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samples, 8k cells x 23 k genes. Known ground truth, known signatures

Our method

• Is not a mere clustering of the cells • Looks for signatures in all samples at the same time After obtaining all the signatures, test them for association with resistance.

Signature's abundance goes up in "after" treatment vs "before" treatment? Potential chemoresistance signature After obtaining all the signatures, test them for association with resistance.

Signature's abundance goes up in "after" treatment vs "before" treatment? Potential chemoresistance signature 

where n is the number of samples

Addendum 3: Friedman Statistic Quick Update

Friedman statistic with n genes: Denote

so that When adding a gene: n → n + 1

(A n + 24 m j=1 R j,n r j + 12 m j=1 r 2 j ) -(B n + 3m(m + 1) 2 (2n + 1)) (C n + m(m + 1)) -(D n + [1/(m -1)]{( g n+1 j=1 t 3 n+1,j ) -m}) (9)