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Minimal Sparsity for Second-Order Moment-SOS Relaxations

of the AC-OPF Problem

Adrien Le Franc, Victor Magron, Jean-Bernard Lasserre, Manuel Ruiz, Patrick Panciatici ∗

December 7, 2023

Abstract

AC-OPF (Alternative Current Optimal Power Flow) aims at minimizing the operating costs
of a power grid under physical constraints on voltages and power injections. Its mathematical
formulation results in a nonconvex polynomial optimization problem which is hard to solve in
general, but that can be tackled by a sequence of SDP (Semidefinite Programming) relaxations
corresponding to the steps of the moment-SOS (Sum-Of-Squares) hierarchy. Unfortunately, the size
of these SDPs grows drastically in the hierarchy, so that even second-order relaxations exploiting
the correlative sparsity pattern of AC-OPF are hardly numerically tractable for large instances
— with thousands of power buses. Our contribution lies in a new sparsity framework, termed
minimal sparsity, inspired from the specific structure of power flow equations. Despite its heuristic
nature, numerical examples show that minimal sparsity allows the computation of highly accurate
second-order moment-SOS relaxations of AC-OPF, while requiring far less computing time and
memory resources than the standard correlative sparsity pattern. Thus, we manage to compute
second-order relaxations on test cases with thousands of power buses, which we believe to be
unprecedented.

Nomenclature

• For a finite set F , we write |F | for its cardinality.

• For a complex number z ∈ C, we write ∠z for its angle; |z| for its magnitude; z∗ for its complex
conjugate; ℜ(z) for its real part; and ℑ(z) for its imaginary part.

• For a pair of integers (a, b) ∈ N
2 with a ≤ b, we write Ja, bK for the sequence {a, a + 1, . . . , b}.

• For an N × N real symmetric matrix M ∈ S
N , M � 0 means that M is positive semidefinite

(PSD).

• For real matrices (A,B) ∈ (RN×N )2, we write 〈A ,B〉 for the Frobenius inner product between
A and B.

• For a polynomial function f : RN → R that decomposes as
∑

α∈NN fαx
α in the standard mono-

mial basis, we denote its support by supp(f) =
{

α ∈ NN | fα 6= 0
}

, and the set of variables
involved in f by var(f) = {n ∈ J1, NK | ∃α ∈ supp(f) , αn 6= 0}.

Whether | · | denotes cardinality or magnitude is always clear from context.

∗Adrien Le Franc, Victor Magron and Jean-Bernard Lasserre are with LAAS CNRS, Toulouse, France (e-mail:

adlefranc@laas.fr); Manuel Ruiz and Patrick Panciatici are with Réseau de Transport d’Électricité (RTE), Paris, France
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1 Introduction

The AC-OPF (Alternative Current - Optimal Power Flow) problem plays a central role for the oper-
ational management and expansion planning of AC power grids. Originally introduced in 1962 [1],
AC-OPF has now evolved to handle, e.g., discrete or random variables and N-1 security constraints.
Nevertheless, even the original AC-OPF problem remains difficult to solve: it amounts to a noncon-
vex optimization program with thousands of decision variables, and solutions returned by a nonlinear
solver might not be globally optimal [2]. The formulation of [1] is also the one adopted in the PGLib
benchmark [3] to concentrate research efforts on the handling of nonlinear AC power flows. The latter
is a critical technical challenge, as DC linear approximations — sometimes preferred to AC mod-
els to mitigate difficulties in advanced formulations — might lead to unrealistic voltage and power
solutions [4].

This work positions in the abundant research stream of relaxations of AC-OPF — we refer to [5]
for a recent survey. In particular, convex relaxations are motivated by at least tow reasons. First, they
provide tractable lower bounds allowing to estimate the global optimality gap of an AC-OPF solution.
Second, they are used to combine mature methods from stochastic and mixed-integer optimization with
advanced AC-OPF models: see e.g. [6] where a cutting-plane model for robust AC-OPF is developed.

In this paper, we follow the approach of [7, 8] to compute lower bounds for AC-OPF instances
based on the moment-SOS (Sums-Of-Squares) hierarchy. We recall that the moment-SOS hierarchy
introduces a sequence of SDP (Semidefinite Programming) relaxations which benefits from rich prop-
erties: it distinguishes from other convex relaxations by offering, e.g., convergence guarantees of the
successive values to the global minimum; sufficient conditions for checking exactness at each step of the
sequence; the possibility to extract a global minimizer when a stopping criterion is satisfied, and the
possibility to incorporate discrete variables. The interested reader is referred to [9] for an introduction
to the topic.

Experimentally, the second step of the hierarchy already achieves convergence for most of the AC-
OPF test cases of [7, 8, 10]. However, the size of the SDPs involved in the hierarchy grows drastically
with the number of AC-OPF variables and with the order of the relaxation, so that this method
becomes rapidly intractable. Thus, it is crucial to leverage the sparsity pattern of AC-OPF to make
the method competitive [11].

Among the collection of sparse moment-SOS relaxations — surveyed in [12] — the standard correl-
ative sparsity pattern has shown some limitations: the corresponding sparse second-order relaxations
yield out-of-memory errors for some instances with about a hundred of power buses on a computer
with 125 GB of RAM [10]. The most scalable approach to our knowledge seems to be the recent
correlative-term sparsity framework [13], which enables the computation of partial sparse second-order
relaxations for instances with thousands of power buses [14].

Our contribution to such relaxations is threefold.
• First, we introduce a new sparsity framework, that we call minimal sparsity. This framework

is inspired by correlative sparsity, but builds on the specific structure of the power flow equations
to design sparse moment-SOS relaxations that have smaller matrix variables — which is generally
preferred by SDP solvers based on interior-point methods [15].

• Second, we measure the accuracy of minimal sparsity on medium scale AC-OPF instances that
display large optimality gaps for the first-order moment-SOS relaxation. This experiment lets us
appreciate the empirical convergence of minimal sparsity, which is not theoretically grounded so far.

• Third, we investigate the numerical scalability of minimal sparsity on medium to large scale
AC-OPF instances from PGLib [3]. We find that our method can handle second-order moment-
SOS bounds for test cases with thousands of power buses, which drastically improves over standard
correlative sparsity.

The paper is organized as follows. First, in §2, we recall background notions on sparse moment-SOS
hierarchies and their application to AC-OPF. Second, in §3, we introduce our new minimal sparsity
framework. Third, in §4, we illustrate the strengths of minimal sparsity by computing second-order
moment-SOS relaxations of the AC-OPF problem on various numerical test cases.
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2 Sparse moment-SOS relaxations for the AC-OPF problem

First, in §2.1, we recall the formulation of the AC-OPF problem. Second, in §2.2, we review basic
concepts of moment-SOS hierarchies and their applications to AC-OPF. Third, in §2.3, we present
background notions on sparse moment-SOS relaxations.

2.1 The AC-OPF problem

The AC-OPF problem aims at minimizing the operating costs of a power grid while satisfying power
flow balance equations and infrastructure constraints. We model the grid by a directed graph (B,L)
where nodes B represent buses and edges L represent power lines. Line orientations model the asym-
metry of power flow along transmission lines in AC power grids. The set of generating power units
is denoted by G. An illustrative (B,L) example based on PGLib’s case 14 IEEE is given in Figure 1.
For simplicity, we assume here that at most one single line can connect two buses (i, j) ∈ B2. Parallel

Figure 1: Example of (B,L) graph model for PGLib’s case 14 IEEE. Red circle node markers highlight
buses with power generators.

lines can be modeled by adequate edge labeling as in [3, Model 1].
Formally, AC-OPF amounts to solving the following optimization problem:

min
v∈C

|B|

s∈C
|G|

sℓ∈C
2|L|

∑

g∈G

C2,gℜ(sg)2 + C1,gℜ(sg) + C0,g , (1a)
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s.t.

∀i ∈ Bref , ∠vi = 0 ; (1b)

∀g ∈ G , Sg ≤ sg ≤ Sg ; (1c)

∀i ∈ B ,

V i ≤ |vi| ≤ V i , (1d)
∑

g∈G(i)

sg − Li −
(

Y s
i

)∗
|vi|

2 =
∑

j∈N (i)

sℓi,j ; (1e)

∀(i, j) ∈ L ,

sℓi,j =
(

Yi,j + Y c
i,j

)∗ |vi|
2

|Ti,j|2
− Y ∗

i,j

viv
∗
j

Ti,j

, (1f)

sℓj,i =
(

Yi,j + Y c
j,i

)∗
|vj |

2 − Y ∗
i,j

v∗i vj

T ∗
i,j

, (1g)

|sℓi,j | ≤ Si,j , |sℓj,i| ≤ Si,j , (1h)

Θi,j ≤ ∠(viv
∗
j ) ≤ Θi,j . (1i)

In this formulation, we use lower case letters for decision variables and capital letters for constant
parameters. The original decision variables are the bus voltages {vi}i∈B and the power generation
values {sg}g∈G . Additionally, for every edge (i, j) ∈ L, we introduce sℓi,j for the power flow from bus i

to bus j and sℓj,i for the power flow from bus j to bus i.
We now detail the components of Problem (1).

• We minimize power generation costs (1a), which are assumed to only depend on the real part of
sg, for g ∈ G — that is, on active power generation — with parameters (C0,g, C1,g, C2,g) ∈ R3.

• In constraint (1b), we set the voltage angle of some reference buses Bref ⊆ B to zero to address
the rotational invariance of voltage solutions.

• In constraints (1c)-(1d), we impose bounds (Sg, Sg) ∈ C2 on the real and imaginary parts of the

generated power sg, for g ∈ G, and bounds (V i, V i) ∈ R2
+ on the magnitude of the bus voltage

vi, for i ∈ B.

• In constraint (1e), we enforce the balance of power flows at every bus i ∈ B. The balance equation
involves power generations sg for g in the (possibly empty) set G(i) ⊆ G of generators at bus i;
power flows sℓi,j for j in the set N (i) ⊆ B of neighbors of bus i; the load Li ∈ C and a shunt
admittance term with Y s

i ∈ C.

• In constraints (1f)-(1g), we give the expression of power flows (sℓi,j , s
ℓ
j,i) along every line (i, j) ∈ L,

following the Π-circuit branch model with parameters (Yi,j , Y
c
i,j , Y

c
j,i, Ti,j) ∈ C4 detailed in [3,

Appendix B].

• In constraints (1h)-(1i), we impose a thermal limit Si,j ∈ R+ on power flows and voltage angle
difference bounds (Θi,j ,Θi,j) ∈ R

2 for every line (i, j) ∈ L.

Due to constraints (1d)-(1g), Problem (1) is nonconvex and may have spurious local minima [2].

2.2 SDP lower bounds via moment-SOS hierarchies

Following the approach of [7, 8], AC-OPF can be cast as a POP (Polynomial Optimization Problem)
to benefit from powerful results of the moment-SOS hierarchy. We introduce notations for such a
reformulation of Problem (1) and recall some fundamental properties of moment-SOS relaxations.
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From AC-OPF to POP by considering separately the real and imaginary parts of voltage and
power generation variables of Problem (1), we obtain N = 2(|B| + |G|) real variables x ∈ RN (power
flow variables are omitted by injecting (1f)-(1g) into (1e)). The correspondence between AC-OPF and
POP variables is formalized by two bijective mappings

b
r : G ∪ B →

s
1,

N

2

{
, b

im : G ∪ B →

s
N

2
+ 1, N

{
, (2a)

so that

xbr(g) = ℜ(sg) , xbim(g) = ℑ(sg) , ∀g ∈ G , (2b)

xbr(i) = ℜ(vi) , xbim(i) = ℑ(vi) , ∀i ∈ B . (2c)

Then, we observe that all constraints in (1b)-(1i) can be equivalently formulated with K + 1
multivariate polynomials {fk}k∈J0,KK of the variable x ∈ RN — we refer to [16, §5.1] for the explicit
expression of the polynomials {fk}k∈J0,KK. Thus, Problem (1) can be written as a POP:

ρ = min
x∈X

f0(x) , where (3a)

X =
{

x ∈ R
N | fk(x) ≥ 0 , ∀k ∈ J1,KK

}

. (3b)

The Moment-SOS hierarchy despite its potential nonconvexity, the optimal value of Problem (3)
can be approximated — and often exactly computed — by the moment-SOS hierarchy. In this frame-
work, we consider two sequences of SDPs, starting from a minimal order r0 = max{dk}k∈J0,KK where

dk =
⌈deg(fk)

2

⌉

. The moment hierarchy is defined by a sequence of SDPs indexed by the relaxation
order r ∈ Jr0,+∞K:

ρr = min
y

∑

α∈supp(f0)
f0,αyα , (4a)

s.t. Mr(y) � 0 , (4b)

Mr−dk
(fky) � 0 , ∀k ∈ J1,KK , (4c)

y0 = 1 . (4d)

The entries of the so-called pseudo-moment variable vector y in Problem (4) are indexed by elements
of the truncated monomial basis {xα}α∈NN

2r
, where NN

r =
{

α ∈ NN |
∑

n∈J1:NK αn ≤ r
}

for r ∈ N.

Subsequently, the moment matrix in (4b) and the localization matrices in (4c) are expressed as

Mr(y) = (yα+β)α,β∈NN
r
, (5a)

Mr−dk
(fky) =

(

∑

γ∈supp(fk)

fk,γyα+β+γ

)

α,β∈NN

r−d
k

. (5b)

These matrices have entries that are linear in the ones of y, so that we can write Mr(y) =
∑

α∈NN

2r
A0,αyα

and Mr−dk
(fky) =

∑

α∈NN

2r
Ak,αyα by introducing adequate matrices {Ak,α}α∈NN

2r
for all k ∈ J0,KK.

By taking the Lagrangian dual of (4), we obtain the SOS hierarchy of SDPs indexed by r ∈
Jr0,+∞K:

θr = max
G,t

t , (6a)

s.t. f0,0 − t =
∑

k∈J0,KK
〈Ak,0 , Gk〉 , (6b)

f0,α =
∑

k∈J0,KK

〈Ak,α , Gk〉 , ∀α ∈ N
N
2r \ {0} , (6c)

Gk � 0 , ∀k ∈ J0,KK . (6d)
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In the context of AC-OPF, by adding redundant ball constraints to (3), we can enforce strong duality
between Problems (4) and (6) and the convergence of the nondecreasing sequences of lower bounds
{ρr}r≥r0 and {θr}r≥r0 to the value ρ of (3) (see [9]). However, the sizes of the corresponding SDP
relaxations grow drastically with the values of N and r, as the largest Gram matrix G0 in (6) and the
moment matrix Mr(y) in (4) are of size |NN

r | =
(

N+r
r

)

.

2.3 Sparse relaxations

One way to bypass the curse of dimensionality mentioned hereabove is to exploit the sparsity of AC-
OPF, as initially suggested in [11]. In the context of the moment hierarchy, sparsity consists in reducing
the dimension of the search space of Problem (4) by selecting a subset of monomials in {xα}α∈NN

2r
for

indexing the pseudo-moment variable vector y. We concentrate on correlative sparsity [17], which
introduces a hierarchy of sparse moment relaxations:

ρr(I) = min
y

∑

α∈supp(f0)
f0,αyα , (7a)

s.t. Mr(y; Ip) � 0 , ∀p ∈ J1, P K , (7b)

Mr−dk
(fky; Ip) � 0 , ∀k ∈ Kp , (7c)

∀p ∈ J1, P K ,

y0 = 1 . (7d)

Problem (7) is parameterized by a family of subsets of J1, NK, denoted I = {Ip}∈J1,P K, and satisfying
∪p∈J1,P KIp = J1, NK. The constraints {fk}k∈J1,KK are distributed over a partition {Kp}∈J1,P K of J1,KK
such that for all p ∈ J1, P K and k ∈ Kp, var(fk) ⊆ Ip. Then, for p ∈ J1, P K, the sparse moment and
localization matrices in (7b)-(7c) are defined after (5) by selecting only rows and columns indexed by
monomials in {xα}α∈NN

2r
satisfying var(xα) ⊆ Ip.

As in the dense case, the Lagrangian dual of Problem (7) gives rise to a sparse SOS hierarchy,
whose sequence of bounds is introduced as {θr(I)}r≥r0 .

We remind that the choice of the subsets I is of paramount importance. On the practical side, the
cardinalities of these subsets control the sizes of the matrices in (7b)-(7c). In general, the smaller these
matrices, the better the numerical performances of SDP solvers, especially for those based on interior-
point methods [15]. On the theoretical side, the bounds {ρr(I)}r≥r0 are not guaranteed to converge
to the value ρ of the POP (3) for any choice of I. The most favorable case is when the subsets
I satisfy the RIP (Running Intersection Property) where asymptotic convergence is preserved [18].
These considerations on the design of I are further investigated in the next section.

3 Minimal sparsity for scalable AC-OPF relaxations

We recall basic notions of clique-based sparsity and expose some of its limitations in §3.1. As an
alternative, we introduce our minimal sparsity pattern in §3.2. We further detail a method to control
the cardinalities of the subsets I in §3.3.

3.1 Clique-based sparsity and its limitations

We recall how to compute clique-based subsets I and discuss some limitations of this approach.

Clique-based subsets the design of subsets I satisfying the RIP is usually based on the following
algorithmic routine.

(i) First, we define the correlative sparsity pattern (csp) graph (V , E). In this graph, the nodes V
represent the N variables of the POP (3) and undirected edges E account for products between
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variables in the polynomial functions {fk}k∈J1,KK: an edge (n1, n2) ∈ E indicates that there exists
α ∈ ∪k∈J0,KKsupp(fk) such that {n1, n2} ⊆ var(xα).

(ii) Second, we perform a chordal extension of (V , E). We recall that a graph is chordal if each of
its cycle of length four or greater has a chord. Therefore, chordal extension adds new edges,
resulting in a new graph (V , E), where E ⊆ E .

(iii) Third, we define the subsets Ic as the nodes of the maximal cliques of the chordal graph (V , E).
We recall that a clique is a complete subgraph of (V , E), and that it is maximal when it cannot
be augmented by adding an adjacent node.

We illustrate the process (i) − (iii) for a POP example with f0 = x2x5 + x3x6 − x2x3 − x5x6 +
x1(−x1 + x2 + x3 − x4 + x5 + x6), f1 = 1 − x2

1 − x2
4 and N = 6. The csp graph (i) and its chordal

extension (ii) are given in Figure 2. The maximal cliques (iii) give us the subsets Ic = {I1, I2, I3}
with I1 = {1, 4}, I2 = {1, 2, 3, 5} and I3 = {1, 3, 5, 6}.

6

4

5

1

23

Figure 2: An example of csp graph together with its chordal extension (after adding the dashed edge).

By construction, the clique-based subsets Ic automatically satisfy the RIP, and thus ensure the
convergence of the correlative sparse moment-SOS hierarchy — we refer to [18] for technical details.

Limitations of clique-based sparsity the above routine for designing the subsets I gives a sys-
tematic way to reduce the computing burden of the dense relaxation (4). However, for large AC-OPF
instances, even the sparse relaxation (7) can be numerically challenging. Experimentally, [10] report
that the second-order sparse moment relaxation trigger out-of-memory errors on a computer allowed
with 125 GB of RAM for the instances 89 PEGASE and 162 IEEE from PGLib [3].

Therefore, some works concentrate on improving the algorithmic routine (i)−(iii) to reduce memory
usage and computing time for solving (7). In particular, [19,20] propose clique merging strategies as a
post-processing of (iii). This line of work has allowed up to ×3 decreases in solving time for first-order
relaxations [19]. However, extensions to second-order relaxations seem much less effective [21, §4.5].
We believe that it is due to the iteration complexity of interior-point SDP solvers, which typically
perform operations that scale cubically with the size of the largest PSD matrix [15]. We recall that
the largest matrix in (7) is of size

(

m + r

r

)

, where m = max
p∈J1,P K

|Ip| , (8)

hence the importance of moderating the cardinalities of the subsets in I to alleviate memory require-
ments and computing time in second-order sparse relaxations.

3.2 Minimal sparsity

We introduce minimal subsets Im to address the principal limitations faced with clique-based sparsity
in AC-OPF. Our definition builds on the specific structure of power flow equations: for each bus i ∈ B,

7



we select the minimal group of POP variables required to write the power flow balance equation at
bus i. This results in P = |B| subsets given by

Im
#i ={br(i), bim(i)}

⋃

j∈N (i)
{br(j), bim(j)}

⋃

g∈G(i)
{br(g), bim(g)} , (9a)

where, assuming an arbitrary order on buses B, we denote by #i ∈ J1, P K the position of bus i ∈ B. In
term of correspondence between POP and AC-OPF formulations, we obtain the following relationship:

{xn}n∈Im
#i

={ℜ(vi),ℑ(vi)}
⋃

j∈N (i)
{ℜ(vj),ℑ(vj)}

⋃

g∈G(i)
{ℜ(sg),ℑ(sg)} . (9b)

The above expression highlights that in Im
#i, we select the minimal amount of AC-OPF variables

required to write constraints (1e)-(1g) at bus i ∈ B. Considering any other constraint of Problem (1),
it can always be matched to a power flow constraint (1e)-(1g) — hence a set Im

#i — gathering all the
variables in its support. As for the objective function (1a), each of its terms can also be dispatched
to a minimal subset Im

#i. Consequently, the minimal sets in (9a) are adapted to write the sparse
relaxation (7) of Problem (1). If we were to consider another AC-OPF formulation with monomials
not captured by (9a) in its objective or constraints — e.g. variable products between voltages vi and
vj that are not neighbors in the power grid — then we would have to extend the minimal sets (9a) to
incorporate them.

Minimal sparsity entails a trade-off between the number of subsets in I and their cardinalities.
We illustrate this trade-off by comparing clique-based subsets Ic and minimal subsets Im for PGLib’s
case 162 IEEE. We compute the chordal extension (V , E) and its maximal cliques using the greedy
fillin heuristic implemented in the TSSOS package [22], as this heuristic yields smaller average clique
numbers than other standard heuristics — see [23] for technical details. The histogram of the
cardinalities of sets for both sparsity patterns is given in Figure 3. For case 162 IEEE, Ic has P = 126
sets, the largest of which has 70 variables, whereas Im has P = 162 sets with at most 22 variables.
Consequently, the sparse moment relaxations (7) written with Im have a larger amount of PSD matrices
but their dimensions are much smaller: from (8), at order two, Ic gives moment matrices of size up to
2556×2556 whereas Im gives moment matrices of size at most 276×276. In general, the latter situation
is preferred by SDP solvers based on interior-point methods [15].

Lastly, we recall that minimal sparsity is designed to improve the scalability of the sparse relax-
ation (7), but that it is not known so far whether its convergence to the global minimum of the POP (3)
is preserved. Indeed, the definition of Im in (9a) might not enforce the RIP: we report that, for in-
stance, the RIP is not satisfied by Im for cases 3 LMBD and case 5 PJM from PGLib. As a complete
convergence analysis would go beyond the scope of this paper, we focus here on numerical evidences,
presented in §4.

3.3 Finer control on the size of subsets

If the graph (B,L) has nodes with a high number of neighbors, the minimal subsets Im defined by (9a)
may still have large cardinalities. Assuming that we wish to impose a maximal cardinality threshold Ī

for the subsets Im, we propose a modification of the AC-OPF Problem (1) and of the minimal subsets
Im to meet this requirement.

In our approach, when |Im
#i| > Ī at some bus i ∈ B, we split neighboring buses N (i) into a partition

{Na(i)}a∈A(i), where the set A(i) is introduced to index additional complex variables {zℓi,a}a∈A(i) for
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Figure 3: Histogram of the cardinalities of clique-based subsets Ic (blue color) and minimal subsets
Im (red color) for PGLib’s case 162 IEEE

the AC-OPF Problem (1). Then, we rewrite the power flow equation (1e) at bus i as

∑

g∈G(i)

sg − Li −
(

Y s
i

)∗
|vi|

2 =
∑

a∈A(i)

zℓi,a , (10a)

zℓi,a =
∑

j∈Na(i)
sℓi,j , ∀a ∈ A(i) , (10b)

so that each constraint in (10a)-(10b) involves less variables than the original aggregated formula-
tion (1e) — assuming that |A(i)| < |N (i)| . Next, we add 2|A(i)| real variables to the POP (3) and
extend {br, bim} so that

{

b
r(a) = ℜ(zℓi,a) ,

b
im(a) = ℑ(zℓi,a) ,

∀a ∈ A(i) . (11)

Finally, we redefine minimal subsets as follows:

Im
#i ={br(i), bim(i)}

⋃

a∈A(i)
{br(a), bim(a)}

⋃

g∈G(i)
{br(g), bim(g)} , (12a)

Im
#a ={br(i), bim(i)}

⋃

j∈Na(i)
{br(j), bim(j)}

⋃

{br(a), bim(a)} , ∀a ∈ A(i) . (12b)

In turn, the sets A(i) and {Na(i)}a∈A(i) should be designed carefully to control the cardinalities
of the subsets defined by (12a)-(12b). We suggest to use the solutions of the integer program

min
(nA,na)∈N∗2

nA s.t.

{

2(na + 2) ≤ Ī ,

nA × na ≥ |N (i)| ,
(13a)

which admits

nA =









|N (i)|
⌊

Ī
2

⌋

− 2









and na =

⌈

|N (i)|

nA

⌉

(13b)

as a solution, if Ī ≥ 6. The rationale behind the formulation of Problem (13a) is that we want to
minimize nA = |A(i)| so as to reduce the cardinality of Im

#i in (12a). Meanwhile, we want to dispatch
neighbors equally over the partition {Na(i)}a∈A(i), which is composed of sets whose cardinalities are
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at most na. The constraints of Problem (13a) ensure that the subsets {Im
#a}a∈A(i) in (12b) have

cardinalities lower than Ī (first inequality) and that the partition {Na(i)}a∈A(i) covers N (i) (second
inequality).

Applying the solution (13b), we obtain a reduction of the cardinality of Im
#i provided that

Ī ≥ 4 +
2|N (i)|

|N (i)| − 1
. (14)

However, we might still have that |Im
#i| > Ī. In this case, we can operate a similar partitioning of G(i)

to reduce the contribution of power generation variables {sg}g∈G(i) to the cardinality of Im
#i in (12a).

4 Numerical examples

We illustrate the success of minimal sparsity in computing second-order moment-SOS bounds in AC-
OPF. In our experiments, we use Mosek 9.3 [24] to solve SDPs and IPOPT [25] for nonlinear programs.
Both solvers are applied with their default parameters. We display the results of sparse SOS relaxations,
i.e. the dual of (7), as they are usually better handled than moment relaxations by Mosek [24, §7.5].
The interface between data, models and solvers is implemented with JuMP [26] and PowerModels [27].
We run experiments on a 2.10 GHz Intel CPU with 150 GB of RAM. Our code is publicly available1

and we use open data from [3, 28].
We measure the accuracy of a relaxation in term of its optimality gap

γr(I) =
ρ̄− θr(I)

ρ̄
× 100 , (15)

where ρ̄ is an upper bound computed with IPOPT. First, in §4.1, we measure the accuracy of min-
imal sparsity on modified case 57 IEEE instances that display large optimality gaps for first-order
SOS relaxations. Second, in §4.2, we investigate the scalability of minimal sparsity on larger PGLib
instances.

4.1 Case 57 IEEE modified

We consider the ten modified case 57 IEEE instances from [28, §5.4] displaying the largest optimality
gaps at the first-order SOS relaxation. Following [28], we adopt a simplified AC-OPF model for this
experiment: limits on power lines and angle differences in (1h)-(1i) are ignored. Since moreover case 57
IEEE has at most one generator per bus, we may consider a voltage-only formulation of Problem (1),
and, for the sake of numerical stability, we scale all polynomial coefficients to fk,α ∈ [−1, 1].

We present numerical results obtained with clique-based and minimal sparsity in Table 1.

Bound accuracy we observe that the second-order relaxation based on minimal sparsity always
achieves zero optimality gap for all of the modified case 57 IEEE instances (Table 1, column 5).
This suggests that, despite its heuristic nature, minimal sparsity is suitable to compute tight lower
bounds for AC-OPF. In turn, clique-based sparsity performs equally well for the second-order relaxation
(Table 1, column 4). Interestingly, for first-order sparse relaxations, the optimality gaps obtained with
clique-based sparsity are smaller than the ones of minimal sparsity (Table (1), column 2-3).

Computing time the main improvement of minimal-sparsity over a clique-based approach lies in the
reduction of computing time. Indeed, evaluating clique-based second-order sparse relaxation bounds
θ2(Ic) requires 3-6 hours of computation per instance (Table 1, column 8), whereas each of their
minimal sparsity counterparts θ2(Im) can be computed within one minute (Table 1, column 9). We

1https://github.com/adrien-le-franc/MomentSOS.jl
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believe that this shrinkage of computing time is due to the reduction of the size of the largest subsets
in I: with clique-based sparsity, we have maxp(|Ic

p|) = 26, while minimal sparsity features smaller
cardinalities with maxp(|Im

p |) = 14. Lastly, we mention that this way of certifying optimality gaps
also outperforms the branch-and-bound technique tested in [28], which achieves an average of 0.16%
optimality gap after 120 hours of computation per instance.

instances
optimality gap (%) computing time (s)

γ1(Ic) γ1(Im) γ2(Ic) γ2(Im) θ1(Ic) θ1(Im) θ2(Ic) θ2(Im)
84 3.05 3.30 ∗0.00 0.00 6.88 10-1 1.91 10-1 1.97 104 4.57 101

260 1.67 1.85 0.00 0.00 5.90 10-1 2.58 10-1 1.19 104 4.35 101

267 1.21 1.42 0.00 0.00 6.54 10-1 1.86 10-1 1.37 104 4.39 101

299 1.92 2.06 0.00 0.00 6.17 10-1 1.96 10-1 2.23 104 5.67 101

391 1.25 1.54 0.00 0.00 5.53 10-1 1.83 10-1 1.67 104 5.27 101

628 6.64 6.89 0.00 0.00 6.16 10-1 2.00 10-1 1.79 104 5.31 101

683 2.32 2.50 0.00 0.00 6.80 10-1 1.95 10-1 1.44 104 4.56 101

829 2.00 2.21 ∗0.00 0.00 6.39 10-1 1.84 10-1 1.98 104 4.28 101

868 2.17 2.33 0.00 0.00 6.43 10-1 1.92 10-1 1.41 104 4.30 101

974 1.92 2.08 0.00 0.00 6.80 10-1 2.08 10-1 1.45 104 5.10 101

Table 1: Results for AC-OPF case 57 modified with clique-based subsets (|Ic| = 38 , maxp |I
c
p| = 26)

and minimal sparsity subsets (|Im| = 57 , maxp(|Im
p |) = 14). In all cases, the solution returned is

primal feasible. Instances for which Mosek terminated with the SLOW PROGRESS status are marked
with “∗”

4.2 Standard PGLib examples

We now present results on standard AC-OPF (1) for TYP, API and SAD PGLib cases [3]. We select
instances with up to 1000 buses and RTE cases with thousands of buses. As larger instances are
less numerically stable, we scale both polynomial coefficients to fk,α ∈ [−1, 1] and POP variables
to xn ∈ [0, 1]. We report the performance of second-order relaxations based on minimal sparsity in
Table 2. Following §3.3, we apply a maximal cardinality threshold Ī = 12, as we find empirically that
this value of Ī gives a good trade-off between the size of PSD matrices — at most 91×91, from (8) —
and the number of constraints.

Our results second-order minimal sparsity relaxations successfully certify less than 1% of optimality
gap for 47 of the 60 instances with up to 1000 buses (Table 2, columns 3, 5, 7). For 8 other instances
(with gap values in bold font), Mosek stops at a feasible point with the SLOW PROGRESS termination
status, which suggests that the accuracy of the gap γ2(Im) could be further reduced. Lastly, the solver
returns an UNKNOWN RESULT STATUS for the 5 other instances.

Addressing larger AC-OPF instances appears numerically challenging, as Mosek stops with an
UNKNOWN RESULT STATUS for 16 out of the 24 large RTE instances. Moreover, we obtain a negative gap
value for case 1951 RTE TYP, which means that its bound θ2(Im) should be carefully certified.

Nevertheless, we manage to compute optimality gaps γ2(Im) smaller than 1% for cases with thou-
sands of buses. We believe that these results are unprecedented, and open new perspectives for
second-order relaxations of large scale AC-OPF instances.

Comparison with other approaches we report that clique-based second-order relaxations θ2(Ic)
trigger out-of-memory errors for most cases of Table 2 — e.g. cases 89 PEGASE and 162 IEEE DTC,
in line with the results of [10, Table II]. Comparatively, we report that instances with up to 1000 buses
do not consume more than 10 GB of RAM for minimal sparsity bounds θ2(Im).
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PGLib cases
TYP gap (%) API gap (%) SAD gap (%) θ2(Im) computing time (s) θ′1(Ic) avg
γ′
1(Ic) γ2(Im) γ′

1(Ic) γ2(Im) γ′
1(Ic) γ2(Im) TYP API SAD time (s)

3 LMBD 1.16 0.00 4.90 0.00 3.58 0.00 5.3 10-1 9.8 10-1 5.5 10-1 9.0 10-3

5 PJM 14.55 0.00 4.07 ∗0.07 0.00 0.00 7.2 100 9.5 100 5.3 100 2.4 10-2

14 IEEE 0.00 0.00 5.18 0.00 0.09 0.00 2.0 101 2.5 101 1.9 101 7.8 10-2

24 IEEE RTS 0.00 ∗0.00 6.40 ∗0.00 ∗4.37 ∗0.00 5.2 101 8.7 101 5.6 101 1.9 10-1

30 AS 0.00 0.00 42.74 ? 0.23 0.00 3.0 101 6.3 101 3.3 101 2.1 10-1

30 IEEE 8.05 ∗0.00 4.38 ∗0.00 8.05 ∗0.00 3.9 101 4.3 101 4.5 101 1.8 10-1

39 EPRI 2.00 0.00 1.76 ∗0.16 0.29 0.00 2.5 101 2.4 101 2.3 101 2.9 10-1

57 IEEE 0.00 0.00 0.00 0.00 0.05 0.00 4.7 101 4.0 101 4.3 101 5.5 10-1

60 C 0.03 ∗0.00 11.90 ∗0.09 2.70 ∗0.03 5.9 101 1.2 102 8.9 101 5.0 10-1

73 IEEE RTS 0.00 ∗0.00 5.55 ∗4.67 2.75 ∗0.05 1.9 102 2.8 102 1.9 102 7.5 10-1

89 PEGASE 0.02 ∗0.00 20.23 ? 0.00 ∗0.00 8.6 102 9.1 102 8.1 102 2.1 100

118 IEEE 0.32 ∗0.00 20.01 ∗9.59 3.09 ∗0.05 2.8 102 5.0 102 3.8 102 1.7 100

162 IEEE DTC 5.95 ∗0.70 7.37 ∗0.44 5.40 ∗0.41 9.5 102 1.2 103 1.1 103 4.2 100

179 GOC 0.54 ∗0.04 10.85 ∗0.35 4.58 ∗4.08 2.6 102 3.6 102 2.8 102 2.3 100

200 ACTIV 0.00 ∗0.00 10.05 ∗0.00 0.00 ∗0.00 3.3 102 5.1 102 3.2 102 2.3 100

240 PSERC ∗2.36 ∗1.61 ∗0.50 ∗0.24 ∗3.76 ∗2.94 9.1 102 1.4 103 1.0 103 4.8 100

300 IEEE ∗ 1.94 ∗0.00 ∗ 0.83 ∗0.29 ∗0.72 ∗0.00 9.4 102 8.7 102 1.0 103 5.7 100

500 GOC ∗ 0.10 ∗0.00 ∗ 4.66 ∗2.21 ∗ 5.53 ∗3.66 1.6 103 1.9 103 1.5 103 7.5 100

588 SDET ∗ 1.35 ∗0.25 ∗1.05 ? ∗ 5.14 ∗0.22 1.1 103 8.5 102 1.2 103 1.2 101

793 GOC ∗ 1.44 ? ∗6.48 ? ∗5.04 ∗1.72 1.1 103 1.2 103 1.3 103 1.4 101

1888 RTE ∗6.56 ? ∗1.52 ∗0.05 ∗3.34 ∗2.58 4.7 103 5.0 103 4.5 103 5.3 101

1951 RTE ∗0.11 ∗-0.01 ? ∗0.18 ∗0.39 ∗0.25 4.7 103 5.7 103 4.5 103 5.9 101

2848 RTE ∗1.03 ? ? ? ∗1.16 ? 6.1 103 8.4 103 6.5 103 6.6 101

2868 RTE ∗0.23 ? ∗1.08 ? ∗0.67 ∗0.39 7.0 103 7.6 103 6.9 103 7.4 101

6468 RTE ∗0.73 ∗0.27 ∗0.92 ? ∗0.73 ? 1.3 104 1.9 104 1.5 104 3.0 102

6470 RTE ∗1.40 ∗0.74 ∗1.00 ? ? ? 1.6 104 1.9 104 1.9 104 3.0 102

6495 RTE ∗14.09 ? ? ? ∗14.09 ? 1.5 104 1.7 104 1.7 104 3.2 102

6515 RTE ∗ 5.97 ? ? ? ? ? 1.8 104 1.9 104 1.5 104 3.4 102

Table 2: Results for AC-OPF PGLib instances for first-order gaps γ′
1(Ic) based on cliques and

second-order gaps γ2(Im) based on minimal sparsity. Instances for which Mosek terminated with
the SLOW PROGRESS status are marked with “∗” and “?” indicates an UNKNOWN RESULT STATUS

Thus, as γ2(Ic) is often intractable, we restrict our study to first-order gaps. As constraints (1h)
involve quartic polynomials, we need to perform a quadratic approximation to define first-order SDP
bounds θ′1(Ic) with gaps γ′

1(Ic) (Table 2, columns 2, 4, 6). We use the same approximation as in [14],
detailed in [16, §5.3], which is most often tighter than the second-order cone relaxation reported in [3].

As expected, computing γ2(Im) still represents a serious time overhead compared to γ′
1(Ic) (Ta-

ble 2, columns 8-11). Yet, we consequently reduce second-order computing times: even for cases with
thousands of buses, the bounds θ2(Im) are computed within the same time as the clique-based θ2(Ic)
for case 57 IEEE (Table 1, column 8).

Regarding bound accuracy, we find that second-order optimality gaps γ2(Im) can be much smaller
than first-order gaps γ′

1(Ic), and are always tighter when γ′
1(Ic) is not equal to zero. Minimal sparsity

also proves competitive against the 1.5 CS-TSSOS hierarchy: on the 31 instances of [14] and Table 2
where both methods give reliable bounds — i.e. Mosek returns a feasible point — γ2(Im) gives a strictly
smaller (hence better) optimality gap in 14 cases, and a strictly larger (hence worse) optimality gap
in 8 cases.
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5 Conclusion

We have introduced minimal sparsity, designed to improve the scalability of second-order moment-
SOS relaxations of AC-OPF. Our numerical test cases reveal that minimal sparsity gives very accurate
lower bounds, while drastically reducing the computing times and memory requirements over standard
clique-based sparse SDP relaxations. Our best achievement is to compute second-order relaxation
bounds certifying less than 1% of optimality gaps for instances with thousands of buses. Yet, such
large instances remain numerically challenging for state-of-the-art SDP solvers — in line with the
conclusions of [14]. Regarding future improvements, we look forward to ongoing progresses in SDP
solvers, and pre- or post-processing techniques enforcing numerical stability of SDP relaxations, as
presented e.g. in [29].
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