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Message

Happy planning solvers users Not happy with:

No on-demand binding between model 
and action costs

Debugging of domains too hard



Team

u 2007 – 2013 – 2020
u 1) develop solvers

u 2) applications

u Research & Technology
u Decision & Optimization

lab., 

u Johann Dreo,

u Pierre Savéant.

u Others
u INRIA : March Schoenauer

u ONERA : Vincent Vidal

u Former 
students/postdocs
u Jacques Bibai

u Caner Candan

u Mátyás Brendel

u Mostepha R. Khouadjia

u Alexandre Quemy



Divide-and-Evolve (DAE)

u Divide And Evolve
u Black-box heuristic for 

problem decomposition

u YAHSP for subproblem solving

u 2010 : silver medal at 
GECCO Hummies awards

u Competing against human 
planner

u 2011 : (one of the) winner 
in temporal satisficing track 
at IPC



Research: 2007 – 2013

u DAE-CPT

u DAE-YAHSP2

u DAE-YAHSP3

u Automatic configuration of DAE

u Using racing

u Using generic optimization

u Multi-objective optimization
u And PDDL (Zeno) benchmark



Applications: 2013 – 2020

u Multi-vehicles mission planning
(≈ resources displacement on geographic graphs)
u Emergency vehicles in heavy traffic

u Delivery during resource-scare crisis

u Aerial drone mission planning

u Multi-aerial drones surveillance system

u Underwater uncrewed multi-vehicles mission planning

u Multi-types uncrewed multi-vehicles mission planning

u Always various actions (more than just "move", e.g. scan, pick, …)

u Not always required concurrency



Multi-vehicles
planning



Well known Pro & Cons of Planning 
Modelling

u Advantages

u Optimal is always better than humans

u Satisficing is often good enough

u In practice, fast enough
to compute many real-life instance sizes
if the model is coarse enough

u Drawbacks
u Poor correlation in 

decision space



Drawbacks of 
planning model

u Poor correlation
in decision space



Well known Pro & Cons of Planning 
Modelling

u Advantages

u Optimal is always better than humans

u Satisficing is often good enough

u In practice, fast enough
to compute many real-life instance sizes
if the model is coarse enough

u Drawbacks
u Poor correlation in 

decision space

u Optimal runtime is
unpredictable

u Satisficing quality is
unpredictable

u Do not scale well with
instance size



User expectations VS reality

u Expectations
u Model once, 

solve many instances

u Model by domain experts, 
of-the-shelf solvers

u Atomic costs computation is
the bottleneck

u Separation of model and 
solver

u Reality
u Problem landscapes diversity

is HUGE

u Domain experts is a VERY 
scarce resource

u Hard to embbed in 
solvers/models for on-
demand computation.

u PDDL itself is not scalable
enough



Example PDDL domain
(define (domain domain_surveillance_v0)

(:requirements :typing :durative-actions)

(:types

Vehicle - Object

Type_A - Vehicle

Type_B - Vehicle

Location - Object

Point Area - Location

Start Wait - Point

)

(:functions

; Time to move from x to y

(move_time ?x - Location ?y - Location)

; Time to scan area m

(scan_time ?m - Area)

)

(:predicates

; Vehicle d is located at location x

(located   ?d - Vehicle ?x - Location)

; Vehicle d is not already busy

(available ?d - Vehicle)

; Sensor activation

(sensor_on ?d - Vehicle)

(sensor_off ?d - Vehicle)

; Vehicle position relatively to surface.

(underwater ?d - Vehicle)

(abovewater ?d - Vehicle)

; Area m is scanned / not scanned

(revealed  ?m - Area) ; scanned

(concealed ?m - Area) ; not scanned

; NOTE: At init an goal, we cannot use the "not" operator,

;       thus we must have two predicates for the state of areas

;       in order to specify a switch of status:

;       areas are concealed in the init and revealed in the goal.

)



Example PDDL domain
; dive

(:durative-action dive

:parameters (?d - Vehicle)

:duration (= ?duration 10)

:condition (and

(at start (available ?d) ) ; the vehicle is not doing something else

(at start (abovewater ?d)) ; the vehicle is above surface

(at start (sensor_off ?d)) ; not allowed to use sensor while diving

; NOTE: you cannot use the "not" operator in a condition.

)

:effect    (and

(at start (not (available ?d))) ; the vehicle is doing something from the very beginning

(over all (not (available ?d))) ; the vehicle is doing something during the action

(at end      (available  ?d) ) ; the vehicle is no more doing something

(at end      (underwater ?d) ) ; the vehicle is under water

(at end (not (abovewater ?d))) ; the vehicle is not above surface

)

) ; dive

; [...]

)



Example PDDL instance
(define (problem {{NAME}}) (:domain 
surveillance_v0)

(:objects [...] )

(:init

{{#VEHICLES}}

(located   {{NAME}} {{TAKEOFF}})

(available {{NAME}})

{{/VEHICLES}}

{{#MISSIONS}}

(concealed {{NAME}})

{{/MISSIONS}}

{{#MOVES}}

(= (move_time {{FROM}} {{TO}})  
{{TIME}})

{{/MOVES}}

{{#MISSIONS}}

(= (scan_time {{NAME}}) 
{{SCAN_TIME}})

{{/MISSIONS}}

) ; init

(:goal 

(and

{{#MISSIONS}}

(revealed {{NAME}})

{{/MISSIONS}}

)

) ; goal

(:metric minimize (total-time))

)



Example PDDL plan

; Time 0.024

; Length 11

; Makespan 41.81

0 : ( move_drone d1 s1 m3 ) [11.95]

0 : ( move_drone d2 s2 m1 ) [10]

0 : ( move_drone d0 s0 m2 ) [7.28]

7.28 : ( scan_mission d0 m2 ) [24]

10 : ( scan_mission d2 m1 ) [8]

11.95 : ( scan_mission d1 m3 ) [32]

18 : ( move_drone d2 m1 m0 ) [7.81]



Classical modeller story line

u Start from a close-enough existing PDDL domain

u Rename objects and predicates

u Try to add new actions and constraints
u Parse error in solver, but error message does not help

u Try other solvers, various error messages (or none)

u Random guesses

u Make an instance template
u Does not scale because cost function is static

u And pre-computations leads to combinatorial explosion

u Call me to complain



The problem with PDDL

u Modelling itself is hard
u Generic modelling problems

u Fidelity/Rapidity compromise

u Scalability of search space

u Modelling in PDDL is even harder
u (The language syntax is not a problem)

u (Plan validation is good enough)

u The lack of some kind of "compiler" is the main problem

u Using solvers to gain feedback is almost ineffective



Conclusion

u Happy with:
u Algorithmics

u Performances

u Modelling features

u Not happy (to the best of our knowledge) with:

u No lazy binding between model and action costs computation 
functions

u Debugging of domains is too hard

u Ad-hoc model conversion within solvers?



johann.dreo@pasteur.fr


