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Approximation of chattering arcs in optimal control problems

governed by mono-input affine control systems

Térence Bayen∗, F. Mairet†

May 30, 2023

Abstract

In this paper, we consider a general Mayer optimal control problem governed by a mono-input affine
control system whose optimal solution involves a second-order singular arc (leading to chattering). The
objective of the paper is to present a numerical scheme to approach the chattering control by controls
with a simpler structure (concatenation of bang-bang controls with a finite number of switching times and
first-order singular arcs). Doing so, we consider a sequence of vector fields converging to the drift such that
the associated optimal control problems involve only first-order singular arcs (and thus, optimal controls
necessarily have a finite number of bang arcs). Up to a subsequence, we prove convergence of the sequence
of extremals to an extremal of the original optimal control problem as well as convergence of the value
functions. Next, we consider several examples of problems involving chattering. For each of them, we
give an explicit family of approximated optimal control problems whose solutions involve bang arcs and
first-order singular arcs. This allows us to approximate numerically solutions (with chattering) to these
original optimal control problems.

Keywords : optimal control, singular arcs, chattering, numerical methods.

1 Introduction

In numerous optimal control problems arising in various areas such as aerospace, biology, mechanics, the
optimal solution involves what is called Fuller’s phenomenon. In that case, we also say that chattering occurs.
This property means that the optimal control possesses an infinite number of extremal bang arcs over a finite
time interval. This particularly interesting behavior of optimal controls was originally discovered by A.T.
Fuller in the seminal works [10, 11, 12]. Since then, many properties related to chattering were studied by
several authors (see, e.g., [20] and the monograph [27] giving a large panel on the chattering phenomenon).

Fuller’s phenomenon arises whenever an optimal control problem presents a second order singular arc.
Recall that in geometric optimal control theory, a singular singular arc is a time interval on which the optimal
control takes values within the interior of the admissible control set. The occurrence of such arcs is of utmost
importance to compute an optimal solution since it completely determines the optimal synthesis. This situation
is encountered typically when computing minimum time syntheses in the two-dimensional setting in presence
of a turnpike singular arc (see [4] or [2]). In the setting of Mayer optimal control problems governed by an affine
control system, the application of the Pontryagin maximum Principle (in short, PMP) shows that several cases
may occur (see, e.g., [7]). First, geometric control theory predicts that the control input is present explicitly
in the expression defining the derivative of order 2n, n ≥ 1, of the switching function. So, if the control input
is present in the second-order derivative of the switching function (allowing to compute the singular control
as a function of the state and co-state), then, we say that a singular arc of first order occurs. But, it may
happen that the control is present explicitly only in the fourth-order derivative of the switching function (and
not in the second-order derivative) leading that way to a second-order singular arc and to chattering, see, e.g.,
[27, 21]. More generally, it is possible to encounter optimal control problems involving singular arcs of order
greater than three. But, we shall restrict our attention here to the case of first and second order singular arcs
that are the most common ones in the application models.
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A striking point related to second order singular arcs is that they arise in simple examples from mathe-
matical modeling such as in aerospace [28, 29], in biomedicine [15, 14, 22], in biology [16, 17], or in physics
[19]. The simplest problem involving chattering is known as Fuller’s problem for which the underlying system
is the two-dimensional double integrator associated with a quadratic cost. It is worth noticing that chattering
renders the analysis of optimal solutions more delicate than for instance in the case of a first-order singular
arc for which the optimal synthesis involves in general a low number of switching times. In particular, the oc-
currence of chattering raises the question of implementation of an optimal solution from a practical viewpoint.
The question is how to bypass non-implementable solutions and how synthesizing an adequate sub-optimal
control (typically based on a finite number of bang-bang arcs). This question was studied by several authors
for instance in [6] by modifying the objective function via bounded variation controls.

In the present paper, we consider another approach to tackle chattering based on a perturbation technique.
More precisely, we consider a general optimal control problem governed by a mono-input affine control system
whose optimal solution involves a second-order singular arc. We suppose that there is a sequence of dynamics
converging to the original one such that the associated optimal solution involves only first-order singular arcs.
This sequence is constructed by approximating the drift term. From a practical viewpoint, we thus approach
the original optimal control by a perturbed one for which the optimal solution does not involve chattering.
We first prove that, up to a sub-sequence, an extremal of the perturbed optimal control problems converges to
an extremal to the original optimal control problem. As well, we prove the convergence of the value function
associated to the perturbed optimal control problem to the value function associated with the original optimal
control problem. Convergence of optimal controls (up to a sub-sequence) is also guaranteed on time intervals for
which the limit trajectory is non-singular. Interestingly, the approximated optimal control is a concatenation
of a finite number of bang and singular arcs. Next, we show how to construct such approximating sequence
on three examples with chattering : a variation on Fuller’s problem, a resource-allocation model [13], and a
quantum control system [19].

The paper is organized as follows. In Section 2, we introduce our methodology and we prove convergence
results between the sequence of approximated optimal control problems and the original optimal control prob-
lem. Next, in Section 3, we address three examples for which we provide an explicit sequence of approximated
optimal control problems. For each of them, we verify that the limit problem possesses chattering whereas
perturbed optimal control problems involve only first-order singular arcs. In addition, for each example,
we provide numerical solutions (with an increasing number of arcs as the sequence approaches the original
dynamics) to the approximated optimal control problems via a direct method [23].

2 Approximation and convergence result

2.1 Second order singular arcs

Hereafter, we denote by A⊤ the transpose of a matrix A and the inner product in the Euclidean space is
written a · b where a, b are two vectors. Let n ∈ N∗ and consider two vector fields f, g : Rn → Rn of class C∞,
a terminal pay-off ψ : Rn → R of class C1, and let C be a non-empty closed convex subset of Rn. Given T > 0
and x0 ∈ Rn, we consider the Mayer optimal control problem

inf
u∈U

ψ(x(T )) s.t.

 ẋ(t) = f(x(t)) + u(t)g(x(t)) a.e. t ∈ [0, T ],
x(0) = x0,
x(T ) ∈ C,

(OCP)

where U denotes the set of admissible controls u : [0, T ] → [−1, 1] that are measurable. The aim of this paper
is to provide alternative strategies in order to study (OCP) whenever f and g satisfy the condition:

[g, [f, g]] = 0 over Rn, (2.1)

or whenever the covector is orthogonal to [g, [f, g]] along a singular arc, where [f, g](x) := Dxg(x)f(x) −
Dxf(x)g(x) denotes the Lie bracket of f and g and where Dxf(x), Dxg(x) stand respectively for the Jacobian
matrix of f and g. Under one of these two conditions, we know that optimal controls may involve an infinite
number of switching times over [0, T ]. This phenomenon renders the analysis of optimal trajectories quite
involved (e.g., the determination of the switching locus in this context). Thus, from a numerical point of view,
it is desirable to deal with controls having a finite number of switching times.
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First, we would like to remind why condition (2.1) implies the so-called Fuller’s phenomenon (or chattering).
From Pontryagin’s Principle [18, 24], if u is an optimal control and x denotes the associated solution of the
system defined over [0, T ], there exist p0 ≤ 0 and an absolutely continuous function p : [0, T ] → Rn (the
covector) satisfying the adjoint equation

ṗ(t) = −Dxf(x(t))
⊤p(t)− u(t)Dxg(x(t))

⊤p(t) a.e. t ∈ [0, T ], (2.2)

together with the transversality condition

p(T ) + p0∇ψ(x(T )) ∈ −NC(x(T )), (2.3)

where NC(x) denotes the (convex) normal cone to the set C at some point x ∈ C. The pair (p0, p(·)) also
fulfills the non-triviality condition (p0, p(·)) ̸= 0. Finally, the Hamiltonian maximization condition gives us
the following control law:

u(t) = sign(ϕ(t)) a.e. t ∈ [0, T ] s.t. ϕ(t) ̸= 0, (2.4)

where ϕ(t) := p(t) · g(x(t)) is the switching function. On a sub-interval [t1, t2] ⊂ [0, T ] on which ϕ vanishes,
a different analysis should be carried out in order to find the expression of an optimal control (in particular
(2.4) is useless). If this situation occurs, then, we say that the extremal1 (x, p, u) is singular over [t1, t2]
(equivalently, we say that the trajectory has a singular arc over [t1, t2]). The study of singular arcs relies on
the expressions defining the derivatives of ϕ w.r.t. the time. A simple computation shows that one has

ϕ̇(t) = p(t) · [f, g](x(t)), t ∈ [0, T ],

and that
ϕ̈(t) = p(t) · [f, [f, g]](x(t)) + u(t)p(t) · [g, [f, g]](x(t)) a.e. t ∈ [0, T ]. (2.5)

Thus, under (2.1), if a singular arc occurs, the (corresponding) singular control u cannot be expressed thanks
to (2.5), but further derivations of ϕ̈ are needed to compute the singular control (at least two according to
the geometric control theory). This leads to the singular arcs of order at least two. In this direction, let us
remind the following result about the occurrence of the chattering phenomenon for second-order singular arcs
(see [21]).

Proposition 2.1. Suppose that (2.1) is fulfilled. Consider a normal extremal (x, p, u) containing a singular
arc over [t1, t2]. Suppose that one has

∀t ∈ [t1, t2], p(t) · [g, [f, [f, [f, g]]]](x(t)) > 0, (2.6)

and that the corresponding singular control is admissible over [t1, t2]. Then, the singular arc is of second order
and it cannot be concatenated with a bang arc.

This means that the only possibility for an optimal control to connect the trajectory to the singular arc is
an infinite sequence of bang arcs since the proposition excludes the concatenation of the singular arc to the
optimal trajectory by a finite number of bang arcs. Also, singular controls may exceed the largest admissible
value leading to saturation [1], that is why, the singular control is supposed to be admissible in Proposition
2.1. In addition to this proposition, let us also recall Legendre-Clebsch’s condition [21] in the above context
(with a single input). If a singular arc of order2 q ∈ N∗ is optimal over some time interval [t1, t2], then it must
satisfy the condition

− ∂

∂u

d2q

dt2q
ϕ ≤ 0.

If this inequality is strict, we then speak of the strict Legendre-Clebsch condition. Typically, if q = 1, then, ϕ
must satisfy ϕ̈|u > 0 along a singular arc whereas if q = 2, then, it must satisfy ϕ̈|u = 0 and

....
ϕ |u < 0.

1An extremal is a triple (x, p, u) satisfying the state-adjoint system, the transversality condition, and the Hamiltonian maxi-
mization condition.

2We mean that along a singular arc, the input is present explicitly in the expression of ϕ(2q) and not in ϕ(2r), r = 1, ..., q− 1.
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2.2 Approximation of the optimal control problem

In order to avoid Fuller’s phenomenon, we propose the following approach. We suppose that there is a sequence
fk : Rn → Rn (of class C∞ for each k ∈ N) such that

∥fk − f∥L∞ → 0, (2.7)

together with
∥Dxfk −Dxf∥L∞ → 0, (2.8)

as k → +∞ (where L∞ := L∞(Rn) is the set of bounded functions) and such that

[g, [fk, g]] ̸= 0 over Rn, (2.9)

for every k ∈ N. This hypothesis will allow us to prevent chattering (see the discussion in Section 2.4).
Consider now the approximated Mayer optimal control problem:

inf
u∈U

ψ(x(T )) s.t.

 ẋ(t) = fk(x(t)) + u(t)g(x(t)) a.e. t ∈ [0, T ],
x(0) = x0,
x(T ) ∈ C,

(OCPk)

and let us introduce additional hypotheses in order to ensure existence of solutions to (OCP) and (OCPk).
Hereafter | · | denotes the Euclidean norm in Rn.

Assumption 2.1. We suppose that for every k ∈ N, the target set C is reachable from x0 for the controlled
dynamics

ẋ(t) = fk(x(t)) + u(t)g(x(t)) a.e. t ∈ [0, T ], (2.10)

where u ∈ U . Similarly, we assume that C is also reachable from x0 for the controlled dynamics

ẋ(t) = f(x(t)) + u(t)g(x(t)) a.e. t ∈ [0, T ], (2.11)

where u ∈ U . In addition, we suppose that there is c ≥ 0 such that

∀k ∈ N, |fk(x)| ≤ c(|x|+ 1) ; |f(x)| ≤ c(|x|+ 1) ; |g(x)| ≤ c(|x|+ 1) for all x ∈ Rn. (2.12)

Note that for simplicity, we supposed that the sequence (fk) satisfies a linear growth condition, but this
hypothesis could be removed in view of (2.7).

Lemma 2.1. If Assumption 2.1 is satisfied, then for every k ∈ N, (OCPk) has a solution as well as (OCP).

Proof. Since the velocity sets associated to (2.10) and (2.11) are convex w.r.t. u, we can apply Filipov’s
existence Theorem (see [8]), whence the result.

2.3 Convergence results

For every k ∈ N, let uk be an optimal solution of (OCPk). According to the PMP, there exist p0k ≤ 0 and an
absolutely continuous function pk : [0, T ] → Rn such that (p0k, pk(·)) ̸= 0 and such that

ṗk(t) = −Dxfk(xk(t))
⊤pk(t)− uk(t)Dxg(xk(t))

⊤pk(t) a.e. t ∈ [0, T ], (2.13)

together with the transversality condition

pk(T ) + p0k∇ψ(xk(T )) ∈ −NC(xk(T )). (2.14)

In addition, the Hamiltonian maximization condition implies that

uk(t) = sign(ϕk(t)) a.e. t ∈ [0, T ] s.t. ϕk(t) ̸= 0, (2.15)

where ϕk(t) := pk(t) · g(xk(t)). Finally, since the problem is autonomous the Hamiltonian of the problem is
constant almost everywhere, that is, for all k ∈ N, there is Hk ∈ R such that

Hk := pk(t) · fk(xk(t)) + uk(t)pk(t) · g(xk(t)) a.e. t ∈ [0, T ].
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The transversality condition (2.14) implies that for every k ∈ N, there exists ξk ∈ NC(xk(T )) such that

pk(T ) + p0k∇ψ(xk(T )) = −ξk,

so, the scalar rk :=
√

(p0k)
2 + |ξk|2 is with positive value for all k ∈ N since the pair (p0k, pk(·)) is non-trivial.

Hence, we can set
qk := pk/rk. (2.16)

Hereafter, we say that a sequence (xk) of absolutely continuous functions over [0, T ] strongly-weakly converges
to a function x⋆ : [0, T ] → Rn if and only if ∥xk − x⋆∥L∞([0,T ] ; Rn) → 0 and ẋk ⇀ ẋ⋆ (weak convergence in
L2([0, T ] ; Rn)).

Proposition 2.2. Suppose that Assumption 2.1 is satisfied. For every k ∈ N, denote by uk an optimal solution
of (OCPk) and let qk be defined by (2.13)-(2.14), and (2.16). Then, there exists an extremal (x⋆, p, , u⋆)
associated with (OCP) such that, up to a sub-sequence, (xk, qk) strongly-weakly converges to (x⋆, p) over
[0, T ]. In addition, one has the pointwise convergence uk(t) → u⋆(t) on every time interval [t1, t2] such that
ϕ(t) ̸= 0 where ϕ(t) := p(t) · g(x⋆(t)), t ∈ [0, T ]. In addition, u⋆ is an optimal solution to (OCP).

Proof. From the linear growth assumption on the sequence of dynamics (fk) and f (Assumption 2.1), we easily
obtain that the sequence (xk) is uniformly bounded over [0, T ] since the set of admissible controls is bounded.
So, the sequence (xk(T )) is also bounded, hence, up to a subsequence, we may assume that it converges to
some value w ∈ Rn. Now, let us set αk := p0k/rk and βk := −ξk/rk so that the transversality condition reads
as follows:

qk(T ) + αk∇ψ(xk(T )) = βk.

By compacteness of the unit ball in R1+n, we may assume (extracting a sub-sequence if necessary) that the
sequence (αk, βk)k converges to a limit (α, β) ∈ R1+n which is non-zero and such that α ≤ 0. By closedness
property of the normal cone, one also obtains that −β ∈ NC(w). Next, observe that the Hamiltonian of the
problem and that the adjoint equation are linear w.r.t. the covector, so the triple (xk, qk, uk) satisfies:

H̃k :=
Hk

rk
= qk(t) · fk(xk(t)) + uk(t)qk(t) · g(xk(t)) a.e. t ∈ [0, T ], (2.17)

together with the state-adjoint system{
ẋk(t) = f(xk(t)) + uk(t)g(xk(t)) + η̂k(t),

q̇k(t) = −Dxf(xk(t))
⊤qk(t)− uk(t)Dxg(xk(t))

⊤qk(t) + η̃k(t),
(2.18)

where for a.e. t ∈ [0, T ], η̂k(t) and η̃k(t) are defined as:

η̂k(t) := fk(xk(t))− f(xk(t)) ; η̃k(t) := Dxf(xk(t))
⊤qk(t)−Dxfk(xk(t))

⊤qk(t).

Setting zk := (xk, qk) and using that (xk) is uniformly bounded over [0, T ], we obtain that there exists c′ ≥ 0
such that for every k ∈ N one has

|zk(t)| ≤ c′(|zk(t)|+ 1) a.e. t ∈ [0, T ], (2.19)

where | · | denotes the Euclidean norm in R2n. From the preceding inequality and the fact that (xk(T ), qk(T ))
converges, we obtain after application of Gronwall’s Lemma that (xk(·), qk(·)) is uniformly bounded over [0, T ].
Now the multi-function

F (x, q) := {(f(x) + ug(x),−Dxf(x)
⊤q − uDxgk(x)

⊤q) ; u ∈ [−1, 1]},

is with compact convex values for every (x, q) ∈ R2n. Remind that zk(T ) converges and note also (using the
uniform boundedness of (xk, qk) in L∞([0, T ] ; Rn)) that the sequences η̂k(·) and η̃k(·) uniformly converge
to zero. Hence, we can apply [9, Theorem 1.11] which shows the existence of an absolutely continuous pair
(x⋆, p) as well as a control function u⋆ ∈ U such that{

ẋ⋆(t) = f(x⋆(t)) + u⋆(t)g(x⋆(t)),

ṗ(t) = −Dxf(x
⋆(t))⊤p(t)− u⋆(t)Dxg(x

⋆(t))⊤p(t),
(2.20)
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for a.e. t ∈ [0, T ]. In addition, (xk, qk) strongly-weakly converges to (x⋆, p) over [0, T ]. Also, by passing to
the limit as k → +∞, we obtain that x⋆(0) = x0 and that p(T ) + α∇ψ(x⋆(T )) = β ∈ −NC(x

⋆(T )) (using the
closedness property of the normal cone) where (α, β) is non-zero and α ≤ 0. This proves the first property of
Proposition 2.2.

Let us now address convergence of the sequence of controls (uk) to u⋆. Suppose that there is t0 ∈ [0, T ]
such that ϕ(t0) > 0. By uniform convergence of ϕk to ϕ, there exist k0 ∈ N, ε > 0, and κ > 0 such that for
every k ≥ k0 and every t ∈ [t0 − ε, t0], one has ϕk(t) ≥ κ. Thus, by the Hamiltonian maximization condition,
we obtain that uk(t) = +1 for every t ∈ [t0 − ε, t0] and every k ≥ k0. Hence, for all η ∈ (0, ε) and for all
k ≥ k0, one has

1

η

∫ t0

t0−η

ẋk(t) dt =
1

η

∫ t0

t0−η

[fk(xk(t)) + g(xk(t))] dt.

Thus, if we let k → +∞ (utilizing uniform convergence of the sequences (fk) and (xk) and also weak conver-
gence of (ẋk)) and next η ↓ 0, one obtains using that almost every t0 ∈ [0, T ] is a Lebesgue point of u⋆ (since
u⋆ is bounded):

ẋ⋆(t0) = f(x⋆(t0)) + g(x⋆(t0)).

It follows that u⋆(t0) = +1 = sign(ϕ(x⋆(t0))). By repeating this argumentation in a neighborhood of every
point t0 ∈ [0, T ] such that ϕ(x⋆(t0)) ̸= 0, we obtain that u⋆ satisfies the Hamiltonian maximization condition
(2.4) as desired as well as the pointwise convergence of (uk) to u

⋆ at every point t0 ∈ [0, T ] such that ϕ(t0) ̸= 0.
This concludes the proof of the convergence of the sequence of controls (uk) to u

⋆.
Finally, let us check that u⋆ is an optimal solution to (OCP). Doing so, observe that

ψ(xk(T )) ≤ ψ(x̃k(T )),

for every admissible pair (x̃k, ũ) of (OCP). Note also that ũ is a fixed control in U . So, again using Gronwall’s
Lemma, we can check that (x̃k) strongly-weakly converges to x̃ over [0, T ] where x̃ is the unique solution to
˙̃x(t) = f(x̃(t)) + u(t)g(x̃(t)), a.e. t ∈ [0, T ] together with x̃(0) = x0. Hence, passing to the limit as k → +∞
(ψ being continuous) implies that

ψ(x⋆(T )) ≤ ψ(x̃(T )),

for every admissible pair (x̃, ũ) to (OCP). This shows that u⋆ is an optimal solution to (OCP) which ends the
proof of the proposition.

Remark 2.1. As a byproduct of the previous proposition, we obtain that the value function associated to
(OCPk) converges to the value function associated to (OCP). In addition, the control uk uniformly converges
to u⋆ on every segment [t1, t2] such that ϕ(t) ̸= 0 over [t1, t2].

2.4 Discussion about the employed methodology

Recall that in the present setting, chattering may occur whenever (2.1) is verified or whenever the covector is
orthogonal to [g, [f, g]] along a singular arc. So, under one of these two conditions, we propose to introduce a
sequence of functions (fk) approaching f (see (2.7) and (2.8)) and such that (2.9) is verified for every k ∈ N.
The main advantage of considering (OCPk) in place of (OCP) is that the behavior of an optimal solution to
(OCPk) might be simpler to handle. Indeed, as shows Proposition 2.1, one can expect Fuller’s phenomenon
for an optimal solution to (OCP) involving a singular arc. In contrast, if (xk, pk, uk) is an extremal of (OCPk),
then, according to the PMP, the corresponding switching function ϕk fulfills:

ϕ̈k(t) = pk(t) · [fk, [fk, g]](xk(t)) + uk(t)pk(t) · [g, [fk, g]](xk(t)).

We can thus expect that along a singular arc pk(t) · [g, [fk, g]](xk(t)) ̸= 0, so Fuller’s phenomenon may not
arise. In addition, if Legendre-Clebsch’s condition is verified for every k ∈ N, then, we can also expect the
occurrence of a singular arc of turnpike type (thus a first-order singular arc without involving an infinite
number of switching times, see, e.g., [2]). Hence, for the approximated problem, Fuller’s phenomenon may
not arise even if Legendre-Clebsch’s condition is not verified (in that case, we speak of anti-turnpike [3, 4]).
Note that we supposed the terminal time T > 0 fixed, but it can also be free (in that case, we can adapt
the previous properties by using classical techniques considering an augmented state, see, e.g., [5]). In the
next section, we provide three examples for which an optimal solution contains a second-order singular arc.
Doing so, we introduce an explicit sequence of functions fk approaching the dynamics such that the associated
optimal control problem does not possesses chattering.
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3 Application to three examples involving chattering

Throughout this section, we are given a sequence (εk) of positive numbers such that εk ↓ 0 as k → +∞. By
limit problem, we mean the optimal control problem for which εk = 0 (i.e. without perturbation).

3.1 A variant of Fuller’s problem

3.1.1 Presentation of the problem

Let ρ, ℓ : R → R be two smooth functions. Consider the three-dimensional optimal control problem

inf
u∈U, T∈R+

x3(T ) s.t.

 ẋ1 = x2,
ẋ2 = ρ(x1) + u(t),
ẋ3 = ℓ(x1) + εkx

2
2,

;

 x1(0) = x01 ∈ R
x2(0) = x02 ∈ R
x3(0) = 0

; x(T ) ∈ C, (3.1)

where C ⊂ R3 is a non-empty closed convex subset. Suppose that ℓ : R → R has a unique minimum xm1 over
R such that ℓ′(xm1 ) = 0 together with ℓ′′(xm1 ) > 0. Without any loss of generality, we may also assume that
ℓ(xm1 ) = 0 (by translation). Furthermore, assume that −ρ(xm1 ) ∈ [−1, 1] (this is required for admissibility of
singular arcs).

Remark 3.1. Fuller’s Problem corresponds to the “limit” case εk = 0 together with ρ(x1) = 0, ℓ(x1) = x21,
and C = {(0, 0)} × R.

The previous framework encompasses this example setting

f(x) :=

 x2
ρ(x1)
ℓ(x1)

 ; g(x) :=

 0
1
0

 ; fk(x) :=

 x2
ρ(x1)

ℓ(x1) + εkx
2
2

 ,

since we can easily check that [g, [f, g]] = 0 and [g, [fk, g]] = (0, 0,−2εk)
⊤ ̸= 0 (for εk > 0). We now provide

more details on optimal solutions of (3.1) for εk > 0 and in the limit case.

1. Study of the optimal control problem in the case where εk > 0. By application of the PMP
considering only normal lifts, the Hamiltonian of the problem becomes:

Hk := p1x2 + p2ρ(x1) + p2u− ℓ(x1)− εkx
2
2.

Indeed, using the transversality condition, we obtain that p3(T ) = −1 and because Hk does not depend on
x3, the function p3 must be constant. It follows that the adjoint equation can be written as:{

ṗ1 = −p2ρ′(x1) + ℓ′(x1),
ṗ2 = −p1 + 2εkx2.

The switching function is p2 which satisfies

p̈2 = p2ρ
′(x1)− ℓ′(x1) + 2εkρ(x1) + 2εku.

We are now in a position to characterize singular arcs for every εk > 0. Using that the Hamiltonian is zero
along any extremal (since the terminal time is free), every singular arc is such that:

εkx
2
2 = ℓ(x1) ; u

⋆
k =

ℓ′(x1)

2εk
− ρ(x1) ; ẍ1 =

ℓ′(x1)

2εk
,

where u⋆k denotes the singular control. The set of points (x1, x2) ∈ R2 such that εkx
2
2 = ℓ(x1) is the singular

locus. In addition, for every k ∈ N, we find that p̈2|u = 2εk > 0 thus Legendre-Clebsch’s condition is verified
along a singular arc. In particular, since εk ̸= 0, every singular arc is of first order.

2. Study of the optimal control problem in the limit case. Using similar notation as when εk > 0, we
find that the switching function associated with the optimal control problem with εk = 0 now satisfies

p̈2 = p2ρ
′(x1)− ℓ′(x1),
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thus, we need to differentiate p2 at least four times to check the order of the singular control. Note also that
we must have −ℓ′(x1) = 0 along a singular arc, hence, x1 = xm1 . By differentiating p̈2 w.r.t. t, we find that
...
p 2 = −ℓ′′(x1)x2, hence x2 = 0 along the singular arc (because ℓ′′(xm1 ) > 0), and finally

....
p 2 = −ℓ′′(xm1 )u. In

that case, a singular arc is then characterized by

x⋆1 = xm1 ; x⋆2 = 0 ; u⋆ = −ρ(xm1 ),

where u⋆ is the singular control. We conclude that the limit case has a second-order singular arc which is such
that

....
p 2|u

= −ℓ′′(xm1 ) < 0, thus Legendre-Clebsch’s condition is also verified. In addition, |u⋆| = |−ρ(xm1 )| ≤
1, thus the singular arc is admissible.

Remark 3.2. (i) When εk > 0, the singular arc is of turnpike type, however, a saturation phenomenon may
occur since for t > 0, one has |u⋆k(t)| ≤ 1 if and only if∣∣∣∣ℓ′(x1(t))2εk

− ρ(x1(t))

∣∣∣∣ ≤ 1.

Since εk is small, the singular arc is admissible only if x1 is close to xm1 . This defines a “small” subset of the
singular locus in the plane (x1, x2) for the admissibility of the singular arc. We also see that the singular locus
as εk ↓ 0 is a small deformation of the origin (the singular locus for the problem with εk = 0).
(ii) Uniform convergence of the sequence (fk) and its derivative (Dxfk) to f and Dxf respectively is straightfor-
ward over compact subsets of R3. But, since for a given initial condition (x01, x

0
2, 0) ∈ R3, optimal trajectories

of (3.1) are uniformly bounded, the uniform convergence of fk to f on compact subsets is enough to apply the
results of Proposition 2.2.

In the next section, we depict numerically optimal solutions when εk > 0 and also in the limit case.

3.1.2 Numerical simulations on the perturbed optimal control problem

For all the examples presented in this article, simulations were carried out with the direct method, using
the Bocop solver [23]. For sake of simplicity, the final time was fixed. The Gauss II method3 was used for
discretization, with 1000 time steps. Simulations of the perturbed Fuller’s problem (i.e., Problem (3.1) with
ρ(x1) = 0 and ℓ(x1) = x21) are depicted on Fig. 1 and 2 for different values of εk. In line with our previous
results, the trajectories are of type Bang-Singular. In particular, Fig. 2 highlights the fact that optimal paths
(for εk > 0) lie in the singular locus εkx

2
2 = x21 before approaching the target point (see Remark 3.2). As

εk decreases, we can see that the number of bang arcs increase and the trajectories approximate that of the
original problem. Optimal controls are a succession of bang arcs together with a ”small” terminal first-order
singular arc such that the optimal path lies in the singular locus and then reaches the target point.

Also, we have performed a numerical simulation of optimal paths when εk < 0, see Fig. 3. In that case,
Legendre-Clesbsch’s condition has the opposite sign leading that way to an anti-turnpike behavior. It follows
that approximated optimal controls are a succession of bang arcs (see, e.g., [3]). In that case, no singular arcs
occurs.

3.2 Application to a resource allocation model

3.2.1 Presentation of the model

We consider a control system describing a self-replicator model of bacterial growth where x1 is the concentration
of precursors within a cell and x2 denotes the concentration of gene expression machinery. The control u with
values in [0, 1] will denote the resource allocation parameter defining the proportion of precursors used for
making gene expression machinery. The dynamical resource allocation model amounts then to maximize
biomass, in order to understand cellular regulations acquired through evolution. For more details on the
modeling, we refer to [13]. This yields the three-dimensional Mayer optimal control problem

inf
u(·)∈[0,1]

x3(T ) s.t.

 ẋ1 = e(1− x2)− (1 + x1)h(x1, x2),
ẋ2 = h(x1, x2)(u(t)− x2),
ẋ3 = −h(x1, x2),

;

 x1(0) = x01,
x2(0) = x02,
x3(0) = 0,

(3.2)

3It is an implicit method of fourth order in two stages to solve numerically an ordinary differential equation, [23].
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Figure 1: Simulations of the perturbed Fuller’s problem with different values of εk.
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Figure 2: Simulations of the perturbed Fuller’s problem with different values of εk. Left: trajectories in the
phase plane. Right: Zoom around the origin. The dashed lines correspond to the singular locus εkx

2
2 = x21.

where h(x1, x2) :=
x1x2

K+x1
, e,K are positive constants, (x01, x

0
2) ∈ R+ × [0, 1], and T > 0 is fixed. The objective

function in (3.2) represents the biomass to be maximized. We can observe that x2 is always bounded between
0 and 1 provided that x02 ∈ [0, 1], but, this property does not hold for x1 (for more details, see [13]).

The expression of h will lead to chattering (see below), making the use of this model and its variants (see
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Figure 3: Simulations of the perturbed Fuller’s problem with εk < 0. Note that in that case, Legendre-
Clebsch’s condition has the opposite sign (i.e., p̈2|u = 2εk < 0), so, we have an anti-turnpike behavior for the
solution to the approximated optimal control problem leading to an increasing number of bang arcs.

e.g. [26, 25]) more complex. A way to avoid this behavior is to make a slight perturbation of the system
replacing h(x1, x2) by hε(x1, x2) :=

x1

K+x1

x2

1+εx2
(actually, we replace x2 7→ x2 by x2 7→ x2

1+εx2
). Hereafter, we

keep ε in place of εk for convenience. Setting f̃(x1) :=
x1

K+x1
and gε(x2) :=

x2

1+εx2
, we can rewrite the above

control system as follows: 
ẋ1 = e(1− x2)− (1 + x1)f̃(x1)gε(x2),

ẋ2 = f̃(x1)gε(x2)(u(t)− x2),

ẋ3 = −f̃(x1)gε(x2).
(3.3)

So, for ε = 0, we are in the limit case with chattering (see below) whereas for every ε > 0, the optimal synthesis
may exhibit singular arcs of order at most 1 (see below). In addition, it is easily seen that

|gε(x2)− x2| =
εx22

1 + εx2
≤ ε ; |g′ε(x2)− 1| ≤ 3ε,

for every ε ∈ (0, 1] and every x2 ∈ [0, 1]. Hence, the convergence results of the previous section can be applied.
We shall now verify the properties related to the occurrence of a singular arc by application of the PMP.

1. Study of the optimal control problem in the cases where ε > 0. We apply the PMP with the
maximum convention. Observe that the cost to be minimized is Φ(x(T )) := x3(T ), so the terminal adjoint
vector is p(T ) := −∇Φ(x(T )) = (0, 0,−1). It follows that H can be written

H = p1e(1− x2)− p1(1 + x1)f̃(x1)gε(x2) + p2f̃(x1)gε(x2)(u− x2) + f̃(x1)gε(x2) → max
u∈[0,1]

so u(t) = sign(p2(t)) except along (possible) singular arcs. Note that the switching function ϕ is ϕ :=
p2f̃(x1)gε(x2), but since f̃(x1)gε(x2) > 0, we will compute the derivatives w.r.t. t of p2 in place of ϕ for
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simplification. Now, the covector fulfills over [0, T ] the adjoint equation:{
ṗ1 = p1gε(x2)(f̃(x1) + (1 + x1)f̃

′(x1))− p2f̃
′(x1)gε(x2)(u− x2)− f̃ ′(x1)gε(x2),

ṗ2 = p1e+ p1(1 + x1)f̃(x1)g
′
ε(x2)− p2f̃(x1)(g

′
ε(x2)(u− x2)− gε(x2))− f̃(x1)g

′
ε(x2).

Let us now address the occurrence of a singular arc. Doing so, suppose that p2 ≡ 0 over [t1, t2] where [t1, t2]
is a sub-interval of [0, T ]. We get ṗ2 = 0 thus

p1(e+ (1 + x1)f̃(x1)g
′
ε(x2)) = f̃(x1)g

′
ε(x2).

We now turn to the computation of p̈2 (along p2 = ṗ2 = 0 over [t1, t2]). We get:

p̈2 = ṗ1[e+ (1 + x1)f̃(x1)g
′
ε(x2)] + p1

d

dt
(e+ (1 + x1)f̃(x1)g

′
ε(x2))−

d

dt
(f̃(x1)g

′
ε(x2))

= [p1gε(x2)(f̃(x1) + (1 + x1)f̃
′(x1))− f̃ ′(x1)gε(x2)][e+ (1 + x1)f̃(x1)g

′
ε(x2)]

+ p1[ẋ1(f̃(x1)g
′
ε(x2) + (1 + x1)f̃

′(x1)g
′
ε(x2)) + (1 + x1)f̃(x1)g

′′
ε (x2)ẋ2]

− f̃ ′(x1)g
′
ε(x2)ẋ1 − f̃(x1)g

′′
ε (x2)ẋ2

To compute p̈2|u there are two contributing terms (from ẋ2). We get replacing p1 by its value in the second
equality:

p̈2|u = (1 + x1)f̃
2(x1)g

′′
ε (x2)gε(x2)p1 − f̃2(x1)g

′′
ε (x2)gε(x2)

= (1 + x1)f̃
2(x1)g

′′
ε (x2)gε(x2)

f̃(x1)g
′
ε(x2)

e+ (1 + x1)f̃(x1)g′ε(x2)
− f̃2(x1)g

′′
ε (x2)gε(x2)

=
−ef̃2(x1)gε(x2)g

′′(x2)

e+ (1 + x1)f̃(x1)g′ε(x2)
.

Proposition 3.1. Let ε > 0 and consider an extremal of the optimal control problem. If a singular arc occurs,
then, the Legendre-Clebsch condition is fulfilled.

Proof. From the preceding expression of p̈2|u , we deduce that along a singular arc, the switching function
satisfies

ϕ̈|u =
−ef3(x1)gε(x2)2g′′ε (x2)
e+ (1 + x1)f̃(x1)g′ε(x2)

> 0,

since gε is strictly concave, whence the result.

2. Study of the optimal control problem in the limit case. We can rewrite the system as follows
ẋ1 = e(1− x2)− (1 + x1)f̃(x1)x2,

ẋ2 = f̃(x1)x2(u(t)− x2),

ẋ3 = −f̃(x1)x2.

Again, we apply the PMP with the maximum convention and similarly, the terminal adjoint vector is p(T ) =
(0, 0,−1). It follows that the Hamiltonian H can be written

H = p1e(1− x2)− p1(1 + x1)f̃(x1)x2 + p2f̃(x1)x2(u− x2) + f̃(x1)x2 → max
u∈[0,1]

so u(t) = sign(p2(t)) except along (possible) singular arcs. As previously, we shall compute the derivatives
of p2 w.r.t. t in place of the switching function ϕ := p2f̃(x1)x2 (since f̃(x1)x2 > 0). The covector fulfills the
adjoint equation over [0, T ]:{

ṗ1 = p1x2(f̃(x1) + (1 + x1)f̃
′(x1))− p2f̃

′(x1)x2(u− x2)− f̃ ′(x1)x2,

ṗ2 = p1(e+ (1 + x1)f̃(x1)) + p2f̃(x1)(2x2 − u)− f̃(x1).

Let us now address the occurrence of a singular arc. Doing so, suppose that p2 ≡ 0 over [t1, t2] where [t1, t2]
is a sub-interval of [0, T ]. We get ṗ2 = 0 thus

p1(e+ (1 + x1)f̃(x1)) = f̃(x1).
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We now turn to the computation of p
(k)
2 , k = 2, 3, 4 (along p2 = ṗ2 = 0 over [t1, t2]). We get replacing p1, ṗ1,

and ẋ1 by their respective value:

p̈2 = ṗ1[e+ (1 + x1)f̃(x1)] + p1[f̃(x1) + (1 + x1)f̃
′(x1)]ẋ1 − f̃ ′(x1)ẋ1

= [p1x2(f̃(x1) + (1 + x1)f̃
′(x1))− f̃ ′(x1)x2][e+ (1 + x1)f̃(x1)]

+ p1[f̃(x1) + (1 + x1)f̃
′(x1)][e(1− x2)− (1 + x1)f̃(x1)x2]

− f̃(x1)[e(1− x2)− (1 + x1)f̃(x1)x2]

= p1[f̃(x1) + (1 + x1)f̃
′(x1)]− f̃ ′(x1)e

= Ψ(x1),

where

Ψ(x1) :=
e[f̃2(x1)− ef̃ ′(x1)]

e+ (1 + x1)f̃(x1)
.

We deduce that if a singular arc occurs, then it is at least of second order since ϕ̈|u = f̃(x1)x2p̈2|u = 0, i.e.,

p(t) · [g, [f, g]](x(t)) = 0 along the singular arc. In addition, we obtain that if a singular arc occurs, then, we

have p2 = ṗ2 = p̈2 = 0, so Ψ(x1) = 0 which gives x1 = x⋆1 :=
√
eK. We also obtain

...
p 2 = Ψ′(x1)ẋ1 = 0. A

computation shows that

Ψ′(x⋆
1) =

2
√
Kee

(2Ke+ e
√
Ke+

√
Ke)(K +

√
Ke)

,

which is obviously non-zero, hence, x1 remains constant along the singular arc and, so, the singular arc is at
least of second order. Finally, differentiating a last time w.r.t. t yields

....
p 2 = Ψ(x1)ẍ1 = Ψ′(x1)(−ẋ2(e+ (1 + x1)f̃(x1))).

This gives ẋ2 = 0, hence x2 = 0 or x2 = u. The case x2 = 0 implies that ẋ1 = e > 0 in contradiction with the
fact that ẋ1 = 0. So, we can conclude that u = x2. Hence, the singular arc can be characterized as:

x⋆1 =
√
eK ; x⋆2 :=

e

e+ (1 + x⋆1)f(x
⋆
1)

=

√
e(
√
e+

√
K)

1 + e+ 2
√
e
√
K

; u⋆ = x⋆2.

Finally, we get that
....
p 2|u

= −Ψ′(x⋆1)(e+ (1 + x⋆1)f(x
⋆
1))x

⋆
2(x

⋆
1) < 0,

hence, Legendre-Clebsch’s condition is satisfied.

3.2.2 Numerical simulations on the perturbed optimal control problem

Fig. 4 depicts trajectories obtained for different values of εk > 0. Following [13], simulations are carried out
with a fixed final time, and only the transients until reaching the optimal steady-state are depicted (bang arcs
also appear at the end of the simulations, but they are not relevant for the biological problem). The results
are similar to those of the Fuller’s problem. For εk > 0, optimal controls are a concatenation of bang arcs
together with a terminal singular arc approaching the singular arc in the limit case. A value of εk = 0.01 is
enough to obtain an accurate approximation of the optimal trajectory to the original problem.

3.3 Application to a quantum control system

3.3.1 Presentation of the problem

Here, we consider an optimal control problem introduced in [19] in which chattering occurs. The model
describes the control of a three-level quantum system to be steered from a given initial condition on the unit
sphere of R3 (denoted by S1) to the north pole (0, 0, 1). This yields the following optimal control problem
(written in Mayer form):

min
T≥0, u∈U

x4(T ) s.t.


ẋ1 = −x2,
ẋ2 = x1 − u(t)x3,
ẋ3 = u(t)x2,

ẋ4 =
x2
1

2 ,

and

{
(x1(0), x2(0), x3(0), x4(0)) ∈ S1 × {0},

(x1(T ), x2(T ), x3(T ), x4(T )) ∈ {(0, 0, 1)} × R.
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Figure 4: Simulations of the perturbed resource allocation problem (3.2) with different values of εk.

As it can be verified, the dynamics of (x1, x2, x3) is with values in S1. We assume for sake of simplicity that
x3(t) ≥ 0, ∀t ∈ [0, T ] (by choosing initial conditions) so that one can reduce the dimension of the system.
Thus, we can introduce the following control system:

ẋ1 = −x2,
ẋ2 = x1 − u(t)

√
1− x21 − x22,

ẋ3 = 1
2x

2
1 +

ε
2x

2
2,

proceeding as previously, that is, by adding a small perturbation term in the state x3. The optimal control
problem then amounts to minimize x3(T ) w.r.t. the pair (T, u) such that x1(T ) = x2(T ) = 0 starting from
some initial condition (x01, x

0
2, 0) ∈ R3 such that (x01)

2 + (x02)
2 < 1.

1. Study of the optimal control problem in the case where ε > 0. In that case, the Hamiltonian
associated with the problem can be written (taking into account that p3 = −1 is constant):

H = −p1x2 + p2x1 − up2

√
1− x21 − x22 −

x21
2

− ε
x22
2

→ max
u∈[−1,1]

and it is conserved over [0, T ] (since the problem is autonomous) and also equal to zero (because the terminal
time is free). The adjoint equation reads as follows: ṗ1 = −p2 − ux1p2√

1−x2
1−x2

2

+ x1,

ṗ2 = p1 − ux2p2√
1−x2

1−x2
2

+ εx2

Now, the switching function is ϕ := −p2
√
1− x21 − x22, so, it is enough to study the behavior of p2. Along a

singular arc, we have p2 = ṗ2 = 0, thus p1 = −εx2. Replacing into the Hamiltonian yields the singular locus
εx22 = x21 in the state space. By differentiating this expression, we obtain the value of the singular control

u⋆ε := ± (1 + ε)|x1|
ε
√

1− x21 − x22
.

We note that the value of |u⋆ε| may exceed 1, so in that case, we have saturation (see [1]). However, numerical
simulations indicate that it is admissible when the trajectory is close to the origin (what can be expected).
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Finally, the second order derivative of p2 satisfies: p̈2|u = −ε
√
1− x21 − x22 < 0. It follows that Legendre-

Clesbsch’s condition is satisfied (since ϕ = −p2).

2. Study of the optimal control problem in the limit case. In this case, the switching function is also
ϕ = −p2. By differentiating w.r.t. t, we find that ϕ̇ = −p1 + ux2p2√

1−x2
1−x2

2

. Let us examine singular arcs in this

case. Supposing that ϕ = 0 over some time interval [t1, t2] gives us −p1x2 − x2
1

2 = 0. The equation ϕ̇ = 0 also

implies that p1 = 0, hence x1 = 0. Along the singular arc, we can write ϕ̈ = −ṗ1 = x1, thus
...
ϕ = −ẋ1 = x2,

and finally
....
ϕ = ẋ2 = x1 − u

√
1− x21 − x22. To conclude this case, we obtain that the singular arc satisfies:

x⋆1 = x⋆2 = u⋆ = 0 ; ϕ̈|u = 0 ;
....
ϕ |u = −1 < 0.

We can thus conclude that the limit case is indeed a second-order singular arc for which Legendre-Clesbch’s
condition is verified.

3.3.2 Numerical simulations on the perturbed optimal control problem

The results obtained for the perturbed quantum control system are presented on Fig. 5. Here again, we can see
that the number of bang arcs increases as εk decreases. In addition, the trajectory ends up with a singular arc
approaching the singular arc of the limit problem (corresponding to u = 0). This example, like the previous
ones, confirms the applicability of the method to various control systems.
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Figure 5: Simulations of the perturbed quantum control system with different values of εk.

4 Conclusion and perspectives

In this work, we have studied how to slightly modify optimal control problems involving a second order
singular arc in order to obtain a ”simpler” optimal control problem whose solutions do not possess chattering.
The advantage of these modified optimal control problems is that they are more tractable from a numerical
viewpoint since optimal controls involve only a finite number of switching times. The examples we have
studied show that we obtain that way a deformation of the singular locus (corresponding to the second-order
singular arc) into a ”small” singular locus (corresponding to a first-order singular arc). Since approximated
optimal controls may involve both singular and bang arcs, our approach somehow differs from other approaches
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using only a sequence of bang-bang arcs to approach the chattering control. In particular, our methodology
allows to apply the PMP on the approximated problem and to obtain that way qualitative properties of the
approximated control (like the value of the singular control for the approximated problem). Other applications
such as in [15] could be investigated in future works. As well, an interesting question could be to find out if
every control system involving a second order singular arc (typically, in our setting, when [g, [f, g]] is identically
zero) can be approximated by control systems with a first-order singular arc (for which this Lie bracket is non-
zero), and how to determine an approximated system. Additionally, convergence of the singular control (for
the approximated problem) to the singular control (for the second order singular arc) could also be addressed
in future works.
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