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On Stability of Gated Graph Neural Networks
Antonio Marino1, Claudio Pacchierotti2, Paolo Robuffo Giordano2

Abstract— In this paper, we aim to find the conditions
for input-state stability (ISS) and incremental input-state
stability (δISS) of Gated Graph Neural Networks (GGNNs).
We show that this recurrent version of Graph Neural Net-
works (GNNs) can be expressed as a dynamical distributed
system and, as a consequence, can be analysed using
model-based techniques to assess its stability and robust-
ness properties. Then, the stability criteria found can be
exploited as constraints during the training process to
enforce the internal stability of the neural network. Two dis-
tributed control examples, flocking and multi-robot motion
control, show that using these conditions increases the
performance and robustness of the gated GNNs.

Index Terms— distributed control, graph neural network,
stability analysis

I. INTRODUCTION

MULTI-agent systems have been successfully studied in
the past few years [1]. With respect to single-agent ap-

proaches, coordinated multi-agent systems are expected to col-
laboratively solve tasks and offer more flexibility, all features
that make these systems suited to solve problems in a variety of
disciplines including computer science, electrical engineering,
and robotics [2]. The collaborative control of multiple agents
must take into account the needs of the group. For multi-robot
applications, individual robot motion should be generated by
using not only local sensing data, but also knowledge about
the group state, usually retrieved through communication with
a limited number of (neighboring) team members [3]. Hence,
communication is one of the key elements to realize distributed
solution in multi-agent systems.

In the last decade, the control community has widely
adopted neural networks in data-driven control applications,
taking advantage of their superior approximation capabili-
ties [4]. In distributed control, neural networks are particularly
convenient since they can approximate distributed policies
without the need of cumbersome optimizations and designs.
In the literature, we can find multiple examples of data driven
approaches especially based on reinforcement learning [5],
[6] fed by input data such as images [7]. However, these
approaches work on local sensing data without communi-
cating with the other agents. The communication is used in
distributed machine learning where the learning process is
partitioned on several machines that contribute to the group
knowledge [8]. On the contrary, in data-driven distributed
control, a recent trend involves using Graph Neural Networks
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(GNNs) to encode distributed control and planing solutions.
GNNs perform prediction and analysis on graphs, a conve-

nient topological representation in different kinds of problems
like text classification, protein interface predictions, and so-
cial network decisions [9]. For these latter, GNNs are more
effective than the classical neural network architectures [10].
At the same time, they gave a new perspective in realization
of distributed control.

Gama et al. [11] use GNNs to define a distributed LQR
controller, casting the linear-quadratic problem as a self-
supervised learning to find the best GNN-based distributed
control, thanks to the native GNN distributed nature. The same
authors [12] develop a GNN-based flocking control deployed
on large team scale. Further examples can be found in space
coverage [13], multi robots path [14] and motion planning [15]
also in obstacles rich environment GNN [16]. GNNs are used
also in approaches for enhancing multi agents perception [17]
or performing a distributed active information acquisition [18]
translating the multi-robot information gathering problem to
a graph representation and formulate GNN-based decision
maker.

In the recent literature, a very relevant discussion is about
making the data-driven based method robust and stable [19].
In this context, many works applied contraction analysis to
demonstrate recurrent neural network stability [20], or directly
closed-loop stability in continuous learning [21] and adaptive
control [22]. Other works have attempted to formulate new
neural network models for achieving closed-loop stability,
such as [23] where the controller is obtained from an Hamil-
tonian Deep Neural Networks and the stability is guaranteed
by the compositional properties of port-Hamiltonian systems.
Recently, the authors in [24], [25] demonstrated the ISS and
incremental ISS (δISS) [26] for LSTMs and GRUs, two of the
most popular recurrent neural network models.

Inspired by these last results, the goal of this work is
to characterize the δISS properties of the recurrent version
of GNN, i.e. Gated Graph Neural Networks (GGNN) [27].
These models use gated mechanisms to deploy distributed
recurrent models able to reason on temporal- and spatial-
based relationships among the agents. The δISS property is
a stronger property than plain ISS and leads to asymptotically
convergence of two state trajectories when their respective
input sequences are close, regardless of the initial conditions
for the states. Therefore, we directly focus on the incremental
stability results avoiding the complexity of other frameworks,
e.g., contraction analysis.

To the best of our knowledge, this is the first time ISS
and δISS are proven for GGNN, whereas previous works
have focused on limited stability results like stability to
graph perturbations [27], [28]. Instead, this letter considers
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the system internal stability to the input features in a more
general dynamical system analysis. The conditions derived in
this work are in the form of nonlinear inequalities on GGNN
weights: these can be exploited to certify the stability of a
trained neural model, or can be enforced as constraints during
the training process to guarantee the stability of the GGNN.

The remaining sections of this paper are organized as
follow. Section II reviews the preliminaries about graph neural
networks and presents their recurrent versions, RGNNs and
GGNNs. Section III and IV present the main stability results
for the one-layer and deep GGNN. In Sect. V, we also provide
a perspective of these results when considering communication
delays. We then show two examples of the conditions found
for flocking control, in Sect. VI, and multi robot motion
control, in Sect. VII. Concluding remarks are finally presented
in Sect. VIII.

II. PRELIMINARIES
Let G = (V, E) be an undirected graph where V =

{v1, . . . , vN} is the vertex set (representing the N agents in the
group) and E ⊆ V×V is the edge set. Each edge ek = (i, j) ∈
E is associated with a weight wij ≥ 0 such that wij > 0 if the
robots i and j can interact and wij = 0 otherwise. As usual,
we denote with Ni = {j ∈ V| wij > 0} the set of neighbors
of robot i. We also let A ∈ RN×N be the adjacency matrix
with entries given by the weights wij . Defining the degree
matrix D = diag(di) with di =

∑
j∈Ni

wij , the Laplacian
matrix of the graph is L = D −A.

The Laplacian matrix has a natural sparsity pattern that
allows to implement distributed behaviors. Let x ∈ RN be a
vector whose i-component xi is assigned to robot i. This graph
signal does not contain any information about the graph, but
it can be processed using the graph Laplacian to incorporate
graph topological information

ℓix =
∑
j∈Ni

wji(xi − xj), (1)

where ℓi is the i-th row of L. This process is also known
as aggregation in the graph signal processing literature. The
signal manipulation can be operated by means of any sup-
port matrix S, e.g., Laplacian, adjacency matrix, weighted
Laplacian, and so forth, which respects the sparsity pattern
of the graph. Such matrix is often called graph shift operator,
because it implements a linear combination of signal values in
neighboring nodes that each node vi can locally access. The
choice of the support matrix depends on the application and
the type of the information to exchange. Later, in Sects. VI–
VII, we will use the Laplacian as support matrix, commonly
used in distributed control. However, the proposed techniques
do not assume the use of a specific support matrix.
Performing k repeated applications of S on the same signal
represents the aggregation of the k-hop neighborhood infor-
mation. In analogy with traditional signal processing, this
property can be used to define a linear graph filtering [29]
that processes the multi features signal x ∈ RN×G with G
features:

HS(x) =

K∑
k=0

SkxHk. (2)

where the weights Hk ∈ RG×F define the output of the filter.
Note that Sk = S(Sk−1), so that it can be computed locally
with repeated 1-hop communications between a node and its
neighbors. Hence, the computation of HS is distributed on
each node.

A. Graph Neural Network
Although HS is simple to evaluate, it can only represent

a linear mapping between input and output filters. GNNs
increase the expressiveness of the linear graph filters by
means of pointwise nonlinearities ρ : RN×Fl−1 → RN×Fl−1

following a filter bank. Letting HSl be a bank of Fl−1 × Fl

filters at layer l, the GNN layer is defined as

xl = ρ(HSl(xl−1)), xl−1 ∈ RN×Fl−1 . (3)

Starting by l = 0 with F0, the signal tensor xln ∈ RN×Fln is
the output of a cascade of ln GNN layers. This particular GNN
is often called convolution graph network because each layer
applies a graph signal convolution (2). GNNs inherit some
interesting properties from graph filters, such as permutational
equivariance [30] and their local and distributed nature, show-
ing superior ability to process graph signals [18], [31], [32].
In particular, a property that is interesting in the majority of
the applications is the prediction stability to perturbations of
the graph support, i.e., perturbations of the graph supports
will cause bounded output variations determined by the size
of the support change. Finally, the GNN is stable to the graph
perturbation if the filters frequency responses [33] are integral
Lipschitz :

|h(λj)− h(λi)| ≤ 2C
|λj − λi|
|λj + λi|

(4)

where λj , λi ∈ R are any support matrix eigenvalues, and C >
0 a proper integral Lipschitz constant. This condition restricts
the graph frequency response variability to the midpoint of λ
variations.

B. Recurrent Graph Neural Network
In some cases, a recurrent autoregressive model of GNN

is more expressive and powerful [34], for instance in traffic
forecasting [35] and, in general, for all the problems that
show a clear time dependency. Analogously to RNN, their
well-known centralized counterpart, graph recurrent neural
network (GRNN) are systems which exploit memory to learn
patterns in sequences of data which, in the dynamic system
case, can be observations of the world or measurements of the
outputs of a system to be identified. However, in the case of
RNNs, the number of parameters still depends on the number
of agents preventing RNNs from scaling to inputs with large
dimensions. More importantly, this issue hinders their ability
to account for other structures inherent to the data. Instead,
GRNNs account for the graph topology by constraining the
data processing and shrinking the regression space. Moreover,
they allow leveraging the graph structure to find repetitive and
symmetrical feature patterns.
In a GRNN, the state is updated based on an input tensor u ∈
RN×G and on the current neural network state x ∈ RN×F ,
being itself a signal tensor. A state-space representation of the
GRNN is given by:

x+ = ρ(AS(x) +BS(u) + 1N ⊗ b)
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where AS , BS are respectively the state and the input graph
filters, b ∈ RF is the bias and 1N is the unitary vector of
dimension N . The bias is equal for all the agents in the
network. This structure allows the computation of x to be
performed in an entirely local fashion, involving only repeated
exchanges with the one-hop neighbors of each node. The state
x represents the state of a dynamic controller/observer of
which the GRNN is an approximation.

C. Gated Graph Neural Network
Traditional RNNs suffer of the vanishing gradient problems

rising from long sequences dependencies which require deep
models [36], [37]. The same issues arise in the graph coun-
terpart with long temporal sequence. However, with GRNN
one also has to deal with a form of vanishing gradient in
space where some nodes or paths of the graph might get
assigned more importance than others in long range exchanges
(temporal and spatial), leading to imbalances in the graph
encoding of the information. This problem is connected to
the Laplacian over smoothing which accumulates in time on
the state temporal sequence.
For example, in a graph with highly connected subgraphs,
the aggregation (1) will weight more the components of such
subgraphs which in turn will gain ever greater importance on
the state, dominating the other components.
Forgetting factors can be applied to mitigate this problem
reducing the influence of past or new signal on the state.
A Gated Graph Neural Network (GGNN) [27] is a recurrent
Graph Neural Network that uses a gating mechanism to control
how the past information influences the update of the GNN
states. As before, GGNNs admit the following state-space
representation [38]

q̃ = σ(ÃS(x) + B̃S(u) + b̂)

q̂ = σ(ÂS(x) + B̂S(u) + b̃)

x+ = σc(q̂ ◦AS(x) + q̃ ◦BS(u) + b)

(5)

with σ = 1
1+e−x being the logistic function, and σc the

hyperbolic tangent. ÂS , B̂S are graph filters of the forgetting
gate, ÃS , B̃S are graph filters (2) of the input gate, and AS and
BS are the state graph filters (2). q̂, q̃ ∈ Q ⊆ [0, 1]N×F are the
state and the output gates multiplied via the Hadamard product
◦ by the state and the inputs of the network, respectively.
b̂.b̃, b ∈ RN×F are respectively the biases of the gates and
the state built as 1N ⊗ b with the same bias for every agents.
We note that, in the literature, there exist several Gated
GNNs structures [9], [27], [38] sharing gating mechanisms of
different kinds (temporal, attention, and so on). However, the
system in (5) generalizes well the features of these GNNs and
provides a good level of abstraction for analyzing its stability.
Indeed, we want to focus on the stability properties of such
neural models when a gate mechanism is combined with a
distributed computation.

D. Incremental Input State Stability
In this section, we recall the definition of ISS and δISS that

will be used throughout the paper. Recalling the definitions
of KL, K∞ functions [39] and the infinite norm || · ||∞, the
following definition of ISS is given

Definition II.1 (ISS). System (5) is called input-to-state stable
if there exist functions β ∈ KL and γ ∈ K∞ such that, for
any t ∈ Z ≥ 0, any initial state x(0) ∈ X any input sequence
u ∈ U it holds that:

||x(t)||∞ ≤ β(||x(0)||∞, t) + γu(||u||∞) + γb(||b||∞) (6)

A further desirable property is incremental ISS (δISS) [40].
The δISS property ensures that any pair of state trajectories
converge towards each other even if they start from different
initial conditions. Moreover, their difference is bounded only
by the differences of their inputs (i.e. for example an ideal
control corrupted by an additive noise), thus enhancing the
system robustness [41].

Definition II.2 (δISS). System (5) is is called incrementally
input-to-state stable [26] if there exist functions βδ ∈ KL and
γδ ∈ K∞ such that, for any t ∈ Z ≥ 0, any initial states
x(0)1,x(0)2 ∈ X any input sequences u1,u2 ∈ U it holds
that:

||x(t)1 − x(t)2||∞ ≤βδ(||x(0)1 − x(0)2||∞, t)

+ γδ(||u1 − u2||∞)
(7)

Remark 1. In the neural network context, the δISS property
ensures that any difference in the initial conditions will be
eventually discarded, and thus the same outputs will corre-
spond to the same observations. Moreover, since the stability
is valid for t > 0, for a training with a finite time sequence
dataset it is guaranteed that all the NN state trajectories
converge to a unique solution.

III. ONE-LAYER GGNN STABILITY
In this section we will discuss the stability properties of a

single layer GGNN. For the rest of the paper the following
assumption will be made

Assumption 1. The input u is unity-bounded: u ∈ U ⊆
[−1, 1]N×G , i.e. ||u||∞ ≤ 1.

This is a quite mild assumption since the input signal is
usually normalized or it is the result of others network layers
with unitary output activation functions.
Before stating the sufficient conditions for the ISS of GGNN,
we will first introduce the notation for the following quantities

SK ≜ [I, S, . . . , SK ]

A ≜ [A0, . . . , AK ]T B ≜ [B0, . . . , BK ]T

Ã ≜ [Ã0, . . . , ÃK ]T Â ≜ [Â0, . . . , ÂK ]T

B̃ ≜ [B̃0, . . . , B̃K ]T B̂ ≜ [B̂0, . . . , B̂K ]T

(8)

where K is the filters length. The i-th component of the gates
is considered as one feature for j-th robot. Then, in light of
assumption (1) and knowing that ||x|| ≤ 1, we have

|q̂i| ≤ ||q̂||∞ max
u∈U,x∈X

||σ(ÂS(x) + B̂S(u)) + b̂||∞

≤ || max
u∈U,x∈X

σ(ÂS(x) + B̂S(u)) + b̂||∞

≤ σ(|| max
u∈U,x∈X

ÂS(x) + B̂S(u) + b̂||∞)

≤ σ(||ÂS(xmax) + B̂S(umax) + b̂||∞)

(9)

where xmax and umax are the maximum values of x and u.
Recalling that a graph filter in equation (2) can be written
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as ĤS(x) = [I, S, . . . , SK ](IK ⊗ x)[Ĥ0, Ĥ1, . . . , ĤK ]T and
using notation (8), equation (9) becomes

|q̂i| ≤ σ(||SK ||∞(||Â||∞||x||∞ + ||B̂||∞||u||∞) + ||b̂||∞)

= σ(||SK ||∞(||Â||∞ + ||B̂||∞) + ||b̂||∞) ≜ σq̂.
(10)

We identify the induced ∞-norm as || · ||∞. Similarly for q̃i

|q̃i| ≤ σ(||SK ||∞(||Ã||∞ + ||B̃||∞) + ||b̃||∞) ≜ σq̃. (11)

Theorem 1. A sufficient condition for the ISS of a single-layer
GGNN network is that A ≤ 1, where

A ≜ σq̂||SK ||∞||A||∞. (12)

The proof based on the results for GRU and LSTM [24], [25]
is provided in the Appendix I-A.

The δISS stability requires to analyze the evolution of the
maximum distance of two states trajectories x1,x2, starting
from two different initial condition x1(0),x2(0) and having
two different inputs u1,u2. We also need another assumption

Assumption 2. Given two support matrixes
||S1(t)||∞, ||S2(t)||∞,∀t ∈ Z+ associated with two different
graphs, they are bounded by the same ||S̄||∞.

Theorem 2. Under the assumption 2, a sufficient condition
for the system (5) to be δISS is Aδ ≤ 1; where

Aδ ≜ σq̂||S̄K ||∞||A||∞ +
1

4
||S̄K ||2∞||Â||∞||A||∞

+
1

4
||S̄K ||2∞||Ã||∞||B||∞.

(13)

The proof to this theorem is reported in Appendix I-B. As-
sumption 2 is reasonable for multi-agent systems, since graphs
always have a finite number of agents with finite number
of links between each others. When we deal with scalability
and dynamic graphs, the assumption may be restrictive based
on the choice of the support matrix. For examples, by using
the adjacency matrix the upper bound of its norm would be
the maximum number of the links for one robot, i.e. N (the
team size). Therefore, training the GGNN using the adjacency
matrix and being ||S̄||∞ = N , the stability condition would
be respected for teams with a maximum number of links for
each agent up to N . For group with N ′ > N we can guarantee
stability if the agents have a number of neighbors less than
N .

Remark 2. In practice we can solve this issue by constraining,
at runtime, the cardinality of #Ni < N for every agent i in
the team.

Remark 3. For a GGNN that uses normalized support matri-
ces, e.g., normalized Laplacian, the assumption is met without
any further restriction on the graph topology. Moreover the
use of normalized support reduces the regularizing term in the
loss function at training time. In the experiments we will use
normalized Laplacian to compare stable and unstable neural
network.

For the reader’s convenience, in the following, we will
denote the neural network using the stable GGNN as sGGNN.

IV. DEEP GGNN STABILITY
With the word “deep” we refer to the stack of multiple

layers of the Neural Networks. It is natural to ask whether the
stability properties extend from the single layer to a multi-
layer structure, commonly used in practice. We image the
interconnection among layers by feeding the future state of
one layer to the next one

q̃i = σ(ÃS(x
i + B̃S(u

i) + b̂)

q̂i = σ(ÂS(x
i + B̂S(u

i) + b̃))

xi+ = σc(q̂
i ◦AS(x

i) + q̃i ◦BS(u
i) + b)

ui = xi−1+, u1 = u

(14a)

for all the layer i ∈ {1, . . . ,M}. The output of the network
results from a graph output filter

y = YS(x
M ) + by. (14b)

The following then holds

Theorem 3. The GGNN network is ISS if Ai ≤ 1 for every
layer i ∈ {1, . . . ,M}, where Ai are defined like in Theorem 1

Proof. The deep GGNN (14) can be considered as a cascade
of subsystems, so it is ISS if every subsystem is ISS.

The δISS condition is more complex since there does not
exist, to our knowledge, a general study in the literature for a
cascade of δISS systems. However, in this case we can state

Theorem 4. The deep GGNN is δISS stable if Ai
δ ≤ 1 for

every layer i ∈ {1, . . . ,M}, where Ai are defined like in
Theorem 2.

The proof is left in the Appendix I-C.

V. GGNN STABILITY UNDER COMMUNICATION
DELAY

The previous scheme of GGNN can represent any dynamics
on a graph. However, it does not take into account the
communication steps and the possible delay in the application
of the supported matrix S. In each communication step,
performed with sampling time T , we considered that the nodes
communicate the data used in the graph filters and, at each T ,
we obtain the output of a GGNN layer computed on the data
[x(t−K), x(t− (K − 1)), . . . , x(t)]. We explicit the delayed
system in (5) as:
q̃ = σ(ÃSt(x(t−K)) + B̃St(u(t−K)) + b̃)

q̂ = σ(ÂSt(x(t−K)) + B̂St(u(t−K)) + b̂)

x(t+ 1) = σc(q̂ ◦ASt(x(t−K)) + q̃ ◦BSt(u(t−K)) + b)

y = YSt(x(t−K) + by)
(15)

where the delay of K communication steps can be represented
by a delay between the input, old of K steps, and the updating
rule of the state. Moreover, we must consider graph filters with
dynamic support matrices, i.e. matrices that change between
each communication step. Thus, the graph filters considered
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Fig. 1: Flocking control: a group of agents (yellow dots)
move in order to reach the same velocity and to avoid collision.
The leader (red dot) moves in order to reach the target (blue
cross) and avoids the collision with the other agents.

so far become [42]

HSt(x(t)) =


IN
...

t∏
τ=t−(K−1)

S(τ)



T

diag(


x(t)

...

x(t−K)

)

H0

...

HK


This filter expression is called unit-delayed filter [43]. Under
Assumption 2, the infinite norm of the support matrices in
time is upper bounded. Therefore, the formulation (15) allows
us to conclude that the system remains δISS under the same
conditions of the theorem 2.

Remark 4. As noted in [43], the trajectories and the under-
lying graph observed at training time and the one observed at
deployment are different, causing an increase of the training
error. This is not an issue since, at a reasonable sampling
time, the sequence of support matrices will not present drastic
changes as their spectral characteristics are similar and the
graph filters satisfy (4) with C = (||H||∞ − 1)||S̄||∞/2, and
thus are stable to graph perturbations.

VI. FLOCKING CONTROL EXAMPLE
In the following, we will show an application of the stable

GGNN on a case study involving flocking control (Fig. 1)
with a leader. In the problem of flocking, the agents are
initialized to follow random velocities and the goal is to have
them all fly at the same velocity while avoiding collisions
with each other. Moreover, one of the agents takes the leader
role conducting the team toward a target, unknown to the
other agents. Flocking is a canonical problem in decentralized
robotics [44], [45].

Dynamics and Expert Controller
We considered N agents described by the position r(t) ∈

RN×2 and the velocity v(t) ∈ RN×2 with a double integrator
dynamics

r(t+ 1) = r(t) + Tv(t); v(t+ 1) = v(t) + Tu(t);

with the discrete acceleration u(t) ∈ RN×2 taken as system
input. Note that the agent dynamics is used for building the
dataset and for simulation purpose, but it is not provided to
the learning algorithm.
Since the objective is to make all the agents reach the same
velocity, the control must be tuned in order to minimize the
following cost function

J(v(t)) =
1

N

N∑
i=1

||vi(t)−
1

N

N∑
j=1

vj(t)||22 (16)

where vi, vj are the velocities for the agent i and j, respec-
tively. The cost function measures the distance of the agent
velocities from the average velocities of the team. The cost
J(v(t)) under the control u(t) can be analysed on the time
horizon T such that t ∈ [0, T ] to evaluate the convergence rate
of the system. Moreover, the leader, randomly picked among
the agents, does not follow the objective in (16) but rather
it minimizes its distance from the target (d). Therefore, the
expert controller [42] for the followers is given by

uf (t) = −L(t)v(t)−∇rCA(r(t), rj(t))|j=1...N (17a)

and for leader it is

ul(t) = −Wp(rl(t)− d(t))−∇rl
CA(rl(t), rj(t))|j=1...N

(17b)
where Wp is a gain, rl ∈ R2 is the leader position,

∇rCA(r(t), rj(t))/∇rl
CA(rl(t), rj(t)) are the gradient of

the collision avoidance potential with respect to the position
of the agents/leader r/rl, evaluated at the position r(t)/rl(t)
and the position of every other agent rj(t) at time t. The i-
element of ∇rCA for each robot i with respect to robot j is
given by [46]

∇ri
CA(rij) =

{
− rij

||rij ||42
− rij

||rij ||22
if ||rij ||22 ≤ RCA

0 otherwise
(18)

with rij = ri − rj and RCA > 0 indicating the minimum
acceptable distance between agents. This potential function is
a non negative, non smooth function that goes to infinity when
the distance reduces and grows when the distance exceeds
RCA, in order to avoid the team losing the connectivity [46].
uf (t),ul(t) are a centralized controller since computing them
requires agent i to have instantaneous evaluation of L(t)v(t)
and rj(t) of every other agent j in the team. RCA and Wp

are tunable parameters of the controllers.

A. Neural Network Architecture
We assume that the agents form a communication graph

when they are in a sphere of radius R between each others
and that exchanges occur at the sampling time T , so that the
action clock and the communication clock coincide.
The input features vector wi ∈ R10 of the robot i for the
designed neural network is

wi =

[
vi,

∑
j∈NSi

rij
||rij ||42

,
∑

j∈NSi

rij
||rij ||22

,

{02, rl − d}, {[0, 1], [1, 0]}

] (19)



6

where NSi is the set of the sensing agents within a sphere
of radius RCA centred in the robot i. Moreover, the vector
contains the zero vector 02 ∈ R1×2 and the one-hot encoding
[0, 1], if the agent is a follower while (rl − d) and [1, 0], if
the agent is a leader. We chose the one-hot encoding instead
of the binary one, because it allows differentiating the neural
network weights between the leader and the follower. Note
that all the information in the vector wi are locally available
at the sampling/control time T .
The core of the neural network for the flocking control is a
layer of GGNN with F = 50 features in the hidden state
and filters length K = 2. Note that the choice of K affects
the complexity of the stability condition imposed since it
will constraint more parameters. The input features are first
processed by a cascade of two fully connected layers of 128
nodes before feeding the graph neural network. A readout of
two layers with 128 nodes combines the F -features GGNN
hidden state to get the bidimensional control u saturated to
the maximum admissible control. The input layers and the
readout that encapsulate the GGNN shape a more realistic
setting to test the stability of the graph neural network that is
usually used in combination with other kinds of neural models.
Following the Remark 3, we used normalized Laplacian as a
support matrix

B. Training
We collected a dataset by recording 120 trajectories, further

separated in three subsets of training, validation and test set
using the proportion 70% − 10% − 20%, respectively. Each
trajectory is generated by randomly positioning the agents
in a square such that their inter-distance is between 0.6 m
and 1.0 m and their initial velocities are picked at random
from the interval [−2, 2] m/s in each direction. The leader is
randomly selected among the agents and the target position is
randomly located within a square of length 20 m centered at
the location of the leader. Regardless of the target location,
the trajectories have duration of 2.5 s and input saturation
at 5 m/s2. Moreover, the 120 trajectories are recorded with
a random number of agents among N = [4, 6, 10, 12, 15].
We fixed the communication range to R = 4 m and the
sensing to RCA = 1 m. We trained the models for 120
epochs and executed the DAGGER algorithm [47] every 20
epochs. The algorithm evaluates the expert controller in (17)
on the enrolled state trajectories applying the learnt control and
adding them in the training set. Note that, thanks to the use
of DAGGER, we do not need a large dataset. We solve the
imitation learning problem using the ADAM algorithm [48]
with learning rate 1e−3 and forgetting factors 0.9 and 0.999.
The loss function used for the imitation learning is the mean
squared error between the output of the model and the optimal
control action. The stability condition (2) is imposed as a
regularization term on the cost function as in [24] with a
weights of ρ+ = 1 and ρ− = 0.01.

C. Results
In Fig. 2, we show a comparison between the stable GGNN

(sGGNN) and non-stable GGNN controller for the flocking
controller case. We evaluate the two controllers on 3 sets of
experiments with 40 trajectories each. In the experiments, we

vary team size, communication range and network delay to
test the robustness of the controllers. Figures 2b, 2d and 2f
report the leader position error evaluated after a fixed time of
2.5 s with respect to the leader starting location, i.e. ef/es
with ef , es respectively being the final and the initial square
distance of the leader from the target. Figures 2a, 2c and 2e
show the average flocking error (16) in the interval 0− 2.5 s
in logarithmic scale. Moreover, we consider a failure when
the control leads to an agent-agent collision, the leader-target
distance diverges, or any agent-agent distance diverges (i.e.
the team splits).

In the first experiment, we evaluate the transferring at scale
of the two controllers to variations of the team size N among
[4, 10, 25, 50], while the communication range is fixed at R =
4 m without communication delay. The results, reported in
Figs. 2a, 2b, show better performances for the sGGNN in
achieving the flocking state as seen by the average error,
that is generally closer to the expert controller than the non-
stable one. When more agents are involved in the graph, the
flocking error is low since, in both distributed and centralized
controllers, the inter-agents collision avoidance constrains the
motion of each agent by encouraging the velocity agreement.
However, in the case of 50 agents, the leader struggles more
to lead the entire team toward the target and opposing to the
group motion resulting in higher flocking and leader errors for
all the three controllers. In general, sGGNN and GGNN lead
to similar leader errors, even if, on average, they are roughly
7%-12% smaller for the non-stable neural network at the cost
of a higher flocking error.

In the second set of experiment, a general higher level of
robustness is observed when the communication range differs
from the one used at training time, R = 4 m, as can been seen
in Figs. 2c, 2d where the range varies between [2, 4, 8, 10] and
the team size is set at N = 25 without communication delay.
Specifically, when the range is R = 2 m, the non-stable learnt
control causes a flocking error of 0.40 m/s with outliers up to
0.68 m/s, greater than the average of 0.13 m/s of the stable
control. Moreover, with GGNN, we experienced more group
division and a consequent splitting of the team which explains
the increase in the flocking error. However, in this condition,
we also report the leader divergence and a consequent worst
leader error with respect to the stable control of 27%. While
the stable controller never results in failure situation, the non-
stable GGNN causes 12% failures with range of R = 2 m.
As expected, when the communication range increases the
flocking errors decrease for both controllers, since they are
able to communicate with more agents at the same time.
However, in this case, the leader error increases, since the
leader is often encapsulated by the other team agents and it
is thus forced to follow them to not collide, causing a slower
convergence to the target. Note that this behavior also affects
the expert controller.
In the last experiment, we consider not instantaneous com-
munication (T = 0.01 s) and evaluate again the transference
at scale. With large team sizes, the non-stable controller fails
20%-35% of the experimented trajectories, while the stable
one succeeded 100%. Figures 2e, 2f show consistency of
the results with respect to the non-delay case, confirming
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(a) Flocking error - variable team dimensions (b) Leader error - variable team dimensions (c) Flocking error - variable communication
range

(d) Leader error - variable communication
range

(e) Flocking error - network with communica-
tion delay and variable team dimensions

(f) Leader error - network with communication
delay and variable team dimensions

Fig. 2: Flocking Error and Leader Error for stable and non-stable GGNN controllers evaluation varying the team size (with
and without instantaneous communication) and the communication range, reported using box plots that display median,
minimum,maximum, 25th/75th percentiles, and potential outliers.

that the controller remains stable even with not instantaneous
communication.
In Fig. 3, we also reported the performances of the sGGNN
and GGNN trained and tested with the Laplacian matrix to
confirm what we stated in the Remark 3. As we can see, with
a higher communication range than the one used at training
time, the differences between the two controllers disappear
except for differences caused by training errors.

VII. MULTI ROBOT MOTION CONTROL EXAMPLE
Another representative example is the distributed control of

multi-robot team moving in a cluttered space (Fig. 4). This is
a problem already studied in different works [7], [49], [50]. In
particular, the proposed method is based on [51] that aims at
solving the multi-robot path planning using GNN. However,
while the method in [51] is based on discrete space and
a discrete decision time, where each robot take a discrete
directional decision for the next motion, here we consider
smooth trajectories and continuous space. With this choice,
we aim at controlling the robots with smooth inputs, a case
that better shows the robustness and stability properties of the
GGNN. The problem objective is to drive a group of robots
starting from random positions toward their respective targets
in a cluttered space.

Dynamics and Expert Controller
We consider N agents described by the position r(t) ∈

RN×2 in a single integrator dynamics with the velocity u(t) ∈
RN×2 taken as the system input. As before, the learning
algorithm is agnostic to the agent dynamics.
For the expert controller, we used a combination of RRT [52]
to find an obstacle-free path and an MPC to control the agents
in a continuous time. The MPC minimizes the divergence of
the agents from the RRT-generated paths while constraining
the agent motion in order to avoid inter-agent and obstacle
collisions:

min
u(t),r(t)

N∑
i=0

||rid(t)||22

s.t. ṙi = ui i = 1, . . . , N.

go(rio(t)) ≥ bo, i = 1, . . . , N.

gij(rij(t)) ≥ bij , i, j = 1, . . . , N.

||ui||2 ≤ 1 i = 1, . . . , N.

where rid is the distance from the RRT-path for the agent i,
go, gij are the quadratic distances between the agent positions
and the obstacles in the space (rio) and between the agents
(rij). As we can see, the MPC is naturally a centralized
solution since it uses all the agent dynamics to generate the
control inputs.
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(a) Flocking error

(b) Leader error

Fig. 3: Flocking Error and Leader Error for stable and non-
stable GGNN controllers with variable communication range
using Laplacian

A. Neural Network Architecture
As in the previous example, we assume the agents to form a

communication graph, as in the previous example, if they are
within a communication radius of R. The input features vector
wi ∈ R10 of the robot i for the designed neural network is

wi =

[
rid,

∑
o∈NSio

rio
||rio||42

,
∑

o∈NSio

rio
||rio||22

,

∑
j∈NSi

rij
||rij ||42

,
∑

j∈NSi

rij
||rij ||22

,

] (20)

where NSi,NSio are respectively the set of the agents and
obstacles in the sensing range RC of the robot i. At time T ,
all these information are available to the agent i.
Similarly to the previous case, we encapsulate the GGNN
between 2 layers MLP input of 128 nodes and 2 layers readout
of 128 nodes that give the agent velocity control. However, this
time we adopt a 2 layers GGNN with F = 30 features in the
hidden state and filter of length K = 2 to test the deep-GGNN
stability. Here we used the normalized Laplacian as support
matrix.

B. Training
We recorded 40 trajectories to build the dataset, further

separated in three subsets of training, validation and test set
using the proportion 70% − 10% − 20%, respectively. The
trajectories are the results of RRT+MPC controller running

Fig. 4: Multi Robot Motion Control: a group of agents (red
dots) move to reach their targets (blue cross) avoiding agent-
agent and agent-obstacle (in yellow) collisions.

with N = 10 agents randomly located in a square space of
20m ×20m with 15% obstacles density. The agent targets
are equally randomly located in the free space. We fixed
the communication range to R = 4m and the sensing one
to RC = 1m. The training runs for 200 epochs with the
DAGGER algorithm executed every 20 epochs. We used the
ADAM algorithm with learning rate 1e − 3 and forgetting
factors 0.9 and 0.999. The loss function used for the imitation
learning is the mean squared error between the output of the
model and the expert control action. We enforced the stability
as in the previous example with weights of ρ+ = 1 and
ρ− = 0.01.

C. Results
We evaluate the stability condition for the multi-robot mo-

tion control and report the results in Fig. 5. The comparison is
carried out on three sets of experiments evaluating transfarable
at scale, robustness on communication range and obstacle
density. We recorded 40 trajectories for each case on a 20m
×20m map. For this application, we are primarily interested in
the control success rate showed in Figs. 5b, 5d and 5f, where
we consider successful the trajectories free of collisions and
deadlocks. On successful trajectories, we also computed the
travel time increase with respect to the expert controller. We
obtained all the trajectories in the non instantaneus communi-
cation setting and, when not stated otherwise, with team size,
the communication range and the obstacle density respectively
of N = 10, R = 4.0m and 20%.
As in the flocking example, we first test the scalability of
the two controllers to the team size (N ) variations among
[10, 30, 50]. sGGNN has a success rate that attests between
65% and 45% showing better performances compared to the
GGNN one that is always below 30% as reported in 5b.
The travel time increase is comparable for the two control
solutions as we can see in the Figs. 5a, 5c and 5e, even if
the stable one presents more situations of negative travel time
increasing. This latter may have values below zeros due to
the presence of the RRT in the expert controller that finds an
obstacle-free but not the shortest path. Hence GGNNs control
can lead to trajectories that are faster since they work with the
target location directly. This phenomenon is less evident when
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(a) Travel time - variable team dimensions (b) Success rate - variable team dimensions (c) Travel time - variable communication range

(d) Success rate - variable communication
range

(e) Travel Time - variable obstacle density (f) Success rate - variable obstacle density

Fig. 5: Success rate and flow time for stable and non-stable GGNN controllers evaluation varying the team size, the
communication range and the obstacles density for a 20m×20m map; the flow time increasing is computed as (Tf−Tf∗)/Tf∗

with Tf∗ expert controller time of arrival.

(a) Flow Time - GGNN + rrt (b) Success rate - GGNN + rrt

Fig. 6: Success rate and flow time for stable and non-stable GGNN controllers following a precomputed rrt path to avoid the
obstacles. The controllers run on the map of 20m× 20m with 30% of randomly generated obstacles and 50 agents. The flow
time increasing is computed as (Tf − Tf∗)/Tf∗ with Tf∗ expert controller time of arrival.

the number of robots increases (Fig. 5a) or when the obstacle
density increases (Fig. 5e).
The sGGNN does not show particular robustness to variations
in the obstacle density since, as reported in Fig. 5f, the
successful rate of 80% for 10% of obstacles drops to 45%
for 30% of obstacles, the same success rate of the N = 50
and 20% of obstacles, even if it generalizes better than the
non-stable learnt controller as confirmed by the higher success

rate and the lower average flow time with respect to the
non-stable controller. This suggests a poor obstacle avoidance
behaviour, further demonstrated by the results in Fig. 6b where
we isolate failures caused by agent-agent collision by testing a
combination of gated GNN and RRT. For an obstacle density
of 30% and 50 agents, we feed the RRT path to neural models
projecting it on the sensing range by replacing the target loca-
tion in the input layer (20). In this case, sGGNN+RRT reaches
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100% success and an average travel time of 10e−3, confirming
that sGGNN realizes a well distributed approximation of the
MPC. On the contrary, GGNN+RRT still results in a high
failure rate due to agent-agent collisions. One may find similar
results varying the communication range as reported in Fig.
5d, where the sGGNN success rate remains unchanged. On
the other hand, with GGNN on a lower communication range,
we experienced more inter-agent collisions.

VIII. CONCLUSIONS
In this work, we devise sufficient conditions for the ISS

and Incremental ISS of gated graph neural networks. When
GGNN are used to learn distributed policies, the proposed
stability conditions allow to guarantee that the trained net-
works enjoy the ISS/δISS property, which is particularly useful
during the synthesis of distributed controllers. The proposed
condition has been tested on the flocking control and multi
robot motion control, showing good modeling performances.
Results suggest that enforcing stability properties on the learnt
controller makes it closer to the expert centralized one and
more robust to parametric changes in a deployment scenario,
such as communication radius and team size.

APPENDIX I

A. proof to Theorem 1
In the following, we report the proof of theorem (1).

Proof. Without loss of generality, we assume that the initial
state belongs to the invariant set X = [−1, 1]N×F . This is not
a restrictive assumption since even if x(0) /∈ X , at the next
iteration it will be in X due to the activation function σc. In
light of the definitions given in (8), it holds that

||x+||∞ ≤ ||σc(q̂ ◦AS(x) + q̃ ◦BS(u) + b)||∞
≤ ||q̂ ◦AS(x) + q̃ ◦BS(u) + b||∞
≤ σq̂||SK ||∞||A||∞||x||∞+

σq̃||SK ||∞||B||∞||u||∞ + ||b||∞
≤ A||x||∞ + B||u||∞ + ||b||∞

(21)

From theorem (1), by iterating the (21) for t steps we get

||x(t)||∞ ≤ At||x(0)||∞ + ||(1−A)−1B||∞||u||∞+

||(1−A)−1||∞||b||∞

which proves the ISS property according to the definition II.1

B. proof to Theorem 2
In the following, we report the proof of theorem 2

Proof. Given two states x1,x2, it holds that

x+
1 − x+

2 =σc(q̂1 ◦AS1(x1) + q̃1 ◦BS1(u1) + b)

− σc(q̂2 ◦AS2(x2) + q̃2 ◦BS2(u2) + b).

Owing to the Lipschitz assumption of σc and σ for Lipschitz
constants respectively of 1 and 1

4 , the distance between the

two state trajectories is bounded by

||x+
1 − x+

2 ||∞ ≤
||(q̂1 ◦AS1(x1) + q̃1 ◦BS1(u1))−
(q̂2 ◦AS2(x2) + q̃2 ◦BS2(u2))||∞ ≤

||(q̂1 ◦AS1(x1)− q̂2 ◦AS2(x2))+

(q̃1 ◦BS1(u1)− q̃2 ◦BS2(u2))||∞ ≤
||q̂1 ◦ (AS1(x1)−AS2(x2))||∞+

||(q̂1 − q̂2) ◦AS2(x2)||∞+

||q̃1 ◦ (BS1(u1)−BS2(u2))||∞+

||(q̃1 − q̃2) ◦BS2(u2)||∞.

(22)

Different input features will correspond to different graph
topologies and different support matrices S1, S2; thus different
graph filters with the same parameters. For this reason, the
differences of graph filters in the previous equation require
further development. Let us focus on the state dependent
graphs of the previous inequality. It holds that

||q̂1◦(AS1(x1)−AS2(x2))||∞ ≤
σq̂||SK1(IK ⊗ x1)A− SK2(IK ⊗ x2)A||∞ ≤
σq̂||SK1(IK ⊗ x1 − IK ⊗ x2)+

(SK1 − SK2)(IK ⊗ x2)||∞||A||∞.

(23)

Under the assumption of theorem 2, we have
||SK1||∞, ||SK2||∞ ≤ ||S̄K ||∞. In light of ||x||∞ ≤ 1,
equation (23) becomes

||q̂1 ◦ (AS1(x1)−AS2(x2))||∞ ≤
σq̂(||S̄K ||∞||A||∞||x1 − x2||∞+

(||SK1 − SK2||∞)||A||∞).

(24)

Applying the same reasoning to the other terms in the inequal-
ity (22), we obtain

||x+
1 − x+

2 ||∞ ≤

(σq̂||S̄K ||∞||A||∞ +
1

4
||S̄K ||2∞||Â||∞||A||∞+

1

4
||S̄K ||2∞||Ã||∞||B||∞)||x1 − x2||∞+

(σq̃||S̄K ||∞||B||∞ +
1

4
||S̄K ||2∞||B̂||∞||A||∞+

1

4
||S̄K ||2∞||B̃||∞||B||∞)||u1 − u2||∞+

W(||SK1 − SK2||∞) ≤
Aδ||x1 − x2||∞ + Bδ||u1 − u2||∞+

W(||SK1 − SK2||∞)

(25)

where W gathers all the coefficient multiplying the difference
||SK1 − SK2||∞. We can consider this latter as an additional
bounded input, ||SK1 − SK2||∞ ≤ ||S̄K ||∞ − 1 which,
analogously to the input features, is defined by the team state.
Hence, as stated in the theorem (2), it holds

||x1(t)− x2(t)||∞ ≤ At
δ||x1(0)− x2(0)||∞+

(1−Aδ)
−1δB||u1 − u2||∞+

(1−Aδ)
−1W||SK1 − SK2||∞.

(26)
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The state trajectories have then a maximum distance that is
asymptotically bounded by a function monotonically increas-
ing with the maximum distance between the input sequences
for

γδ =
[
(1−Aδ)

−1δB (1−Aδ)
−1W

] ∥∥∥∥∥∥ u1 − u2

SK1 − SK2

∥∥∥∥∥∥
∞

.

(27)
Therefore the system is incrementally ISS under the defini-
tion II.2.

C. proof of Theorem 4
Proof. To analyse the incremental stability it is useful to
separate each layer. From the proof of theorem I-B, for the
first layer we know that:

||x1+
1 − x1+

2 ||∞ ≤ A1
δ ||x1

1 − x1
2||∞ + B1

δ ||u1 − u2||∞+

W1||SK1 − SK2||∞
(28)

As a result, for the second it holds

||x2+
1 − x2+

2 ||∞ ≤
A2

δ ||x2
1 − x2

2||∞ + B2
δ ||x1+

1 − x1+
2 ||∞+

W2||SK1 − SK2||∞ ≤
A2

δ ||x2
1 − x2

2||∞ + B2
δA1

δ ||x1
1 − x1

2||∞+

B2
δB1

δ ||u1 − u2||∞+

B2
δW1||SK1 − SK2||∞ +W2(||SK1 − SK2||∞

(29)

Denoting ∆X =
[
x1
1 − x1

2 . . . xM
1 − xM

2

]T
, ∆U =

u1 − u2, ∆SK = SK1 − SK2 iterating the same reasoning
for M layers we get

||∆X+||∞ ≤



A1
δ 0 . . . 0

B2
δA

1
δ A2

δ . . . 0
...

. . . . . .
...

A1
δ

M∏
h=2

Bh
δ . . . . . . AM

δ


||∆X||∞+



B1
δ

B2
δ

...
M∏
h=1

Bh
δ


||∆U ||∞ +



W1

W1B2
δ +W2

...
M−1∏
h=1

WhBh+1
δ +WM


||∆S||∞

≤ Mδ||∆X||∞+MBδ||u1 − u2||∞ +MWδ||SK1 − SK2||∞
(30)

Since the matrix Mδ is lower triangular, its eigenvalues are the
elements of its diagonal Ai

δ and are equal to the eigenvalues
of the matrix Mδ .
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