Extensible Logging and Empirical Attainment Function for IOHexperimenter - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Extensible Logging and Empirical Attainment Function for IOHexperimenter

Résumé

In order to allow for large-scale, landscape-aware, per-instance algorithm selection, a benchmarking platform software is key. IOHexperimenter provides a large set of synthetic problems, a logging system, and a fast implementation. In this work, we refactor IOHexperimenter's logging system, in order to make it more extensible and modular. Using this new system, we implement a new logger, which aims at computing performance metrics of an algorithm across a benchmark. The logger computes the most generic view on an anytime stochastic heuristic performances, in the form of the Empirical Attainment Function (EAF). We also provide some common statistics on the EAF and its discrete counterpart, the Empirical Attainment Histogram. Our work has eventually been merged in the IOHexperimenter codebase.
Fichier principal
Vignette du fichier
2109.13773.pdf (687.73 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04110714 , version 1 (01-06-2023)

Licence

Identifiants

Citer

Johann Dreo, Manuel López-Ibáñez. Extensible Logging and Empirical Attainment Function for IOHexperimenter. 2021. ⟨hal-04110714⟩

Collections

PASTEUR TDS-MACS
41 Consultations
33 Téléchargements

Altmetric

Partager

More