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The problem
What causes cancer to be resistant?

While killing most of the cells, monodrug chemotherapy doesn’t kill all, allowing
remaining cells proliferate
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The problem
What causes cancer to be resistant?

While killing most of the cells, monodrug chemotherapy doesn’t kill all, allowing
remaining cells proliferate

Why not mixing multiple drugs to be sure?
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The problem
What causes cancer to be resistant?

While killing most of the cells, monodrug chemotherapy doesn’t kill all, allowing
remaining cells proliferate

Why not mixing multiple drugs to be sure? Because of excessive toxicity
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The problem
What causes cancer to be resistant?

Need for precision drugs fine-tailored to each subpopulation of cells in each
patient
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The problem
What causes cancer to be resistant?

Need for precision drugs fine-tailored to each subpopulation of cells in each
patient

- the subpopulations of cells defined by their scRNAseq profile
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The problem
What causes cancer to be resistant?

Need for precision drugs fine-tailored to each subpopulation of cells in each
patient

- the subpopulations of cells defined by their scRNAseq profile
• - by their characteristic signatures (ensembles of genes)
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Inspired by...

...the glioblastoma paper by Neftel et al. (2019) where they searched for
signatures using global hierarchical clustering of cells and genes in each
sample separately
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Inspired by...

...the glioblastoma paper by Neftel et al. (2019) where they searched for
signatures using global hierarchical clustering of cells and genes in each
sample separately

Were able to show benefit of certain gene inhibitors in glioblastoma xenografts
on mice
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Inspired by...
...the glioblastoma paper by Neftel et al. (2019) where they searched for
signatures using global hierarchical clustering of cells and genes in each
sample separately

Were able to show benefit of certain gene inhibitors in glioblastoma xenografts
on mice

• Hierarchical clustering of cells to form partitions of each sample into
up-regulated and ”the rest of the sample” parts
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Inspired by...
...the glioblastoma paper by Neftel et al. (2019) where they searched for
signatures using global hierarchical clustering of cells and genes in each
sample separately

Were able to show benefit of certain gene inhibitors in glioblastoma xenografts
on mice

• Hierarchical clustering of cells to form partitions of each sample into
up-regulated and ”the rest of the sample” parts

• Avoiding batch effects: integrated common genesets instead
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Inspired by...

...the glioblastoma paper by Neftel et al. (2019) where they searched for
signatures using global hierarchical clustering of cells and genes in each
sample separately

Problems:
• Global clustering (dominated by global similarities)
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Inspired by...
...the glioblastoma paper by Neftel et al. (2019) where they searched for
signatures using global hierarchical clustering of cells and genes in each
sample separately

Problems:
• Global clustering (dominated by global similarities)
• Search in each sample separately, missing out on a synchronized unified

search
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Inspired by...
...the glioblastoma paper by Neftel et al. (2019) where they searched for
signatures using global hierarchical clustering of cells and genes in each
sample separately

Problems:
• Global clustering (dominated by global similarities)
• Search in each sample separately, missing out on a synchronized unified

search
• Dichotomous clustering: cell can belong to only 1 cluster (like many

methods)
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Inspired by...
...the glioblastoma paper by Neftel et al. (2019) where they searched for
signatures using global hierarchical clustering of cells and genes in each
sample separately

Problems:
• Global clustering (dominated by global similarities)
• Search in each sample separately, missing out on a synchronized unified

search
• Dichotomous clustering: cell can belong to only 1 cluster (like many

methods)
• Extremely ad-hoc, overabundance of dubious thresholds
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Optimization search for the best contrast
Our method

• Is not a mere clustering of the cells
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Optimization search for the best contrast
Our method

• Is not a mere clustering of the cells
• Looks for signatures in all samples at the same time
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Optimization search for the best contrast
Our method

• Is not a mere clustering of the cells
• Looks for signatures in all samples at the same time
• Each cell can support multiple programs
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Optimization search for the best contrast
Our method

• Is not a mere clustering of the cells
• Looks for signatures in all samples at the same time
• Each cell can support multiple programs
• No ad-hoc thresholds, no parameters
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Optimization search for the best contrast
find such partition of sample’s cells and genes that confers the highest contrast
from the rest of the sample

Cells
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Optimization search for the best contrast
find such partition of sample’s cells and genes that confers the highest contrast
from the rest of the sample
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Optimization search for the best contrast
find such partition of sample’s cells and genes that confers the highest contrast
from the rest of the sample
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Optimization search for the best contrast
find such partition of sample’s cells and genes that confers the highest contrast
from the rest of the sample
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Friedman Statistic

where
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Friedman Statistic
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Friedman Statistic

= 370.1
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Friedman Statistic

− log p(S, df ) = − log p(370.1, 36) = 129.7 (1)

27 | E. Zakiev/ J. Dreo | Statistical Discovery of Transcriptomic Cancer Signatures using Multimodal Local Search | 29/11/2022



Selecting Genes

Currently selected genes highlighted
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Optimization Process

Currently selected genes highlighted
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Selecting Genes

(rolling back)

Currently selected genes highlighted
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Selecting Genes
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Selecting Genes

Currently selected genes highlighted
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Objective to Optimize
Find signatures K̂ which maximize the objective
function over N samples

Easily expanded over multiple samples by multiplying individual p values
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Objective to Optimize
Find signatures K̂ which maximize the objective
function over N samples
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Objective to Optimize
Find signatures K̂ which maximize the objective
function over N samples

Optimize the objective function

g(K ) =
N∑

i=1
(− log pi(K )) (2)

so that
K̂ = arg max

K∈G
g(K ) (3)
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Objective to Optimize
Optimal signature K̂
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Results
Glioblastoma Smartseq2 data from Nefel et al.

27 samples, 8k cells x 23 k genes. Known ground truth, known signatures
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Results
Glioblastoma Smartseq2 data from Nefel et al.

27 samples, 8k cells x 23 k genes. Known ground truth, known signatures
• Our method discovers similar signatures as Neftel et al, Seurat,

HARMONY, LIGER and cNMF
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Results
Glioblastoma Smartseq2 data from Nefel et al.

27 samples, 8k cells x 23 k genes. Known ground truth, known signatures
• Our method discovers similar signatures as Neftel et al, Seurat,

HARMONY, LIGER and cNMF
• enrichments from MSigDB check out as well
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Results
Glioblastoma Smartseq2 data from Nefel et al.

27 samples, 8k cells x 23 k genes. Known ground truth, known signatures
• Our method discovers similar signatures as Neftel et al, Seurat,

HARMONY, LIGER and cNMF
• enrichments from MSigDB check out as well

• On top of that it discovers small signatures not found by any of the
methods above, and their enrichments are highly relevant to glioblastoma
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Results
Glioblastoma Smartseq2 data from Nefel et al.

27 samples, 8k cells x 23 k genes. Known ground truth, known signatures
• Our method discovers similar signatures as Neftel et al, Seurat,

HARMONY, LIGER and cNMF
• enrichments from MSigDB check out as well

• On top of that it discovers small signatures not found by any of the
methods above, and their enrichments are highly relevant to glioblastoma

• Our signatures are on average enriched for smaller pathways/genesets than
the competitors’ signatures
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Solutions
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Addendum 1: Tricky part
how to define ”abundance” of a signature in a given
sample?
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Addendum 1: Functional testing of the signatures

After obtaining all the signatures, test them for association with resistance.

Signature’s abundance goes up in ”after” treatment vs ”before” treatment?
Potential chemoresistance signature
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Addendum 1: Functional testing of the signatures
After obtaining all the signatures, test them for association with resistance.

Signature’s abundance goes up in ”after” treatment vs ”before” treatment?
Potential chemoresistance signature

• Only 11 pairs :(
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Addendum 1: Compound Objective Function
Sum over all samples of Friedman Statistic log-p values

g(K ) =
n∑

i=1
(− log pi(K )) (4)

where n is the number of samples

f (K ) = δ · h(K ) + g(K ) (5)

K̂ = arg max
K∈G

f (K ) (6)
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Addendum 2: A Brief Note on Performance

How we make the algo work faster
• embarrassingly parallel, ready-to-deploy on an HPC cluster
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Addendum 2: A Brief Note on Performance

How we make the algo work faster
• embarrassingly parallel, ready-to-deploy on an HPC cluster
• Performance-oriented code, as few overheads as possible

• Aggressive optimization -03 flag during compilation
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• Partial update of the Friedman Statistic (not a complete recalculation)
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Addendum 2: A Brief Note on Performance

How we make the algo work faster
• embarrassingly parallel, ready-to-deploy on an HPC cluster
• Performance-oriented code, as few overheads as possible

• Aggressive optimization -03 flag during compilation
• Partial update of the Friedman Statistic (not a complete recalculation)
• I borrowed R’s ”under the hood” Cpp implementation of log p of χ2

distribution
• very fast - uses Chebyshev rational approximations for Erfc(x) calc
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Addendum 2: A Brief Note on Performance

How we make the algo work faster
• embarrassingly parallel, ready-to-deploy on an HPC cluster
• Performance-oriented code, as few overheads as possible

• Aggressive optimization -03 flag during compilation
• Partial update of the Friedman Statistic (not a complete recalculation)
• I borrowed R’s ”under the hood” Cpp implementation of log p of χ2

distribution
• very fast - uses Chebyshev rational approximations for Erfc(x) calc

Resulting algo scales as O(n) where n is the number of cells

51 | E. Zakiev/ J. Dreo | Statistical Discovery of Transcriptomic Cancer Signatures using Multimodal Local Search | 29/11/2022



Addendum 2: A Brief Note on Performance
How we make the algo work faster

• embarrassingly parallel, ready-to-deploy on an HPC cluster
• Performance-oriented code, as few overheads as possible

• Aggressive optimization -03 flag during compilation
• Partial update of the Friedman Statistic (not a complete recalculation)
• I borrowed R’s ”under the hood” Cpp implementation of log p of χ2

distribution
• very fast - uses Chebyshev rational approximations for Erfc(x) calc

Resulting algo scales as O(n) where n is the number of cells
One full iteration on Pasteur’s Maestro Cluster core:
49 microseconds for 27 samples of 8000 cells
169 microseconds for 63 samples of 25k cells
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Addendum 3: Friedman Statistic Quick Update

Friedman statistic with n genes:

S ′
n =

12
∑m

j=1 R2
j − 3n2m(m + 1)2

nm(m + 1) − [1/(m − 1)]
∑n

i=1{(
∑gi

j=1 t3
i ,j) − m}

(7)

Denote

An = 12
∑m

j=1 R2
j , Bn = 3n2m(m + 1)2, Cn = nm(m + 1),

Dn = [1/(m − 1)]
∑n

i=1{(
∑gi

j=1 t3
i ,j) − m},

so that
S ′

n = An − Bn
Cn − Dn

(8)
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Addendum 3: Friedman Statistic Quick Update
Denote

An = 12
∑m

j=1 R2
j , Bn = 3n2m(m + 1)2, Cn = nm(m + 1),

Dn = [1/(m − 1)]
∑n

i=1{(
∑gi

j=1 t3
i ,j) − m},

so that When adding a gene: n → n + 1

An+1 = 12
∑m

j=1(Rj,n + rj)2 = An + 24
∑m

j=1 Rj,nrj + 12
∑m

j=1 r2
j

Bn+1 = 3(n + 1)2m(m + 1)2 = Bn + 3m(m + 1)2(2n + 1)
Cn+1 = (n + 1)m(m + 1) = Cn + m(m + 1)
Dn+1 = Dn + [1/(m − 1)]{(

∑gn+1
j=1 t3

n+1,j) − m}

S ′
n+1 =

(An + 24
∑m

j=1 Rj,nrj + 12
∑m

j=1 r2
j ) − (Bn + 3m(m + 1)2(2n + 1))

(Cn + m(m + 1)) − (Dn + [1/(m − 1)]{(
∑gn+1

j=1 t3
n+1,j) − m})

(9)
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Challenge: non-fixed size signatures

• in reality we use fixed size signatures, swapping genes in and out
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Challenge: non-fixed size signatures

• in reality we use fixed size signatures, swapping genes in and out
• size-restriction-free variant ends up in absorbing all the genes in the

dataset
• even when penalizing the Friedman’s S by the number of currently selected

genes n :
• S ′ = S/nalpha (where alpha is a real number [0.5...2])
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