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A Weakly Supervised Gradient Attribution
Constraint for Interpretable Classification and

Anomaly Detection
Valentine Wargnier-Dauchelle, Thomas Grenier, Françoise Durand-Dubief, François Cotton and Michaël

Sdika

Abstract— The lack of interpretability of deep learning
reduces understanding of what happens when a network
does not work as expected and hinders its use in crit-
ical fields like medicine, which require transparency of
decisions. For example, a healthy vs pathological classi-
fication model should rely on radiological signs and not
on some training dataset biases. Several post-hoc models
have been proposed to explain the decision of a trained
network. However, they are very seldom used to enforce
interpretability during training and none in accordance
with the classification. In this paper, we propose a new
weakly supervised method for both interpretable healthy
vs pathological classification and anomaly detection. A
new loss function is added to a standard classification
model to constrain each voxel of healthy images to drive
the network decision towards the healthy class accord-
ing to gradient-based attributions. This constraint reveals
pathological structures for patient images, allowing their
unsupervised segmentation. Moreover, we advocate both
theoretically and experimentally, that constrained training
with the simple Gradient attribution is similar to constraints
with the heavier Expected Gradient, consequently reducing
the computational cost. We also propose a combination
of attributions during the constrained training making the
model robust to the attribution choice at inference. Our
proposition was evaluated on two brain pathologies: tu-
mors and multiple sclerosis. This new constraint provides a
more relevant classification, with a more pathology-driven
decision. For anomaly detection, the proposed method
outperforms state-of-the-art especially on difficult multiple
sclerosis lesions segmentation task with a 15 points Dice
improvement.
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I. INTRODUCTION

Deep learning methods have proven their effectiveness
in medical image analysis through segmentation, detection,
classification or registration tasks [1]–[4]. These methods
are applied to a large range of medical imaging techniques
such as MRI (Magnetic Resonance Imaging), CT (Computed
Tomography), radiography, ultrasound, fundus images, etc. For
example, it can be used for brain tumor segmentation on MRI
[5], for image registration on chest CT [6] or to class healthy
vs COVID-19 lungs X-ray images [7].

More specifically, classifiers are essential building blocks
for various deep learning frameworks. They can be used for
classification or characterization of samples for computer-
aided diagnosis tasks [8]. They can also be used to detect
error and measure classification uncertainties [9] or to detect
outliers in order to clean a dataset before expert analysis
or before training [10]. In addition, they are also essential
building blocks of generative adversarial networks (GAN) [11]
in which they model a metric learned from the dataset that will
drive a generator network during the training. In this case, it
might be crucial that the discriminator bases its decision on
meaningful and relevant features.

Despite the success of these methods in medical imaging,
the ”black box” nature of deep learning restrains their diffusion
in clinics for diagnosis or characterization as practitioners need
to have confidence in the proposed automatic decision. Indeed,
neural networks decision is difficult to interpret because of
their large number of parameters and non-linearity. Moreover,
due to their high capacity to extract features, their decision
is not always based on relevant radiological signs as human
experts use. Besides, most medical imaging techniques are
not quantitative. For example, MRI acquisitions have intensity
variations due to field strength and inhomogeneity, acquisition
protocol, scanner brand, artifacts, etc. Thus, the network
decision can be based on the acquisition signatures of the
different datasets and not only on the pathology. Several
methods have been proposed in order to standardize MRI and
try to remove this signature hoping the network decision to
be based on radiological signs [12]–[15]. This normalization
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is not always sufficient for the network to focus on relevant
features and it may find shortcuts in making its decision. In
this case, performance metrics such as accuracy can be high
but if we scrutinize at what the decision is made on, for
example with attribution methods, the explanation might not
match domain expert knowledge [16]. Especially in a critical
domain like medicine, we expect a deep model to be accurate,
interpretable and decision to be consistent with high-level
clinical knowledge.

Attribution maps computation is state-of-the-art technique
to explain deep networks decision [17]–[19]. From a trained
network, these methods compute a heat map that indicates the
positive or negative contribution of each voxel of the input
image in the network decision. These methods are mostly used
at inference to verify the interpretability of a trained network
and check that these maps match high-level knowledge as
in [20], [21]. For example, in a medical context, they can
be used to check that the decision of the network matches
anatomical abnormalities present in the image. Very few use
them during the training to improve the interpretability of a
classification network: in [19], [22], the classification task is
trained jointly with a regularization loss on these maps to make
them cleaner. These kind of regularization has also been used
for anomaly detection on architectures such as auto-encoder
(AE) in [23]. Constraining GradCam [18] attributions with
respect to the latent space, they surpass literature methods for
anomaly detection [24]. In these cases, the assumption is that
models trained to reconstruct healthy images will not be able to
reconstruct anomalies and thus, the reconstruction difference
can be used as an anomaly segmentation (AE [25], Variational
AE (VAE) [26], Generative Adversarial Network (GAN) [27],
etc).

In this work, we propose to constrain a binary classification
network between healthy and pathological subject images such
that its decision (healthy or pathological image) is based on
relevant radiological structures in an unsupervised way. To
do so, we use attribution maps as network decision indicator
and constrain the network attributions for normal images
to be entirely relevant for the healthy classification. During
inference, the trained network can be used for classification
based on radiological signs but also as weakly supervised
pathology segmentation network.

The main contributions of this work are the following: 1/ We
propose an unsupervised method to constrain the attributions
of a deep classifier to be negative outside the pathological
areas (and consequently positive inside) through a new loss.
2/ Only the image label is necessary to reach good perfor-
mances in terms of classification and segmentation, outper-
forming anomaly detection literature methods. 3/ Attribution
constraints are integrated in the training such that the resulting
network is invariant to the choice of the (gradient based)
attribution method used at inference. 4/ We show that the
constraint on Gradient attributions is, in most cases, equivalent
to Expected Gradient with a easier and faster training. 5/
Our method was evaluated with numerical experiments on
two classification and segmentation tasks: binary classification
between healthy subjects and either brain tumor patients or
challenging multiple sclerosis patients.

II. RELATED WORK

A. Interpretable classification
Most attribution methods [17], [28] have been proposed

as posthoc procedure to visualize which pixels contribute
positively or negatively to the network decision [20], [21]. In
few works, they have also been used to regularize the training
of a classification network. For example, in [19], it is assumed
that neighboring pixels of the input image should have a
similar impact on the decision. This constraint is implemented
by adding a total variation loss on the Expected Gradients
attributions. This loss effectively regularizes the attribution
maps that, as a result, become cleaner and smoother. However,
this loss is not related to the healthy vs pathology classification
task i.e. not related to the existence of visible and characteristic
pathological structures. In [22], the idea is to make the
gradients with respect to the input small in non-interesting
areas. Assuming a mask of these area is available, the L2 norm
of the gradient is penalized in this mask. In the context of a
healthy vs pathological classification, the constraint proposed
by [22] could be adapted to force the neural network to be
insensitive to ”healthy region”. Nonetheless, voxels in healthy
regions should not be neutral, they should drive the decision
towards a healthy classification.

B. Anomaly detection
Anomaly detection state-of-the-art methods are often based

on a reconstruction task: the network is trained to reconstruct
healthy images and anomalies are segmented at inference by
thresholding the reconstruction error for pathological subjects.
AE [25] and VAE [26] are typically used for this kind of
approach. They rely on the fact that pathological areas are
out of the training distribution and should not be correctly
reconstructed. Nevertheless, for (V)AE, the reconstructed im-
age is often blurry making the reconstruction error map large
around image edges and the anomalies difficult to threshold.
The distribution of healthy images can also be learned through
GAN architectures. In [27], the encoder-decoder architecture
is trained for both image-to-image and latent space-to-latent
space reconstruction. An adversarial loss is added such that
generated images could not be differentiated from real images
by the discriminator. However, it is well known that GANs
are difficult to train and prone to mode collapse. Finally, in
[23], attribution regularization is added to a reconstruction-
based method: the GradCam [18] map of the first convolution
block with respect to the latent space of an AE is maximized
over the whole image. The anomaly detection is done by
thresholding this GradCam map. Nevertheless, as described in
[18], GradCam lacks semantics on the first layers: [23] ends
up being a simple thresholding after a well-chosen convolution
on the input image.

Compared to anomaly detection methods, which are only
trained on healthy images, interpretable classification meth-
ods described in Section II-A need pathological images and
weakly supervision through their label (healthy/pathological).
Nevertheless, pathological databases are often available and
it allows to add pathological information in network features.
More precisely, attributions of classification methods are based
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on healthy vs pathological differentiation whereas in [23],
attributions are based on a reconstruction task, with no infor-
mation on the considered pathology. In addition, interpretable
classification methods can be used for two tasks: segmentation
and classification.

III. METHODOLOGY

A. Classification with attribution constrained training
In this work, we propose to train a deep network to classify

healthy vs pathological subject images with the additional con-
straint that its decision satisfies high-level clinical properties.
We assume that the decision of the network for a given input
image is reflected by an attribution map with the same size
as the input image (see details in Section III-C.1). During
the training, the network learns to correctly classify healthy
and pathological subjects but also to satisfy constraints on the
attribution map produced by the network (see Figure 1). It is
done by minimizing the following loss:

L = LC + αALA (1)

where LC is the classification loss, LA is the attribution
loss aimed at penalizing unsatisfied constraints on attribution
maps with a penalization coefficient αA. LC is a standard
classification loss: in our implementation, it is the binary cross
entropy. Details on LA are given below.

The trained network can be used as an interpretable
and relevant classifier whose decision is based on clinical
features but also as a pathology segmentation network using
inference attribution maps as pathology segmentation mask.

B. Unsupervised attribution constraint with binary cross
entropy

Attribution maps aim at revealing regions in the input image
that contribute positively or negatively to the network decision.
For healthy subject images, no region should drive the network
to pathological classification but each region should drive
the decision towards healthy class. Thus, attribution maps of
healthy subjects should be negative over the whole image. We
propose to use the binary cross entropy as an effective way
to impose this constraint. With this loss, attribution values are
seen as logits of a virtual pixel-wise classifier. Voxels from
healthy subject images should be classified as healthy, i.e.
with negative logit. No additional input is necessary to use this
constraint which is consequently unsupervised. The only an-
notation needed is the image-level label (healthy/pathological)
already required for the classification. Consequently, our LA

loss can be used on all healthy subject images and can be
written as:

LA(x) = BCE
(
σ(A(x)), 0Size(A(x))

)
(2)

where σ is the sigmoid function, BCE is the binary cross
entropy loss, x is the input image, A(x) is the attribution map
for the image x (same size as x) and 0Size(A(x)) is a all-zero
image with same size as A(x).

Although our constraint is designed to be used in weakly su-
pervised learning, it can easily be extended to semi-supervised

training. In this case, it is assumed that a pathology map m(x),
indicating where positive attributions should be, is available
for some of the patient images x. This pathology map can
just be a segmentation mask of the region of interest: brain
tumors or multiple sclerosis lesions for example. In this case,
the LA loss becomes:

LA(x) = BCE(σ(A(x)),m(x)). (3)

Note that training a deep classifier with the additional LA

loss is strictly equivalent to the multi-task training of a very
constrained encoder-decoder that would segment the pathology
maps and whose latent space would be the classification
output. The encoder branch of this encoder-decoder would
be the classifier (forward pass, unbroken arrow in Figure 1).
The decoder branch, parameterized with the encoder weights,
would be the attribution computation (dotted arrow in Fig-
ure 1).

C. Training with gradient attribution constraints

1) Gradient based attributions: Intuitively, the gradient of
the network output with respect to the input image indicates
which pixels are the most critical in the network decision. If
the derivative with respect to a pixel is the largest, changing
its value will change the network output the most. Gradient-
based attribution methods [29] are known to have interesting
properties regarding interpretability but also to be integrated
smoothly in the training procedure. Three gradient attribution
methods are considered in this work. Note that we used local
attributions [29], i.e. without multiplication of gradient by
the input, but development with global attributions would be
similar.

a) Gradient (G): Output gradient with respect to the input,
or saliency, is the simplest way to evaluate voxels relevance
for output [28]. It is defined as:

AG
i (x) =

∂F (x)

∂xi
(4)

where x is the input, F is the network and i is the index
(voxel) in the input image.

b) Integrated Gradients (IG): Integrated Gradients [17]
sharp values are defined as:

AIG
i (x, x′) =

1∫
α=0

AG
i (x′ + α(x− x′)) dα (5)

where x is the input and x′ is the baseline. The baseline x′

corresponds to a null attribution input, often chosen as a null
image (i.e. all-zero image) with the same size as image x.
The integral parameter α allows to aggregate gradients for
images along a path between the image and the baseline. It
has been proved that IG have several guaranteed properties:
sensitivity, implementation invariance, completeness, linearity
and symmetry preservation (see [17]). In comparison, G does
not respect the sensitivity axiom.
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Fig. 1: Method overview for unsupervised training. The classification network is trained with classification loss LC on both
pathological (P, in orange) and healthy (H, in green) images. The loss LA, which constrains gradient-based attributions A,
is only applied on healthy images. During inference, the segmentation of pathological structures is obtained by thresholding
these attributions.

c) Expected Gradients (EG): The output of Integrated Gra-
dients is highly dependent on the baseline and the choice of a
null image is debatable [30]. In Expected Gradients [19], this
problem is solved by marginalizing Integrated Gradients over
the baselines in training dataset distribution:

AEG
i (x) =

∫
x′
AIG

i (x, x′) dx′. (6)

It was also proposed in [19] to constrain EG attribution
maps during the training. As this would be untractable, a
stochastic version was proposed in which the double integra-
tion on α and x′ in Equation 6 is replaced by the sampling
of a pair (α, x′) at each iteration. To further reduce the
computation, the other images of the x mini-batch could be
used as the baseline x′.

2) Easier training: are constraints on G sufficient for EG

?: The constrained training on EG maps proposed in [19]
improves the interpretability of deep neural network at the
expense of a substantial amount of computational burden.
Indeed, training with EG requires at least a second double
backpropagation pass on a different minibatch from the one
used for the classification loss, built as x′ + α(x − x′) with
x and x′ samples from the training dataset and α ∈ [0, 1]. In
comparison, training with G only requires a double backprop-
agation on the same minibatch used for the classification loss,
efficiently re-using the derivative computation for the gradient
descent. Consequently, G needs less code, computation time
and GPU memory than EG.

In this section, we defend the following conjecture:
Conjecture 3.1: Two models trained with constraints on ei-

ther G or EG produce equivalent G or EG maps at inference.
This conjecture implies that constraining the training with EG
instead of G is unnecessary.
Although we cannot provide a completely formal proof of
this conjecture, we propose: a global sketch of this ”proof”,
new theoretical elements to formally prove some points of this
sketch and a discussion based on state-of-the-art to support the

missing points. This claim is also backed by experiments (see
section V-B.1). To explain our intuition, we need to define the
following notions.

Definition 3.2: If X is a subset of a vector space, we define
the Line Segment set of X as:

LS(X) =
{
αx+ (1− α)x′ | (x, x′, α) ∈ X2 × [0, 1]

}
.

In words, LS(X) is the set of points on line segments whose
ends are in X , i.e. the images obtained by linear interpolation
between two images of X . One can note that:

Remark 3.3: If C(X) is the convex hull of X then
LS(X) ⊂ C(X).
Using this definition, the following proposition makes the link
between constrained training with either G or EG.

Proposition 3.4: The stochastic constrained training with
EG on X proposed in [19] is equivalent to a stochastic
constrained training with G on LS(X).

Proof: Formally, the genuine constraint on EG attri-
bution maps is the addition of the following term to the
classification loss:∑

x∈X

L

 ∑
x′∈X,α∈[0,1]

∇F
(
αx+ (1− α)x′

) (7)

where F is the network, x is the input image, x′ is the baseline,
X is the training dataset and L is a loss used to constrain the
EG map of a single image. In the stochastic version proposed
in [19], at each iteration, both sums are removed and the single
term

L
(
∇F

(
αx+ (1− α)x′

))
(8)

is added to the classification loss for a minibatch of x, x′ and
α. One can notice that this would be the same term that would
be used if the overall constraint loss would be:∑

(x,x′,α)∈X2×[0,1]

L
(
∇F

(
αx+ (1− α)x′)) (9)
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=
∑

y∈LS(X)

L
(
∇F (y)

)
(10)

As can be seen, training with the stochastic EG constraint
on X is equivalent to the use of the same constraint using
G attribution maps on the Line Segments set of X (LS(X)
introduced in Definition 3.2).

Using the Proposition 3.4, Conjecture 3.1 could be proven if
we can show that constrained training on either X or LS(X)
have the same effect when the model is applied on test data.
Although we do not provide formal proof of this part, it is
reasonable to assume that this is the case. We base our intuition
on the fact that in high dimension d, each point from a set of N
points will be outside the convex hull of the other points with
a probability close to 1 (unless N grow exponentially with d).
This was proven for points on a hypersphere in [31]. It has
also been heuristically validated for real data in [32]–[34]: for
datasets such as MNIST, CIFAR10 or ImageNet, images from
the test set are outside the convex hull of the training set.
This led [32] to the conclusion that ”the behavior of a model
within a training set’s convex hull barely impacts that model’s
generalization performance”.

Regarding attribution constraints, our intuition is that con-
straining the gradient on the training set X only, and not like
EG on LS(X) (which is included in the convex hull C(X)),
is sufficient to generate good EG maps at inference. This can
also be understood as accounting that an image in the test set
is very unlikely to be the result of a linear interpolation of two
images of the training set. Using only G during the training
results in a simpler implementation, a more direct path in the
backward and a lower training time. As the constraint does not
need to be evaluated at interpolation points, a second backward
is not necessary as with EG.

3) Generic training: including all attribution maps in the
training (IEG): In the previous section, we argued that the
G constraint should be sufficient for good EG inference.
Although IG is also based on gradient, training with G only
might not be as sufficient. Indeed, the baseline is always the
same and outside the convex hull of the training set. If the
objective is not to be faster during training but to implement
a constrained training generic for the attribution maps used
during inference, we propose to use EG with a probability p
to use a null baseline (i.e. to use IG) during training. Noticing
the beginning of the integration path (α ≈ 0) for both IG
and EG corresponds to G, training with constraints on IG
and EG will also constrain G attributions. This setting should
improve the invariance of the neural network to the choice of
the attribution method used during inference.

IV. EXPERIMENTS

Our method was evaluated on two brain pathologies: brain
tumors and multiple sclerosis. In Sections V-A and V-B, the
influence of different parameters of our method, and more
specifically the attribution method used for the constraints, is
evaluated. A comparison is made between • our unsupervised
model (Unsup) based on Equation 2, • a model (Sup) where
the constraint would be totally supervised (m(x) in Equa-
tion 3 is the segmentation mask when available), • a model

(UnsupTV) constrained with both our unsupervised constraint
of Equation 2 and the total variation loss from [19], • [22]
loss extrapolated in an unsupervised way on healthy images
as in our proposition (still denoted as Ross) and finally, • [19]
(denoted as Erion). For each method, G, EG, IG or IEG
have been used for training and either G, EG or IG have been
used at inference. In Section V-C, our method is compared to
two state-of-the-art interpretable classification methods: Erion
and Ross. The classification network trained without constraint
and evaluated with GradCam [18] or Gradient attributions
(respectively named NoConsGC and NoConsG) are also com-
pared. For NoConsGC, unlike the original paper, no ReLU was
applied on attributions to display both negative and positive
relevance. In Section V-D, we compare our approach to state-
of-the-art methods for anomaly detection: [25] (AE), [26]
(VAE), [27] (f-AnoGAN) and [23] (Silva-Rodrı́guez).

A. Data

TABLE I: FLAIR MRI datasets. H refers to healthy dataset, T
to tumors dataset, MS to multiple sclerosis dataset.

Dataset Ntrain Nval Ntest H/T/MS Annotated
MPI 64 15 15 H No

kirby21 22 5 5 H No
IBC 8 2 2 H No

BraTS20 280 40 49 T Yes
BraTS19 (2D) 2710 314 319 T Yes

MSSEG 12 3 37 MS Yes
OFSEP 401 50 50 MS No

Three public FLAIR MRI datasets have been used for
healthy images: MPI [35], kirby21 [36] and IBC [37]. MIC-
CAI BraTS 2019 and 2020 [38]–[40] have been used for
brain tumors images and MICCAI MSSEG 2016 [41] and
the OFSEP/EDMUS dataset1 from the ”Observatoire français
de la sclérose en plaques” [42], [43] for multiple sclerosis
images. Images were acquired in different centers with multi-
brand, 1.5T and 3T scanners. These datasets were split in
training/validation/test as indicated in Table I.

MICCAI BraTS 2019 was used as in [23]. Other datasets
were preprocessed using FSL FLIRT affine registration on
MNI atlas MRI [44], [45], HD-BET brain extraction [46] and
N4 bias field correction [47]. As bias field correction can be
detrimental to tumors segmentation, the BraTS preprocessing
pipeline2 does not include this step, as opposed to MS le-
sions segmentation challenges [41]. In this work, bias field
correction is always used for MS data and both versions of the
preprocessing pipeline, with (simulating poor quality images
with low contrast) and without bias field correction, are used
on BraTS 2020 data.

Experiments were done on two voxel-size resolutions: 2mm
and 1mm. The final image size is 91 × 109 × 91 for a 2mm
voxel size and 182× 218× 182 for a 1mm voxel size.

1http://www.ofsep.org: The confidentiality and safety of OFSEP
data are ensured by the recommendations of the French Commission Nationale
de l’Informatique et des Libertés (CNIL). This study was covered by the
Reference Methodology MR-004 of the CNIL.

2https://cbica.github.io/CaPTk/preprocessing_brats.
html
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TABLE II: G equivalence to EG. Pearson correlation coefficient between attribution maps A1 and A2 given in first two columns
measured on 2mm brain tumors images. In the notation X Y, X is the map constrained during training, Y is the inference map.

A1 A2 Sup Unsup UnsupTV Ross Erion Average

EG EG
NO EG 0.09± 0.04 0.46± 0.07 0.45± 0.06 0.48± 0.08 0.30± 0.09 0.36± 0.07
IG EG 0.36± 0.09 0.59± 0.10 0.57± 0.07 0.83± 0.03 0.54± 0.07 0.58± 0.07
G EG 0.82± 0.06 0.81± 0.06 0.65± 0.09 0.93± 0.02 0.40± 0.06 0.72± 0.06

IG IG G IG 0.64± 0.10 0.44± 0.14 0.64± 0.13 0.58± 0.17 0.50± 0.05 0.56± 0.12

TABLE III: IEG robustness. Pearson correlation coefficient between attribution maps A1 and A2 given in first two columns
measured on 2mm brain tumors images. In the notation X Y, X is the map constrained during training, Y is the inference map.

A1 A2 Sup Unsup UnsupTV Ross Erion Average

EG EG IG EG 0.36± 0.09 0.59± 0.19 0.57± 0.07 0.83± 0.03 0.54± 0.07 0.58± 0.09
IEG EG 0.95± 0.03 0.86± 0.07 0.75± 0.07 0.87± 0.03 0.27± 0.07 0.74± 0.05

IG IG EG IG 0.36± 0.12 0.43± 0.09 0.52± 0.10 0.63± 0.23 0.48± 0.10 0.48± 0.13
IEG IG 0.66± 0.09 0.67± 0.05 0.61± 0.09 0.79± 0.09 0.25± 0.08 0.59± 0.08

Two different setups were used for anomaly detection: either
using the three healthy datasets for reconstruction training and
BraTS20 and MSSEG for anomaly detection at test or using
the setup of [23] with BraTS19 middle slices without tumor
as the healthy database and BraTS19 middle slices with more
than 0.1% of tumor for the pathological database. In this last
case only, our method was used in 2D.

Note that for supervised model on MS, both MSSEG and
OFSEP datasets were used for LC but only annotated MSSEG
for LA on pathological class.

B. Implementation details
Our network was implemented using Pytorch. The source

code is available on GitHub3. We used a 3D 70x70 Patch-
Gan [48] as classifier. This CNN is defined as C64-C128-
C256-C512 where Ck denotes a Convolution-BatchNorm-
LeakyReLU (slope 0.2) layer with k filters, except for the
first layer on which no BatchNorm is applied. At the end,
a convolution is applied to obtain a 1-dimensional output.
Our model is trained with Yogi optimizer [49] with an initial
learning rate of 1 and AMSGrad [50]. When no constraint
is applied, the discriminator is trained with Adam optimizer
with an initial learning rate of 10−3. The optimizers were
chosen for training stability in all experiments. State-of-the-
art models were trained with their original optimizer. The
batch size was set to 5 and data augmentation with random
brightness variation, elastic deformation and mirroring along
the mid-sagittal plane was used. IG and EG constraints
were implemented with a single random α. A null baseline
was used for IG. The null baseline probability of IEG was
set to p = 0.25. In our experiments, the choice of this p
parameter did not have much influence. IG was computed
at inference using Captum4. EG was computed with the
test database images as baseline at inference. The attribution
coefficient αA in Equation 1 was set to 108 (see V-A for
experiments on this coefficient). For state-of-the-art methods,
original coefficients were used. Early stopping was applied

3https://github.com/Valentine-Wargnier-Dauchelle/
gradient-attributions-constraint

4https://captum.ai

on classification accuracy metric on the validation set. For
the comparison with anomaly detection methods, we used the
code provided by [23]. Experiments were done using a Nvidia
V100 GPU with 32 GB of memory.

C. Evaluation metrics

The image level classification performance was measured
with the true negative rate (TNR, the proportion of well-
classified healthy images) and true positive rate (TPR, the pro-
portion of well-classified pathological images) of the healthy
vs pathological classifier.

The quality of the attribution maps was measured using the
Dice [51] between the thresholded attributions and ground
truth pathology mask. We also used the area under the
precision-recall curve (AUPRC) and the receptive-operative
curve (AUROC, which plots false vs true positive rate) con-
sidering voxel level classification. As AUROC is not adapted
for unbalanced classes, we also computed the area under the
ROC up to a false positive rate of 10% (AUROC10) [52].
Indeed, increasing the false positive rate will rapidly degrade
the segmentation quality. The resulting area is normalized
according to the maximum attainable value. In Sections V-C
and V-D, the thresholds were chosen for each method as the
PRC operating point with the 2mm tumors validation dataset
and then used for all test sets.

Correlation between attribution maps in Section V-B was
measured with the Pearson coefficient defined as the covari-
ance of the two maps divided by the product of their standard
deviation.

Statistical significance tests were performed comparing
Unsup to each of the state-of-the-art methods. We used a
permutation test with 10000 permutations, a 95% confidence
and the Bonferroni correction.

V. RESULTS

A. Loss weight

Optimal loss weight αA introduced in Equation 1 was set
on validation set for tumors dataset (without N4 bias field
correction). We monitored all metrics by varying alpha for

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2023.3282789

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://github.com/Valentine-Wargnier-Dauchelle/gradient-attributions-constraint
https://github.com/Valentine-Wargnier-Dauchelle/gradient-attributions-constraint
https://captum.ai


WARGNIER-DAUCHELLE et al.: A WEAKLY SUPERVISED GRADIENT ATTRIBUTION CONSTRAINT FOR INTERPRETABLE CLASSIFICATION AND ANOMALY
DETECTION 7

     10     08        10     09        10     10        10     11       10    12        10     13   
     0   

     0.2   

     0.4   

     0.6   

     0.8   

     1   

     α     A   

   m
et

ric
 v

al
ue

   
     Dice   
     AUPRC   
     AUROC   
     TPR   
     TNR   

(a) EG

     10     3        10     4        10     5        10     6        10     7        10     8   
     0.3   

     0.4   

     0.5   

     0.6   

     0.7   

     0.8   

     0.9   

     1   

     α     A   

   m
et

ric
 v

al
ue

   

     Dice   
     AUPRC   
     AUROC   
     TPR   
     TNR   

(b) IG

     10     05        10     06        10     07        10     08       10    09        10     10   
     0   

     0.2   

     0.4   

     0.6   

     0.8   

     1   

     α     A   

   m
et

ric
 v

al
ue

   

     Dice   
     AUPRC   
     AUROC   
     TPR   
     TNR   

(c) IEG

     10     05        10     06        10     07        10     08       10    09        10     10   
     0.3   

     0.4   

     0.5   

     0.6   

     0.7   

     0.8   

     0.9   

     1   

     α     A   

   m
et

ric
 v

al
ue

   

     Dice   
     AUPRC   
     AUROC   
     TPR   
     TNR   

(d) G 2mm

     10     05        10     06        10     07        10     08       10    09        10     10   
     0.2   

     0.4   

     0.6   

     0.8   

     1   

     α     A   

   m
et

ric
 v

al
ue

   

     Dice   
     AUPRC   
     AUROC   
     TPR   
     TNR   

(e) G 1mm

Fig. 2: Loss weight αA influence. Metrics (Dice, AUROC, AUPRC, TPR, TNR) versus αA for different attributions methods.
Experiments was performed on validation 2mm (+1mm for gradient) tumors set.

our unsupervised model. Results are presented in Figure 2.
We choose the maximum coefficient keeping almost perfect
classification (TPR and TNR close to 1) as segmentation
metrics increase with αA. With this choice, we aim to have a
good classification and segmentation model. Nevertheless, seg-
mentation performances can be improved by choosing a higher
coefficient at the expense of classification performances. We
note that pixel size (and so image size) does not impact optimal
coefficient as TPR curves pick down for the same αA for 2mm
and 1mm voxel size images (Figure 2d and 2e). Thus, we set
αA = 1010 for EG, αA = 106 for IG, αA = 107 for IEG
and αA = 108 for G. Note that, with EG, this coefficient was
reduced to 109 for the supervised model (Sup) and when the
TV loss is added (UnsupTV) as the model does not converge
with the unsupervised model optimal coefficient. EG training
seems less stable and more parameter dependent.

The optimal αA coefficients, optimized on the validation set
of the tumors dataset without N4 bias field correction, have
been used in the remaining of the paper, for all the different
experiments.

B. Influence of the attribution map method
1) Equivalence between Gradient and Expected Gradient

constraint: In this section, we give some quantitative clues to
answer the question raised in Section III-C.2: are constraints
on G sufficient for EG ? In Table II, we report the Pearson
correlation between inference attribution maps when different
attribution maps are used in the constraint during training.
One can first see that EG maps produced by EG constrained
model (EG EG) and unconstrained model (NO EG) are not
correlated. Adding any of the IG or G constraints drastically
increases the correlation (between 12% and 73%). One can
also see that the correlation is higher for G constrained maps
than for IG ones in most cases and they are 14% more
correlated in average.

G constrained training is also beneficial regarding its fit with
pathology: if we consider the Dice between ground truth and
positive attributions (presented in Figure 3) and the AUPRC
(presented in Figure 5), one can see that results for both
metrics are equivalent or improved when the constraint is
applied on G instead of EG during the training.

As far as computation time is concerned, EG is about 50%
slower than G for each iteration and convergence with G is
generally easier to achieve.

Finally, Table II shows that G constrained maps are less
correlated with IG than EG. For most tested cases, the

correlation is lower between IG IG and G IG than EG EG
and G EG. G constraint is not sufficient for robustness to IG
at the inference but sufficient for good performances with EG
inference, with easier training.

2) Robust training with integrated/expected gradient mix:
Training with a mix between EG and IG (named IEG)
is better than Gradient in terms of Dice (yellow curve in
Figure 3) and AUPRC (green bar in Figure 5). This is the most
efficient method in average: with this training, performances
(Dice and AUPRC) remain constant according to the constraint
choice (Sup, Unsup, UnspTV, Erion or Ross) whereas EG
or IG reach very good performances for some and drop
drastically for others. For example, training with IG is not
efficient for UnsupTV and EG IG map is the worst for Ross
in terms of AUPRC.

This proposition provides a more robust model for the
attribution inference method at the expense of a computational
cost compared to G but no cost compared to EG or IG
constraints. IEG is better or equivalent than EG constraint
evaluated on IG and vice versa especially on Dice metric
(Figure 4: light blue vs orange and green vs yellow curves)
and AURPC (Figure 6: blue vs yellow and pigeon blue vs
light green bars). In addition, with this training, attribution
maps on IG are 11% more correlated to the reference IG IG
than when EG is used for the training and attribution maps
on EG are 14% more correlated to reference than with IG
only training (Table III).

C. Interpretable and relevant classification
A state-of-art comparison was made using the original

attribution training method and G at the inference as it is
included in every attribution method (EG beginning of the
path). For our method, we use the G constraint for its speed.

As shown in Figure 7, our unsupervised constraint is clearly
based on tumor area since attributions focus on it. Ross is
visually equivalent to ours in the first example but less specific
in the more difficult second example. Decisions with the other
methods are less based on the region of interest. This is
supported by the metrics presented in Table IV. Indeed, for
BraTS 2mm, the Dice is much better: it is more than 20 points
higher than the model with classification only training and
Gradient as attributions evaluation (NoConsG) and around 40
points higher when GradCam (NoConsGC) is used. Our Unsup
model outperforms state-of-the-art methods with a gain of at
least 3 Dice points (statistically significant). Our model is more
accurate with an AUPRC 6 points higher than the second-best
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Fig. 3: G equivalence to EG. Dice versus threshold value
for different constraints and different attribution maps used
during training for 2mm brain tumors data. Results are
averaged on all attribution inference methods.
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Fig. 4: IEG robustness. Dice versus threshold value for
different constraints and different attribution maps for 2mm
brain tumors data. In the legend, left is the attribution maps
used in the constraint during training, right is the attribution
map used during inference.

.

Fig. 5: G equivalence to EG. Influence of the attribution
maps used in the constraint on the AUPRC for 2mm brain
tumors data. Results are averaged on all attribution inference
methods.

Fig. 6: IEG robustness. Influence of the attribution maps
used in the constraint on the AUPRC for 2mm brain tumors
data. In the legend, left is the attribution maps used in the
constraint during training, right is the attribution map used
at inference.

model (Ross). AUROC is a little bit lower but less adapted than
AUPRC as pathological voxels are underrepresented compared
to healthy ones. Looking at AUROC with a false positive rate
of less than 10% (AUROC10), Ross and our unsupervised
methods are equivalent. This difference between AUROC and
AUROC10 shows that Ross could reach a higher sensitivity
but with poor specificity. In words, more lesions could be
detected with Ross but at the cost of an overwhelming number

of false positives. When increasing the resolution, state-of-the-
art method’s performances increase as the segmentation task
is easier. Especially, NoConsGC is the second-best method
in terms of Dice whereas it is the worst for 2mm voxel size
images. Nevertheless, our method is still better in terms of
Dice and AUPRC. Using the BraTS dataset with N4 bias
field correction, images with poorer contrast are considered
and the segmentation task is more difficult. In this case, our
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MR image Sup. NoConsG NoConsGC Ross Erion

Silva-Rodrı́guez f-AnoGAN VAE AE Unsup. BCE (Ours)

MR image Sup. NoConsG NoConsGC Ross Erion

Silva-Rodrı́guez f-AnoGAN VAE AE Unsup. BCE (Ours)

Fig. 7: Segmentation maps (attributions or reconstruction error) for different methods on brain tumors images (1mm with
N4 correction). Manual annotation is drawn in green. Blue represents healthy relevance and red pathological relevance for
classification attribution methods. High attributions are in red for Silva-Rodrı́guez. For reconstruction methods, reconstruction
error scale is from black to yellow. From left to right, top to bottom: MR image, supervised, NoConsG, NoConsGC, Ross,
Erion, Silva-Rodrı́guez, f-AnoGAN, VAE, AE, our proposed unsupervised methods.

method is much better with a 20 points gap for Dice and
an AUPRC twice better than the second-best method. Under
these conditions, all metrics are statistically significant. Our
constraint allows for a more relevant classifier in the meaning
that network decision is more based on clinically relevant
structures, brain tumors, without degrading the classification
performances with a TPR and TNR higher than 95%.

In multiple sclerosis, lesions are smaller than brain tumors
and even in this case, our unsupervised proposed method
stands out through its performance compared to literature
methods. Visual examples in Figure 8 shows that our propo-
sition detects more lesions (second example) and it is more
specific: in the first example, with our constraint, the areas of
high attributions are focused on MS lesions whereas with Ross,
high attributions are spread out around ventricles. Thus, Dice
with our method is 25 points higher than NoConsG which
discriminates healthy and MS images regardless of lesions.
In comparison with the second-best method, our proposition
achieves a three times better Dice and an AUPRC five times

higher. Classification performances are not too degraded with
an accuracy of about 90%. We notice that the constraints
(supervised and unsupervised) make the classification harder
as accuracy is lower and training harder. It is likely that
without the constraint, the network uses some shortcut based
on the datasets signature instead of clinical features. Note
that the split in train/validation/test traditionally used to detect
overfitting will not detect this kind of problem: if the global
dataset has a bias of some sort, the bias will be present in
each of the subsets and high test accuracy might be based on
this bias.

Therefore, using unsupervised BCE loss for constrained
training allows an interpretable classification with decision
more based on the pathology area, outperforming classification
without constraint and state-of-the-art constraints. Our method
is particularly efficient for difficult segmentation tasks (MS
or low contrast tumor images) for which the difference in
performance with state-of-the-art is large and significant.

Moreover, with our method, the voxels of healthy images
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MR image Sup. NoConsG NoConsGC Ross Erion

Silva-Rodrı́guez f-AnoGAN VAE AE Unsup. BCE (Ours)

MR image Sup. NoConsG NoConsGC Ross Erion

Silva-Rodrı́guez f-AnoGAN VAE AE Unsup. BCE (Ours)

Fig. 8: Segmentation map (attributions or reconstruction error) for different methods on MS images (1mm). Manual annotation
is drawn in green. Blue represents healthy relevance and red pathological relevance for classification attribution methods. High
attributions are in red for Silva-Rodrı́guez. For reconstruction methods, reconstruction error scale is from black to yellow. From
left to right, top to bottom: MR image, supervised, NoConsG, NoConsGC, Ross, Erion, Silva-Rodrı́guez, f-AnoGAN, VAE,
AE, our proposed unsupervised methods.

contribute to the healthy classification decision as the attribu-
tions of healthy images are negative, that is to say, relevant
for healthy class. Indeed, for our method, the histogram of
healthy attributions (Figure 9 in blue) vanishes in the positive
area and the pathological curve (in orange) is both negative, for
healthy regions, and positive, for tumors areas as shown with
segmentation evaluation. In comparison, healthy attributions of
other methods are partially positive and both classes histogram
curves are mingled.

D. Anomaly detection
The proposed constraint model can be used for weakly

supervised anomaly detection with only image-level label. In
Table V, metrics for the comparison of our method to state-of-
the-art on different datasets are reported. Our method outper-
forms other methods for Dice, AUPRC and AUROC10 (always
statistically significant for the first two). For low resolution
images, the proposed method surpasses state-of-the-art by
almost 15 points of Dice and AUPRC. By increasing resolution

to 1mm voxel-size, Dice gap between our method and the
best state-of-the-art method (Silva-Rodrı́guez) increases by 5
points. For more difficult tasks (BraTS with N4 correction and
MS), the best literature method is AE but our method is still
more efficient with 15 points higher Dice and AUPRC.

Visually, in Figure 7 and 8, our unsupervised method seems
more specific than others especially VAE and Silva-Rodrı́guez
which detect anomalies in healthy tissue. Silva-Rodrı́guez
seems competitive only with the second setup (middle slices
extracted from the same Brats2019 dataset for both healthy
and pathological). Nevertheless, it reaches 8 points lower Dice
and still less precise with an AUPRC 20 points lower than our
constrained training. Note that in most real applications, the
whole image is given and the segmentation algorithm must
be able to handle slices from the whole brain and especially
outputs zero mask segmentation for healthy slices.
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TABLE IV: Comparison to state-of-the-art for interpretable classification on brain tumors and MS. Statistical difference with
Unsup is indicated with †.

Attributions segmentation Images class.
Dataset Method Dice AUROC AUROC10 AUPRC TPR TNR

BraTS 2020 2mm

Supervised 0.71± 0.17† 0.85† 0.76† 0.73† 1.00 0.95
NoConsG 0.29± 0.16† 0.61† 0.34† 0.16† 1.00 1.00

NoConsGC 0.12± 0.16† 0.62† 0.15† 0.04† 1.00 1.00
Ross 0.48± 0.20† 0.80 0.63 0.39 1.00 1.00
Erion 0.29± 0.15† 0.70† 0.40† 0.19† 1.00 1.00

Proposed (Unsup) 0.51± 0.16 0.73 0.62 0.45 1.00 0.95

BraTS 2020 1mm

Supervised 0.70± 0.15† 0.78† 0.68† 0.66† 0.93 0.95
NoConsG 0.27± 0.13† 0.70† 0.38† 0.18† 0.86 1.00

NoConsGC 0.48± 0.20† 0.90† 0.65 0.40 0.86 1.00
Ross 0.40± 0.19† 0.89† 0.66† 0.44 1.00 1.00
Erion 0.29± 0.18† 0.78† 0.36† 0.19† 1.00 1.00

Proposed (Unsup) 0.52± 0.17 0.69 0.56 0.45 1.00 1.00

BraTS 2020 1mm with N4 correction

Supervised 0.55± 0.18† 0.70† 0.55 0.49† 0.98 1.00
NoConsG 0.18± 0.07† 0.71† 0.33† 0.14† 1.00 1.00

NoConsGC 0.20± 0.17† 0.79† 0.19† 0.08† 1.00 1.00
Ross 0.19± 0.11† 0.77† 0.38† 0.17† 1.00 1.00
Erion 0.16± 0.07† 0.66† 0.23† 0.08† 1.00 1.00

Proposed (Unsup) 0.38± 0.15 0.73 0.50 0.30 0.94 1.00

MS 1mm

Supervised 0.24± 0.18 0.53† 0.46 0.24† 0.77 0.77
NoConsG 0.001± 0.002† 0.63† 0.41 0.02† 1.00 1.00

NoConsGC 0.0003± 0.0007† 0.34† 0.01† 0.002† 1.00 1.00
Ross 0.09± 0.09† 0.70 † 0.45 0.04† 1.00 1.00
Erion 0.01± 0.01† 0.60 0.35† 0.01† 1.00 1.00

Proposed (Unsup) 0.25± 0.16 0.60 0.51 0.20 0.89 0.91

TABLE V: Comparison to state-of-the-art for anomaly detection on brain tumors and MS. Statistical difference with Unsup is
indicated with †.

Dataset Method Dice AUROC AUROC10 AUPRC

BraTS 2020 2mm

Silva-Rodrı́guez 0.37± 0.17† 0.92† 0.56 0.32†

AE 0.26± 0.11† 0.90† 0.36† 0.16†

VAE 0.25± 0.14† 0.91† 0.30† 0.15†

f-AnoGAN 0.17± 0.10† 0.79 0.06† 0.06†
Proposed (Unsup) 0.51± 0.16 0.73 0.62 0.45

BraTS 2020 1mm

Silva-Rodrı́guez 0.33± 0.20† 0.91† 0.52 0.32†

AE 0.28± 0.11† 0.91† 0.43 0.17†

VAE 0.24± 0.13† 0.91† 0.34† 0.15†

f-AnoGAN 0.16± 0.10† 0.84† 0.16† 0.09†
Proposed (Unsup) 0.52± 0.17 0.69 0.56 0.45

BraTS 2020 1mm with N4 correction

Silva-Rodrı́guez 0.18± 0.09† 0.88† 0.19† 0.14†

AE 0.23± 0.10† 0.88† 0.35 0.15†

VAE 0.18± 0.10† 0.87† 0.26† 0.11†

f-AnoGAN 0.16± 0.09† 0.84† 0.18† 0.09†
Proposed (Unsup) 0.38± 0.15 0.73 0.50 0.30

BraTS 2019 1mm Silva-Rodrı́guez 0.54± 0.22 0.97 0.78 0.52†
middle slices Proposed (2D Unsup) 0.62± 0.14 0.96 0.78 0.72

MS 1mm

Silva-Rodrı́guez 0.10± 0.08† 0.93† 0.50 0.05†

AE 0.10± 0.09† 0.95† 0.67 0.05†

VAE 0.03± 0.03† 0.92† 0.36 0.01†

f-AnoGAN 0.02± 0.02† 0.81† 0.10† 0.01†

Proposed (Unsup) 0.25± 0.16† 0.60 0.51 0.18

VI. CONCLUSION

In this paper, we proposed an unsupervised method to
constrain the decision of a classification network to be based
on the pathology using attribution maps as a reflection of the
decision. We show on two brain pathologies that attributions,
a marker of the network decision, are more focused on the
pathological areas and are consequently, more in accordance
with high-level medical knowledge when the new constraint

is used during the training. Moreover, these attribution maps
could be used for weakly supervised anomaly detection. Thus,
the proposed method outperforms both state-of-the-art inter-
pretable classification and anomaly detection methods.

A deep analysis of the attribution choice for constrained
training is also made. We proved that by using the Gradient at-
tributions, which are more easily integrated and faster to com-
pute, the constrained training reaches similar performances to
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Fig. 9: Attributions histogram for different methods. Exper-
iments were done on 2mm healthy (H) and tumors (P) sets
without N4 correction.

that obtained by using Expected Gradient, a complex high-
level attribution. We also propose a new attribution integration
during training in order to be invariant to gradient-based attri-
bution method used for inference. This constraint formulation
integrates all existing gradient methods in one constraint.

As our proposition is a simple loss to be applied during
training, it can be easily integrated into all deep models
without changing their architecture. Thereby, this work could
be used in several domains. As discriminators are a building
block of adversarial networks, we can use attribution con-
straints to increase the performances and relevance of GAN
methods for anomaly detection for instance. This work could
also be extended to other kinds of architectures and not only
to classifiers like regression and prediction networks: disease
grade estimation which focuses on pathology, body registration
transformation estimation with anatomical prerequisites, etc.
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