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Minimal Sparsity for Second-Order
Moment-SOS Relaxations
of the AC-OPF Problem

Adrien Le Franc, Victor Magron, Jean-Bernard Lasserre, Manuel Ruiz, Patrick Panciatici

Abstract—AC-OPF (Alternative Current Optimal
Power Flow) aims at minimizing the operating costs of
a power grid under physical constraints on voltages and
power injections. Its mathematical formulation results
in a nonconvex polynomial optimization problem which
is hard to solve in general, but that can be tackled
by a sequence of SDP (Semidefinite Programming)
relaxations corresponding to the steps of the moment-
SOS (Sums-Of-Squares) hierarchy. Unfortunately, the
size of these SDPs grows drastically in the hierarchy,
so that even second-order relaxations exploiting the
correlative sparsity pattern of AC-OPF are hardly
numerically tractable for large instances — with thou-
sands of power buses. Our contribution lies in a new
sparsity framework, termed minimal sparsity, inspired
from the specific structure of power flow equations.
Despite its heuristic nature, numerical examples show
that minimal sparsity allows the computation of highly
accurate second-order moment-SOS relaxations of AC-
OPF, while requiring far less computing time and mem-
ory resources than the standard correlative sparsity
pattern. Thus, we manage to compute second-order
relaxations on test cases with about 6000 power buses,
which we believe to be unprecedented.

Index Terms—Optimal power flow, Moment-SOS re-
laxations, Sparsity, Global solution

NOMENCLATURE

• For a finite set F , we write |F | for its cardinality.
• For a complex number z ∈ C, we write ∠z

for its angle; |z| for its magnitude; z∗ for its
complex conjugate; <(z) for its real part; and
=(z) for its imaginary part.

• For a pair of integers (a, b) ∈ N2 with a ≤ b, we
write Ja, bK for the sequence {a, a+ 1, . . . , b}.

• For an N ×N real symmetric matrix M ∈ SN ,
M � 0 means that M is positive semidefinite
(PSD).
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with LAAS CNRS, Toulouse, France (e-mail: adlefranc@laas.fr)

Manuel Ruiz and Patrick Panciatici are with Réseau de Transport
et d’Électricité (RTE), Paris, France

• For real matrices (A,B) ∈ (RN×N )2, we write
〈A ,B〉 for the Frobenius inner product between
A and B.

• For a polynomial function f : RN → R
that decomposes as

∑
α∈NN fαx

α in the stan-
dard monomial basis, we denote its support
by supp(f) =

{
α ∈ NN | fα 6= 0

}
, and the

set of variables involved in f by var(f) =
{n ∈ J1, NK | ∃α ∈ supp(f) , αn 6= 0}.

Whether | · | denotes cardinality or magnitude is
always clear from context.

I. INTRODUCTION

THE AC-OPF (Alternative Current - Optimal
Power Flow) problem plays a central role for the

management of AC power grids, but remains highly
challenging to solve. Indeed, AC-OPF formulates as
a nonconvex optimization program, and real scale
instances typically have thousands of decision vari-
ables [1]. A common way of addressing this problem
is to compute a local solution with a nonlinear
solver, but the solution obtained might not be globally
optimal [2]. Therefore, a vast body of literature have
concentrated on relaxations of the original problem to
compute lower bounds so as to estimate the quality
of a local solution. We refer to [3] for a recent survey
of such relaxations.

In this paper, we follow the approach of [4], [5] to
compute lower bounds of AC-OPF instances based on
the moment-SOS (Sums-Of-Squares) hierarchy [6].
In this framework, we consider a sequence of SDP
(Semidefinite Programming) relaxations of the AC-
OPF problem, whose values converge monotonously
to the optimal value of the original problem. This
sequence generically converges in a finite number
of steps [7] and, experimentally, the second-order
relaxation already achieves this convergence for most
of the AC-OPF test cases reported in [4], [5], [8].
However, the size of the SDPs involved in the hi-



DRAFT 2

erarchy grows drastically with the number of AC-
OPF variables and with the order of the relaxation,
so that this method becomes rapidly challenging from
a numerical perspective.

Exploiting the correlative sparsity pattern [9] of
AC-OPF has led to a hierarchy of SDP relaxations of
reduced size, and has helped a lot to scale to larger
networks [10]. See also the recent survey [11] for sev-
eral applications of sparse polynomial optimization.
Yet, even these sparse second-order relaxations yield
out-of-memory errors for some instances with about
a hundred of power buses on a computer with 125
GB of RAM [8]. Regarding instances with thousands
of buses, the most scalable approach to our knowl-
edge seems to be the recent correlative-term sparsity
framework [12], which enables the computation of
partial sparse second-order moment relaxations for
large scale power grids [13]. Nevertheless, the accu-
racy of second-order relaxations remains attractive,
as it provides lower bounds certifying 0.00% of op-
timality gaps on almost all tractable instances of [8].

Contribution: we focus our attention on sparse
second-order moment-SOS relaxations of AC-OPF
based on correlative sparsity. In the standard case,
the size of the matrix variables involved is ruled by a
family of subsets of optimization variables obtained
by an algorithmic routine — computing the maximal
cliques of a chordal graph. This approach enforces the
RIP (Running Intersection Property), which ensures
the convergence of the sparse hierarchy. We refer
to [14] for technical details, including the formal
definition of the RIP.

Our contribution lies in a new sparsity framework,
that we call minimal sparsity. Compared with the
standard approach, we chose to relax the RIP so
as to gain control on the size of matrix variables.
Our definition of minimal sparsity is inspired by
the specific structure of the power flow equations
and results in sparse second-order relaxations that
have smaller matrix variables — which is generally
preferred by SDP solvers based on interior-point
methods [15]. Therefore, our approach is heuristic
— as we relax the RIP, convergence to the global
minimum is not guaranteed any more — although we
may still easily extract a global optimal solution of
AC-OPF if the moment matrices of our relaxations
are rank-one. In spite of this heuristic nature, we
report that minimal sparsity yields highly accurate
lower bounds on practical test cases. Moreover, the
second-order relaxations obtained scale much better
than their clique-based counterparts, allowing us to
handle AC-OPF instances with thousands of buses.

The paper is organized as follows. First, in §II,
we recall background notions on sparse moment-
SOS hierarchies and their application to AC-OPF.
Second, in §III, we introduce our new minimal
sparsity framework. Third, in §IV, we illustrate the
strengths of minimal sparsity by computing second-
order moment-SOS relaxations of the AC-OPF prob-
lem on various numerical test cases.

II. SPARSE MOMENT-SOS RELAXATIONS FOR THE
AC-OPF PROBLEM

First, in §II-A, we recall the formulation of the
AC-OPF problem. Second, in §II-B, we review basic
concepts of moment-SOS hierarchies and their appli-
cations to certify global optimality in AC-OPF. Third,
in §II-C, we present background notions on sparse
moment-SOS relaxations.

A. The AC-OPF problem

In the AC-OPF problem, we aim at minimizing
the operating costs of a power grid while satisfying
power flow balance equations and infrastructure con-
straints. We model the grid by a directed graph (B,L)
where nodes B represent buses and edges L represent
power lines. Line orientations model the asymmetry
of power flow along transmission lines in AC power
grids. A subset G ⊆ B of nodes highlights buses
with generating power units. An illustrative (B,L)
example based on PGLib’s case 14 IEEE is given
in Figure 1. For the sake of clarity, we assume here

Fig. 1: Example of (B,L) graph model for PGLib’s
case 14 IEEE: nodes represent buses and edges rep-
resent power lines with their conventional power flow
orientation. Red circle node markers highlight buses
with power generators.

that at most one single line can connect two buses
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(i, j) ∈ B2. Parallel lines can be modeled by adequate
edge labeling as in [1, Model 1].

Formally, AC-OPF amounts to solving the follow-
ing optimization problem:

min
v∈C|B|
s∈C|G|
s`∈C2|L|

∑
g∈G

C2,g<(sg)
2 + C1,g<(sg) + C0,g ,

(1a)

s.t.

∀i ∈ Bref , ∠vi = 0 ; (1b)

∀g ∈ G , Sg ≤ sg ≤ Sg ; (1c)

∀i ∈ B ,
V i ≤ |vi| ≤ V i , (1d)∑
g∈G(i)

sg − Li −
(
Y s
i

)∗|vi|2 =
∑

j∈N (i)

s`i,j ; (1e)

∀(i, j) ∈ L ,

s`i,j =
(
Yi,j + Y ci,j

)∗ |vi|2
|Ti,j |2

− Y ∗i,j
viv
∗
j

Ti,j
, (1f)

s`j,i =
(
Yi,j + Y cj,i

)∗|vj |2 − Y ∗i,j v∗i vjT ∗i,j
, (1g)

|s`i,j | ≤ Si,j , |s`j,i| ≤ Si,j , (1h)

Θi,j ≤ ∠(viv
∗
j ) ≤ Θi,j . (1i)

In the above formulation, lower case letters are
used for decision variables and capital letters refer to
constant parameters. The original decision variables
are the bus voltages v = {vi}i∈B and the power
generation values s = {sg}g∈G . Additionally, for
every edge (i, j) ∈ L, we introduce s`i,j for the power
flow from bus i to bus j and s`j,i for the power flow
from bus j to bus i.

We now provide physical interpretations for the
objective and constraints of Problem (1):
• We minimize power generation costs (1a), which

are assumed to only depend on the real part of
sg , for g ∈ G — that is, on active power genera-
tion — with parameters (C0,g, C1,g, C2,g) ∈ R3.

• In constraint (1b), we set the voltage angle of
some reference buses Bref ⊆ B to zero to address
the rotational invariance of voltage solutions.

• In constraints (1c)-(1d), we impose bounds
(Sg, Sg) ∈ C2 on the real and imaginary parts of
the generated power sg , for g ∈ G, and bounds
(V i, V i) ∈ R2

+ on the magnitude of the bus
voltage vi, for i ∈ B.

• In constraint (1e), we enforce the balance of
power flows at every bus i ∈ B. The balance

equation involves power generations sg for g in
the (possibly empty) set G(i) ⊆ G of generators
at bus i; power flows s`i,j for j in the set
N (i) ⊆ B of neighbors of bus i; the load Li ∈ C
and a shunt admittance term with Y s

i ∈ C.
• In constraints (1f)-(1g), we give the expres-

sion of power flows (s`i,j , s
`
j,i) along every line

(i, j) ∈ L, following the Π-circuit branch model
with parameters (Yi,j , Y

c
i,j , Y

c
j,i, Ti,j) ∈ C4 de-

tailed in [1, Appendix B].
• In constraints (1h)-(1i), we impose a thermal

limit Si,j ∈ R+ on power flows and voltage
angle difference bounds (Θi,j ,Θi,j) ∈ R2 for
every line (i, j) ∈ L.

Due to nonlinear equality and nonconvex inequal-
ity constraints, Problem (1) is nonconvex, and hard
to solve in general [16].

B. SDP lower bounds via moment-SOS hierarchies

Following the approach of [4], [5], AC-OPF can
be cast as a POP (Polynomial Optimization Problem)
to benefit from powerful results of the moment-SOS
hierarchy. We introduce notations for such a reformu-
lation of Problem (1) and recall some fundamental
properties of moment-SOS relaxations.

a) From AC-OPF to POP: by considering sep-
arately the real and imaginary parts of voltage and
power generation variables of Problem (1), we obtain
N = 2(|B|+ |G|) real variables x ∈ RN (power flow
variables are omitted by injecting (1f)-(1g) into (1e)).
The correspondence between AC-OPF and POP vari-
ables is formalized by two bijective mappings

br : G∪B →
s

1,
N

2

{
, bim : G∪B →

s
N

2
+ 1, N

{
,

(2a)
so that

xbr(g) = <(sg) , xbim(g) = =(sg) , ∀g ∈ G , (2b)

xbr(i) = <(vi) , xbim(i) = =(vi) , ∀i ∈ B . (2c)

Then, we observe that every constraint in (1b)-
(1i) can be equivalently formulated as an equality
or inequality constraint defined with a multivariate
polynomial in x ∈ RN . To perform this reformula-
tion, constraints (1d) and (1h) need to be squared and
constraint (1i) needs to be transformed as detailed
e.g. in [17, §5.1.2]. Thus, by introducing K + 1
appropriate real multivariate polynomial functions
{fk}k∈J0,KK, Problem (1) can be written as a POP:

ρ = min
x∈X

f0(x) , where (3a)

X =
{
x ∈ RN | fk(x) ≥ 0 , ∀k ∈ J1,KK

}
. (3b)
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b) The Moment-SOS hierarchy: despite its po-
tential nonconvexity, the optimal value of Problem (3)
can be approximated — and often exactly computed
— by the moment-SOS hierarchy [6]. In this frame-
work, we consider two sequences of SDPs, starting
from a minimal order r0 = max{dk}k∈J0,KK where
dk =

⌈ deg(fk)
2

⌉
. The moment hierarchy is defined by

a sequence of SDPs indexed by r ∈ Jr0,+∞K:

ρr = min
y

∑
α∈supp(f0)

f0,αyα , (4a)

s.t. Mr(y) � 0 , (4b)
Mr−dk(fky) � 0 , ∀k ∈ J1,KK , (4c)
y0 = 1 . (4d)

The entries of the so-called pseudo-moment variable
vector y in Problem (4) are indexed by elements
of the truncated monomial basis {xα}α∈NN

2r
, where

NNr =
{
α ∈ NN |

∑
n∈J1:NK αn ≤ r

}
for r ∈ N.

Subsequently, the moment matrix in (4b) and the
localization matrices in (4c) are expressed as

Mr(y) = (yα+β)α,β∈NN
r
, (5a)

Mr−dk(fky) =
( ∑
γ∈supp(fk)

fk,γyα+β+γ

)
α,β∈NN

r−dk

.

(5b)

These matrices have entries that are linear in the ones
of y, so that we can write Mr(y) =

∑
α∈NN

2r
A0,αyα

and Mr−dk(fky) =
∑
α∈NN

2r
Ak,αyα by introducing

adequate matrices {Ak,α}α∈NN
2r

for all k ∈ J0,KK.
By considering the dual of (4), we obtain the SOS

hierarchy of SDPs indexed by r ∈ Jr0,+∞K:

θr = max
G,t

t , (6a)

s.t. f0,0 − t =
∑

k∈J0,NK

〈Ak,0 , Gk〉 , (6b)

f0,α =
∑

k∈J0,NK

〈Ak,α , Gk〉 , ∀α ∈ NN2r \ {0} ,

(6c)
Gk � 0 , ∀k ∈ J0,KK . (6d)

In the context of AC-OPF, strong duality holds
between Problems (4) and (6) (see [4]), and the
nondecreasing sequences of lower bounds {ρr}r≥r0
and {θr}r≥r0 converge to the value ρ of the POP (3)
(see [6]). However, the sizes of the corresponding
SDP relaxations grow drastically with the values of
N and r, as the largest Gram matrix G0 in (6)
and the moment matrix Mr(y) in (4) are of size
|NNr | =

(
N+r
r

)
.

C. Sparse relaxations

One way to bypass the curse of dimensionality
mentioned hereabove is to exploit the sparsity of AC-
OPF, as initially suggested in [10]. In the context of
the moment hierarchy, sparsity consists in reducing
the dimension of the search space of Problem (4)
by selecting a subset of monomials in {xα}α∈NN

2r

for indexing the pseudo-moment variable vector y.
We concentrate on the correlative sparsity pattern [9]
which introduces a hierarchy of sparse moment re-
laxations:

ρr(I) = min
y

∑
α∈supp(f0)

f0,αyα , (7a)

s.t. Mr(y; Ip) � 0 , ∀p ∈ J1, P K , (7b)
Mr−dk(fky; Ip) � 0 , ∀k ∈ Kp , (7c)
∀p ∈ J1, P K ,
y0 = 1 . (7d)

Problem (7) is parameterized by a family of subsets
of J1, NK, denoted I = {Ip}∈J1,P K, and satisfying
∪p∈J1,P KIp = J1, NK. The constraints {fk}k∈J1,KK
are distributed over a partition {Kp}∈J1,P K of J1,KK
such that for all p ∈ J1, P K and k ∈ Kp, var(fk) ⊆
Ip. Then, for p ∈ J1, P K, the sparse moment and
localization matrices in (7b)-(7c) are defined after (5)
by selecting only rows and columns indexed by
monomials in {xα}α∈NN

2r
satisfying var(xα) ⊆ Ip.

Naturally, the dual of Problem (7) gives rise to a
sparse SOS hierarchy, whose sequence of bounds is
introduced as {θr(I)}r≥r0 .

We remind that the choice of the subsets I is
of paramount importance. On the practical side, the
cardinalities of these subsets control the sizes of the
matrices in (7b)-(7c). In general, the smaller these
matrices, the better the numerical performances of
SDP solvers, especially for those based on interior-
point methods [15]. On the theoretical side, the
bounds {ρr(I)}r≥r0 are not guaranteed to converge
to the value ρ of the POP (3) for any choice of
I. The most favorable case is when the subsets I
satisfy the RIP (Running Intersection Property) where
asymptotic convergence is preserved [14]. These con-
siderations on the design of I are further investigated
in the next section.

III. MINIMAL SPARSITY FOR SCALABLE AC-OPF
RELAXATIONS

We recall basic notions of clique-based sparsity
and expose some of its limitations regarding com-
puting scalability in §III-A. As an alternative, we
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introduce our minimal sparsity pattern in §III-B. We
further detail a method to control the cardinalities of
the subsets I in §III-C.

A. Clique-based sparsity and its limitations

We recall how to compute clique-based subsets I
and discuss some limitations of this approach.

a) Clique-based subsets: the design of subsets
I satisfying the RIP is usually based on the following
algorithmic routine.

(i) First, we define the correlative sparsity pattern
graph (V, E). In this graph, nodes V represent
the N variables of the POP (3) and undirected
edges E account for products between variables
in the polynomial functions {fk}k∈J1,KK: an
edge (n1, n2) ∈ E indicates that there exists
α ∈ ∪k∈J0,KKsupp(fk) such that {n1, n2} ⊆
var(xα).

(ii) Second, we perform a chordal extension of
(V, E). We recall that a graph is chordal if each
of its cycle of length four ou greater has a chord.
Therefore, chordal extension adds new edges,
resulting in a new graph (V, E), where E ⊆ E .

(iii) Third, we define subsets Ic as the maximal
cliques of the chordal graph (V, E). We recall
that a clique is a complete subgraph of (V, E),
and that it is maximal when it cannot be aug-
mented by adding an adjacent node.

The clique-based subsets Ic satisfy the RIP, and
thus ensure the convergence of the correlative sparse
moment-SOS hierarchy [14].

b) Limitations of clique-based sparsity: the
above routine for designing the subsets I gives a
systematic way to reduce the computing burden of
the dense relaxation (4). However, for large AC-OPF
instances, even the sparse relaxation (7) can be nu-
merically challenging. Experimentally, [8] report that
the second-order sparse moment relaxation triggers
an out-of-memory error on a computer allowed with
125 GB of RAM for PGLib’s instances 89 Pegase
and 162 IEEE.

Therefore, some works concentrate on improving
the algorithmic routine (i)− (iii) to reduce memory
usage and computing time for solving (7). In par-
ticular, [18], [19] propose clique merging strategies
as a post-processing of (iii). This line of work has
allowed up to ×3 decreases in solving time for
first-order relaxations [18]. However, extensions to
second-order relaxations seem much less effective
[20, §4.5]. We believe that it is due to the iteration

complexity of interior-point SDP solvers, which typi-
cally perform operations that scale cubically with the
size of the largest SDP matrix [15]. We recall that
the largest matrix in (7) is of size(

m+ r

r

)
, where m = max

p∈J1,P K
|Ip| , (8)

hence the importance of moderating the cardinalities
of the subsets in I to alleviate memory requirements
and computing time in second-order sparse relax-
ations. Clearly, a clique merging strategy is not meant
to reduce these cardinalities, and therefore does not
address what we identify as the principal bottleneck
in second-order sparse relaxations.

B. Minimal sparsity

We introduce minimal subsets Im to address the
principal limitations faced with clique-based sparsity
in AC-OPF. Our definition builds on the specific
structure of power flow equations: for each bus i ∈ B,
we select the minimal group of POP variables re-
quired to write the power flow balance equation at
bus i. This results in P = |B| subsets given by

Im
#i ={br(i), bim(i)}

⋃
j∈N (i)

{br(j), bim(j)}

⋃
g∈G(i)

{br(g), bim(g)} , (9a)

where, assuming an arbitrary order on buses B, we
denote by #i ∈ J1, P K the position of bus i ∈ B. In
term of correspondence between POP and AC-OPF
formulations, we obtain the following relationship:

{xn}n∈Im
#i

={<(vi),=(vi)}
⋃

j∈N (i)

{<(vj),=(vj)}⋃
g∈G(i)

{<(sg),=(sg)} . (9b)

The above expression highlights that in Im
#i, we select

the minimal amount of AC-OPF variables that we
need to write constraints (1e) and (1f)-(1g) at bus
i ∈ B for Problem (1).

Minimal sparsity entails a trade-off between the
number of subsets in I and their cardinalities. We
illustrate this trade-off by comparing clique-based
subsets Ic and minimal subsets Im for PGLib’s
case 162 IEEE. We compute the chordal extension
(V, E) and its maximal cliques using the greedy fillin
heuristic implemented in the TSSOS package [21],
as this heuristic is expected to yield smaller average
clique numbers than other standard heuristics [22].
The histogram of the cardinalities of sets for both
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sparsity patterns is given in Figure 2. For case 162
IEEE, Ic has P = 126 sets, the largest of which has
70 variables, whereas Im has P = 162 sets with at
most 22 variables. Consequently, the sparse moment-
SOS relaxations written with Im have a larger amount
of PSD constraints-matrices than clique-based relax-
ations, but their dimensions are much smaller. In
general, this situation is preferred by SDP solvers
based on interior-point methods [15].

Fig. 2: Histogram of the cardinalities of clique-based
subsets Ic (blue color) and minimal subsets Im (red
color) for PGLib’s case 162 IEEE

C. Finer control on the size of subsets

If the graph (B,L) has nodes with a high number
of neighbors, the minimal subsets Im defined by (9a)
may still have large cardinalities. Assuming that we
wish to impose a maximal cardinality threshold Ī for
the subsets Im, we propose a modification of the AC-
OPF Problem (1) and of the minimal subsets Im to
meet this requirement.

In our approach, when |Im
#i| > Ī at some bus i ∈

B, we split neighboring buses N (i) into a partition
{Na(i)}a∈A(i), where the set A(i) is introduced to
index additional complex variables {z`i,a}a∈A(i) for
the AC-OPF Problem (1). Then, we rewrite the power
flow equation (1e) at bus i as∑

g∈G(i)

sg − Li −
(
Y s
i

)∗|vi|2 =
∑

a∈A(i)

z`i,a , (10a)

z`i,a =
∑

j∈Na(i)

s`i,j , ∀a ∈ A(i) , (10b)

so that each constraint in (10a)-(10b) involves
less variables than the original aggregated formula-
tion (1e) — assuming that |A(i)| < |N (i)| . Next,

we add 2|A(i)| real variables to the POP (3) and
extend {br, bim} so that{

br(a) = <(z`i,a) ,

bim(a) = =(z`i,a) ,
∀a ∈ A(i) . (11)

Finally, we define minimal subsets in the same spirit
of (9a):

Im
#i ={br(i), bim(i)}

⋃
a∈A(i)

{br(a), bim(a)}

⋃
g∈G(i)

{br(g), bim(g)} , (12a)

Im
#a ={br(i), bim(i)}

⋃
j∈Na(i)

{br(j), bim(j)}

⋃
{br(a), bim(a)} , ∀a ∈ A(i) . (12b)

In turn, the sets A(i) and {Na(i)}a∈A(i) should be
designed carefully to control the cardinalities of the
subsets defined by (12a)-(12b). We suggest to use the
solutions of the integer program

min
(nA,na)∈N∗2

nA s.t.

{
2(na + 2) ≤ Ī ,
nA × na ≥ |N (i)| ,

(13a)
which admits

nA =

 |N (i)|⌊
Ī
2

⌋
− 2

 and na =

⌈
|N (i)|
nA

⌉
(13b)

as a solution, if Ī ≥ 6. The rationale behind the
formulation of Problem (13a) is that we want to
minimize nA = |A(i)| so as to reduce the cardinality
of Im

#i in (12a). Meanwhile, we want to dispatch
neighbors equally over the partition {Na(i)}a∈A(i),
which is composed of sets whose cardinalities are at
most na. The constraints of Problem (13a) ensure that
the subsets {Im

#a}a∈A(i) in (12b) have cardinalities
lower than Ī (first inequality) and that the partition
{Na(i)}a∈A(i) covers N (i) (second inequality).

Applying the solution (13b), we obtain a reduction
of the cardinality of Im

#i provided that

Ī ≥ 4 +
2|N (i)|
|N (i)| − 1

. (14)

However, we might still have that |Im
#i| > Ī . In this

case, we can operate a similar partitioning of G(i) to
reduce the contribution of power generation variables
{sg}g∈G(i) to the cardinality of Im

#i in (12a).
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IV. NUMERICAL EXAMPLES

We illustrate the success of minimal sparsity in
computing second-order moment relaxation bounds
in AC-OPF. In our experiments, we use Mosek 9.3
[23] to solve SDPs and Ipopt [24] for nonlinear
programs. Both solvers are applied with their default
settings. We display the results of sparse SOS relax-
ations, i.e. the dual of (7), as they are usually better
handled than moment relaxations by Mosek [23,
§7.5]. The interface between data, models and solvers
is implemented with JuMP [25] and PowerModels
[26]. We run experiments on a 2.10 GHz Intel CPU
with 150 GB of RAM. Our code is publicly available1

and we use open data from [1], [27].
We measure the accuracy of a relaxation in term

of its optimality gap

γr(I) =
ρ̄− θr(I)

ρ̄
× 100 , (15)

where ρ̄ is an upper bound computed with Ipopt.
First, in §IV-A, we measure the accuracy of minimal
sparsity on modified case 57 IEEE instances that
display large optimality gaps for first-order SOS
relaxations. Second, in §IV-B, we investigate the scal-
ability of minimal sparsity on larger PGLib instances.

A. Case 57 IEEE modified

We consider the 1000 modified instances generated
in [27, §5.4] by drawing random linear cost param-
eters {C1,g}g∈G in (1) for case 57 IEEE from [1].
We concentrate on the ten instances displaying the
largest optimality gaps at the first-order SOS relax-
ation. Following the formulation of [27], we adopt a
simplified AC-OPF model for this experiment: limits
on power lines and angle differences in (1h)-(1i)
are ignored and we consider only linear costs. Since
moreover case 57 IEEE has at most one generator per
bus, we may consider a voltage-only formulation of
Problem (1), and, for the sake of numerical stability,
we scale all polynomial coefficients to fk,α ∈ [−1, 1].

We present numerical results obtained with clique-
based sparsity in Table I and with minimal sparsity in
Table II. In both cases, we report the computing time
(columns 2-3) and the optimality gaps (columns 4-5)
of the first- and second-order SOS relaxation bounds.

a) Bound accuracy: we observe that the second-
order relaxation based on minimal sparsity always
achieves zero optimality gap for all of the modified
case 57 IEEE instances (Table II, column 5). This
suggests that, despite its heuristic nature, minimal

1https://github.com/adrien-le-franc/MomentSOS.jl

sparsity is suitable to compute tight lower bounds
for AC-OPF. In turn, clique-based sparsity performs
equally well for the second-order relaxation (Table I,
column 5). Interestingly, for first-order sparse relax-
ations, the optimality gaps obtained with clique-based
sparsity (Table (I), column 4) are smaller than the
ones of minimal sparsity (Table (II), column 4). We
also note that minimal sparsity yields more stable
relaxations than clique-based sparsity for instances 84
and 829, for which the computation of θ2(Ic) stopped
with Mosek’s SLOW_PROGRESS termination status
(Table I, column 5). Better numerical stability could
arise from the fact that minimal sparsity typically
features smaller SDPs than clique-based sparsity.

b) Computing time: the main improvement of
minimal-sparsity over a clique-based approach lies in
the reduction of computing time. Indeed, evaluating
clique-based second-order sparse relaxation bounds
θ2(Ic) requires 3-6 hours of computation per instance
(Table I, column 3), whereas each of their minimal
sparsity counterparts θ2(Im) can be computed within
one minute (Table II, column 3). We believe that this
shrinkage of computing time is due to the reduction
of the size of the largest subsets in I: with clique-
based sparsity, we have maxp(|Ic

p|) = 26, while
minimal sparsity features smaller cardinalities with
maxp(|Im

p |) = 14. Lastly, we mention that this way
of certifying optimality gaps also outperforms the
branch-and-bound technique tested in [27], which
achieves an average of 0.16% optimality gap after
120 hours of computation per instance.

instances time (s) gap (%)
θ1(Ic) θ2(Ic) γ1(Ic) γ2(Ic)

84 6.88 10-1 1.97 104 3.05 ∗0.00
260 5.90 10-1 1.19 104 1.67 0.00
267 6.54 10-1 1.37 104 1.21 0.00
299 6.17 10-1 2.23 104 1.92 0.00
391 5.53 10-1 1.67 104 1.25 0.00
628 6.16 10-1 1.79 104 6.64 0.00
683 6.80 10-1 1.44 104 2.32 0.00
829 6.39 10-1 1.98 104 2.00 ∗0.00
868 6.43 10-1 1.41 104 2.17 0.00
974 6.80 10-1 1.45 104 1.92 0.00

TABLE I: Results for AC-OPF case 57 modified and
clique-based subsets (|Ic| = 38 , maxp |Ic

p| = 26).
In all cases, the solution returned is primal feasi-
ble. Instances for which Mosek terminated with the
SLOW_PROGRESS status are marked with “∗”

B. Standard PGLib examples

We present further results on the standard AC-OPF
formulation (1). To investigate on the scalability of

https://github.com/adrien-le-franc/MomentSOS.jl
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instances time (s) gap (%)
θ1(Im) θ2(Im) γ1(Im) γ2(Im)

84 1.91 10-1 4.57 101 3.30 0.00
260 2.58 10-1 4.35 101 1.85 0.00
267 1.86 10-1 4.39 101 1.42 0.00
299 1.96 10-1 5.67 101 2.06 0.00
391 1.83 10-1 5.27 101 1.54 0.00
628 2.00 10-1 5.31 101 6.89 0.00
683 1.95 10-1 4.56 101 2.50 0.00
829 1.84 10-1 4.28 101 2.21 0.00
868 1.92 10-1 4.30 101 2.33 0.00
974 2.08 10-1 5.10 101 2.08 0.00

TABLE II: Results for AC-OPF case 57 mod-
ified and minimal sparsity subsets (|Im| =
57 , maxp(|Im

p |) = 14). In all cases, the solution
returned is primal feasible

the results obtained on case 57 IEEE, we consider
all PGLib cases with up to 1000 buses and large
scale RTE cases with thousands of buses. As larger
instances tend to be less numerically stable, we scale
both polynomial coefficients to fk,α ∈ [−1, 1] and
POP variables to xn ∈ [0, 1]. We report the perfor-
mance of second-order relaxations based on minimal
sparsity in Table III. We apply a maximal cardinality
threshold Ī = 12 as introduced in §III-C, resulting in
additional POP variables (Table III, column 8).

a) Our results: second-order minimal sparsity
relaxations successfully certify less than 1% of opti-
mality gap for 47 of the 60 instances with up to 1000
buses (Table III, columns 5-7). For 8 other instances
(with gap values in bold font), Mosek stops at a fea-
sible point with the SLOW_PROGRESS termination
status, which suggests that the accuracy of the bound
θ2(Im) could be further improved. Lastly, the solver
returns an UNKNOWN_RESULT_STATUS for the 5
other instances.

Addressing larger AC-OPF instances appears nu-
merically challenging, as Mosek stops with an
UNKNOWN_RESULT_STATUS for 16 out of the 24
large RTE instances (Table III, columns 5-7). More-
over, we obtain a negative gap value for case 1951
RTE TYP, which means that its bound θ2(Im) should
be carefully certified.

Nevertheless, we manage to compute second-order
relaxations with less than 1% of optimality gaps for
instances with over 6000 buses. Remarkably, these
bounds are computed within the same computing time
and memory resources required to compute clique-
based second-order bounds for case 57 in Table I. We
believe that these results are unprecedented and en-
couraging, as they open new perspectives for second-
order relaxations of large scale AC-OPF instances.

b) Comparison with other approaches: we ob-
serve that minimal sparsity drastically reduces both
computing times and memory requirements compared
with the clique-based sparse second-order moment
relaxations reported in [8, Table II, column time2]. In
the latter reference, cases 89 PEGASE and 162 IEEE
DTC return out-of-memory errors on a computer
allowed with 125 GB of RAM, whereas our RAM
usage peak for all instances with no more than 1000
buses is of 10 GB.

Due to numerical instabilities, it is not straight-
forward to compare the tightness of our optimal-
ity gaps with the ones obtained with moment re-
laxations in [8], [13] — where in both situations,
Mosek also terminates with SLOW_PROGRESS or
UNKNOWN_RESULT_STATUS for many cases.

Still, there are 31 instances for which both minimal
sparsity and the 1.5 CS-TSSOS hierarchy give reli-
able bounds in [13] — that is, instances for which
Mosek returns a primal feasible solution. For these
instances, minimal sparsity gives a strictly smaller
(hence better) optimality gap in 14 cases, and a
strictly larger (hence worse) optimality gap in 8 cases.
As a concluding remark, we highlight that minimal
sparsity and CS-TSSOS need not be presented as
competitors, as minimal subsets Im could be ad-
vantageously used to replace the clique-based ones
involved in the CS-TSSOS hierarchy [12].

V. CONCLUSION

We have introduced minimal sparsity, designed
to improve the scalability of second-order moment-
SOS sparse relaxations of AC-OPF. Our numerical
test cases reveal that minimal sparsity gives very
accurate lower bounds, while drastically reducing
the computing times and memory requirements over
standard clique-based sparse relaxations. Our best
achievement is to compute second-order relaxation
bounds certifying less than 1% of optimality gaps
for instances with over 6000 buses. Yet, such large
instances remain numerically challenging for state-of-
the-art SDP solvers — in line with the conclusions
of [13]. Regarding future improvements, we look
forward to ongoing progresses in SDP solvers, and
pre- or post-processing techniques enforcing numer-
ical stability and robustness of SDP relaxations, as
presented, e.g., in [28], [29].
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PGLib cases computing time (s) γ2(Im) gap (%) POP variables
TYP API SAD TYP API SAD added total

3 LMBD 5.32 10-1 9.78 10-1 5.54 10-1 0.00 0.00 0.00 0 12
5 PJM 7.22 100 9.45 100 5.34 100 0.00 ∗0.07 0.00 0 20
14 IEEE 2.03 101 2.52 101 1.89 101 0.00 0.00 0.00 0 38
24 IEEE RTS 5.19 101 8.73 101 5.56 101 ∗0.00 ∗0.00 ∗0.00 24 138
30 AS 3.04 101 6.26 101 3.26 101 0.00 ? 0.00 8 80
30 IEEE 3.86 101 4.29 101 4.45 101 ∗0.00 ∗0.00 ∗0.00 8 80
39 EPRI 2.45 101 2.36 101 2.25 101 0.00 ∗0.16 0.00 0 98
57 IEEE 4.69 101 4.01 101 4.25 101 0.00 0.00 0.00 12 140
60 C 5.94 101 1.21 102 8.92 101 ∗0.00 ∗0.09 ∗0.03 20 186
73 IEEE RTS 1.85 102 2.76 102 1.93 102 ∗0.00 ∗4.67 ∗0.05 80 424
89 PEGASE 8.59 102 9.14 102 8.12 102 ∗0.00 ? ∗0.00 158 360
118 IEEE 2.82 102 4.95 102 3.79 102 ∗0.00 ∗9.59 ∗0.05 78 422
162 IEEE DTC 9.51 102 1.21 103 1.09 103 ∗0.70 ∗0.44 ∗0.41 88 436
179 GOC 2.61 102 3.63 102 2.83 102 ∗0.04 ∗0.35 ∗4.08 100 516
200 ACTIV 3.33 102 5.06 102 3.15 102 ∗0.00 ∗0.00 ∗0.00 48 524
240 PSERC 9.05 102 1.38 103 1.02 103 ∗1.61 ∗0.24 ∗2.94 292 1058
300 IEEE 9.35 102 8.66 102 1.01 103 ∗0.00 ∗0.29 ∗0.00 68 806
500 GOC 1.59 103 1.92 103 1.45 103 ∗0.00 ∗2.21 ∗3.66 308 1650
588 SDET 1.08 103 8.50 102 1.15 103 ∗0.25 ? ∗0.22 106 1472
793 GOC 1.09 103 1.22 103 1.31 103 ? ? ∗1.72 116 1896
1888 RTE 4.74 103 4.99 103 4.49 103 ? ∗0.05 ∗2.58 1048 5404
1951 RTE 4.68 103 5.73 103 4.48 103 ∗-0.01 ∗0.18 ∗0.25 1076 5710
2848 RTE 6.07 103 8.38 103 6.48 103 ? ? ? 1472 8190
2868 RTE 6.98 103 7.62 103 6.85 103 ? ? ∗0.39 1498 8356
6468 RTE 1.27 104 1.92 104 1.49 104 ∗0.27 ? ? 3438 17172
6470 RTE 1.57 104 1.91 104 1.93 104 ∗0.74 ? ? 3478 17940
6495 RTE 1.53 104 1.71 104 1.71 104 ? ? ? 3500 17850
6515 RTE 1.81 104 1.88 104 1.53 104 ? ? ? 3492 17890

TABLE III: Results on standard AC-OPF instances from PGLib for second-order relaxation gaps γ2(Im) based
on minimal sparsity. The maximal cardinality threshold is set to Ī = 12. Instances for which Mosek terminated
with the SLOW_PROGRESS status are marked with “∗” and “?” indicates an UNKNOWN_RESULT_STATUS
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