter

Recently, the δ generalized labeled multi-Bernoulli (δ-
GLMB) filter has attracted increased attention because it
presents an analytic solution to the multi-object Bayesian
filter shown in (8)-(9). Moreover, suppose that the state
transition function and likelihood function have the forms
like (4) and (7), respectively. In that case, the above multi-
object Bayesian filter can be solved, and πk(X|Z1:k) can
be iteratively estimated via the δ-GLMB filter. Consequently,
multiple attackers can be detected and identified by further
extracting the information from πk(X|Z1:k).

Before presenting the δ-GLMB filter, we first introduce the
δ-GLMB RFS. A δ-GLMB RFS X defined on X × L is
distributed according to

π(X) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ

w(I,ξ)δI(L(X))[p(ξ)]X , (10)

where Ξ is a discrete space, and F(L) denotes the class of
finite subsets of L [16, 40], and

∫
p(ξ)(x, l)dx = 1,∑

L∈L

∑
(I,ξ)∈F(L)×Ξ

w(I,ξ)δI(L) = 1.

The δ-GLMB filter starts with a δ-GLMB initial prior and
includes the prediction and update steps, which are as follows.
For convenience, in what follows, we omit the subscript of
time indices of posterior quantities such as “k” and “k − 1”
and abbreviate time indices “k + 1|k” as “+”.

Prediction: Suppose that the prior multi-object PDF
π(X|Z) at time step k − 1 is a δ-GLMB of the form (10),
and the state transition function has the form (4). Then, the
predicted multi-object PDF is also a δ-GLMB given by [16]

π(X+)=∆(X+)
∑

(I+,ξ)∈F(L+)×Ξ

w
(I+,ξ)
+ δI+(L(X+))

[
p
(ξ)
+

]X+

,

(11)
where

w
((I+,ξ)
+ = wb(I+ ∩ B)w(ξ)

s (I+ ∩ L),

p
(ξ)
+ (x, l) = 1L(l)p

(ξ)
s (x, l) + (1− 1L(l))pb(x, l),

p(ξ)s (x, l) =
< ps(·, l)f(x|·, l), p(ξ)(·, l) >

η
(ξ)
s (l)

,

η(ξ)s (l) =

∫
< ps(·, l)f(x|·, l), p(ξ)(·, l) > dx,

w(ξ)
s (L) = [η(ξ)]L

∑
I⊆L

1I(L)[q
(ξ)
s ]I−Lw(I,ξ),

q(ξ)s (l) =< qs(·, l), p(ξ)(·, l) >,

and wb(L), pb(x, l) are given in (3).
Update: Suppose that the predicted multi-object PDF is a δ-

GLMB of the form (11). After receiving the collected detection
reports Z at time step k, under the likelihood function (7), the
posterior multi-object PDF is also a δ-GLMB given by

π(X|Z)=∆(X)
∑

(I,ξ)∈F(L)×Ξ

∑
θ∈Θ

w(I,ξ,θ)δI(L(X))
[
p(ξ,θ)

]X
,

(12)

where Θ is the space of mappings θ : I+ → {0, 1, · · · , |Z|},
so that θ(i) = θ(i

′
) > 0 implies i = i

′
[16, 40], and

w(I,ξ,θ) =
δθ−1({0:|Z|})(I)w

I,ξ[η
(ξ,θ)
Z ]I∑

(I,ξ)∈F(L)×Ξ

∑
θ∈Θ

δθ−1({0:|Z|})(I)w
(I,ξ)[η

(ξ,θ)
Z ]I

,

p(ξ,θ)(x, l|Z) = p(ξ)(x, l)ψZ(x, l; θ)

η
(ξ,θ)
Z (l)

,

η
(ξ,θ)
Z (l) =< p(ξ)(·, l), ψZ(·, l; θ) >,

ψZ(x, l; θ) = δ0(θ(l))(1− pd) + (1− δ0(θ(l)))λZ(·, l; θ),

λZ(x, l; θ) =
pdg(zθ(l)|x, l)
κ(zθ(l))

.

Since both the predicted and posterior multi-object PDFs
are a combination of LMB components, it is unsurprising that
the number of components will grow exponentially. Hence,
it is necessary to truncate the multi-object PDFs by picking
up the components with the most significant weights. For the
detailed truncation process, please refer to [16, 40].

B. Attackers Detection and Identification

After estimating the posterior multi-object PDF π(X|Z) via
the above δ-GLMB filter, the information about the attackers
can be extracted as follows:

1) Detecting the number of integrity attacks (attackers).
The number of active attackers can be detected by
calculating the maximum a posteriori (MAP) estimation
of cardinality. According to [16, 40], the estimated
cardinality of the δ-GLMB RFS X is

ρ(n) =
∑

(I,ξ)∈Fn(L)×Ξ

w(I,ξ), (13)

where Fn(L) represents the collection of finite subsets
of L with exactly n elements. Then, the number of the
active attackers can be detected by

n̂ = arg max ρ(n). (14)

2) Among these LMB components whose cardinality
equals to n̂, picking up the LMB component with the
highest weight, i.e.,

ĥ = arg maxw(h)δn̂(|I(h)|), (15)

where I(h) represents the h-th LMB component in the
δ-GLMB distributed according to π(X|Z).

3) Identifying each attacker and detecting its attacked
sensor. For each component {ε(l), p(l)(x)} in the LMB
component I(ĥ), l is the identified label of the active
attacker. Accordingly, the nearest integer to

x̂ =

∫
xp(l)(x)dx, (16)

is taken as the index of the detected sensor attacked by
the active attacker with label l.

Remark 4: A natural concern for the proposed framework is
the kinds of integrity attacks that can be detected. According
to the detection scheme shown in (5)-(7), the integrity attacks
that can be detected need to simultaneously subject to the
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following two conditions: (1) the integrity attacks are aiming
at the sensors, rather than the cyber part and communication
networks in the CPS, and (2), without consideration of missing
detection, the attacks can not escape from the χ2 detector
equipped by each sensor.

Remark 5: In comparison with the existing method in [14],
the proposed framework poses the following two differences.
First, it uses labeled RFSs to formulate the attackers’ be-
haviors, which jointly models the indices of attacked sensors
and the labels of attackers, while the existing method in [14]
only considered the formulation of the indices of attacked
sensors. Second, it utilizes the δ-GLMB filter, which is an
analytic solution to the multi-object Bayesian filter [16], to
achieve the multiple detection of attackers, while the PHD
filter that just is the first moment approximation to the multi-
object Bayesian filter was used in [14]. As a consequence, the
proposed framework poses the following two advantages. First,
it can simultaneously achieve the detection of the number of
attackers, the detection of each attacked sensor, and the iden-
tification of each attacker, while the existing method in [14]
can only detect the the number of attackers and each attacked
sensor. Second, it shows a better detection performance than
the existing method in [14], leading to smaller joint detection
errors.

VI. NUMERICAL EXPERIMENTS

In this section, we present the performance of the proposed
labeled RFS-based framework in the presence of multiple
integrity attackers aiming at different sensors.

A. Simulation Settings
A CPS deployed for surveillance task is considered, whose

physical part includes 0.00,0.07,1.00ρ = 400 sensors. All
of the sensors are equipped with the χ2 detector to detect
potential integrity attacks, and the detection probability and the
false alarm probability of each attack detector are pd = 0.97
and pf = 0.02, respectively. The Poisson RFS with κ =
ρpfU(1, ρ) is used to modeled the received false alarm reports
in (6), where U(1, ρ) is the discrete and integral uniform
distribution between 1 and ρ.

Consider that twenty-five attackers are employed to disrupt
the above CPS. To achieve this goal, they will launch multiple
integrity attacks aiming at the sensors according to their
attack strategies. Due to the limited energy resources of these
attackers, the number of active attackers at each time step is
time-varying. The surviving probability of each active attacker
is ps = 0.95. The newborn probability of each inactive attacker
is εb = 0.02, and the initial distribution of the indices of the
attacked sensors, pb, follows U(1, ρ).

To demonstrate the advantages of the proposed framework,
the proposed framework is compared with the existing method
called the probability hypothesis density (PHD) filter presented
in [14]. Considering the feasibility under nonlinear cases, both
them are implemented with particles. The detailed particle
implementation of the δ-GLMB filter is omitted here, and the
reader is directed to [16, 40] for detail. The number of particles
assigned to each attacker (including each newborn attacker) is
500.

B. Evaluation Metric

To evaluate the joint detection errors of the detection of
attacked sensors and the number of attackers, optimal subpat-
tern assignment (OSPA) distance [41] which is widely used
to evaluate the difference between two RFSs is adopted. The
OSPA distance is defined as:

Let Πk denote the set of permutations on {1, · · · , k} for
any positive integer k. For x, y, let dp(c)(x, y) = min(c, ||x−
y||). Then, for p ≥ 1, c > 0, X = {x1, · · · , xm} and Y =
{y1, · · · , yn}, if m ≤ n, the OSPA distance between X and
Y , d̄p

(c)
(X,Y ), is

d̄p
(c)

=

(
1

n

(
min
π∈Πn

m∑
i=1

d(c)(xi, yπ(i))
p + cp(n−m)

)) 1
p

,

and if m ≥ n, d̄p
(c)

(X,Y ) = d̄p
(c)

(Y,X) [41], where cut-off
c and order p are usually selected in advance. The selection
of cut-off c and order p depends on the relative importance
between the detected accuracy of the attackers’ number and
that of the attacked sensors’ indices. The larger the value of p,
the more “punishment” is imposed due to the wrong detection
of the attacked sensors’ indices. In comparison, the larger the
value of c, the more “punishment” is imposed due to the wrong
detection of the attackers’ number. Similar to [14, 42], the
OSPA distance with p = 1 and c = 100 is adopted.

C. Case 1: Linear Case

Suppose that the attack strategy of each active attacker
follows2

xi,k = ⌊xi,k−1 + vk⌋, (17)

where xi,k−1 ∈ X, xi,k ∈ X, i ∈ [1, 25] ∩ Z, vk ∼ N (1, 0.12).
The total number of attackers is 25, and the specific details of
integrity attacks are listed in Appendix, in which “FDI”, “BI”
and “RE” represent false data injection attack, bias injection
attack and replay attack, respectively.

The detection and identification results over one trail are
presented in Fig. 2-Fig. 3, and the detection results over 100
Monte Carlo (MC) trails are presented in Fig. 4-Fig. 5. From
Fig. 2, it can be seen that numerous false alarms exist in
the detection reports, making it necessary to filter them with
the Bayesian framework. The results shown in Fig. 4-Fig. 5
demonstrate that both the proposed framework and the PHD
filter can accurately detect the number of attackers and the
attacked sensors in most time. However, it is worth noting
that the proposed framework performs better since it achieves
smaller joint detection errors, as shown in Fig. 5.

Although the PHD filter can also simultaneously detect the
number of attackers and the attacked sensors, it does not
provide any identity information of each attacker. Taking the
local detection results during time steps 38-39, for example,
as Fig. 6 shows, since there is no identity information of each
attacker, it is difficult for the detected attacked sensor A to
distinguish that it was attacked by which attacker among the
attackers who attacked D,E, F at the last time step. However,

2f(x+|x, l) can be derived from (17). For simplicity, here we only present
(17).
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Fig. 2: Sensor reports and the detection results of the attacked sensors in case 1.

Fig. 3: The identification results of the detected attackers in case 1.

due to the integration of the labels of attackers, the proposed
framework can identify each attacker. Fig. 3 presents the
labels (k, l) of all of the attackers versus time. The proposed
framework can clearly identify that the attackers attacked A
and D are the same since both of them share the same label
(31, 2).
Remark 6: As shown in Fig. 2, there exist numerous false

alarms in the original collected detection reports, while most
of them are eliminated after running the proposed framework.

The elimination of false alarms can be attributed to the
following two procedures. The first is the accurate formu-
lation of the statistical characteristics of both the attackers’
behaviors and false alarms. The proposed framework captures
the characteristics of the attackers’ behaviors via the multi-
object PDF f(X+|X), and formulates false alarms via a
Poisson RFS. The second is the effective use of these statistical
characteristics in the δ-GLMB filter. As one of the knowledge-
based methods, the proposed framework utilizes the statistical
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Fig. 4: The detection results of the number of attackers over
100 MC trials in case 1.
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Fig. 5: Joint detection errors over 100 MC trials in case 1.
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Fig. 6: Local detection results in Fig. 2 during time steps 38-
39.

characteristics of both the attackers’ behaviors and false alarms
to refine the detection reports via the δ-GLMB filter. Since
only the behaviors of attackers, rather than false alarms, are
subjected to f(X+|X), it is natural that the detection reports
caused by the attackers are retained while false alarms are
eliminated. If we treat the δ-GLMB filter as the extension
of the Kalman filter, it is not surprising that the proposed
framework is capable of eliminating false alarms, since the
Kalman filter is capable of estimating dynamic target state
polluted by noise.

D. Case 2: Nonlinear Case

Suppose that the attack strategy of each active attacker
follows

xi,k = ⌊400/xi,k−1 + vk⌋, (18)

where xi,k−1 ∈ X, xi,k ∈ X, i ∈ [1, 25] ∩ Z, vk ∼ N (1, 0.12).
The total number of attackers is 25, the specific details of
attacks are also listed in Appendix, and other settings are the
same as case 1.

The detection results over one trail are presented in Fig. 7,
and the detection results over 100 MC trails are displayed
in Fig. 8-Fig. 9. It can be seen that both the number of the
attackers and the attacked sensors are accurately detected even
in the case where the attackers pose nonlinear attack strategies.
In summary, these results further demonstrate the effectiveness
of the proposed framework for the MADI problem with
the nonlinear case and confirm that the proposed framework
generally outperforms the PHD filter.

E. Comparison With Data-driven Methods

From a data-driven perspective, the MAD problem can be
treated as a multiple classification problem. Thus, machine
learning (ML) classifiers such as support vector machine
(SVM) and multilayer perceptron (MLP) can be also used to
detect attacks. In this subsection, the detection performance of
both SVM and MLP classifiers is investigated. We assume that
the total number of attackers is 25, which is known for both
SVM and MLP classifiers. Namely, the number of classes is
given as 26. The first 25 classes denote different attackers, and
the last class denotes false alarms. Then, the objective of the
two classifiers is to accurately classify the collected detection
reports into 26 classes.

1) Data Construction: We generated the collected detection
reports over eight trails, obtaining 32496 samples. There are
three features of these samples, i.e., the reported attacked time,
the attacked sensor’s index, and the kinds of the attack. The
labels ranging from 1 to 26 are automatically tagged to these
samples. Then, we randomly selected 1000 samples from each
class, i.e., total 26000 samples, for training both the SVM and
MLP models, and the remaining samples are used for testing.
In addition, after arranging the remaining samples in order of
time from smallest to largest, we take them as the measurement
Z, which is taken as the input of the proposed framework.

2) MLP Network: As shown in Fig. 10, the adopted mul-
tilayer perceptron network is a network with 5 hidden layers,
and the number of hidden neurons is set to 20 for each hidden
layer.
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Fig. 7: Sensor reports and the detection results of the attacked sensors in case 2.
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Fig. 8: The detection results of the number of attackers over
100 MC trials in case 2.

3) Results and Discussion: The performance is evaluated
via the following metric,

Accuracy =
TP

TP + FP
,

where TP and denote the truly detected attacks and FP
denote the falsely detected attacks. It tells us about the ratio
of correct classification with respect to all test samples.

The classification results are shown in TABLE I. It can be
observed that both SVM and MLP classifiers achieve high
accuracy (more than 97%) for the training samples. It can
be also seen that, for the test samples, the MLP classifier is
far superior to the SVM classifier, since it achieves 91.16%
accuracy. However, it is worth noting that this accuracy is
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Fig. 9: Joint detection errors over 100 MC trials in case 2.

still slightly lower than the accuracy of the proposed method
(97.49%).

To make the above conclusions more convincing, we inves-
tigate the accuracy of the MLP classifier with different deep
learning configurations, varying hidden lay from 1 to 50. The
results are presented in TABLE II. Generally speaking, for
the MLP classifier with no more than 20 hidden layer, with
the increasing of the number of hidden layer, the accuracy also
monotonously increases. However, for the MLP classifier with
more than 30 hidden layer, the accuracy dramatically becomes
worse. That’s reasonable, since too many layers may lead to
some problems such as overfitting, making training more dif-
ficult and even affecting the expressiveness and generalization
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Fig. 10: The adopted MLP architecture.

ability of the trained model.
In summary, both the data-driven methods and the pro-

posed method have their individual advantages. The data-
driven methods also achieve good accuracy, and are easy to
be deployed, since only the prior information including the
training samples and the total number of attackers are needed.
As a comparison, without the training step, the proposed
framework achieves slightly higher accuracy. The reason can
be attributed to the use of the prior statistical information about
both the attackers’ behaviors and false alarms. Overall, both
the data-driven methods such as the MLP classifier and the
knowledge-based methods like the proposed framework have
their own advantages and the reader can have a choice in
accordance with his needs.

TABLE I: The accuracy of different methods.
SVM MLP Proposed

framework
Training samples(%) 97.5 99.14 None

Test samples(%) 75.58 91.16 97.49

TABLE II: The accuracy of MLP with varying hidden layer.

Number of 1 2 3 5 10 20 30 50
hidden layer

Training 67.85 98.9 99.00 99.14 98.98 99.24 3.85 3.88
samples(%)

Test samples 74.14 86.41 90.13 91.16 90.72 93.33 3.71 4.22
samples(%)

VII. CONCLUSION

This article proposes a labeled RFS-based framework to
deal with the problem of multiple integrity attacks detection
and identification, including the labeled RFS-based problem
formulation and a solution based on the δ-GLMB filter.
The proposed framework achieves the simultaneous detection
of multiple integrity attacks and accurately identifies each
attacker. This work further reveals the application prospect
of coping with the problems of CPSs cybersecurity via the
labeled RFS theory. In the future, we will continue to focus
on the attempt to deal with some intractable CPSs security
problems such as secure state estimation and secure control
by exploiting the labeled RFS theory.

APPENDIX

TABLE III: The specific details of integrity attacks.

Attacker Launched Persistent First attacked First attacked Attack
index time step time step sensor(case 1) sensor(case 2) type

1 11 389 1 1 FDI
2 21 379 3 2 FDI
3 31 369 5 3 FDI
4 41 359 7 4 FDI
5 51 349 9 5 FDI
6 61 339 11 6 FDI
7 71 329 13 7 FDI
8 81 319 15 8 FDI
9 91 309 17 9 BI
10 101 299 19 10 BI
11 111 289 21 11 BI
12 121 279 23 12 BI
13 131 269 25 13 BI
14 141 259 27 14 BI
15 151 249 29 15 BI
16 161 239 31 16 BI
17 171 229 33 17 RE
18 181 219 35 18 RE
19 191 209 37 19 RE
20 201 199 39 20 RE
21 211 189 41 26 RE
22 221 179 43 32 RE
23 231 169 45 55 RE
24 241 159 47 60 RE
25 251 149 49 70 RE
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